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Abstract

This paper introduces a two-step convex estimator for dynamic location–scale models. Step

1 relies on a
√
T -consistent preliminary estimator. Step 2 minimizes an adaptive L1-penalized

weighted least squares (WLS) criterion, yielding a sparse estimator. The objective is con-

vex, avoiding the local-optima issues of non-convex optimizations. Consistency, asymptotic

distribution, and model-selection consistency are proven. Simulations confirm finite-sample

performance. A financial data set illustrates practical utility.
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1 Introduction

Model-selection complexity rises exponentially with the number of parameters. When the parameter

count is small (N), each of the 2N possible submodels can be ranked with the Akaike information

criterion (AIC) (Akaike, 1974, 1998) or the Bayesian information criterion (BIC) (Schwarz, 1978).

Once N grows, exhaustive search becomes infeasible; for example, N = 20 already implies roughly

one million submodels. Penalized estimators embed selection in the estimation step and thus

bypass the search. The least absolute shrinkage and selection operator (LASSO) (Tibshirani,

1996) illustrates this approach and has been examined in depth by (Bunea et al., 2007; Zhang and

Huang, 2008; Chan et al., 2015; Schweikert, 2022; Bhattacharjee et al., 2023), among many others.

Time-series applications of LASSO have largely focused on Markovian settings. Least squares

(LS) LASSO has been used for autoregressive (AR) and autoregressive conditional heteroskedasticity

(ARCH) (Engle, 1982) models. In linear regression, Fu and Knight (2000) derived the asymptotics

of the LASSO estimator. Wang et al. (2007) applied LASSO to regression with AR errors

and penalized both regression and AR coefficients. Nardi and Rinaldo (2011) studied the LS

estimator for AR models whose order increases with sample size. Basu and Michailidis (2015)

extended LASSO to vector AR models. Kock (2016) proved oracle properties for the adaptive

LASSO (Zou, 2006) in non-stationary AR processes. Adamek et al. (2023) used LASSO in

high-dimensional time-series settings, and Poignard and Fermanian (2021) investigated grouped

LASSO for multivariate ARCH models. All of these techniques rely on convex quadratic LS

criteria, which simplify optimization and asymptotic analysis.
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Convexity breaks down in non-Markovian models with persistence, such as autoregressive

moving average (ARMA) and generalized ARCH (GARCH) models (Bollerslev, 1986). The

conditional LS loss for ARMA models is non-convex because of recursive moving-average (MA)

terms. GARCH models are usually estimated by quasi-maximum likelihood (QML); QML is

non-convex and can face boundary-parameter problems (Francq and Thieu, 2019). Non-convexity

complicates asymptotic theory, raises computational cost, and introduces local optima (Wang

et al., 2014; Loh, 2017).

Non-convex penalized likelihood for time series was analyzed by Nielsen and Rahbek (2024), who

extended the non-concave penalties of Fan and Li (2001); Fan and Peng (2004) from independent

and identically distributed (i.i.d.) data to temporally dependent data and allowed parameters

on the boundary of the parameter space. Chan and Chen (2011) proposed a two-step adaptive

LASSO for ARMA models: residuals from an initial AR fit serve as exogenous regressors to

convexify the LS problem, and the AR order is chosen by an information criterion. Chan et al.

(2020) introduced a non-convex penalized estimator for ARMA models with unit roots. Their

iterative algorithm minimizes a non-convex loss and selects the LASSO penalty through a BIC-like

rule, but at high computational cost.

Motivated by these efforts, this paper tackles dynamic location-scale models in which standard

estimators are non-convex. The procedure is two-step. The first step relies on a
√
T -consistent

estimator. The second step applies an adaptive L1-penalized WLS criterion to recover sparsity

while keeping the objective convex. Unlike Chan and Chen (2011), no auxiliary AR-order selection

is required. Unlike Nielsen and Rahbek (2024) and Chan et al. (2020), the second step remains

convex, so the global optimum is guaranteed. As shown in Section 4, computation time is markedly

shorter on real data compared to Chan et al. (2020).

The method has five advantages. First, it covers general dynamic location-scale models. Second,

it relies on a
√
T -consistent preliminary estimator, eliminating auxiliary model selection and

needing only mild regularity conditions. Third, it does not require high-order moment assumptions,

which is crucial for heavy-tailed financial data. Fourth, it sidesteps boundary-parameter issues.

Finally, its convex second step allows fast computation through the least-angle-regression LASSO

(LARS–LASSO) algorithm (Efron et al., 2004).

The remainder of the paper is organized as follows. Section 2 formalizes the model and the

two-step estimator. Section 3 presents assumptions and proves consistency, asymptotic distribution,

and model-selection consistency for the location parameter estimator. Analogous results for scale

are given in Appendix I to keep the text light. Section 4 reports Monte Carlo evidence and an

empirical study with financial data. All proofs are in Appendix II.

2 Convexification of the Penalized Estimation

Let {yt, t ∈ Z} be a real-valued process decomposed as:

yt = µt + ϵt, (1)

ϵt = σtηt, (2)
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where {ηt, t ∈ Z} is an i.i.d. innovation process with zero mean and unit variance. The location

µt and scale σt are defined as:

µt = m (ϵt−1, ϵt−2, . . . , yt−1, yt−2, . . . ,XXXt−1,XXXt−2, . . . ;ϕϕϕ0) , (3)

σ2t = h
(
ϵt−1, ϵt−2, . . . , σ

2
t−1, σ

2
t−2, . . . ,XXXt−1,XXXt−2, . . . ;θθθ0

)
> 0, (4)

where {XXXt, t ∈ Z} is a vector of exogenous covariates. The parameters satisfy ϕϕϕ0 ∈ Φ ⊂ Rν and

θθθ0 ∈ Θ ⊂ Rn, with Φ and Θ compact and convex. The mappings:

m : R∞ × Φ 7→ R, h : R∞ ×Θ 7→ R

are measurable. We estimate ϕϕϕ0 and θθθ0 separately. The procedure for ϕϕϕ0 is presented first and

the procedure for θθθ0 is left to the Appendix I.

2.1 Construction of the Location Parameter Estimator

Define the auxiliary mappings:

ϕϕϕ 7→ µt (ϕϕϕ) = m (ϵt−1 (ϕϕϕ) , ϵt−2 (ϕϕϕ) , . . . , yt−1, yt−2, . . . ,XXXt−1,XXXt−2, . . . ;ϕϕϕ) , (5)

ϕϕϕ 7→ ϵt (ϕϕϕ) = yt − µt (ϕϕϕ) , (6)

(ϕϕϕ,φφφ) 7→ ft (ϕϕϕ,φφφ) = m (ϵt−1 (ϕϕϕ) , ϵt−2 (ϕϕϕ) , . . . , yt−1, yt−2, . . . ,XXXt−1,XXXt−2, . . . ;φφφ) . (7)

Equation (7) splits the recursion (5) in two parts: ϕϕϕ generates the lagged residuals, while φφφ is the

argument to be penalized. Let ααα = (ϕϕϕ′,φφφ′)′ and ααα0 = (ϕϕϕ′0,ϕϕϕ
′
0)

′. The penalized WLS criterion is:

QT (ααα) =
1

T
LT (ααα) +

ν∑
j=1

λj,T |φj | , (8)

LT (ααα) =
T∑
t=1

lt (ααα) , lt (ααα) =

(
yt − ft (ααα)

wt

)2

. (9)

The weight wt = w (yt−1, yt−2, . . . ,XXXt−1,XXXt−2, . . .) ≥ w > 0 is a measurable mapping from R∞ to

[w,∞). The penalty sequence (λλλT )T∈N =
(
(λ1,T , . . . , λν,T )

′)
T∈N is deterministic with non-negative

components.

Let us denote OOOt = (yt,XXX
′
t)
′. Because only a finite sample {OOOt, 1 ≤ t ≤ T} is observed, we

work with truncated versions of the mappings defined previously. Let initial values ÕOO0, ÕOO−1, . . .

be fixed, and set:

ϕϕϕ 7→ µ̃t (ϕϕϕ) = m
(
ϵ̃t−1 (ϕϕϕ) , . . . , yt−1, . . . , ỹ0, . . . ,XXXt−1, . . . , X̃XX0, . . . ;ϕϕϕ

)
, (10)

ϕϕϕ 7→ ϵ̃t (ϕϕϕ) = yt − µ̃t (ϕϕϕ) , (11)

ααα 7→ f̃t (ααα) = m
(
ϵ̃t−1 (ϕϕϕ) , . . . , yt−1, . . . , ỹ0, . . . ,XXXt−1, . . . , X̃XX0, . . . ;φφφ

)
, (12)

w̃t = w
(
yt−1, . . . , ỹ0, . . . ,XXXt−1, . . . , X̃XX0, . . .

)
. (13)

Write Q̃T , L̃T , and l̃t for the criteria obtained by substituting (10)-(13) into (8)-(9).
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For many models, such as ARMA and GARCH, L̃T (ϕϕϕ, ·) is convex almost surely (a.s.). Hence,

with any consistent preliminary estimator ϕ̂ϕϕT of ϕϕϕ0 we keep the convexity in the second step based

on i.e. L̃T

(
ϕ̂ϕϕT , ·

)
. The second stage LASSO estimator of φφφ0 is:

φ̂φφT = argmin
φφφ∈Φ

Q̃T

(
ϕ̂ϕϕT ,φφφ

)
. (14)

Section 3.1 studies φ̂φφT . Section 3.2 covers the adaptive version:

QALT (ααα) =


1
T LT (ααα) +

∑ν
j=1

λj,T

|ϕ̂j,T |τ |φj | if ∀j ∈ {1, . . . , ν} , ϕ̂j,T ̸= 0

∞ otherwise,
(15)

φ̂φφALT = argmin
φφφ∈Φ

Q̃ALT

(
ϕ̂ϕϕT ,φφφ

)
, (16)

where τ is a fixed positive constant.

Example 1 (ARMAX convexification). Consider an ARMA process with exogenous components

(ARMAX):

yt = a1,0yt−1 + b1,0ϵt−1 + ς1,0X1,t−1 + ϵt, (17)

with ϵt = σtηt as in (2). In practice the true orders are unknown. A common tactic fixes large

integers (p, q, r) and estimates:

yt =

p∑
i=1

ai,0yt−i +

q∑
j=1

bj,0ϵt−j +
r∑

k=1

ςk,0Xk,t−1 + ϵt, (18)

where most coefficients are zero at the truth. Exhaustive search over the 2p+q+r sub-models is

infeasible. We therefore penalize. Define recursively:

ϵ̃t (ϕϕϕ) = yt −
p∑
i=1

aiyt−i −
q∑
j=1

bj ϵ̃t−j (ϕϕϕ)−
r∑

k=1

ςkXk,t−1,

where ϕϕϕ = (a1, . . . , ap, b1, . . . , bq, ς1, . . . , ςr) and ϕϕϕ0 = (a1,0, 0, . . . , 0, b1,0, 0, . . . , 0, ς1,0, 0, . . . , 0). A

naive L1-penalized criterion is non-convex because of the MA terms:

ϕϕϕ 7→
T∑
t=1

ϵ̃2t (ϕϕϕ) +

p+q+r∑
i=1

λi,T |ϕi| ,

Our two-step procedure convexifies this function as follows:

• Step 1: Obtain a consistent preliminary ϕ̂ϕϕT (e.g. QMLE or conditional LS).

• Step 2: Solve the convex problem

φφφ 7→ ||YYY T −ΩΩΩTφφφ||2 +
p+q+r∑
i=1

λi,T |φi| , YYY T = (y1, . . . , yT )
′ ∈ RT ,
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ΩΩΩT =


ỹ0 . . . ỹ1−p ϵ̃0

(
ϕ̂ϕϕT

)
. . . ϵ̃1−q

(
ϕ̂ϕϕT

)
X̃1,0 . . . X̃r,0

y1 . . . ỹ2−p ϵ̃1

(
ϕ̂ϕϕT

)
. . . ϵ̃2−q

(
ϕ̂ϕϕT

)
X1,1 . . . Xr,1

...
...

...
...

...
...

yT−1 . . . yT−p ϵ̃T−1

(
ϕ̂ϕϕT

)
. . . ϵ̃T−q

(
ϕ̂ϕϕT

)
X1,T−1 . . . Xr,T−1

 .

The objective is a standard LASSO. The yts are regressed on their lagged values, the residuals

ϵ̃t

(
ϕ̂ϕϕT

)
and the exogenous covariates. The residuals are considered as exogenous in this regression.

When there is no penalization (i.e. λλλT = 000) the solution is explicit φ̂φφT = (ΩΩΩ′
TΩΩΩT )

−1ΩΩΩ′
TYYY T .

Otherwise, the LARS–LASSO algorithm yields the full penalty path efficiently. In this case, the

minimizer of this objective function φ̂φφT is sparse in general.

Example 2 (GARCHX convexification). Consider a GARCH process with exogenous components

(GARCHX):

σ2t = ω0 + α1,0ϵ
2
t−1 + β1,0σ

2
t−1 + π1,0X1,t−1, (19)

with positive coefficients and exogenous covariates. In this example, we assume that there is no

location component (the scale process is observed). Squaring (2) gives:

ϵ2t = ω0 + α1,0ϵ
2
t−1 + β1,0σ

2
t−1 + π1,0X1,t−1 + σ2t

(
η2t − 1

)
.

The squared process ϵ2t is now a location process. Fix large orders (P,Q,R) and write the expanded

model:

σ2t = ω0 +

Q∑
i=1

αi,0ϵ
2
t−i +

P∑
j=1

βj,0σ
2
t−j +

R∑
k=1

πk,0X
2
k,t−1,

where the true parameter is θθθ0 = (ω0, α1,0, . . . , αQ,0, β1,0, . . . , βP,0, π1,0, . . . , πR,0) with αi,0 = 0,

βj,0 = 0, πk,0 = 0 for i, j, k ≥ 2. Given a consistent preliminary estimator θ̂θθT of θθθ0, compute

the fitted variances σ̃2t

(
θ̂θθT

)
, and regress ϵ2t on the lagged squares, the fitted variances, and the

exogenous terms with an L1 penalty. The resulting problem is convex. The fitted variances can

also serve as weights for the regression. Detailed Monte Carlo illustrations follow in Section 4.

2.2 Construction of the Scale Parameter Estimator

Section 2.1 dealt only with the location parameter ϕϕϕ0, so the first-step estimator ϕ̂ϕϕT was enough.

When the scale parameter θθθ0 is of interest, a global estimator ρ̂ρρT :=
(
ϕ̂ϕϕ
′
T , θ̂θθ

′
T

)′
of ρρρ0 := (ϕϕϕ′0, θθθ

′
0)

′ is

necessary. The scale parameter appears in the latent process ϵt. Because ϵt is unobserved, we

work with the residuals:

ϵ̃t

(
ϕ̂ϕϕT

)
= yt − µ̃t

(
ϕ̂ϕϕT

)
.

and use the auxiliary mappings below to complete the estimation scheme:

(ϕϕϕ,θθθ) ∈ Φ×Θ×Θ, σ2t (ϕϕϕ,θθθ) = h
(
ϵt−1 (ϕϕϕ) , . . . , σ

2
t−1 (ϕϕϕ,θθθ) , . . . ,XXXt−1, . . . ;θθθ

)
. (20)

(ϕϕϕ,θθθ,ψψψ) ∈ Φ×Θ×Θ, gt (ϕϕϕ,θθθ,ψψψ) = h
(
ϵt−1 (ϕϕϕ) , . . . , σ

2
t−1 (ϕϕϕ,θθθ) , . . . ,XXXt−1, . . . ;ψψψ

)
. (21)
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These functions are equivalent to (5) and (7). Since ϵt is not observed, we introduce ϵt (ϕϕϕ) instead

of ϵt in the recursion (4). Set ρρρ = (ϕϕϕ′, θθθ′)′, βββ = (ρρρ′,ϑϑϑ′)′ and βββ0 = (ρρρ′0, θθθ
′
0)

′. Introduce:

QT (βββ) =
1

T
LT (βββ) +

n∑
j=1

ιj,T |ϑj | , (22)

LT (βββ) =
T∑
t=1

ℓt (βββ) , ℓt (βββ) =

(
ϵt (ϕϕϕ)− gt (βββ)

ωt

)2

, (23)

The weight ωt = ω (yt−1, yt−2, . . . ,XXXt−1,XXXt−2, . . .) ≥ ω > 0 is a measurable mapping from R∞

to [ω,∞). The penalties (ιιιT )T∈N =
(
(ι1,T , . . . , ιn,T )

′)
T∈N are deterministic and non-negative.

Using the truncated counterparts (tilde notation) and the preliminary estimator ρ̂ρρT , we define the

second-step estimator of θθθ0 as:

ϑ̂ϑϑT = argmin
ϑϑϑ∈Θ

Q̃T (ρ̂ρρT ,ϑϑϑ) .

The adaptive version is:

QAL
T (βββ) =


1
T LT (βββ) +

∑n
j=1

ιj,T

|θ̂j,T |τ |ϑj | if ∀j ∈ {1, . . . , n} , θ̂j,T ̸= 0

∞ otherwise,

ϑ̂ϑϑ
AL

T = argmin
ϑϑϑ∈Θ

Q̃AL
T

(
θ̂θθT ,ϑϑϑ

)
.

To preserve clarity and avoid overloading the notation, the same symbol τ is used for the adaptive

power as in the previous section. Appendix I studies ϑ̂ϑϑT and ϑ̂ϑϑ
AL

T .

Example 3 (ARMAX-GARCHX). Compute ρ̂ρρT =
(
ϕ̂ϕϕ
′
T , θ̂θθ

′
T

)′
and use ϕ̂ϕϕT as in the first example of

ARMAX model to compute φ̂φφT . All the procedure of the ARMAX example remains independent

of the dynamics of ϵt. Then use ϵ̃t

(
ϕ̂ϕϕT

)
instead of ϵt in the second example of GARCHX model.

The squared residuals ϵ̃2t

(
ϕ̂ϕϕT

)
can be regressed on their lagged values ϵ̃2t−1

(
ϕ̂ϕϕT

)
, . . . , ϵ̃2t−Q

(
ϕ̂ϕϕT

)
,

the fitted variances σ̃2t−1 (ρ̂ρρT ) , . . . , σ̃
2
t−P (ρ̂ρρT ), and the exogenous components. The optimization

problem becomes:

ϑϑϑ 7→ ||YYY T −ΩΩΩTϑϑϑ||2 +
P+Q+R∑
i=1

ιi,T |ϑi| , YYY T =
(
ϵ̃21

(
ϕ̂ϕϕT

)
, . . . , ϵ̃2T

(
ϕ̂ϕϕT

))′
∈ RT ,

ΩΩΩT =


ϵ̃20

(
ϕ̂ϕϕT

)
. . . ϵ̃21−Q

(
ϕ̂ϕϕT

)
σ̃20

(
ϕ̂ϕϕT

)
. . . σ̃21−P

(
ϕ̂ϕϕT

)
X̃1,0 . . . X̃R,0

ϵ̃21

(
ϕ̂ϕϕT

)
. . . ϵ̃22−Q

(
ϕ̂ϕϕT

)
σ̃21

(
ϕ̂ϕϕT

)
. . . σ̃22−P

(
ϕ̂ϕϕT

)
X1,1 . . . XR,1

...
...

...
...

...
...

ϵ̃2T−1

(
ϕ̂ϕϕT

)
. . . ϵ̃2T−Q

(
ϕ̂ϕϕT

)
σ̃2T−1

(
ϕ̂ϕϕT

)
. . . σ̃2T−P

(
ϕ̂ϕϕT

)
X1,T−1 . . . XR,T−1

 .

3 Theoretical Results

This section gives the asymptotic properties of the LASSO estimator φ̂φφT . It then treats the

adaptive version φ̂φφALT , derives its limit law, and proves selection consistency. Because the scale

estimator obeys the same logic, its results are deferred to Appendix I.
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Throughout, let Ft be the sigma-field generated by {OOOu, u ≤ t}. Write V (ϕϕϕ0) for a neighbor-

hood of ϕϕϕ0, and V (ααα0) = V (ϕϕϕ0)× V (ϕϕϕ0). The interior of Φ is denoted
◦
Φ.

3.1 LASSO Estimator

Under the following assumptions, inspired by Aknouche and Francq (2023), we show the strong

consistency of the estimator φ̂φφT .

A1 The process
{
(yt, ϵt)

′ , t ∈ Z
}
is a solution to (1)-(4) and

{
(yt, ϵt,XXX

′
t)
′ , t ∈ Z

}
is strictly sta-

tionary, ergodic, and Ft-measurable at time t, with ηt independent of Ft−1.

A2

(
1 + |yt|+ sup

ααα∈Φ×Φ
|ft (ααα)|

)
at

a.s.−→
t→∞

0, with at = sup
ααα∈Φ×Φ

∣∣∣f̃t (ααα)− ft (ααα)
∣∣∣.

A3

(
1 + y2t + sup

ααα∈Φ×Φ
f2t (ααα)

)
dt

a.s.−→
t→∞

0, with dt =
∣∣w̃2

t − w2
t

∣∣.
A4 E

[(
σ1
w1

)2]
<∞.

A5 V (ϕϕϕ0) ⊂ Φ.

A6 The function f1 is a.s. of class C1 on
◦
Φ×

◦
Φ, and w−1

1 sup

ααα∈V(ϕϕϕ0)×
◦
Φ

∣∣∣∣∣∣∂f1∂ααα (ααα)
∣∣∣∣∣∣ belongs to L2.

A7 000 ∈
◦
Φ.

A8 ϕ̂ϕϕT
a.s.−→
T→∞

ϕϕϕ0.

A9 ∀ϕϕϕ ∈ V (ϕϕϕ0), the functions lt (ϕϕϕ, ·) and l̃t (ϕϕϕ, ·) are a.s. strictly convex on Φ.

Assumptions A2 and A3 ensure that initial values have no impact asymptotically. These

assumptions are broadly applicable since the influence of initial values diminishes exponentially in

many models. The choice of {wt, t ∈ Z} is guided by the Assumption A4 so that no high-order

moments of the Data Generating Process (DGP) are required. Assumption A5 places ϕϕϕ0 in
◦
Φ.

This interior condition is natural for WLS; it is not always satisfied by QMLEs, which may reach

the boundary. Assumption A7 keeps 000 in
◦
Φ. This condition ensures that the estimator belongs to

◦
Φ because Φ is convex and the L1 penalty shrinks the estimator towards 000. Lastly, Assumption

A9 holds true in models like ARMA, GARCH, or GJR-GARCH.

Remark 3.1. If the observed process is {ϵt, t ∈ Z}, following a scale model defined by (2) and

(4), it follows that ϵ2t = σ2t + σ2t
(
η2t − 1

)
is a location process. In that case our results apply to

the squared series provided E
[
η4t
]
<∞.

Theorem 3.1. Assume that λλλT −→
T→∞

λλλ∞ < +∞ component-wise. Then, under Assumptions

A1-A9:

φ̂φφT
a.s.−→
T→∞

argmin
φφφ∈Φ

Q∞ (ϕϕϕ0,φφφ) ,

where Q∞ (ϕϕϕ0,φφφ) := E [l1 (ϕϕϕ0,φφφ)] +
∑ν

j=1 λj,∞ |φj | exists and is finite on
◦
Φ. If λλλ∞ = 000, then:

φ̂φφT
a.s.−→
T→∞

ϕϕϕ0.
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Theorem 3.1 demonstrates that the estimator converges to a biased limit when λλλ∞ is non-

zero. To derive the asymptotic distribution, λλλT must converge to 000 at an appropriate rate. The

asymptotic distribution of the estimator is established under the following assumptions.

A10 E
[(

σ1
w1

)4]
<∞.

A11 The function ft is a.s. of class C
2 on V (ααα0), w

−1
t sup

ααα∈V(ααα0)

∣∣∣∣∣∣∂ft∂ααα (ααα)
∣∣∣∣∣∣2 and

w−1
t sup

ααα∈V(ααα0)

∣∣∣∣∣∣ ∂2ft∂ααα∂ααα′ (ααα)
∣∣∣∣∣∣ belong to L2.

A12 There is a closed and convex subset C of Rν and a sequence of symmetric positive definite

ν × ν matrices (JJJT )T∈N converging a.s. to a symmetric positive definite matrix JJJ such that:

√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
= argmin

zzz∈C
(ZZZT − zzz)′ JJJT (ZZZT − zzz) + oP (1) , ZZZT =

1√
T

T∑
t=1

∆∆∆tγ (ηt) ,

where ∆∆∆t is an Ft−1-measurable ν × k matrix for some positive integer k and γ : R → Rk is a

measurable function such that ∆∆∆t and γ (ηt) belong to L2, E [γ (ηt)] = 000 and V [γ (ηt)] =: ΓΓΓ.

A13 Letting bt = sup
ααα∈Φ×Φ

∣∣∣∣∣∣∂ft∂ααα (ααα)− ∂f̃t
∂ααα (ααα)

∣∣∣∣∣∣, the sequences:

dt sup
ααα∈Φ×Φ

∣∣∣∣∣∣∣∣∂ft∂ααα
(ααα)

∣∣∣∣∣∣∣∣ (1 + |yt|+ sup
ααα∈Φ×Φ

|ft (ααα)|
)
, at sup

ααα∈Φ×Φ

∣∣∣∣∣∣∣∣∂ft∂ααα
(ααα)

∣∣∣∣∣∣∣∣ ,
bt

(
1 + |yt|+ sup

ααα∈Φ×Φ
|ft (ααα)|

)
,

are a.s. of order O (t−κ) for some κ > 1
2 .

Assumption A12, based on Francq and Zaköıan (2018), includes cases where the true parameter

ϕϕϕ0 lies on the boundary of the domain for the first-step estimator ϕ̂ϕϕT . This situation arises, for

example, when the first-stage estimator is a QMLE for a GARCH model with at least one parameter

equal to zero. Our second step estimator does not have any boundary issues as discussed previously.

Additional examples can be found in Francq and Zaköıan (2019) for GARCH models, Francq and

Thieu (2019) for APARCHX models, and Andrews (1999) for more general cases. Since this study

focuses on a penalized estimator, the true parameter ϕϕϕ0 is expected to be sparse, making boundary

issues in the first stage likely. When the first stage estimator does not have boundary issues, the

assumptions reduces to a Bahadur expansion
√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
= ZZZT . Assumption A13 ensures that

initial values are asymptotically irrelevant when deriving the estimator’s asymptotic distribution.

To derive the asymptotic distribution, we introduce the following functions. The truncated

versions are denoted by tildes in the same way as (10)-(13):

ET (υυυ) = GT (υυυ) +

ν∑
j=1

Tλj,T

(∣∣∣∣ υj√
T

+ ϕj,0

∣∣∣∣− |ϕj,0|
)
,

GT (υυυ) = LT

(
ϕ̂ϕϕT ,

υυυ√
T

+ϕϕϕ0

)
− LT (ϕϕϕ0,ϕϕϕ0) +KT (υυυ) , KT (υυυ) =

0 if υυυ ∈ ΥT ,

∞ otherwise
.
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The function υυυ 7→ LT

(
ϕ̂ϕϕT ,

υυυ√
T
+ϕϕϕ0

)
is defined on ΥT :=

{√
T (xxx−ϕϕϕ0) ,xxx ∈ Φ

}
and it is clear

that
√
T (φ̂φφT −ϕϕϕ0) = argmin

υυυ∈ΥT

ẼT (υυυ). We extend the definition domain of the function GT outside

ΥT with an infinite value by adding KT . We show that under the previous assumptions, the

sequence (ΥT )T≥1 is an exhaustion of Rν . This result ensures that GT is lower semi-continuous

then we show that when
√
TλλλT −→

T→∞
λλλ∞ <∞:

ẼT
d−→

T→∞
E∞.

The previous convergence is to be understood in the sens of epi-convergence in distribution (see

Knight (1999)). Since (ΥT )T≥1 spans Rν , the limit process is defined on Rν as:

E∞ (υυυ) = G∞ (υυυ) +

ν∑
j=1

λj,∞
(
υj sign (ϕj,0) Iϕj,0 ̸=0 + |υj | Iϕj,0=0

)
,

G∞ (υυυ) =

WWWZZZC
υυυ


′

ΠΠΠ′
2,2ν

(
ΠΠΠ1,2ν + 2E

[
P

(
1

w1

∂f1
∂ααα

(ααα0)

)]
ΠΠΠ2,2ν

)WWWZZZC
υυυ

 ,

where P (xxx) := xxxxxx′, for some matrix or column vector xxx, and for an integer k, ΠΠΠ1,k =
(
IIIk×k 000k×k

)
and ΠΠΠ2,k =

(
000k×k IIIk×k

)
. The random vector of the limit process is characterized as follows:

(
WWW

ZZZ

)
∼ N

(
000,

(
I (ϕϕϕ0) R (ϕϕϕ0)

R′ (ϕϕϕ0) ΣΣΣ

))
,

I (ϕϕϕ0) = 4E
[
P

(
σ1
w2
1

∂f1
∂ααα

(ααα0)

)]
, R (ϕϕϕ0) = −2E

[
σ1
w2
1

∂f1
∂ααα

(ααα0)E
[
η1γ

′ (η1)
]
∆∆∆′

1

]
,

ΣΣΣ = V [∆∆∆1γ (η1)] = V
[
∆∆∆1ΓΓΓ

1/2
]
.

The boundary issues of the estimator ϕ̂ϕϕT , introduced in Assumption A12, lead to the following

projection ZZZC = argmin
zzz∈C

(ZZZ − zzz)′ JJJ (ZZZ − zzz).

Remark 3.2. Note that if the components of the matrix function γ (·) are even, and the distribution

of ηt is symmetric then R (ϕϕϕ0) = 000. It is the case for the QMLE for the GARCH model with

gaussian ηt.

Theorem 3.2. Assume that
√
TλλλT −→

T→∞
λλλ∞ < +∞ component-wise. Then, under Assumptions

A1-A3, A5-A13: √
T (φ̂φφT −ϕϕϕ0)

d−→
T→∞

argmin
υυυ∈Rν

E∞ (υυυ) .

To study the recovery of the sparse support of the parameter ϕϕϕ0, we define the sets of active

and inactive components. Without loss of generality, we assume that they have the following form:

A = {j ∈ {1, . . . , ν} , ϕj,0 ̸= 0} = {1, . . . , ν0} , A = {j ∈ {1, . . . , ν} , ϕj,0 = 0} = {ν0 + 1, . . . , ν} .
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Similarly, we define the sets of active and inactive components of the estimator φ̂φφT as:

AT = {j ∈ {1, . . . , ν} , φ̂j,T ̸= 0} , AT = {j ∈ {1, . . . , ν} , φ̂j,T = 0} .

A14 E
[
P
(

1
w1

∂f1
∂φφφ (ααα0)

)]
is invertible.

Proposition 3.1. Under the Assumptions of Theorem 3.2 and Assumption A14:

lim sup
T→∞

P [AT = A] < 1.

Proposition 3.1, analogue to Zou (2006), shows that the parameter selection is not consistent

with the standard LASSO estimator. In the next section, we introduce the adaptive LASSO

estimator and derive its asymptotic properties.

3.2 Adaptive LASSO Estimator

The theory for the adaptive LASSO estimator builds on a similar loss function:

EALT (υυυ) =

GT (υυυ) +
∑ν

j=1
Tλj,T

|ϕ̂j,T |τ
(∣∣∣ υj√

T
+ ϕj,0

∣∣∣− |ϕj,0|
)

if ∀j ∈ {1, . . . , ν} , ϕ̂j,T ̸= 0

∞ otherwise.
(24)

where τ is a fixed positive constant. The truncated versions of these functions are defined following

the same logic as previously. Let AAA and AAA be the selection matrices defined by removing the rows

of IIIν×ν corresponding to the inactive and the active components, respectively. In the following,

for a vector xxx ∈ Rν we denote by xxxA the sub-vector AAAxxx, i.e. xxx =
(
xxx′A,xxx

′
A

)′
. We define for any yyy

such that AAA′yyy ∈ ΥT :

EALA,T (yyy) = EALT
(
AAA′yyy
)
, GALA,T (yyy) = GALT

(
AAA′yyy
)
,

with their truncated version defined following the same logic as previously. These functions

correspond to (24) with the components A constrained to be 0. To simplify the expressions we

define:

E
[
P

(
1

w1

∂f1
∂φφφ

(ααα0)

)]
=MMM =

(
MMM11 MMM12

MMM21 MMM22

)
, E

[
1

w2
1

∂f1
∂φφφ

(ααα0)
∂f1
∂ϕϕϕ′

(ααα0)

]
ZZZC = VVV ,

where MMM11 is a ν0 × ν0 matrix, MMM22 is a (ν − ν0) × (ν − ν0) matrix and the other matrices are

conformable with the partitioning.

Theorem 3.3. Assume that
√
TλλλT −→

T→∞
000 and T

τ
2λλλT −→

T→∞
∞, Under the Assumptions of

Theorem 3.2 and Assumption A14:

√
T
(
φ̂φφALA,T −ϕϕϕA,0

)
d−→

T→∞
−1

4
MMM−1

11 (WWWA + 4VVV A) ,

φ̂φφALA,T
P−→

T→∞
000, P [AT = A] −→

T→∞
1.

Theorem 3.3 shows that the adaptive LASSO recovers the sparse support with probability

tending to one, just as in the oracle property of Fan and Li (2001). However, its asymptotic
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law is not Gaussian in general. The extra term VVV in the limit reflects the projection onto the

boundary-affected set of the first-step estimator. It leads to a non-standard distribution. If the

preliminary estimator has no boundary constraints, then the limit reduces to a multivariate normal

as in the classical oracle case. In general, the boundary issues arise when some components of the

parameter ϕϕϕ0 are zero. Therefore, the vector VVV A is gaussian in general.

3.3 Application to GARCHX Model

We now apply the two-step estimator to a GARCH model with exogenous covariates {XXXt, t ∈ Z}
of dimension r. In practice, it is usual to model financial returns with one lag of persistence.

Therefore, we allow the ARCH components to be over-parametrized and we assume that the DGP

follows a GARCHX(p,1) dynamic:

ϵt = σtηt, (25)

σ2t = w0 +

p∑
i=1

ai,0ϵ
2
t−i + b0σ

2
t−1 + ςςς ′0XXXt−1 > 0, (26)

where aaa0 = (a1,0, . . . , ap,0), and ϕϕϕ0 = (ω0, aaa
′
0, b0, ςςς

′
0)

′ ∈
◦
Φ ⊂ R1+p+1+r with ϕϕϕ0 having non-negative

components. Squaring ϵt = σtηt gives:

ϵ2t = w0 +

p∑
i=1

ai,0ϵ
2
t−i + b0σ

2
t−1 + ςςς ′0XXXt−1 + σ2t

(
η2t − 1

)
. (27)

Equation (27) defines a location model. So the framework of Section 2.1 applies with yt = ϵ2t and

µt = σ2t . In this case:

ft (ααα) =
(
1, ϵ2t−1, . . . , ϵ

2
t−p, σ

2
t−1 (ϕϕϕ) ,XXX

′
t−1

)
φφφ, lt (ααα) =

(
ϵ2t − ft (ααα)

wt

)2

.

An explicit form of the weight process is given later. The following assumptions are sufficient to

prove the theorems of Section 3 in the case of GARCHX(p,1).

A15 The process
{
(ηt,XXX

′
t)
′ , t ∈ Z

}
is strictly stationary and ergodic such that ∃s > 0,E [||XXX||s] <

∞ and the usual top-Lyapunov condition is satisfied.

A16 ∃ρ > 0,∀ϕϕϕ ∈ Φ, |b| ≤ ρ < 1.

A17 ∀xxx ∈ Rr \ {000}, xxx′XXX1 is not degenerated.

As shown in Lemmas 1 and 2 of Francq and Thieu (2019), under the previous Assumptions,

there exist a unique stationary, ergodic and non-anticipative solution to (25)-(26) with a small

order moment 2s. In the following, we assume that {ϵt, t ∈ Z} is the solution. Assumption A17

suffices to ensure the condition of Assumption A14. Under Assumption A16 and since Φ is

compact, we let sup
b∈Φ

|b| := ρ < c < 1 and define wt = 1 +
∑

i∈N∗ ci
(
ϵ2t−i + ||XXXt−i||1

)
. We also

assume that a first step estimator ϕ̂ϕϕT is available.
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Remark 3.3. The first step estimator ϕ̂ϕϕT could be the QMLE for example. Note that the

parameter set Φ used for the second-stage estimator does not coincide with the parameter set of

the QML estimation context. The QMLE is constrained whereas the WLSE is not.

Corollary 3.1. Under Assumptions A15-A16, if ϕ̂ϕϕT satisfies Assumption A8 then the Theorem

3.1 holds. Moreover, if E
[
η4t
]
<∞ and ϕ̂ϕϕT satisfies Assumption A12 then the Theorem 3.2 holds.

Under Assumption A17 gives Theorem 3.3.

4 Illustration Based on Financial Data and Simulations

In this section, we illustrate the two-steps method by an application to real data. We compare

the results and the execution time of the two-stage approach to Chan et al. (2020). We also

describe the tuning of the LASSO hyper-parameter. Then we study the finite-sample properties

with Monte Carlo experiments.

4.1 Monthly Interest Rate on Three-Month US Government Treasury Bills

We compare our convex penalized estimation to the non-convex iterative approach of Chan et al.

(2020) for ARMA models. We use the same data-set (length 461) of the log-differential of the

monthly interest rate on three-month government Treasury bills for the period 1950 to 1988. The

data is represented in Figure 1. In the light of Figure 2 an ARMA(7,7) can be suggested as an

Figure 1: Monthly interest rate on three-month government Treasury bills, 1950–1988.

initial over-parameterized model. This over-parameterization leads to 16384 possible sub-models.

Figure 2: ACF (left) and PACF (right) of the log-differential series.

We use our two stage procedure to perform a sparse estimation. The first-stage estimator is a
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conditional LSE, then the LARS-LASSO algorithm is computed. We use the adaptive power τ = 2

and assume that the tuning parameter λλλT is the same for all the parameters λ1,T = . . . = λ14,T .

Then, to avoid tuning this hyper-parameter, we perform a post-LASSO estimation at each LARS-

LASSO step (i.e. the gray vertical lines in Figure 3). The post-LASSO calculations can be done

Figure 3: LARS-LASSO path of the second-step estimator.

in parallel when it is advantageous. The best model is selected according to the BIC criterion.

The non-convex method of Chan et al. (2020) is used as described in their paper with the choice

of the hyper-parameter guided by a BIC-like information criterion. We stop the algorithm if the

1000th iteration is reached or if the error is bellow 10−6. Both estimators select AR6, MA1 and

MA6 coefficients. The non-convex method gives AR6 = −0.38, MA1 = 0.43 and MA6 = 0.19

whereas our convex method gives AR6 = −0.42, MA1 = 0.43 and MA6 = 0.23. The results of the

non-convex method are slightly different of the those in the original paper due to the sensitivity

to the initial conditions. The algorithm stops after reaching the maximum number of iterations.

However, the selected set of parameters is the same as our convex approach. The runtime of

our approach is 485 milliseconds whereas the non-convex approach takes 5.2 seconds to produce

the results. Our approach is more than 10 times faster. The experiment was done 100 times to

compare the average runtime of the two methods on a MacBook Pro with Apple M2 Pro processor

and 16 GB or RAM. The model selected by our method produces non-correlated residuals (see

Table 1 and Figure 4) With this comparison we show that our method produces the same results

Table 1: Ljung-Box tests of the model residuals.

Lags 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Stat 0.32 3.07 3.10 3.10 3.27 3.28 3.98 3.99 4.73 4.88 5.23 5.37 10.98 11.58 13.62 15.31 20.01 20.03 21.08 25.96 26.17 26.58
PVal 0.96 0.55 0.68 0.80 0.86 0.92 0.91 0.95 0.94 0.96 0.97 0.98 0.75 0.77 0.69 0.64 0.39 0.46 0.45 0.25 0.29 0.32

as Chan et al. (2020) with minimal computational cost, leading to a valid sparse model. We also

show how our approach reduces the dimension of the selection problem: Reducing the number of

possible sub-models from 16384 to 15. Moreover, the method is designed to take advantage of

the efficiency of the LARS-LASSO algorithm and, for large models, the post-LASSO estimation

can be done in parallel leading to a shorter computational time. Here, the post-LASSO is done

sequentially.
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Figure 4: ACF and PACF of the residuals of the model estimated by the two-step method.

4.2 Monte Carlo Experiment

This section provides Monte Carlo simulations with 500 trajectories to investigate the finite sample

properties of the penalized two-stage estimator. In the following, the adaptive LASSO power is

τ = 2 for both location and scale processes.

4.2.1 ARMAX-GARCHX

We start by estimating an ARMAX(3,3)-GARCHX(2,2) model with two exogenous components

in ARMA and GARCH parts. The true DGP is a sparse ARMAX(1,2)-GARCHX(1,1) model.

The parameters of this experiment are described in Table 2. The exogenous components of the

ARMA part, denoted YYY , are i.i.d. N (0, 1) and the exogenous components of the GARCH part,

denoted XXX, are i.i.d. χ2 (1). The first step estimation is given by the QML. As in the previous

experiment, the tuning of the hyper-parameters λλλ and ιιι is avoided by performing a post-LASSO.

Table 3 shows that the true sparse parameter is accurately recovered as the sample size grows.

Table 2: Non-zero simulation coefficients (all remaining AR, MA, ARCH/PERSISTENCE, Y and
X terms are zero). Coefficients marked † are not penalized.

AR1 MA1 Y0 INTERCEPT† ARCH1† PERSISTENCE1† X0

0.90 –0.80 –0.50 0.01 0.09 0.84 0.30

The accuracy is higher for the ARMAX parameters than for the GARCHX parameters. This

Monte Carlo experiment demonstrates that the finite sample performance of the procedure aligns

with theoretical expectations. The sparse support is accurately identified as the sample size grows.

4.2.2 GJR-GARCHX

We perform a second experiment on a GJR-GARCHX(2,2,1) model with 5 exogenous components.

The parameters of this experiment are described in Table 4 with the same adaptive power

τ = 2. The exogenous parameters are the squares of independent GARCH(1,1) trajectories, with

parameters estimated on the log-returns of the S&P 500 index, NASDAQ Composite, Russell 2000,

FTSE 100 and DAX 30, on the period from 2000-01-01 to 2019-01-01. All the parameters are

penalized, except the intercept. Table 5 shows the percentage of times each coefficient is picked

by BIC along the LARS-LASSO path for sample sizes T = 500, 1000, 4000, 5000. Selection of
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Table 3: Selection rates (%) for penalized coefficients in the ARMAX–GARCHX experiment.

Parameter T = 500 T = 1000 T = 2000 T = 4000

ARMA

AR1 100.00 100.00 100.00 100.00
AR2 0.00 0.00 0.00 0.00
AR3 0.00 3.60 0.00 0.00
MA1 0.40 0.40 0.00 0.00
MA2 100.00 100.00 100.00 100.00
MA3 0.20 0.00 0.00 0.00

ARMA Exogenous
Y0 100.00 100.00 100.00 100.00
Y1 0.80 0.60 0.80 0.80

GARCH
ARCH2 0.00 1.60 3.00 4.40
PERSISTENCE2 48.60 37.60 33.80 14.20

GARCH Exogenous
X0 55.00 78.40 98.00 100.00
X1 0.60 0.40 1.60 2.20

true coefficients rises steadily with n: all active terms exceed 80% for n ≥ 4000. False-positive

rates stay bellow 8% once n ≥ 2000. LEVERAGE2 is falsely selected in 30% of trajectories at

n = 1000, but this over-selection disappears as n grows. The selection of ARCH1 and X0 terms

are slower but reaches satisfactory rates for n ≥ 4000. Overall, the probability of recovering the

correct model grows when n grows.

Table 4: Non-zero simulation coefficients for the GJR–GARCHX experiment (all other terms =
0). Coefficients marked † are not penalized.

INTERCEPT† ARCH1 LEVERAGE1 PERSISTENCE1 X0 X1

0.03 0.02 0.15 0.90 0.30 0.50

Table 5: Selection rates (%) for penalized coefficients in the GJR–GARCHX experiment.

Parameter T = 500 T = 1000 T = 2000 T = 4000 T = 5000

GJR-GARCH

INTERCEPT 100.00 100.00 100.00 100.00 100.00
ARCH1 0.00 0.00 0.00 0.00 100.00
ARCH2 0.00 0.00 0.00 0.00 0.00
LEVERAGE1 100.00 100.00 0.00 100.00 100.00
LEVERAGE2 0.00 0.00 100.00 0.00 0.00
PERSISTENCE1 100.00 100.00 100.00 100.00 100.00

Exogenous

X0 0.00 0.00 0.00 0.00 100.00
X1 0.00 100.00 0.00 100.00 100.00
X2 0.00 0.00 0.00 0.00 0.00
X3 0.00 0.00 0.00 0.00 0.00
X4 0.00 0.00 0.00 0.00 0.00

5 Conclusion

This paper develops a two-step, convex L1-penalized estimator for dynamic location–scale models.

The first step relies on a preliminary
√
T -consistent estimator. The second step performs a
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weighted least-squares LASSO while preserving convexity. Under mild assumptions the estimator

is consistent, and its asymptotic distribution is obtained. The adaptive version consistently

recovers the true support. Convexity lets the LARS algorithm trace the full penalty path in

milliseconds. Simulations report selection accuracy above 95 % for sample sizes typical of financial

data. On real financial data the method matches published coefficients while reducing computation

time by a factor of ten.

Future work will extend the two-step scheme to multivariate models, enabling joint estimation of

cross-asset volatility and improving portfolio-level risk metrics such as multivariate Value-at-Risk.
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Appendix

The appendix is organized in two parts: The first part presents the theoretical results for the

scale-parameter estimator φ̂φφT and its adaptive version, while the second part gathers the technical

proofs and supporting lemmas.

I Theoretical Results for the Scale Parameter

In the following, write V (θθθ0) for a neighborhood of θθθ0, V (ρρρ0) = V (ϕϕϕ0) × V (θθθ0) and V (βββ0) =

V (ρρρ0)× V (θθθ0). We show the strong consistency of ϑ̂ϑϑT under the following assumptions.

A18

(
1 + y2t + sup

ϕϕϕ∈Φ
µ2t (ϕϕϕ) + sup

βββ∈Φ×Θ×Θ
|gt (βββ)|

)
et

a.s.−→
t→∞

0, with

et = sup
ϕϕϕ∈Φ

|µt (ϕϕϕ)− µ̃ (ϕϕϕ)|

(
1 + |yt|+ sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|

)
+ sup
βββ∈Φ×Θ×Θ

|gt (βββ)− g̃t (βββ)|.

A19

(
1 + y4t + sup

ϕϕϕ∈Φ
µ4t (ϕϕϕ) + sup

βββ∈Φ×Θ×Θ
g2t (βββ)

)
ct

a.s.−→
t→∞

0, with ct =
∣∣ω̃2
t − ω2

t

∣∣.
A20 E

[(
σ2
1
ω1

)2]
<∞.

A21 V (ρρρ0) ⊂ Φ×Θ.

A22 The functions g1 (·) and µ1 (·) are a.s. of class C1 on
◦
Φ×

◦
Θ×

◦
Θ and

◦
Φ, respectively, and

ω−1
1 sup

βββ∈V(ρρρ0)×
◦
Θ

∣∣∣∣∣∣∂g1∂βββ (βββ)
∣∣∣∣∣∣ and ω−1

1 sup
ϕϕϕ∈V(ϕϕϕ0)

∣∣∣∣∣∣∂µ1∂ϕϕϕ (ϕϕϕ)
∣∣∣∣∣∣2 belong to L2.

A23 000 ∈
◦
Θ.

A24 ρ̂ρρT
a.s.−→
T→∞

ρρρ0.

A25 ∀ρρρ ∈ V (ρρρ0), the functions ℓt (ρρρ, ·) and ℓ̃t (ρρρ, ·) are a.s. strictly convex on Θ.

The assumptions above align with those in Section 3, but add regularity conditions on µt.

Because the estimator now uses the residuals ϵ̃t

(
ϕ̂ϕϕT

)
instead of the unobserved process ϵt, these

extra conditions ensure adequate control of the residual terms.

Theorem I.1. Assume that ιιιT −→
T→∞

ιιι∞ < +∞ component-wise. Then, under Assumptions A1,

A18-A25:

ϑ̂ϑϑT
a.s.−→
T→∞

argmin
ϑϑϑ∈Θ

Q∞ (ρρρ0,ϑϑϑ) ,

where Q∞ (ρρρ0,ϑϑϑ) := E [ℓ1 (ρρρ0,ϑϑϑ)] +
∑n

j=1 ιj,∞ |ϑj | exists and is finite on
◦
Θ. If ιιι∞ = 000, then:

ϑ̂ϑϑT
a.s.−→
T→∞

θθθ0.

A26 E
[(

σ2
1
ω1

)4
+ η61

]
<∞ and E

[
η31
]
= 0.
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A27 The functions g1 (·) and µ1 (·) are a.s. of class C2 on V (βββ0) and V (ϕϕϕ0), respectively, and

ω−1
1 sup

βββ∈V(βββ0)

∣∣∣∣∣∣∂g1∂βββ (βββ)
∣∣∣∣∣∣, ω−1

1 sup
βββ∈V(βββ0)

∣∣∣∣∣∣ ∂2g1∂βββ∂βββ′ (βββ)
∣∣∣∣∣∣, ω−1

1 sup
ϕϕϕ∈V(ϕϕϕ0)

∣∣∣∣∣∣∂µ1∂ϕϕϕ (ϕϕϕ)
∣∣∣∣∣∣2,

and ω−1
1 sup

ϕϕϕ∈V(ϕϕϕ0)

∣∣∣∣∣∣ ∂2µ1∂ϕϕϕ∂ϕϕϕ′ (ϕϕϕ)
∣∣∣∣∣∣2 belong to L4.

A28 There is a closed and convex subset C of Rν+n and a sequence of symmetric positive definite

(ν + n) × (ν + n) matrices (JJJ T )T∈N converging a.s. to a symmetric positive definite matrix JJJ
such that:

√
T (ρ̂ρρT − ρρρ0) = argmin

zzz∈C
(ZZZT − zzz)′JJJ T (ZZZT − zzz) + oP (1) , ZZZT =

1√
T

T∑
t=1

ΛΛΛtξ (ηt) ,

where ΛΛΛt is an Ft−1-measurable (ν + n)× k matrix for some positive integer k and ξ : R → Rk is

a measurable function such that ΛΛΛt and ξ (ηt) belong to L2, E [ξ (ηt)] = 000 and V [ξ (ηt)] =: χχχ.

A29 Letting

ϱt = sup
ϕϕϕ∈Φ

|µt (ϕϕϕ)− µ̃t (ϕϕϕ)| sup
ϕϕϕ∈Φ

∣∣∣∣∣∣∣∣∂µt∂ϕϕϕ
(ϕϕϕ)

∣∣∣∣∣∣∣∣+ sup
βββ∈Φ×Θ×Θ

∣∣∣∣∣∣∣∣∂gt∂βββ
(βββ)− ∂g̃t

∂βββ
(βββ)

∣∣∣∣∣∣∣∣
+

(
1 + |yt|+ sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|

)
sup
ϕϕϕ∈Φ

∣∣∣∣∣∣∣∣∂µt∂ϕϕϕ
(ϕϕϕ)− ∂µ̃t

∂ϕϕϕ
(ϕϕϕ)

∣∣∣∣∣∣∣∣ ,
the sequences

ct

(
1 + |yt|2 + sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|2 + sup

βββ∈Φ×Θ×Θ
|gt (βββ)|

)(
1 + |yt|+ sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|

)
sup
ϕϕϕ∈Φ

∣∣∣∣∣∣∣∣∂µt∂ϕϕϕ
(ϕϕϕ)

∣∣∣∣∣∣∣∣ ,
ct

(
1 + |yt|2 + sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|2 + sup

βββ∈Φ×Θ×Θ
|gt (βββ)|

)
sup

βββ∈Φ×Θ×Θ

∣∣∣∣∣∣∣∣∂gt∂βββ
(βββ)

∣∣∣∣∣∣∣∣ ,
et

((
1 + |yt|+ sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|

)
sup
ϕϕϕ∈Φ

∣∣∣∣∣∣∣∣∂µt∂ϕϕϕ
(ϕϕϕ)

∣∣∣∣∣∣∣∣+ sup
βββ∈Φ×Θ×Θ

∣∣∣∣∣∣∣∣∂gt∂βββ
(βββ)

∣∣∣∣∣∣∣∣
)
,

ϱt

(
1 + |yt|2 + sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|2 + sup

βββ∈Φ×Θ×Θ
|gt (βββ)|

)
,

are a.s. of order O (t−κ) for some κ > 1
2 .

In this context, we need Assumption A26 to ensure that the noise ηt is symmetric. It is needed

to derive the asymptotic distribution of the estimator ϑ̂ϑϑT . We introduce the following functions:

ET (ψψψ) = GT (ψψψ) +
n∑
j=1

Tιj,T

(∣∣∣∣ ψj√
T

+ θj,0

∣∣∣∣− |θj,0|
)
,

GT (ψψψ) = LT
(
ρ̂ρρT ,

ψψψ√
T

+ θθθ0

)
− LT (ρρρ0, θθθ0) + ST (ψψψ) , ST (ψψψ) =

0 if ψψψ ∈ ΨT ,

∞ otherwise
.

The function ψψψ 7→ LT

(
ρ̂ρρT ,

ψψψ√
T
+ θθθ0

)
is defined on ΨT :=

{√
T (xxx− θθθ0) ,xxx ∈ Θ

}
. It is clear that
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√
T
(
ϑ̂ϑϑT − θθθ0

)
= argmin

ψψψ∈ΨT

ẼT (ψψψ). The epi-limits are defined on Rn as:

E∞ (ψψψ) = G∞ (ψψψ) +
n∑
j=1

ιj,∞
(
ψj sign (θj,0) Iθj,0 ̸=0 + |ψj | Iθj,0=0

)
,

G∞ (ψψψ) =

WWW
ZZZC

ψψψ


′

ΠΠΠ′
2,ν+2n

(
ΠΠΠ1,ν+2n + 2E

[
1

ω2
1

P

(
2ϵ1

∂µ1
∂βββ

(βββ0) +
∂g1
∂βββ

(βββ0)

)]
ΠΠΠ2,ν+2n

)WWW
ZZZC

ψψψ

 .

The random vector of the limit process is characterized as follows:(
WWW
ZZZ

)
∼ N

(
000,

(
I (ρρρ0) R (ρρρ0)

R′ (ρρρ0) ΣΣΣ

))
,

I (ρρρ0) = 4E
[
P

(
ϵ21 − σ21
ω2
1

(
2ϵ1

∂µ1
∂βββ

(βββ0) +
∂g1
∂βββ

(βββ0)

))]
,

R (ρρρ0) = −2E
[
ϵ21 − σ21
ω2
1

(
2ϵ1

∂µ1
∂βββ

(βββ0) +
∂g1
∂βββ

(βββ0)

)
ξ′ (η1)ΛΛΛ

′
1

]
, ΞΞΞ = V [ΛΛΛ1ξ (η1)] = V

[
ΛΛΛ1χχχ

1/2
]
.

Remark I.1. We can write:

R (ρρρ0) = −4E
[
σ31
ω2
1

∂µ1
∂βββ

(βββ0)E
[
η1
(
η21 − 1

)
ξ′ (η1)

]
ΛΛΛ′

1

]
− 2E

[
σ21
ω2
1

∂g1
∂βββ

(βββ0)E
[(
η21 − 1

)
ξ′ (η1)

]
ΛΛΛ′

1

]
.

Depending on the parity of the components of the function ξ (·), either one term or the other

vanishes.

Theorem I.2. Assume that
√
TιιιT −→

T→∞
ιιι∞ < +∞ component-wise. Then, under Assumptions

A1, A18-A19, A21-A29: √
T
(
ϑ̂ϑϑT − θθθ0

)
d−→

T→∞
argmin
ψψψ∈Rn

E∞ (ψψψ) .

To study the recovery of the sparse support of the parameter θθθ0, we define the sets of active

and inactive components. Without loss of generality, we assume that they have the following form:

B = {j ∈ {1, . . . , n} , θj,0 ̸= 0} = {1, . . . , n0} , B = {j ∈ {1, . . . , n} , θj,0 = 0} = {n0 + 1, . . . , n} .

Similarly, we define the sets of active and inactive components of the estimator ϑ̂ϑϑT as:

BT =
{
j ∈ {1, . . . , n} , ϑ̂j,T ̸= 0

}
, BT =

{
j ∈ {1, . . . , n} , ϑ̂j,T = 0

}
.

A30 E
[
P
(

1
ω1

∂g1
∂ϑϑϑ (βββ0)

)]
is invertible.

Proposition I.1. Under the Assumptions of Theorem I.2 and Assumption A30:

lim sup
T→∞

P [BT = B] < 1.

To consistently recover the sparse support of θθθ0, we define the following modified loss function
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to perform an adaptive LASSO:

EALT (ψψψ) =

GT (ψψψ) +
∑n

j=1
Tιj,T

|θ̂j,T |τ
(∣∣∣ ψj√

T
+ θj,0

∣∣∣− |θj,0|
)

if ∀j ∈ {1, . . . , n} , θ̂j,T ̸= 0

∞ otherwise.
(28)

Let BBB and BBB be the selection matrices defined by removing the rows of IIIn×n corresponding to the

inactive and the active components, respectively. In the following, for a vector xxx ∈ Rn we denote

by xxxB sub-vector BBBxxx, i.e. xxx =
(
xxx′B,xxx

′
B

)
. We define for any yyy such that BBB′yyy ∈ ΨT :

EALB,T (yyy) = EALT
(
BBB′yyy

)
, GALB,T (yyy) = GALT

(
BBB′yyy

)
,

with their truncated version defined following the same logic as previously. These functions

correspond to (28) with the components B constrained to be 0. To simplify the expressions we

define:

E
[
P

(
1

ω1

∂g1
∂ϑϑϑ

(βββ0)

)]
=MMM =

(
MMM11 MMM12

MMM21 MMM22

)
, E

[
1

ω2
1

∂g1
∂ϑϑϑ′

(βββ0)

(
2ϵ1

∂µ1
∂ρρρ′

(ρρρ0) +
∂g1
∂ρρρ′

(βββ0)

)]
ZZZC = ζζζ,

where MMM11 is a n0 × n0 matrix, MMM22 is a (n− n0)× (n− n0) matrix and the other matrices are

conformable with the partitioning.

Theorem I.3. Assume that
√
TιιιT −→

T→∞
000 and T

τ
2 ιιιT −→

T→∞
∞, Under the Assumptions of Theorem

I.2 and Assumption A30:

√
T
(
ϑ̂ϑϑ
AL

B,T − θθθB,0

)
d−→

T→∞
−1

4
MMM−1

11 (WWWB + 4ζζζB) ,

ϑ̂ϑϑ
AL

B,T
P−→

T→∞
000, P [BT = B] −→

T→∞
1.

The proof of this Theorem is the same as that of Theorem 3.3.

II Proofs and technical lemmas

The appendix provides the proofs of the main results. In the following, K denotes a generic

positive constant whose value can vary from line to line.

We introduce several Lemmas as a toolbox for proving all the theorems. Their notations are

independent of the rest of the paper.

Lemma II.1. Let {OOOu, u ≤ t} be a strictly stationary and ergodic process and xxx 7→ Ft (xxx) =

F (OOOt,OOOt−1, . . . ;xxx) a measurable function of the past observations, defined on an open and convex

set Ω ⊂ Rn. Let xxx0 ∈ Ω and assume that sup
xxx∈V(xxx0)

||Ft (xxx)|| belongs to L1 for some neighborhood

V (xxx0) ⊂ Ω of xxx0, then for any sequence (xxx∗T ) such that xxx∗T
a.s.−→
T→∞

xxx0:

1

T

T∑
t=1

Ft (xxx
∗
T )

a.s.−→
T→∞

E [F1 (xxx0)] .
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Proof. For any xxx ∈ Ω the process {Ft (xxx) , t ∈ Z} is strictly stationary and ergodic and at xxx0,

Ft (xxx0) belongs to L
1. Therefore, by the ergodic Theorem, 1

T

∑T
t=1 Ft (xxx0)

a.s.−→
T→∞

E [F1 (xxx0)]. Let

B1/z (xxx0) :=
{
xxx ∈ Rn; ||xxx− xxx0|| ≤ 1

z

}
where z ∈ N∗. Assume that z and T are large enough such

that xxx∗T ∈ B1/z (xxx0) ⊂ V (xxx0) almost surely:∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

Ft (xxx
∗
T )− E [F1 (xxx0)]

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

T

T∑
t=1

Zz,t +

∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

Ft (xxx0)− E [F1 (xxx0)]

∣∣∣∣∣
∣∣∣∣∣ ,

where Zz,t = sup
B1/z(xxx0)

||Ft (xxx)− Ft (xxx0)||. On the one hand
∣∣∣∣∣∣ 1T ∑T

t=1 Ft (xxx0)− E [F1 (xxx0)]
∣∣∣∣∣∣ a.s.−→
T→∞

0.

On the other hand Zz,t ≤ sup
V(xxx0)

||Ft (xxx)− Ft (xxx0)|| ≤ 2 sup
V(xxx0)

||Ft (xxx)||. The right hand side of the

inequality belongs to L1, then by the ergodic theorem 1
T

∑T
t=1 Zz,t

a.s.−→
T→∞

E [Zz,1]. By the dominated

convergence Theorem E [Zz,1] −→
z→∞

0. This concludes the proof.

The lemma below extracts the almost sure convergence part of Lemma 2.2 in Davis et al. (1992)

for convex processes. In the original proof this step is obtained via a Skorokhod representation

on the way to convergence in distribution; we present it separately here to keep the paper

self-contained.

Lemma II.2. Let {FT (·)} and F (·) be stochastic processes continuous and strictly convex on an

open convex set A ⊂ Rp and suppose that for each xxx ∈ A, FT (xxx)
a.s.−−−−→
T→∞

F (xxx). Let yyyT minimize

FT (·) and yyy minimize F (·) such that yyyT , yyy ∈ A. Then

yyyT
a.s.−−−−→
T→∞

yyy.

Proof. The strict convexity ensures the uniqueness of the argmins in the following. Using

Rockafellar (1970) Theorem 10.8, for any given compact set K ⊂ A:

sup
uuu∈K

|FT (uuu)− F (uuu)| a.s.−−−−→
T→∞

0.

For γ > 0, let Bγ = {uuu : ||uuu− yyy|| = γ} and suppose that ||yyyT − yyy|| > γ for infinitely many T .

Since FT → F uniformly on Bγ and FT (yyy) → F (yyy), it follows that for infinitely many T and all

uuu ∈ Bγ

FT (uuu) > FT (yyy) > FT (yyyT ) .

But this contradicts the convexity of FT by choosing uuu ∈ Bγ such that the points uuu,yyy,yyyT are

collinear.

Proof of Theorem 3.1. We will establish the following intermediate results.

(a) sup
ααα∈Φ×Φ

1
T

∣∣∣LT (ααα)− L̃T (ααα)
∣∣∣ a.s.−→
T→∞

0.

(b) ∀ααα ∈ V (ααα0)×
◦
Φ, Q∞ (ααα) = E [l1 (ααα)] +

∑ν
j=1 λj,∞ |φj | exists and is finite.

(c) φ̂φφT
a.s.−→
T→∞

argmin
φφφ∈Φ

Q∞ (ϕϕϕ0,φφφ).
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(d) argmin
φφφ∈Φ

Q∞ (ϕϕϕ0,φφφ) = ϕϕϕ0 if λλλ∞ = 000.

(a) Asymptotic irrelevance of the initial values. Let ααα ∈ Φ× Φ:

∣∣∣lt (ααα)− l̃t (ααα)
∣∣∣ =

∣∣∣∣∣∣∣
w̃2
t (yt − ft (ααα))

2 − w2
t

(
yt − f̃t (ααα)

)2
w2
t w̃

2
t

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
w2
t − w̃2

t

)
(yt − ft (ααα))

2 − w2
t

(
ft (ααα)− f̃t (ααα)

)(
2yt − ft (ααα)− f̃t (ααα)

)
w2
t w̃

2
t

∣∣∣∣∣∣
≤
dt |yt − ft (ααα)|2 + w2

t at

∣∣∣2yt − ft (ααα)− f̃t (ααα)
∣∣∣

w2
t w̃

2
t

.

Under Assumption A2, for t large enough we have almost surely sup
ααα∈Φ×Φ

∣∣∣f̃t (ααα)∣∣∣ ≤ 1+ sup
ααα∈Φ×Φ

|ft (ααα)|.

For u, v ∈ R we have (u+ v)2 ≤ 2
(
u2 + v2

)
. Using these two results gives:

sup
ααα∈Φ×Φ

∣∣∣lt (ααα)− l̃t (ααα)
∣∣∣ ≤ 2dt

(
1 + y2t + sup

ααα∈Φ×Φ

∣∣f2t (ααα)∣∣)
w4

+

2at

(
1 + |yt|+ sup

ααα∈Φ×Φ
|ft (ααα)|

)
w2

By Assumption A3, the right hand side of the inequality goes to 0 almost surely as t goes to

infinity, therefore sup
ααα∈Φ×Φ

∣∣∣lt (ααα)− l̃t (ααα)
∣∣∣ a.s.−→
t→∞

0. By Cesàro’s Lemma, (a) is established.

(b) Existence of the limit loss function. We start by noting that:

lt (ααα) =

(
yt − ft (ααα)

wt

)2

=

(
σtηt
wt

+
µt − ft (ααα)

wt

)2

.

Under Assumptions A5-A6, using the mean value Theorem and the compactness of Φ:

sup

ααα∈V(ϕϕϕ0)×
◦
Φ

∣∣∣∣µt − ft (ααα)

wt

∣∣∣∣ ≤ sup

ααα∈V(ϕϕϕ0)×
◦
Φ

||ααα−ααα0||
wt

sup

ααα∈V(ϕϕϕ0)×
◦
Φ

∣∣∣∣∣∣∣∣∂ft∂ααα
(ααα)

∣∣∣∣∣∣∣∣ ≤ K

wt
sup

ααα∈V(ϕϕϕ0)×
◦
Φ

∣∣∣∣∣∣∣∣∂ft∂ααα
(ααα)

∣∣∣∣∣∣∣∣ .
(29)

The last term belongs to L2. Under Assumption A4 and using the independence of ηt and Ft−1

gives:

E

 sup

ααα∈V(ϕϕϕ0)×
◦
Φ

l1 (ααα)

 <∞. (30)

Moreover, λλλT −→
T→∞

λλλ∞ <∞. We obtain the existence and the finiteness of the limit loss Q∞ (ααα).

(c) Convergence of the minimizers. Under Assumption A1 and using (30), the conditions of

Lemma II.1 are satisfied, and we have for φφφ ∈
◦
Φ, QT

(
ϕ̂ϕϕT ,φφφ

)
a.s.−→
T→∞

Q∞ (ϕϕϕ0,φφφ). Using the result of

part (a) we obtain Q̃T

(
ϕ̂ϕϕT ,φφφ

)
a.s.−→
T→∞

Q∞ (ϕϕϕ0,φφφ). Under Assumption A9, the functions Q̃T

(
ϕ̂ϕϕT , ·

)
and Q∞ (ϕϕϕ0, ·) are strictly convex on Φ, thus having unique minima. Under Assumptions A5 and

A7, these minima lie in
◦
Φ. Lemma II.2 gives argmin

φφφ∈
◦
Φ

Q̃T

(
ϕ̂ϕϕT ,φφφ

)
a.s.−→
T→∞

argmin

φφφ∈
◦
Φ

Q∞ (ϕϕϕ0,φφφ). Since

the strict convexity ensures the uniqueness of the minima, the argmins can be taken over the
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whole compact set. The result (c) is established.

(d) Asymptotic unbiasedness under vanishing penalty. Let φφφ ∈ V (ϕϕϕ0), if λλλ∞ = 000

then Q∞ (ϕϕϕ0,φφφ) = E [l1 (ϕϕϕ0,φφφ)] = E
[(

µt+σtηt−ft(ϕϕϕ0,φφφ)
wt

)2]
. Taking the derivative with respect to

φφφ at ϕϕϕ0 gives ∂Q∞
∂φφφ (ααα0) = −2E

[
y1−f1(ααα0)

w2
1

∂f1
∂φφφ (ααα0)

]
= −2E [η1]E

[
σ1
w2

1

∂f1
∂φφφ (ααα0)

]
= 000. The conclusion

follows.

Proof of Theorem 3.2. We split the proof into the following parts:

(a) (ΥT )T≥1 is an exhaustion of Rν .

(b) ∀k ∈ N∗, sup
υυυ∈Υk

∣∣∣GT (υυυ)− G̃T (υυυ)
∣∣∣ P−→
T→∞

0.

(c) E

[
sup

ααα∈V(ααα0)

∣∣∣∣∣∣∂l1∂ααα (ααα)
∣∣∣∣∣∣2] <∞ and E

[
sup

ααα∈V(ααα0)

∣∣∣∣∣∣ ∂2l1∂ααα∂ααα′ (ααα)
∣∣∣∣∣∣] <∞.

(d)

( 1√
T

∂LT
∂ααα (ααα0)

√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)) d−→
T→∞

(
WWW

ZZZC

)
.

(e)
√
T (φ̂φφT −ϕϕϕ0)

d−→
T→∞

argmin
υυυ∈Rν

E∞ (υυυ).

(a) Exhaustion of Rν by an increasing sequence of compacta. Let p, q ∈ N∗, p < q and

xxx ∈ Υp then ∃yyy ∈ Φ such that:

xxx =
√
p (yyy −ϕϕϕ0) =

√
q

(√
p

q
yyy +

(
1−

√
p

q

)
ϕϕϕ0 −ϕϕϕ0

)
.

The set Φ is convex so
√

p
qyyy +

(
1−

√
p
q

)
ϕϕϕ0 ∈ Φ and under Assumption A7, ϕϕϕ0 ∈

◦
Φ therefore√

p
qyyy +

(
1−

√
p
q

)
ϕϕϕ0 ∈

◦
Φ and xxx ∈

◦
Υq. Moreover, since 000 ∈

◦
Υq, ∃δ > 0,Bδ (000) ⊂

◦
Υq. Let

zzz ∈ Rν , zzz ̸= 000 then δ
2||zzz||zzz ∈ Bδ (000) ⊂

◦
Υq. By taking k such that

√
k > δ

2||zzz|| we have zzz ∈ Υk. The

conclusion follows.

(b) Asymptotic decrease of the effect of the initial values. Let k ∈ N∗. Under

Assumptions A5, A8, A11 and for T large enough such that almost surely

(
ϕ̂ϕϕT

υυυ√
T
+ϕϕϕ0

)
∈ V (ααα0)

we have the following:

sup
υυυ∈Υk

∣∣∣GT (υυυ)− G̃T (υυυ)
∣∣∣ ≤ K

(∣∣∣∣∣∣√T (ϕ̂ϕϕT −ϕϕϕ0

)∣∣∣∣∣∣+ 1
) 1√

T

T∑
t=1

sup
ααα∈V(ααα0)

∣∣∣∣∣
∣∣∣∣∣∂lt∂ααα (ααα)− ∂l̃t

∂ααα
(ααα)

∣∣∣∣∣
∣∣∣∣∣ .

Under Assumption A13 and for t large enough:

sup
ααα∈V(ααα0)

∣∣∣∣∣
∣∣∣∣∣∂lt∂ααα (ααα)− ∂l̃t

∂ααα
(ααα)

∣∣∣∣∣
∣∣∣∣∣

≤ K sup
ααα∈V(ααα0)

∣∣∣∣∣
∣∣∣∣∣
(
w̃2
t − w2

t

)
(yt − ft (ααα))

w2
t w̃

2
t

∂ft
∂ααα

(ααα)

∣∣∣∣∣
∣∣∣∣∣+K sup

ααα∈V(ααα0)

∣∣∣∣∣
∣∣∣∣∣yt − ft (ααα)

w̃2
t

∂ft
∂ααα

(ααα)− yt − f̃t (ααα)

w̃2
t

∂f̃t
∂ααα

(ααα)

∣∣∣∣∣
∣∣∣∣∣

≤ Kdt

(
1 + |yt|+ sup

ααα∈Φ×Φ
|ft (ααα)|+ at

)
sup

ααα∈Φ×Φ

∣∣∣∣∣∣∣∣∂ft∂ααα
(ααα)

∣∣∣∣∣∣∣∣+Kbt

(
1 + |yt|+ sup

ααα∈Φ×Φ
|ft (ααα)|

)
.
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The last term is almost surely of orderO (t−κ) with κ > 1
2 . Under Assumption A12,

∣∣∣∣∣∣√T (ϕ̂ϕϕT −ϕϕϕ0

)∣∣∣∣∣∣ =
OP (1). These two results give (b).

(c) Integrability of the suprema of the loss function’s first and second derivatives.

Under Assumption A11 and for ααα ∈ V (ααα0), we have ∂lt
∂ααα (ααα) = − 2

w2
t
(yt − ft (ααα))

∂ft
∂ααα (ααα). Under

Assumptions A10 and A11 and with the same arguments as in the proof of Theorem 3.1 part (b)

with Equation (29) we obtain:

E

[
sup

ααα∈V(ααα0)
l21 (ααα)

]
<∞. (31)

Cauchy-Schwartz’s inequality along with the moments given by Assumption A11 and Equation

(31) give:

E

[
sup

ααα∈V(ααα0)

∣∣∣∣∣∣∣∣∂l1∂ααα (ααα)

∣∣∣∣∣∣∣∣2
]
<∞. (32)

The second derivative is ∂2l1
∂ααα∂ααα′ (ααα) =

2
w2

t

[
P
(
∂f1
∂ααα (ααα)

)
− (y1 − f1 (ααα))

∂2g1
∂ααα∂ααα′ (ααα)

]
. With Equations

(32) and (31) we obtain:

E

[
sup

ααα∈V(ααα0)

∣∣∣∣∣∣∣∣ ∂2l1∂ααα∂ααα′ (ααα)

∣∣∣∣∣∣∣∣
]
<∞. (33)

(d) C.L.T. for martingale increments. Under Assumption A11, ∂lt∂ααα (ααα0) exists and using

the Bahadur-type expansion given by Assumption A12, we define:

UUU t =

(
∂lt
∂ααα (ααα0)

∆∆∆tγ (ηt)

)
.

On the one hand, ∆∆∆t and γ (ηt) are independent and belong to L2. On the other hand, using the

Equation (32) of part (c), UUU t belongs to L
2 and we have E [UUU t|Ft−1] =

(
−E [ηt]

2σt
w2

t

∂ft
∂ααα (ααα0)

∆∆∆tE [γ (ηt)]

)
= 000.

Under Assumption A1, the process is a strictly stationary and ergodic L2 martingale increments.

We can apply the martingale C.L.T. of Billingsley (1961) yielding 1√
T

∑T
t=1UUU t

d−→
T→∞

(
WWW

ZZZ

)
. We

also have JJJT
a.s.−→
T→∞

JJJ . Slutsky’s Lemma gives the joint convergence in distribution:

(
1√
T

T∑
t=1

UUU t,JJJT

)
d−→

T→∞

((
WWW

ZZZ

)
,JJJ

)

Given that the set C is closed and convex, the projection ProjC (xxx,MMM) := argmin
zzz∈C

(zzz − xxx)′MMM (zzz − xxx)

is a continuous mapping where xxx ∈ Rν and MMM is a symmetric positive definite matrix (see Rock-

afellar and Wets (2009) Theorem 1.17 for a general result or Francq and Zaköıan (2019) Section

8.2 in GARCH context). Therefore, the continuous mapping Theorem gives:( 1√
T

∂LT
∂ααα (ααα0)

√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)) d−→
T→∞

(
WWW

ZZZC

)
.
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The components of the covariance matrix of the vector (WWW ′,ZZZ ′)′ are given by:

V
[
∂l1
∂ααα

(ααα0)

]
= E

[
P

(
η1

2σ1
w2
1

∂f1
∂ααα

(ααα0)

)]
= 4E

[
P

(
σ1
w2
1

∂f1
∂ααα

(ααα0)

)]
= I (ϕϕϕ0) ,

E
[
∂l1
∂ααα

(ααα0) γ
′ (ηt)∆∆∆

′
t

]
= E

[
−2η1σ1
w2
1

∂f1
∂ααα

(ααα0) γ
′ (η1)∆∆∆

′
1

]
= R (ϕϕϕ0) ,

V [∆∆∆1γ (η1)] = E
[
∆∆∆1γ (η1) γ

′ (η1)∆∆∆
′
1

]
= E

[
∆∆∆1ΓΓΓ∆∆∆

′
1

]
= V

[
∆∆∆1ΓΓΓ

1/2
]
= ΣΣΣ.

(e) Asymptotic distribution of φ̂φφT . Let υυυ ∈ Rν . Under Assumptions A8, A11 and with T

large enough such that

(
ϕ̂ϕϕT

υυυ√
T
+ϕϕϕ0

)
∈ V (ααα0) we have:

GT (υυυ) =

(√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

)′
1√
T

∂LT
∂ααα

(ααα0)+

(√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

)′
1

2T

∂2LT
∂ααα∂ααα′ (αααT )

(√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

)
,

where αααT lies between ααα0 and

(
ϕ̂ϕϕT

υυυ√
T
+ϕϕϕ0

)
. We can easily see that:

(√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

)
= ΠΠΠ2,2ν


1√
T

∂LT
∂ααα (ααα0)

√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

 and
1√
T

∂LT
∂ααα

(ααα0) = ΠΠΠ1,2ν


1√
T

∂LT
∂ααα (ααα0)

√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

 .

Rewriting the previous expansion gives:

GT (υυυ) =

(√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

)′(
1√
T

∂LT
∂ααα

(ααα0) +
1

2T

∂2LT
∂ααα∂ααα′ (αααT )

(√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

))

=


1√
T

∂LT
∂ααα (ααα0)

√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ


′

ΠΠΠ′
2,2ν

(
ΠΠΠ1,2ν +

1

2T

∂2LT
∂ααα∂ααα′ (αααT )ΠΠΠ2,2ν

)
1√
T

∂LT
∂ααα (ααα0)

√
T
(
ϕ̂ϕϕT −ϕϕϕ0

)
υυυ

 .

Using Equation (33) and given that αααT
a.s.−→
T→∞

ααα0, Lemma II.1 applies and we obtain:

1

T

∂2LT
∂ααα∂ααα′ (αααT )

a.s.−→
T→∞

E
[
∂2l1
∂ααα∂ααα′ (ααα0)

]
= 4E

[
P

(
w−1
1

∂f1
∂ααα

(ααα0)

)]
.

Slutsky’s Lemma and the result of part (d) give ET (υυυ)
d−→

T→∞
E∞ (υυυ). It follows that, using (b),

ẼT (υυυ)
d−→

T→∞
E∞ (υυυ). The finite dimensional convergence holds trivially using the Cramér-Wold

device. In the following, we use the concept of epi-convergence in distribution and the results

of Knight (1999). Note that by the result of part (a) the sequence (ΥT )T≥1 spans Rν , therefore
the limit function E∞ in defined on Rν . Under Assumption A9, the functions ẼT and E∞ are

strictly convex on their domains, thus having unique argmins. Their extension on Rν is convex

and lower-semicontinuous (l.s.c.) since KT is l.s.c.. Using Theorem 5 (a) of Knight (1999) gives:

ẼT
d−→

T→∞
E∞,
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in the sens of epi-convergence in distribution. The same Theorem 5 (b) gives also the convergence

of the argmins and the conclusion follows.

Proof of Proposition 3.1. We have P [AT = A] ≤ P
[
∀j ∈ A : φ̂j,T = 0

]
. By Theorem 3.2 we have

√
T (φ̂φφT −ϕϕϕ0)

d−→
T→∞

υυυ∗ := argmin
υυυ∈Rν

E∞ (υυυ). Using the portmanteau Theorem:

lim sup
T→∞

P
[
∀j ∈ A :

√
T φ̂j,T = 0

]
≤ P

[
∀j ∈ A : υυυ∗j = 0

]
.

Since υυυ∗ is the unique minimizer of the convex function E∞ then 000 ∈ ∂E∞
∂υυυ (υυυ∗) where ∂E∞

∂υυυ is the

sub-gradient of E∞. The previous equation implies that:
∂G∞
∂υj

(υυυ∗) + λj,∞ sign (ϕj,0) = 0 if j ∈ A,∣∣∣∂G∞
∂υj

(υυυ∗)
∣∣∣ ≤ λj,∞ if j ∈ A.

(34)

For υυυ ∈ Rν , rewriting the function G∞ gives:

G∞ (υυυ) =

WWWZZZC
υυυ


′

ΠΠΠ′
2,2ν

(
ΠΠΠ1,2ν + 2E

[
P

(
1

w1

∂f1
∂ααα

(ααα0)

)]
ΠΠΠ2,2ν

)WWWZZZC
υυυ


=

(
ZZZC

υυυ

)′

WWW + 2

(
ZZZC

υυυ

)′

E

 P
(

1
w1

∂f1
∂ϕϕϕ (ααα0)

)
1
w2

1

∂f1
∂ϕϕϕ (ααα0)

∂f1
∂φφφ′ (ααα0)

1
w2

1

∂f1
∂φφφ (ααα0)

∂f1
∂ϕϕϕ′ (ααα0) P

(
1
w1

∂f1
∂φφφ (ααα0)

) (ZZZC
υυυ

)

=WWW ′ZZZC +WWW ′υυυ + 2ZZZC
′
E
[
P

(
1

w1

∂f1
∂ϕϕϕ

(ααα0)

)]
ZZZC + 2υυυ′E

[
P

(
1

w1

∂f1
∂φφφ

(ααα0)

)]
υυυ

+ 4υυυ′E
[
1

w2
1

∂f1
∂φφφ

(ααα0)
∂f1
∂ϕϕϕ′

(ααα0)

]
ZZZC .

The derivative with respect to υυυ is:

∂G∞
∂υυυ

(υυυ) =WWW + 4E
[
P

(
1

w1

∂f1
∂φφφ

(ααα0)

)]
υυυ + 4E

[
1

w2
1

∂f1
∂φφφ

(ααα0)
∂f1
∂ϕϕϕ′

(ααα0)

]
ZZZC . (35)

Therefore, Equation (34) becomes:WWWA + 4
(
E
[
P
(

1
w1

∂f1
∂φφφ (ααα0)

)]
υυυ∗ + E

[
1
w2

1

∂f1
∂φφφ (ααα0)

∂f1
∂ϕϕϕ′ (ααα0)

]
ZZZC
)
A
= −λλλA,∞ ◦ signϕϕϕA,0,∣∣(∂G∞

∂υυυ (υυυ∗)
)
A

∣∣ ≤ λλλA,∞,

where the inequality and the absolute value are component-wise. Let us consider the event{
∀j ∈ A : υυυ∗j = 0

}
. We have υυυ∗A = 000 and

(
E
[
P
(

1
w1

∂f1
∂φφφ (ααα0)

)]
υυυ∗
)
A
=MMM11υυυ

∗
A. Therefore, under

Assumption A14:υυυ∗A = −1
4MMM

−1
11 (WWWA + λλλA,∞ ◦ signϕϕϕA,0 + 4VVV A) ,∣∣WWWA −MMM21MMM

−1
11 (WWWA + λλλA,∞ ◦ signϕϕϕA,0 + 4VVV A) + 4VVV A

∣∣ ≤ λλλA,∞.
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Finally:

lim sup
T→∞

P
[
∀j ∈ A :

√
T φ̂j,T = 0

]
≤ P

[
∀j ∈ A : υυυ∗j = 0

]
≤ P

[∣∣WWWA −MMM21MMM
−1
11 (WWWA + λλλA,∞ ◦ signϕϕϕA,0 + 4VVV A) + 4VVV A

∣∣ ≤ λλλA,∞

]
< 1.

Theorem 3.3. We split the proof of this Theorem into three parts:

(a) ∃λT > 0, λT = OP (1) and

(
∀j ∈ A, λj,T

|ϕ̂j,T |τ ≥ λT =⇒ φ̂ALj,T = 0

)
.

(b)
√
T
(
φ̂φφALA,T −ϕϕϕA,0

)
d−→

T→∞
−1

4MMM
−1
11 (WWWA + 4VVV A) and φ̂φφ

AL
A,T

P−→
T→∞

000.

(c) P [AT = A] −→
T→∞

1.

Throughout, the cases where ϕ̂j,T = 0 for some j are not mentioned. They lead to obvious

situations.

(a) Sparsity threshold. The estimator φ̂φφALT minimizes Q̃ALT and belongs to
◦
Φ. Therefore,

under Assumptions A6, A8 and for T large, the function L̃T is differentiable on V (ϕϕϕ0)×
◦
Φ and

we have for j ∈ {1, . . . , ν}:
1
T
∂L̃T
∂φj

(
ϕ̂ϕϕT , φ̂φφ

AL
T

)
+

λj,T

|ϕ̂j,T |τ sign
(
φ̂ALj,T

)
= 0 if φ̂ALj,T ̸= 0,∣∣∣ 1T ∂L̃T

∂φj

(
ϕ̂ϕϕT , φ̂φφ

AL
T

)∣∣∣ ≤ λj,T

|ϕ̂j,T |τ otherwise.

Taking λT := 1 +
∑ν

j=1 sup

ααα∈V(ϕϕϕ0)×
◦
Φ

∣∣∣ 1T ∂LT
∂φj

(ααα)
∣∣∣, we have:

λT ≤ 1 +

ν∑
j=1

1

T

T∑
t=1

sup

ααα∈V(ϕϕϕ0)×
◦
Φ

∣∣∣∣ ∂lt∂φj
(ααα)

∣∣∣∣ a.s.−→
T→∞

1 +

ν∑
j=1

E

 sup

ααα∈V(ϕϕϕ0)×
◦
Φ

∣∣∣∣ ∂l1∂φj
(ααα)

∣∣∣∣
 .

It follows that λT = OP (1). Using the result of part (b) of the proof of Theorem 3.2, the impact

of the initial values is an oP (1) uniformly on V (ϕϕϕ0)×
◦
Φ.

(b) Asymptotic distribution of the active components. Let us denote:

yyyT = argmin
yyy∈Rν0

ẼA,T (yyy) =
√
T
(
φ̂φφALA,T −ϕϕϕA,0

)
.

For the active components, the penalty part converges almost surely to a finite limit under

Assumption A8. A slight adaptation of the proof of Theorem 3.2 with Slutsky’s Lemma gives:

yyyT
d−→

T→∞
yyy∗ := argmin

yyy∈Rν0

EA,∞ (yyy) = argmin
yyy∈Rν0

GA,∞ (yyy) .

And since it is an optimum we get 000 =
∂GA,∞
∂yyy (yyy∗) =WWWA + 4MMM11yyy

∗ + 4VVV A. Therefore:

yyy∗ = −1

4
MMM−1

11 (WWWA + 4VVV A) . (36)
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We have λT = OP (1) and for j ∈ A, λj,T

|ϕ̂j,T |τ =
T

τ
2 λj,T

|
√
T ϕ̂j,T |τ

P−→
T→∞

∞. For ξ > 0, using the results of

part (a):

P

[∣∣∣∣∣
∣∣∣∣∣φ̂φφALT −

(
yyyT√
T
+ϕϕϕA,0

000

)∣∣∣∣∣
∣∣∣∣∣
1

> ξ

]
= P

[∣∣∣∣∣∣∣∣φ̂φφALA,T −
(
yyyT√
T

+ϕϕϕA,0

)∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣φ̂φφALA,T ∣∣∣∣∣∣1 > ξ

]

= P

∣∣∣∣∣∣∣∣φ̂φφALA,T −
(
yyyT√
T

+ϕϕϕA,0

)∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣φ̂φφALA,T ∣∣∣∣∣∣1 > ξ and ∀j ∈ A, λT <

λj,T∣∣∣ϕ̂j,T ∣∣∣τ


+ P

∣∣∣∣∣∣∣∣φ̂φφALA,T −
(
yyyT√
T

+ϕϕϕA,0

)∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣φ̂φφALA,T ∣∣∣∣∣∣1 > ξ and ∃j ∈ A, λT ≥

λj,T∣∣∣ϕ̂j,T ∣∣∣τ


= P

∣∣∣∣∣∣∣∣φ̂φφALA,T −
(
yyyT√
T

+ϕϕϕA,0

)∣∣∣∣∣∣∣∣
1

> ξ and ∀j ∈ A, λT <
λj,T∣∣∣ϕ̂j,T ∣∣∣τ


+ P

∣∣∣∣∣∣∣∣φ̂φφALA,T −
(
yyyT√
T

+ϕϕϕA,0

)∣∣∣∣∣∣∣∣
1

+
∣∣∣∣∣∣φ̂φφALA,T ∣∣∣∣∣∣1 > ξ and ∃j ∈ A, λT ≥

λj,T∣∣∣ϕ̂j,T ∣∣∣τ
 .

On the one hand P
[
∀j ∈ A, λT <

λj,T

|ϕ̂j,T |τ
]

−→
T→∞

1 giving:

P

∣∣∣∣∣∣∣∣φ̂φφALA,T −
(
yyyT√
T

+ϕϕϕA,0

)∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣φ̂φφALA,T ∣∣∣∣∣∣1 > ξ and ∃j ∈ A, λT ≥
λj,T∣∣∣ϕ̂j,T ∣∣∣τ

 −→
T→∞

0.

On the other hand, in the event

{
∀j ∈ A, λT <

√
Tλj,T

|ϕ̂j,T |τ
}

we have φ̂φφALA,T = yyyT√
T
+ϕϕϕA,0. The conclusion

follows.

(c) Selection consistency. The results of part (b) gives φ̂φφALA,T
P−→

T→∞
ϕϕϕA,0. Therefore,

P [A ⊂ AT ] −→
T→∞

1. We also have for j ∈ A:

P [j ∈ AT ] = P

j ∈ AT and λT ≥
λj,T∣∣∣ϕ̂j,T ∣∣∣τ

+ P

j ∈ AT and λT <
λj,T∣∣∣ϕ̂j,T ∣∣∣τ

 .
By the results of part (a) we have P

[
j ∈ AT and λT <

λj,T

|ϕ̂j,T |τ
]
= 0 and P

[
λT <

λj,T

|ϕ̂j,T |τ
]

−→
T→∞

1.

The conclusion follows.

Proof of Corollary 3.1. The proof of this Corollary relies on standard arguments. We only provide

a sketch of prove to show that the assumptions of the theorems of Section 3 are satisfied. For

ααα ∈ Φ× Φ, under Assumptions A15-A16 we have:

σ2t (ϕϕϕ) =
∑
j∈N

bj

(
w +

p∑
i=1

aiϵ
2
t−i−j + ςςς ′XXXt−1−j

)
,

∂σ2t
∂ϕϕϕ

(ϕϕϕ) =
∑
j∈N

bj
(
1, ϵ2t−1−j , . . . , ϵ

2
t−p−j , σ

2
t−j (ϕϕϕ) ,XXX

′
t−1−j

)′
,

28



ft (ααα) =
(
1, ϵ2t−1, . . . , ϵ

2
t−p, σ

2
t−1 (ϕϕϕ) ,XXX

′
t−1

)
φφφ.

We show that Assumptions A2-A3 are satisfied. Since sup
ϕϕϕ∈Φ

|b| < ρ < c < 1, we have:

at = sup
ααα∈Φ×Φ

∣∣∣f̃t (ααα)− ft (ααα)
∣∣∣ ≤ ρsup

ϕϕϕ∈Φ

∣∣σ̃2t−1 (ααα)− σ2t−1 (ααα)
∣∣ ≤ Kρt,

dt = |wt − w̃t| ≤ Kct,

sup
ααα∈Φ×Φ

|ft (ααα)| ≤ K

1 +

p∑
i=1

ϵ2t−i + ||XXXt−1||1 +
∑
j∈N

ρj

(
1 +

p∑
i=1

ϵ2t−i−j + ||XXXt−1−j ||1

) .

The final term admits finite low-order moments, since |ϵt|2s and ||XXXt||s belong to L1. Hence,

Assumptions A2 and A3 are fulfilled. Moreover, because c > ρ, the same bound establishes

Assumption A4. Finally, Assumption A17 guarantees that Assumption A14 holds. Verification of

the remaining assumptions in Section 3 follows by standard arguments and is therefore omitted.

Proof of Theorem I.1. To prove the Theorem, we will establish the following intermediate results.

(a) sup
βββ∈Φ×Θ×Θ

1
T

∣∣∣LT (βββ)− L̃T (βββ)
∣∣∣ a.s.−→
T→∞

0.

(b) ∀βββ ∈ V (ρρρ0)×
◦
Θ,Q∞ (βββ) = E [ℓ1 (βββ)] +

∑n
j=1 ι∞ |ϑj | exists and is finite.

(c) ϑ̂ϑϑT
a.s.−→
T→∞

argmin
ϑϑϑ∈Θ

Q∞ (ρρρ0,ϑϑϑ).

(d) argmin
ϑϑϑ∈Θ

Q∞ (ρρρ0,ϑϑϑ) = θθθ0 if ιιι∞ = 000.

(a) Asymptotic irrelevance of the initial values. Let βββ ∈ Φ×Θ×Θ:

∣∣∣ℓt (βββ)− ℓ̃t (βββ)
∣∣∣ = ∣∣∣∣∣ ω̃2

t

(
ϵ2t (ϕϕϕ)− gt (βββ)

)2 − ω2
t

(
ϵ̃2t (ϕϕϕ)− g̃t (βββ)

)2
ω2
t ω̃

2
t

∣∣∣∣∣
≤

2ct
(
1 + y4t + µ4t (ϕϕϕ) + g2t (βββ)

)
ω4

+

∣∣∣(ϵ̃2t (ϕϕϕ)− g̃t (βββ)
)2 − (ϵ2t (ϕϕϕ)− gt (βββ)

)2∣∣∣
ω2

≤
2ct
(
1 + y4t + µ4t (ϕϕϕ) + g2t (βββ)

)
ω4

+
|µt (ϕϕϕ)− µ̃t (ϕϕϕ)| |−2yt + µt (ϕϕϕ) + µ̃t (ϕϕϕ)|

(
4y2t + 2µ2t (ϕϕϕ) + 2µ̃2t (ϕϕϕ) + |gt (βββ)|+ |g̃t (βββ)|

)
ω2

+
|gt (βββ)− g̃t (βββ)|

(
4y2t + 2µ2t (ϕϕϕ) + 2µ̃2t (ϕϕϕ) + |gt (βββ)|+ |g̃t (βββ)|

)
ω2

Under Assumption A18, for t large enough we have almost surely sup
βββ∈Φ×Θ×Θ

|g̃t (βββ)| ≤ 1 +

sup
βββ∈Φ×Θ×Θ

|gt (βββ)| and sup
ϕϕϕ∈Φ

|µ̃t (βββ)| ≤ 1 + sup
ϕϕϕ∈Φ

|µt (βββ)|. Therefore:

sup
βββ∈Φ×Θ×Θ

∣∣∣ℓt (βββ)− ℓ̃t (βββ)
∣∣∣
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≤ K

ct

(
1 + y4t + sup

ϕϕϕ∈Φ
µ4t (ϕϕϕ) + sup

βββ∈Φ×Θ×Θ
g2t (βββ)

)
ω4

+K

et

(
1 + y2t + sup

ϕϕϕ∈Φ
µ2t (ϕϕϕ) + sup

βββ∈Φ×Θ×Θ
|gt (βββ)|

)
ω2

Under Assumption A19, the right hand side of the inequality goes to 0 almost surely as t goes to

infinity. Therefore, sup
βββ∈Φ×Θ×Θ

∣∣∣ℓt (βββ)− ℓ̃t (βββ)
∣∣∣ a.s.−→
t→∞

0. Cesàro’s Lemma gives (a).

(b) Existence of the limit loss function. We start by noting that:

ℓt (βββ) =

(
ϵ2t (ϕϕϕ)− gt (βββ)

ωt

)2

=

(
(µt − µt (ϕϕϕ)) (2σtηt + µt − µt (ϕϕϕ))

ωt
+
σ2t
ωt

(
η2t − 1

)
+
σ2t − gt (βββ)

ωt

)2

.

Under Assumptions A21-A22, using the mean value Theorem and the compactness of Φ×Θ:

sup
ϕϕϕ∈V(ϕϕϕ0)

∣∣∣∣µt − µt (ϕϕϕ)√
ωt

∣∣∣∣ ≤ K
√
ωt

sup
ϕϕϕ∈V(ϕϕϕ0)

∣∣∣∣∣∣∣∣∂µt∂ϕϕϕ
(ϕϕϕ)

∣∣∣∣∣∣∣∣ , (37)

sup

βββ∈V(ρρρ0)×
◦
Θ

∣∣∣∣σ2t − gt (βββ)

ωt

∣∣∣∣ ≤ K

ωt
sup

βββ∈V(ρρρ0)×
◦
Θ

∣∣∣∣∣∣∣∣∂gt∂βββ
(βββ)

∣∣∣∣∣∣∣∣ , (38)

By Assumption A20, using the independence of ηt and Ft−1 gives:

E

 sup

βββ∈V(ρρρ0)×
◦
Θ

ℓ1 (βββ)

 <∞. (39)

Moreover, ιιιT −→
T→∞

ιιιT <∞. We obtain the existence and the finiteness of Q∞ (βββ).

(c) Convergence of the minimizers. Under Assumption A1 and Equation (39), the

conditions of Lemma II.1 are satisfied and we have for ϑϑϑ ∈
◦
Θ, QT (ρ̂ρρT ,ϑϑϑ)

a.s.−→
T→∞

Q∞ (ρρρ0,ϑϑϑ). Using

(a) we obtain Q̃T (ρ̂ρρT ,ϑϑϑ)
a.s.−→
T→∞

Q∞ (ρρρ0,ϑϑϑ). Under Assumption A25, the functions Q̃T (ρ̂ρρT , ·) and
Q∞ (ρρρ0, ·) are strictly convex on Θ, thus having a unique minima. Under Assumption A23, these

minima lie in
◦
Θ. Lemma II.2 gives (c).

(d) Asymptotic unbiasedness under vanishing penalty. Let ϑϑϑ ∈ V (θθθ0), if ιιι∞ = 000 then

Q∞ (ρρρ0,ϑϑϑ) = E [ℓ1 (ρρρ0,ϑϑϑ)] = E
[(

σ2
t η

2
t−gt(ρρρ0,ϑϑϑ)
ωt

)2]
. Taking the derivative with respect to ϑϑϑ at θθθ0

gives ∂Q∞
∂ϑϑϑ (βββ0) = −2E

[
σ2
t (η2t−1)
ω2
1

∂g1
∂ϑϑϑ (βββ0)

]
= 000. Which concludes the proof.

Proof of Theorem I.2. We split the proof into the following parts:

(a) (ΨT )T≥1 is an exhaustion of Rn.

(b) ∀k ∈ N∗, sup
ψψψ∈Ψk

∣∣∣GT (ψψψ)− G̃T (ψψψ)
∣∣∣ P−→
T→∞

0.

(c) E

[
sup

βββ∈V(βββ0)

∣∣∣∣∣∣∂ℓ1∂βββ (βββ)
∣∣∣∣∣∣2] <∞ and E

[
sup

βββ∈V(βββ0)

∣∣∣∣∣∣ ∂2ℓ1∂βββ∂βββ′ (βββ)
∣∣∣∣∣∣] <∞.

(d)

(
1√
T

∂LT
∂βββ (βββ0)√

T (ρ̂ρρT − ρρρ0)

)
d−→

T→∞

(
WWW
ZZZC

)
.
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(e)
√
T
(
ϑ̂ϑϑT − θθθ0

)
d−→

T→∞
argmin
ψψψ∈Rn

E∞ (ψψψ).

(a) Exhaustion of Rn by an increasing sequence of compacta. The proof of this part

follows by the same arguments as the proof of Theorem 3.2 part (a).

(b) Asymptotic decrease of the effect of the initial values. Let k ∈ N∗. Under

Assumptions A21, A24, A27 and for T large enough such that almost surely

(
ρ̂ρρT

ψψψ√
T
+ θθθ0

)
∈ V (βββ0)

we have the following:

sup
ψψψ∈Ψk

∣∣∣GT (ψψψ)− G̃T (ψψψ)
∣∣∣ ≤ K

(∣∣∣∣∣∣√T (ρ̂ρρT − ρρρ0)
∣∣∣∣∣∣+ 1

) 1√
T

T∑
t=1

sup
βββ∈V(βββ0)

∣∣∣∣∣
∣∣∣∣∣∂ℓt∂βββ

(βββ)− ∂ℓ̃t
∂βββ

(βββ)

∣∣∣∣∣
∣∣∣∣∣ .

Under Assumption A29 and for t large enough:

sup
βββ∈V(βββ0)

∣∣∣∣∣
∣∣∣∣∣∂ℓt∂βββ

(βββ)− ∂ℓ̃t
∂βββ

(βββ)

∣∣∣∣∣
∣∣∣∣∣

≤ 2 sup
βββ∈V(βββ0)

∣∣∣∣∣∣
∣∣∣∣∣∣
2ct
(
ϵ2t (ϕϕϕ)− gt (βββ)

) (
(µt (ϕϕϕ)− yt)

∂µt
∂βββ (βββ)− ∂gt

∂βββ (βββ)
)

ω4

∣∣∣∣∣∣
∣∣∣∣∣∣

+ 4 sup
βββ∈V(βββ0)

∣∣∣∣∣∣
∣∣∣∣∣∣
(
ϵ2t (ϕϕϕ)− gt (βββ)

) [
(µt (ϕϕϕ)− µ̃t (ϕϕϕ))

∂µt
∂βββ (βββ)− (µ̃t (ϕϕϕ)− yt)

(
∂µ̃t
∂βββ (βββ)− ∂µt

∂βββ (βββ)
)]

ω2

∣∣∣∣∣∣
∣∣∣∣∣∣

+ 2 sup
βββ∈V(βββ0)

∣∣∣∣∣∣
∣∣∣∣∣∣
(
ϵ2t (ϕϕϕ)− gt (βββ)

) [∂gt
∂βββ (βββ)− ∂g̃t

∂βββ (βββ)
]

ω2

∣∣∣∣∣∣
∣∣∣∣∣∣

+ 2 sup
βββ∈V(βββ0)

∣∣∣∣∣∣
∣∣∣∣∣∣
[(µt (ϕϕϕ)− µ̃t (ϕϕϕ)) (2yt − µ̃t (ϕϕϕ)− µt (ϕϕϕ))− (gt (βββ)− g̃t (βββ))]

(
2 (µ̃t (ϕϕϕ)− yt)

∂µ̃t
∂βββ (βββ)− ∂g̃t

∂βββ (βββ)
)

ω2

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ K

ct

(
1 + y2t + sup

ϕϕϕ∈V(ϕϕϕ0)
µ2t (ϕϕϕ) + sup

βββ∈V(βββ0)
|gt (βββ)|

)(
1 + |yt|+ sup

ϕϕϕ∈V(ϕϕϕ0)
|µt (ϕϕϕ)|

)
sup

ϕϕϕ∈V(ϕϕϕ0)

∣∣∣∣∣∣∂µt∂ϕϕϕ (ϕϕϕ)
∣∣∣∣∣∣

ω4

+K

ct

(
1 + y2t + sup

ϕϕϕ∈V(ϕϕϕ0)
µ2t (ϕϕϕ) + sup

βββ∈V(βββ0)
|gt (βββ)|

)
sup

βββ∈V(βββ0)

∣∣∣∣∣∣∂gt∂βββ (βββ)
∣∣∣∣∣∣

ω4

+K

ϱt

(
1 + |yt|2 + sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|2 + sup

βββ∈Φ×Θ×Θ
|gt (βββ)|

)
ω2

+K

et

((
1 + |yt|+ sup

ϕϕϕ∈Φ
|µt (ϕϕϕ)|

)
sup
ϕϕϕ∈Φ

∣∣∣∣∣∣∂µt∂ϕϕϕ (ϕϕϕ)
∣∣∣∣∣∣+ sup

βββ∈Φ×Θ×Θ

∣∣∣∣∣∣∂gt∂βββ (βββ)
∣∣∣∣∣∣)

ω2

The right hand term of the last inequality is almost surely of order O (t−κ) with κ > 1
2 . Under

Assumption A28,
∣∣∣∣∣∣√T (ρ̂ρρT − ρρρ0)

∣∣∣∣∣∣ = OP (1). The result (a) follows.

(c) Integrability of the suprema of the loss function’s first and second derivatives.
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Under Assumption A27 and for βββ ∈ V (βββ0), we have:

∂ℓt
∂βββ

(βββ) =
2

ω2
t

(
ϵ2t (ϕϕϕ)− gt (βββ)

)(
2 (µt (ϕϕϕ)− yt)

∂µt
∂βββ

(βββ)− ∂gt
∂βββ

(βββ)

)
=

2

ω2
t

(
ϵ2t (ϕϕϕ)− gt (βββ)

)(
2 (µt (ϕϕϕ)− µt − σtηt)

∂µt
∂βββ

(βββ)− ∂gt
∂βββ

(βββ)

)
.

Under Assumptions A26-A27 and with the same arguments as in the proof of Theorem I.1 part

(b) with Equations (37)-(38) we obtain:

E

[
sup

ααα∈V(βββ0)
ℓ21 (βββ)

]
<∞. (40)

Cauchy-Schwartz’s inequality along with the moments given by Assumptions A26-A27 and

Equation (40) give:

E

[
sup

βββ∈V(βββ0)

∣∣∣∣∣∣∣∣∂ℓ1∂βββ (βββ)

∣∣∣∣∣∣∣∣2
]
<∞. (41)

And the second derivative is:

∂2ℓ1
∂βββ∂βββ′

(βββ) =
2

ω2
t

P

(
2 (µt (ϕϕϕ)− yt)

∂µt
∂βββ

(βββ)− ∂gt
∂βββ

(βββ)

)
+

2

ω2
t

(
ϵ2t (ϕϕϕ)− gt (βββ)

)(
2P

(
∂µt
∂βββ

(βββ)

)
+ 2 (µt (ϕϕϕ)− yt)

∂2µt
∂βββ∂βββ′

(βββ)− ∂2gt
∂βββ∂βββ′

(βββ)

)
=

2

ω2
t

P

(
2 (µt (ϕϕϕ)− µt − σtηt)

∂µt
∂βββ

(βββ)− ∂gt
∂βββ

(βββ)

)
+

2

ω2
t

(
ϵ2t (ϕϕϕ)− gt (βββ)

)(
2P

(
∂µt
∂βββ

(βββ)

)
+ 2 (µt (ϕϕϕ)− µt − σtηt)

∂2µt
∂βββ∂βββ′

(βββ)− ∂2gt
∂βββ∂βββ′

(βββ)

)
.

With Equations (41) and (40) we obtain:

E

[
sup

βββ∈V(βββ0)

∣∣∣∣∣∣∣∣ ∂2ℓ1∂βββ∂βββ′
(βββ)

∣∣∣∣∣∣∣∣
]
<∞. (42)

(d) C.L.T. for martingale increments. Under Assumption A27, ∂ℓt∂βββ (βββ0) exists and using

the Bahadur-type expansion given by Assumption A28, we define UUU t =

(
∂ℓt
∂βββ (βββ0)

ΛΛΛtξ (ηt)

)
. On the one

hand, ΛΛΛt and ξ (ηt) are independent and belong to L2. On the other hand, using the Equation

(41) of part (c), UUU t belongs to L2 and we have under Assumption A26, E
[
η3t
]
= 0 therefore:

E [UUU t|Ft−1] =


[
−4σ3

tE[η3t−ηt]
ω2
t

∂µt
∂βββ (βββ0)−

2σ2
tE[η2t−1]
ω2
t

∂gt
∂βββ (βββ0)

]
ΛΛΛtE [ξ (ηt)]

 = 000.

Under Assumption A1, the process is a strictly stationary and ergodic L2 martingale increments.

We can apply the C.L.T. of Billingsley (1961), yielding 1√
T

∑T
t=1UUU t

d−→
T→∞

(
WWW
ZZZ

)
. We also have
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JJJ T
a.s.−→
T→∞

JJJ . Slutsky’s Lemma gives the joint convergence in distribution:

(
1√
T

T∑
t=1

UUU t,JJJ T

)
d−→

T→∞

((
WWW
ZZZ

)
,JJJ

)

The continuous mapping Theorem gives

(
1√
T

∂LT
∂βββ (βββ0)√

T (ρ̂ρρT − ρρρ0)

)
d−→

T→∞

(
WWW
ZZZC

)
. The components of the

covariance matrix are given by:

V
[
∂ℓ1
∂βββ

(βββ0)

]
= 4E

[
P

(
ϵ21 − σ21
ω2
1

(
2ϵ1

∂µ1
∂βββ

(βββ0) +
∂g1
∂βββ

(βββ0)

))]
= I (ρρρ0) ,

E
[
∂ℓ1
∂βββ

(βββ0) ξ
′ (ηt)ΛΛΛ

′
t

]
= −2E

[
ϵ21 − σ21
ω2
1

(
2ϵ1

∂µ1
∂βββ

(βββ0) +
∂g1
∂βββ

(βββ0)

)
ξ′ (ηt)ΛΛΛ

′
t

]
= R (ρρρ0) ,

V [ΛΛΛ1ξ (η1)] = E
[
ΛΛΛ1ξ (η1) ξ

′ (η1)ΛΛΛ
′
1

]
= E

[
ΛΛΛ1χχχΛΛΛ

′
1

]
= V

[
ΛΛΛ1χχχ

1/2
]
= ΞΞΞ.

(e) Asymptotic distribution of ϑ̂ϑϑT . The same arguments as Theorem 3.2 part (e) lead to

the result. Note that in this new context we have:

E
[
∂ℓ1
∂βββ∂βββ′

(βββ0)

]
= 2E

[
1

ω2
1

P

(
2ϵ1

∂µt
∂βββ

(βββ0) +
∂gt
∂βββ

(βββ0)

)]
.

Proof of Proposition I.1. We have P [BT = B] ≤ P
[
∀j ∈ B : ϑ̂j,T = 0

]
. By Theorem I.2 we have

√
T
(
ϑ̂ϑϑT − θθθ0

)
d−→

T→∞
ψψψ∗ := argmin

ψψψ∈Rn
E∞ (ψψψ). Using portmanteau Theorem:

lim sup
T→∞

P
[
∀j ∈ B :

√
T ϑ̂j,T = 0

]
≤ P

[
∀j ∈ B : ψψψ∗

j = 0
]
.

Since ψψψ∗ is the unique minimizer of the convex function E∞ then 000 ∈ ∂E∞
∂ψψψ (ψψψ∗). Therefore:


∂G∞
∂ψj

(ψψψ∗) + ιj,∞ sign (θj,0) = 0 if j ∈ B,∣∣∣∂G∞
∂ψj

(ψψψ∗)
∣∣∣ ≤ ιj,∞ if j ∈ B.

(43)

For ψψψ ∈ Rn, rewriting the function G∞ gives:

G∞ (ψψψ) =

WWW
ZZZC

ψψψ


′

ΠΠΠ′
2,2ν

(
ΠΠΠ1,2ν + 2E

[
1

ω2
1

P

(
2ϵ1

∂µ1
∂βββ

(βββ0) +
∂g1
∂βββ

(βββ0)

)]
ΠΠΠ2,2ν

)WWW
ZZZC

ψψψ


=WWW ′ZZZC +WWW ′ψψψ + 2ZZZC′

E
[
1

ω2
1

P

(
2ϵ1

∂µ1
∂ρρρ

(ρρρ0) +
∂g1
∂ρρρ

(βββ0)

)]
ZZZC

+ 2ψψψ′E
[
1

ω2
1

P

(
∂g1
∂ϑϑϑ

(βββ0)

)]
ψψψ + 4ψψψ′E

[
1

ω2
1

∂g1
∂ϑϑϑ′

(βββ0)

(
2ϵ1

∂µ1
∂ρρρ′

(ρρρ0) +
∂g1
∂ρρρ′

(βββ0)

)]
ZZZC .
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The derivative with respect to ψψψ is:

∂G∞
∂ϑϑϑ

(ψψψ) =WWW+4E
[
1

ω2
1

P

(
∂g1
∂ϑϑϑ

(βββ0)

)]
ψψψ+4E

[
1

ω2
1

∂g1
∂ϑϑϑ′

(βββ0)

(
2ϵ1

∂µ1
∂ρρρ′

(ρρρ0) +
∂g1
∂ρρρ′

(βββ0)

)]
ZZZC . (44)

The remaining of the proof is similar to Proposition 3.1.
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