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1. Introduction 

In Romer’s 1990 growth model, the aggregate growth rate is proportional to the 

number of R&D researchers. R&D generates new, non-rivalrous “ideas” that are shared 

across the economy, multiplying output. But economists soon noted that while R&D has 

grown rapidly, both in absolute terms and relative to value added (see Figure 1), productivity 

growth and patents have not risen similarly (Kortum 1993; Jones 1995; Griliches 2009). In a 

similar vein, Robert Gordon (2017) argues that recent information technology innovations 

do not bring the kind of productivity growth that arose from the major technologies of the 

19th and early 20th centuries. Bloom et al. (2020; but see critique by Alston and Pardey 2022) 

argue that the reason for this breakdown is that R&D has become less effective, that “ideas 

are getting harder to find.” They develop a measure of research productivity motivated by 

the endogenous growth literature and find that their measure declines 5 percent per year for 

the aggregate economy and 8-10 percent per year for private firms. 

These arguments evoke a pessimistic outlook where R&D can no longer overcome 

stagnant productivity. But where is the evidence of firms’ reactions? If firm research 

productivity is truly declining 8-10 percent per year, then one would expect corporate 

managers to take notice. Yet there is little evidence of such a reaction. While declines in 

research productivity have been discussed in specific areas such as novel drug development 

(Fernald et al. 2024), general publications such as R&D World and R&D Management remain 

largely silent on the subject. More formally, a sharp decline in research productivity should 

lead to a decline in real R&D, all else equal; this follows both from endogenous growth 

models (e.g., Romer 1990; Aghion and Howitt 1992) and the knowledge production function 

model used in the empirical literature (see below). However, as Figure 1 shows, real R&D in 

the US has grown significantly over recent decades. This growth in R&D investment seems at 

odds with the notion of declining research productivity. 

This paper explores the link between R&D investment and productivity at the micro 

level to gain insight about this puzzle. Using comprehensive micro-data from the US Census, 

we estimate time trends in the elasticity of output with respect to R&D and in the returns to 

R&D in the US manufacturing sector from 1976 to 2018. We focus on manufacturing 

because productivity is reasonably well-measured in this sector. A large literature measures 

both the output elasticity to R&D and the returns to R&D (for a review see Hall, Mairesse, 
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and Mohnen 2010). We add to this literature by estimating how these measures have 

changed over four decades, and we make these estimates on a comprehensive sample of 

R&D-performing firms and establishments that includes many small firms. 

We begin by estimating the elasticity and returns to firm R&D with the widely 

applied “knowledge production function” (Griliches 1979; Hall, Mairesse, and Mohnen 

2010). Using a variety of empirical methods from the literature, including instrumental 

variables, we find robust evidence that the output elasticity with respect to R&D has risen 

substantially since 1976. In this framework, R&D has grown more effective at raising 

productivity, not less. Rising output elasticity aligns with the observed rising share of R&D 

in value added. To explore factors affecting the rise in output elasticity, we analyze sources 

of heterogeneity, including firm age, size, market position, export activity, and digitalization. 

We find higher output elasticities among market leaders in each industry and firms in digital-

intensive sectors, whereas the output elasticity is lower among young and small firms. 

We also estimate marginal returns to R&D, which are calculated as the output 

elasticity times the ratio of output to the R&D capital stock. The measure of the R&D 

capital stock depends on the assumed “depreciation” or obsolescence rate.1 Since R&D 

obsolescence rates are not well measured (See overview in Mead and others 2007), we follow 

the literature and calculate the returns to R&D over a variety of assumed obsolescence rates. 

Across depreciation rates ranging from 10 percent to 30 percent, we find that the marginal 

returns to R&D have doubled since the 1970s. Overall, micro-level evidence suggests that 

the elasticity of output with respect to R&D and the returns to R&D have increased over the 

last four decades, in contrast to the hypothesis of declining research productivity. 

How can we account for such a large rise in returns? The rise in output elasticity, 

while also large, does not explain it. In equilibrium, we expect the marginal return to R&D to 

equal the marginal cost. If the marginal cost of R&D remained unchanged, in equilibrium 

rising output elasticity would not change marginal returns; it would simply raise R&D 

relative to output. It is possible that frictions or adjustment costs might distort the 

equilibrium. We examine evidence of two frictions, monopsony in R&D inputs and 

intangible adjustment costs; we conclude that these do not account for a doubling of returns. 

 

1 It also depends on the choice of which moment to use to capture the ratio of output to R&D capital, which 
has a highly skewed distribution. As discussed below, we use a geometric mean, but we are concerned mainly 
with the trend in returns over time, not the particular level of returns. 
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We are left with examining the components of the user cost of R&D capital stock: the real 

interest rate, the after-tax cost of R&D, and the depreciation or obsolescence of R&D. 

Among these three, interest rates and after-tax costs of R&D have gone down, implying that 

obsolescence rates must have gone up substantially.  

Indeed, if R&D has become more effective, then firms might very well become more 

effective as technology rivals, leading to higher obsolescence. It is quite common for firms 

to drop R&D in the face of superior innovations from rivals. Nokia dropped its low-end 

smartphone development in the face of superior products from Apple and Google; Toyota 

dropped its R&D on battery electric vehicles in the faces of successful rivals. Even when 

superior products cannot yet be identified, rivals’ R&D can indicate possible obsolescence 

risk. Visicalc’s personal computer spreadsheet program, introduced in 1979, faced over 18 

rivals developing new features as they sought to capture market share. No one knew which 

features were key until 1983 when Lotus Development introduced a “dominant design” that 

soon replaced Visicalc’s market leadership.  

We hypothesize and test the notion that rivals’ R&D increases a firm’s expected 

obsolescence risk, hence reducing expected returns to innovation, and, all else equal, 

reducing R&D investment. Below we build a model that combines R&D capital assets with 

the Grossman and Helpman (1991) model of firm rivalry and replacement where we treat 

the obsolescence rate as a function of rivals’ R&D. Our approach differs from much of the 

large IO literature on technological rivalry (see review by Reinganum 1989). We are 

concerned with technological rivalry that cannot necessarily be reduced to a race over a 

single, commonly known innovation, and we treat R&D as a long-lived asset (capital stock) 

so that rivals’ current spending may affect future obsolescence risk.2 

The model predicts that firm R&D varies with rivals’ R&D because of obsolescence 

risks. In prior research (Bessen and Wang 2024), we found that firms significantly reduce 

their own R&D as rivals invest more. Extending this analysis to our entire sample, we infer 

that technological rivalry has risen sharply since 1990. Using a novel method, we infer lower-

bound obsolescence rates from the rivalry measure. These, too, have increased sharply and 

this rise can account for the rise in the returns to R&D. 

 

2 As Doraszelski (2003) notes, in most of the literature, R&D is “memoryless”. 
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While many papers estimate elasticities and returns to R&D (see review in Hall, 

Mairesse, and Mohnen 2010), few have done so over long periods of time and with 

comprehensive data. Lucking et al. (2019), using Compustat data, find evidence of rising 

R&D elasticity. Li and Hall (2020), using BEA industry data, explore time-varying R&D 

depreciation rates for select industries. This paper is also closely related to recent research by 

Fort et al. (2025) who find that the elasticity of patent counts to R&D has risen since 1977 as 

well as citation weighted counts and counts of “breakthrough” patents. They suggest that 

patents no longer translate into economic growth as effectively as they once did—a 

conclusion consistent with our findings. 

To summarize, using comprehensive data for manufacturing from 1976-2018, we 

find inter-related trends in R&D activity that portray a transformation in the nature of 

research activity that has not been recognized in the literature. Over the last three or four 

decades we find that both the elasticity of output with respect to R&D and the marginal 

returns to R&D have increased substantially. Not surprisingly, investment in R&D has gone 

up along with technological rivalry stemming from this investment. Furthermore, the large 

rise in marginal returns suggests a large rise in R&D obsolescence rates. Estimates of 

obsolescence based on the rising rivalry measure confirm such a rise. Understanding the 

changing nature of R&D is important for R&D policy and, more generally, for 

understanding the role of R&D in productivity growth. 

2. R&D Model 

We begin by using a standard “knowledge production function” equation (Griliches 

1979; for a review see Hall, Mairesse, and Mohnen 2010) to estimate the elasticity of output 

with respect to R&D, 

ln 𝑅 = 𝛼 ln 𝑋 + 𝛽 ln 𝐾 + ln 𝐴 + 𝜖 (1𝑎) 

where 𝑅 is deflated firm revenue, 𝑋 is a composite of input factors (labor, physical capital, 

and intermediate inputs), 𝐾 is the firm R&D stock (defined below), and 𝐴 captures other 

sources of productivity, spillovers from other firms, knowledge gained from learning-by-

doing, and the quality of researchers. We assume 𝛼 < 1 to capture diminishing returns to 

scale and/or markups; 𝛽 is the revenue elasticity with respect to R&D that we seek to 

estimate.  Alternatively, we use the equivalent total factor productivity form 



 

 6 

ln 𝑇𝐹𝑃 = 𝛽 ln 𝐾 + 𝐹𝐸 + 𝜖,   where ln 𝑇𝐹𝑃 ≡ ln 𝑅 − 𝛼 ln 𝑋 . (1𝑏) 

We estimate total factor productivity using structural methods (Levinsohn and Petrin 2003). 

In the knowledge production function, R&D improves firm productivity by creating 

new products and by creating products of higher quality or profitability. The knowledge 

stock represents the accumulated knowledge accrued from the sequence of past R&D 

investments. But some of the new products created become obsolete as rival firms replace 

them with superior products. In this case, some of the firm’s knowledge becomes obsolete, 

that is, it is no longer commercially valuable. To capture the effect of obsolescence on the 

knowledge stock and hence on productivity, we follow the literature and construct R&D 

capital stocks using the perpetual inventory method with an obsolescence rate, 𝛿, and R&D 

investment 𝐼𝑡 , 

𝐾𝑡+1 = 𝐼𝑡 + (1 − 𝛿)𝐾𝑡 . (2) 

Some sources refer to 𝛿 as “depreciation” by analogy to physical capital. We prefer the term 

obsolescence because knowledge derived from R&D does not “wear out,” but it becomes 

obsolete as R&D-based products lose commercial value when they are replaced by rivals’ 

products. Below we specifically model how interfirm rivalry leads to 

replacement/obsolescence. 

To estimate elasticities of output with respect to R&D, we sometimes use lagged 

R&D expenditure in lieu of the R&D capital stock. In the Appendix we show that estimates 

of elasticity obtained using lagged R&D expenditure are approximately the same as estimates 

obtained using R&D capital stocks, when the R&D growth rate, 𝑔, is approximately 

constant. This holds both in theory and practice.3  

However, estimates of the returns to R&D do depend on the obsolescence rate and 

the resulting level of capital stock. That is, the gross marginal return to R&D is 

𝜌 ≡
𝜕𝑅

𝜕𝐾
= 𝛽

𝑅

𝐾
. (3) 

For a given elasticity, 𝛽, the returns depend on the choice of obsolescence rate used to 

construct 𝐾. In our empirical analysis, we first show returns using a variety of different 

 

3 Generally, researchers find that estimates of R&D elasticity are insensitive to changes in the obsolescence rate 
(Griliches and Mairesse 1984; Bernstein 1998; Bernstein and Nadiri 1988; Hall and Mairesse 1995; Harhoff 
1998). 
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obsolescence rates. Then we estimate obsolescence rates from the data and consider how 

these might affect returns.  

To explore the role of obsolescence for innovation, we draw on an influential model 

of replacement by Grossman and Helpman (1991). We embed the knowledge production 

function in this model and use it to explore how interfirm competition affects R&D. In this 

model, the risk of replacement arises from a wide range of innovators, including rival firms 

that are not current competitors in the same product markets. This is appropriate for our 

exploration of R&D returns in a broad sample of firms. We assume that the firm optimizes 

its profit, taking rivals’ R&D and the obsolescence rate as a given. 

As the Grossman and Helpman model is well-known, we briefly sketch the standard 

features here and refer the reader to the underlying paper for further details. Let the 

economy consist of a unit continuum of differentiated products; the number of these 

products are fixed. Consumers have Cobb Douglas preferences over these goods, so they 

spend an equal amount, 𝐸, on each. Consumers have constant time preferences so that there 

is a constant discount rate, 𝑟 > 0. 

Multiple firms potentially compete in the product market for each good, but their 

offerings differ in quality. Innovation takes the structure of a “quality ladder” where 

innovating firm i introduces a product version of good j that has a quality that is 𝜆𝑖 > 1 

greater than the previous quality leader. This “inventive step” differs across firms, capturing 

heterogeneous development capabilities, learning-by-doing and other differences.  

One unit of labor is needed to produce each unit of output, so the marginal cost is 

the wage rate, 𝑤. We assume the innovations are non-drastic and the new leader and the 

incumbent engage in Bertrand competition (there is no licensing), driving prices down until 

the incumbent earns no profits. This occurs when the entrant charges a limit price 𝑝𝑖 = 𝜆𝑖𝑤, 

driving the incumbent out of the market. Then demand is 𝐸/𝑝𝑖 and the flow of profits is 

𝜋𝑖 = (𝑝𝑖 − 𝑤) 𝐸 𝑝𝑖⁄ = (1 − 1
𝜆𝑖

⁄ ) 𝐸. This process of replacement is what drives 

obsolescence and determines the obsolescence rate. 

Firm i can have 𝑛𝑖 ≥ 1 products so that firm profits are 

Π𝑖 = 𝑛𝑖𝜋𝑖 . 

Firm R&D plays a role in adding new products (increase 𝑛𝑖) and increasing their 

profitability, 𝜋𝑖 . Without specifying the exact mechanisms by which R&D affects both 
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margins, we can use the knowledge production function to derive a profit function Π𝑖 =

Π𝑖(𝐾𝑖) where (see Appendix) 

Π𝑖
′(𝐾𝑖) = 𝛽

𝑅𝑖

𝐾𝑖
. (4) 

With this profit function, we can write the Bellman equation for the value of the firm 

(suppressing the firm subscript), taking the expected obsolescence rate, 𝛿, as given, 

𝑉(𝐾𝑡) = max
𝐾𝑡+1

[Π(𝐾𝑡) − 𝑝𝐾(𝐾𝑡+1 − (1 − 𝛿)𝐾𝑡) +
1

1 + 𝑟
𝑉(𝐾𝑡+1)] (5) 

where the first term captures the flow of profits based on the existing knowledge stock, the 

second term, using (2), represents the cost of R&D at price 𝑝𝐾 , and the third term captures 

the continuation value of the firm with the increased knowledge stock. The discount rate is 

𝑟. For the moment, take 𝛿 as fixed, given rivals’ R&D.4  

The first order maximizing condition gives us 

𝑝𝐾 =
1

1 + 𝑟
𝑉′(𝐾𝑡+1) =

1

1 + 𝑟
[Π′(𝐾𝑡+1) + 𝑝𝐾(1 − 𝛿)] 

where the second expression comes from recursive use of the Bellman equation. Using (3) 

and (4), rearranging and assuming the optimal policy is followed all years, we get 

𝑝𝐾(𝑟 + 𝛿) =  𝛽
𝑅𝑖

𝐾𝑖
≡ 𝜌. (6) 

This is of the same form as Jorgenson’s user cost for depreciating physical capital (Jorgenson 

1963). Assuming an approximately constant growth path, 𝐼 = 𝑔𝐾, we can write an 

investment demand equation with fixed effects 

ln 𝐼 = ln 𝑅 − ln(𝑟 + 𝛿) − ln 𝑝𝐾 + 𝐹𝐸 + 𝜖. (7) 

This is the firm’s reaction function given 𝛿.5 

To implement an empirical analysis using this equation, we need to specify 

obsolescence as a function of rivals’ R&D. In the model, the more that rival firms invest in 

R&D, the more frequently they will come up with innovations that replace products of the 

focal firm. But realistic empirical analysis requires several additional considerations that go 

beyond the base model: 

 

4 In the appendix we consider 𝛿(𝑆, 𝑅(𝐾)). 

5 In this paper the reaction function is sufficient for our purposes. In Bessen and Wang (2024) we explore a 
Nash equilibrium in a closely related model. 
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• Only some firms are likely to develop replacement products; we don’t expect 

software firms to replace steel products. We measure the effects of rivalry only 

within industries, broadly defined. By industry we mean a group of firms whose 

products involve knowledge that might be helpful in developing replacement 

products for other firms in the industry. Rivals, in this sense, might not be product 

market competitors, but they are potential replacers. 

• Many firms do not invest in R&D and some narrowly defined industries will have 

very little aggregate R&D. This pattern may arise from fixed costs of performing 

R&D, but our empirical specification needs to accommodate it. 

• Firm size might affect the rate of obsolescence. For instance, firms with many 

products may establish a reputation among a loyal customer base. When a superior 

replacement arrives for one product, consumers may be slow to switch, reducing the 

effective obsolescence rate. 

 

With these considerations in mind, we specify a lower-bound obsolescence rate6  

ln(𝑟 + 𝛿𝑖𝑡) = ln 𝑟 + (𝜇 − 𝛾 ln 𝑅𝑖𝑡) ln 𝑆𝑖𝑡−1  or   𝛿𝑖𝑡 = 𝑟 (𝑆𝑖𝑡−1
𝜇−𝛾 ln 𝑅𝑖𝑡 − 1) (8) 

where 𝑆 is a measure of industry rivals’ R&D and 𝜇 and 𝛾 are parameters to be estimated. 

Inserting this into equation (7) and replacing ln 𝑆 with asinh 𝑆 to accommodate small or 

zero R&D cases, we get a flexible form 

ln 𝐼𝑖𝑡 ≈ 𝛾𝑡 + 𝛾𝑗 + 𝛾𝑆 ∙ asinh 𝑆𝑖𝑡−1 + 𝛾𝑥 ∙ asinh 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡 + 𝛾𝑅 ∙ ln 𝑅𝑖𝑡 + 𝜖𝑖𝑡 (9) 

Where 𝛾𝑆 = −𝜇, 𝛾𝑥 = 𝛾, 𝛾𝑗  is an industry fixed effect and 𝛾𝑡  is a year dummy. This is the 

base regression we run below. Coefficient 𝛾𝑆 provides a simple measure of the direct impact 

of rivals’ R&D. To the extent that there are positive knowledge spillovers from rivals’ R&D 

this coefficient is net of that effect; spillovers are also captured in 𝛾𝑅 . This derivation has 

glossed over a potentially important second order concern: because larger firm size may 

decrease a firm’s obsolescence rate, firms have an additional incentive to invest in R&D to 

increase firm size. In the Appendix we show that taking this effect into account does not 

 

6 This is a lower bound obsolescence rate because it only includes obsolescence caused by rivals’ innovation. In 
some cases, products become obsolete for exogenous reasons. For example, microbes become resistant to 
antibiotics.  
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change the form of equation (9) but slightly changes the interpretation of coefficient 𝛾𝑆 . 

Moreover, our estimates find that this effect is secondary. 

Using the coefficient estimates and sample means (indicated by overbars), we can 

estimate the obsolescence rate in (8),7 

𝛿𝑡 = 𝑟 (𝑒𝛾𝑆∙asinh 𝑆𝑖𝑡−1+𝛾𝑥∙asinh 𝑆𝑖𝑡−1∙ln 𝑅𝑖𝑡 − 1) . (10) 

3. Data 

The data on R&D expenditures come from the Survey of Industrial Research and 

Development (SIRD) (1976–2007) and the Business R&D and Innovation Survey (BRDIS) 

(2008–18, renamed the Business Research and Development Survey in 2017). These are 

annual surveys of roughly 40,000 (less in the earlier years) for-profit, nonfarm businesses 

with five or more employees conducted by the US Census Bureau in collaboration with the 

National Science Foundation's National Center for Science and Engineering Statistics. In 

addition to the R&D data, firm-level sales and sample weights are drawn from the SIRD and 

BRDIS datasets. We use domestic R&D, but also check robustness using worldwide R&D. 

A challenge for our analysis is that the scope of the sample in the R&D survey has 

changed, particularly since the early years of the SIRD datasets. Before 1992, the survey was 

mainly focused on large firms in manufacturing industries. Beginning in 1992, firms in 

several non-manufacturing industries and small firms were added. The BRDIS survey also 

substantially increased the scope of the sample frame. To conduct analysis with a consistent 

scope sample, we have constructed revised sample weights. We reweight the sample so that 

the composition of the sample every year from 1976 to 2018 is similar to that of the SIRD 

datasets from 1976 to 1991.8 The revised weights are used in the empirical analysis. We 

perform our analysis over four time periods, each roughly a decade in length, during which 

 

7 This calculation slightly understates the obsolescence rate to the extent that 𝛾𝑆 > −𝜇. See Appendix. 

8 We first compute the sum of sample weights, provided by the SIRD and BRDIS datasets, of firms in each 
group defined by the employment size and industry in each year.  Then, the average total weights in each group 
from 1976 to 1991 are computed and used as a basis. The sample weights in all years are reweighted such that 
the total weights in each group are the same as the average total weights computed for the years 1976-1991. 
The annual moments of R&D investment (mean, standard deviation, interquartile range) in the reweighted 
sample generate smooth series. 
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sampling was mostly consistent. These periods are 1976-91, 1992-1999, 2000-2007, and 

2008-2018. 

The SIRD and BRDIS datasets are linked to the Longitudinal Business Database 

(LBD) via SIRD -BRDIS Crosswalk developed by Cohen (2023). The LBD contains 

employment, age, and industry (NAICS code) of virtually all employer businesses in the 

United States. The data are further linked to establishment data in the manufacturing sector 

(NAICS sector 31-33) drawn from the quinquennial Census of Manufactures (CM) with data 

from the Annual Survey of Manufactures (ASM) for the intervening years, using census 

identifiers. The CM collects statistics from all establishments except for some very small 

ones, while the ASM is a survey of approximately 50,000 establishments.9 Both datasets 

provide information on production inputs and outputs, enabling the estimation of total 

factor productivity (TFP) at the establishment level. In particular, real output (deflated 

revenue), real capital stock (including equipment and structures), and real material costs 

(intermediate inputs) are used in our analysis. We also use total factor productivity estimates 

from the Collaborative Micro-productivity Project (CMP) jointly developed by the BLS and 

Census Bureau (Cunningham et al. 2023). Overall, the data contain over 670,000 

establishment-year observations for the manufacturing sector from 1976 through 2018. 

Variables 

Our main regression to estimate the output elasticity is given by equation (1b). To 

implement this, we construct the measure of establishment-level TFP as follows: 

log(𝑇𝐹𝑃𝑖𝑡) = log(revenue𝑖𝑡) − 𝛽laborlog(labor𝑖𝑡) − 𝛽capitallog(capital𝑖𝑡) − 𝛽intlog(int𝑖𝑡). 

The data on revenue and three production inputs at the establishment level are drawn from 

the ASM, CM, and LBD. The three coefficients in the production function (i.e., 

𝛽labor, 𝛽capital, 𝛽int) are estimated by the control function approach, pioneered by Olley and 

Pakes (1996). Since firms endogenously choose production inputs in response to 

 

9 The ASM data also includes sample weights to ensure its sample is representative of US establishments. 
However, these weights are correlated with those in the SIRD and BRDIS datasets, as larger firms are more 
likely to be included in both surveys, and the two sets of weights cannot be used simultaneously. Since selection 
into the R&D survey is more critical, we use the revised weights from the SIRD and BRDIS datasets in our 
analysis. We have also checked the robustness of our findings, though not released, using alternative weights 
constructed by adjusting the SIRD and BRDIS revised weights based on the relative weights of establishments 
within each firm in the ASM. 
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productivity shocks, the OLS estimate of the production function may be biased. The 

structural approach exploits firm investments to proxy unobserved productivity and address 

the endogeneity problem. We adopt the approach developed by Levinsohn and Petrin 

(2003), in which firms are assumed to adjust their intermediate inputs after observing their 

prodcutivity shock.10 The estimation is implemented by the prodest Stata package. We 

specify labor as a free variable, capital as a state variable, and intermediate inputs as a proxy 

variable. Furthermore, we estimate the production function at each NAICS 3-digit industry, 

as the nature of production funcation may differ across industries. As reported in Table A.1, 

the average coefficients on labor, capital, and intermediate inputs across all 3-digit 

manufacturing industries are 0.24, 0.18, and 0.51, respectively. Once we estimate the 

production function, the TFP measure is obtained as in the equation above. 

In the regression equation (1b), we examine the relation between productivity at the 

establishment level and R&D at the firm level. This specification assumes that technologies 

are perfectly transferred across a firm’s establishments. This assumption is theoretically 

plausible, as it is optimal for firms to share their knowledge and technologies in all of their 

production facilities. Still, Adams and Jaffe (1996) suggest that knowledge spillovers within 

firms may be imperfect due to transfer costs. To account for this, we run an additional 

regression that includes the log of the number of establishments within a firm as a control 

variable, allowing for an imperfect knowledge transfer across establishments. Note that 

R&D expenditures are reported at the firm level in the SIRD and BRDIS datasets, while 

revenue and production inputs are recorded at the establishment level. Rather than 

aggregating establishment-level variables for a firm-level analysis, we maintain this 

distinction, as establishments within the same firm may operate in different NAICS 3-digit 

industries or even outside the manufacturing sector. This approach ensures that our TFP 

measure captures industry-specific heterogeneity in the production function. 

Another concern in the estimation of regression equation (1b) is a potential 

correlation between the error term and R&D expenditures, as firms may adjust R&D 

 

10 Their approach uses intermediate inputs to proxy unobserved productivity because capital investments are 
lumpy and can be zero in many observations. Ackerberg, Caves, and Frazer (2015) propose an alternative 
approach that overcomes the potential functional dependence problem in Olley and Pakes (1996) and 
Levinsohn and Petrin (2003). However, this estimation method encounters convergence problems and yields 
negative production elasticities in some industries, as reported by Gao and Kehrig (2017). 
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expenditures in response to productivity shocks. To mitigate this concern, we take a lag in 

R&D expenditures and examine the relation between R&D and productivity with a one-year 

time lag. Also, note that we are mainly interested in the change in the output elasticities over 

time. The potential endogeneity would not alter the main finding on the time trend unless 

the degree of endogeneity has changed over time. Furthermore, we construct instruments 

for R&D expenditures by exploiting federal R&D tax credits, which generate supply-side 

shocks to firm-level R&D. Firms earn a tax credit on qualified research expenditures, known 

as the Research and Experimentation (R&E) Tax Credit. The credit is time-varying and firm-

specific, as it depends on the statutory tax credit, subject to changes in the tax credit law, the 

corporate income tax rates, and firm-specific characteristics, such as R&D expenditures in 

the previous years. We compute the effective rate of R&D tax credit at the firm level, 

following Arque-Castells and Spulber (2022), and estimate the predicted value of R&D 

expenditures. The predicted value is based on an OLS regression, where the right-hand-side 

variables include log(1-R&D tax credit), firm fixed effects, and year fixed effects. The first-

stage regression table is shown in the Appendix. We then use the predicted R&D instead of 

actual R&D as an independent variable in the regression (1b). A similar approach is adopted 

by Bloom et al. (2013) and Arque-Castells and Spulber (2022). 

Heterogeneity in the returns to R&D is explored by constructing six different 

dummy variables: young firm (firm age less than 5), small firm (firm employees less than 

100), exporter, market leader, firms with foreign R&D, and firms in a digital-intensive 

industry. The age and employment size are drawn from the LBD. Export data are taken 

from the CM and ASM datasets. The market leader is a firm with the largest sales in the 

NAICS 6-digit industry. Foreign R&D investments are reported by the SIRD and BRDIS 

datasets. Finally, digital-intensive industries are defined by the computer investments per 

worker at the industry level. The threshold for the binary variable is set at the median of 

NAICS 6-digit industries in the manufacturing sector. The computer investment data are 

available in the CM and ASM datasets only since 2002, so the digital-intensive industries are 

assumed to be time-invariant. 

The returns to R&D are estimated as the product of output elasticity and the 

revenue-to-R&D stock ratio, as in equation (3). Here, revenue is measured at the firm level, 

as knowledge from R&D is shared across and increases the output of all establishments 

within each firm. We report the geometric mean of the returns, as the revenue-to-R&D 
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stock ratios are highly dispersed. Note that Bloom et al. (2013) and Arque-Castells and 

Spulber (2022) report the median of their esimated R&D returns. The geometric mean and 

median yield similar results, but the release of geometric means is preferred to that of 

medians to protect confidentiality.  

We construct a lagged measure of rivals’ R&D for firms in industry J as 

 𝑆𝑖𝑡−1 ≡ ∑ 𝐼𝑗,𝑡−1𝑗≠𝑖
𝑗∈𝐽

 where the industry is defined as the firm’s primary 6-digit NAICS 

industry. Note that there is a possible bias estimating (9) using this rivalry measure because 

the dependent variable is implicitly related to 𝑆𝑖𝑡−1. In the Appendix, we analyze this bias 

and estimate it in our data, showing that it does not meaningfully affect our conclusions. We 

also instrument this variable in supplementary regressions. In Bessen and Wang (2024) we 

also use a weighted distance measure of rivals’ R&D with similar results. 

4. Empirical Findings 

Revenue elasticity trends 

Table 1 shows the estimates of output elasticity with respect to R&D expenditures in 

four sample periods. The baseline results in Panel A show that the elasticity has increased 

over time: 0.010 in the first sample period (1977-1991), 0.010 in the second (1992-1999), 

0.013 in the third (2000-2009), and 0.019 in the fourth (2008-2018). These coefficients mean 

that doubling R&D expenditures is associated with a roughly 1% increase in TFP in the next 

period. In Table 1, year fixed effects and detailed industry (NAICS 6-digit code) fixed effects 

are absorbed. Therefore, we exploit within-industry variations across firms and over time. 

While firm fixed effects could further control for unobserved firm characteristics, they 

would absorb most of the variation, given the persistence of R&D expenditures. Instead, we 

assess the robustness of the results with various fixed effects, including firm and 

establishment fixed effects, in Table 2. To conduct consistent analysis across different 

sample periods, observations are weighted by our adjusted sample weights.11 The sample 

 

11 We also conducted the analysis using the original sample weights rather than the adjusted weights and find a 
statistically significant increase in output elasticity at the 1% level from the first to fourth sample period. The 
same holds when using worldwide R&D instead of domestic R&D. Only the sign and significance level of 
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weights also make the sample representative of US firms. The number of observations is 

over 100 thousand in each sample period and is significantly larger than the sample of 

publicly traded firms. 

Panel B uses the predicted R&D based on R&D tax credit as an independent 

variable to address the endogeneity concern and shows a similar trend, where the elasticity 

increases from 0.010 in the first period to 0.019 in the fourth period. Here, the coefficient of 

0.01 means that doubling predicted R&D investments, calculated using the tax price of 

R&D, is associated with a roughly 1% increase in TFP in the next period. The similar 

coefficients in Panel B suggest that firms’ endogenous response in their R&D to future 

productivity shocks may not be a significant concern. Panel C checks the robustness of the 

results using R&D stocks constructed by the perpetual inventory method (equation 2) as the 

independent variable. Using the stock variable instead of flow R&D expenditures does not 

significantly alter the results. Panel D controls for the number of establishments in each 

firm. In the baseline analysis, we examine the relationship between R&D expenditures at the 

firm level and TFP at the establishment level, assuming that new technologies developed in 

the firm can be shared in all establishments within the firm. Controlling for the number of 

establishments accounts for the possibility of imperfect technology transfers across 

establishments within each firm. The rise in elasticities is robust to this specification, while 

the additional control variable is not statistically significant except for the first sample period. 

Finally, Panel E uses the TFP measure developed by the Collaborative Micro-productivity 

Project (Cunningham et al., 2023). In their estimation of TFP, factor elasticities are measured 

by the expenditure shares of corresponding inputs within each 6-digit NAICS industry. 

Again, we see an increase in elasticities over four sample periods. 

Table 2 examines the trend in output elasticity to R&D expenditures in a different 

specification. The dependent variable is the log of real output instead of the estimated TFP, 

and independent variables include labor, intermediate inputs, and physical capital at the 

establishment level. In the first column, we examine the relationship between R&D 

expenditures and output with a one-year time lag, while controlling for year and detailed 

industry fixed effects as in Table 1. All observations from 1977 to 2018 are pooled in this 

 

these results are released from the Census Bureau (Approval Number: CBDRB-FY25-P2735-R12336) to 
minimize the volume of output and reduce disclosure risk. 



 

 16 

analysis. The estimated elasticity increases from 0.009 in the first sample period to 0.023 in 

the fourth sample period, shown in the interaction terms between R&D expenditures and 

sample period dummies. The results here are quantitatively similar to the results in Table 1, 

showing the robustness of the findings. From the second to the fourth column, regressions 

with various fixed effects are explored. In the second column, firm and year fixed effects are 

absorbed to control for unobserved firm characteristics. As expected, the coefficients on 

lagged R&D expenditures attenuate due to the inclusion of more granular fixed effects, but 

the trend remains robust. The regression in the third column controls for firm fixed effects 

and year times industry fixed effects to account for time-variant industry-specific shocks. 

Finally, the fourth column shows the regression results with year and establishment fixed 

effects to control for unobserved establishment characteristics. Under these regression 

specifications, the elasticity estimates for the first sample period become statistically 

insignificant, but the estimated elasticity exhibits a substantial increase over time. For 

instance, the estimated elasticity in the fourth column increases from 0.001 in the first 

sample period to 0.010 in the fourth sample period. These results show the robustness of the 

increase in output elasticities. As a further robustness check, we conduct a similar regression 

using a balanced panel of Compustat firms in the Appendix (Table A3). Despite major 

differences in samples, this analysis also finds significantly rising output elasticities. 

Heterogeneity analysis  

Table 3 explores the heterogeneity in output elasticities to R&D, exploiting the 

comprehensive sample from the US Census. Young firms (less than five years old) and small 

firms (fewer than 100 employees) exhibit lower elasticity estimates than other firms, by 0.004 

and 0.011, respectively. This indicates that their R&D expenditures have a weaker 

association with TFP compared to other firms. In particular, the interaction term for young 

firms is similar in magnitude to the base term (0.009), implying that their output elasticity is 

statistically insignificant. In contrast, the elasticity estimates are larger among firms that 

operate in digital-intensive industries, measured by computer expenditures per capita, and 

among firms with the largest market share in their NAICS 6-digit industry. The interaction 

terms (0.007 and 0.010, respectively) are similar in magnitude to the base terms (0.006 and 

0.008, respectively), suggesting that their elasticities are approximately twice as large as those 

of other firms. Finally, the last two columns examine the heterogeneity for firms with foreign 
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R&D and exports. The interaction terms are statistically insignificant, suggesting that the 

presence of foreign operations or businesses with foreign markets may not be related to 

output elasticities to R&D. Note that both output and R&D used in the regression are 

measured in domestic markets. We also examined heterogeneity across NAICS 2-digit 

industries (NAICS 31, 32, and 33) but did not find statistically significant differences at the 

5% level. 

Trend of marginal returns to R&D  

Table 4 reports the estimated returns to R&D, which depend on the assumed 

obsolescence rate of R&D stocks. We present estimates with various obsolescence rates, 

ranging from 10% to 30%.  We first estimate the output elasticity to R&D stocks, as in Table 

1-C, with a particular obsolescence rate, and then compute the returns to R&D, following 

equation (3). The table reports the geometric mean of the estimated returns. With the 

commonly used 15% obsolescence rate, the estimated returns increase from 8.8% in the first 

sample period (1977-1991) to 23.5% in the fourth (2008-2018). Higher obsolescence rates 

lead to higher estimated returns, as the ratio of output to R&D stocks rises. With the 

obsolescence rate of 30%, the returns increase from 16.0% in the first sample period to 

48.3% in the fourth sample period. While the level of returns varies with assumed 

obsolescence rates, all specifications in the table show that the returns to R&D have 

substantially increased over time, doubling or tripling. 

Why have returns risen? 

Inspecting equation (3), R&D returns consist of two components: the elasticity of 

output with respect to R&D and the R&D intensity, that is, the ratio of R&D (stock or flow) 

to firm sales. Our evidence shows that the output elasticity has risen sharply, tending to 

increase returns, but the R&D intensity has also risen in aggregate (see Figure 1), tending to 

dampen this rise. The growth in R&D elasticity can be broadly understood as a change in the 

technology of R&D or in the nature of the technological opportunities open to firms. But, 

given the output elasticity of R&D, the returns to R&D represent an economic decision of 

the firm. Presumably firms invest in R&D until the returns equal the marginal cost. In 

equilibrium, R&D returns should equal the user cost of R&D capital as defined in equation 

(6). 
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To explore the factors contributing to a rise in R&D returns, we look at the 

components of the user cost of R&D capital. We also look at possible reasons that a 

“wedge” might arise between returns and marginal cost of R&D. Consider the components 

of user cost: the price of R&D, real interest rates, and obsolescence rates. First, consider the 

price of performing R&D. The R&D figures we use have been deflated by the BEA R&D 

price deflator so changes in the price of R&D have already been incorporated into our 

estimates of returns.12 In any case, the R&D deflator closely tracks the GDP deflator. Since 

the majority of R&D expenditure consists of personnel costs, we can also look at the relative 

wages of scientists and engineers in private industry to the wages of other occupations. 

Using the Current Population Survey from 1988 to 2018, the ratio of the wages of scientists 

and engineers to the wages of all occupations fell about 5%. Finally, the after-tax cost of 

R&D has declined as the Federal government and states have offered increasingly generous 

tax treatment of R&D (Barth et al. 2023). The cost of R&D cannot account for a doubling in 

the returns to R&D; the changes are modest and in the wrong direction. 

Nor can interest rates account for the doubling; interest rates fallen substantially. For 

instance, real 10-year Treasury yields have fallen from 6.9% in 1982 to 1.2% in 2018.13 The 

user cost of R&D should also reflect risk premiums, but there is little reason to expect that 

the risk of R&D has grown substantially. For instance, the volatility of stock market returns 

shows little change since the early 1980s.14 

What about rising “wedges” between R&D investment and marginal cost? One 

possibility is rising adjustment costs. However, Peters and Taylor (2017) show that the slope 

of intangible investments on Tobin’s q, measured by the ratio of firm value to the sum of 

physical and intangible capital, slightly (but statistically insignificantly) increased from the 

early periods (1975-1995) to late periods (1996-2011). This implies that the firm’s 

responsiveness to intangible investments in Tobin’s q did not decline and does not support a 

rise in adjustment costs. R&D is the largest component of Peters and Taylor’s measure of 

 

12 U.S. Bureau of Economic Analysis, "Table 5.6.4. Price Indexes for Private Fixed Investment in Intellectual 
Property Products by Type". 

13 Federal Reserve Bank of Cleveland, 10-Year Real Interest Rate [REAINTRATREARAT10Y], retrieved from 
FRED, Federal Reserve Bank of St. Louis 

14 Bloomberg, “Stock Price Volatility,” retrieved from The World Bank Group Global Financial Development 
Database. 
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intangible capital. Furthermore, rising adjustment costs would imply an increase in 

autocorrelation of R&D investments, but we find that the autocorrelation has declined from 

the first sample period (1977-1991) to the fourth (2008-2018). Hence, this alternative 

explanation is unlikely to be the case. 

Another possible wedge is rising monopsony power in the acquisition of R&D 

inputs, including personnel. A rising markdown would mean that marginal costs rose relative 

to observed prices paid for R&D inputs. The empirical literature on monopsony wages has 

used the concentration of occupational employment in geographic areas to measure 

monopsony (for a review see Card 2022). To explore monopsony power in R&D inputs, we 

constructed a Herfindahl-Hirschman index of the concentration of R&D expenditures 

within each state for each year and we averaged the state indices for each firm by the share 

of the firm’s R&D in each state. We then regressed the log of firm sales to R&D against this 

concentration index and the mean tax cost of R&D with firm fixed effects. We find that the 

concentration of R&D is not statistically significantly correlated with a lower R&D intensity 

(higher ratio of sales to R&D) at the 5% level. Moreover, the geographic concentration of 

R&D has declined over our analysis period. We also find that the elasticity of R&D relative 

to the tax price has risen, suggesting that monopsony markdowns have not increased. 

Thus, having ruled out plausible explanations for rising R&D returns based on rising 

R&D prices, interest rates, adjustment costs, and monopsony, the process of elimination 

leaves us with one candidate explanation: rising obsolescence rates. There is, in fact, good 

reason to expect rising obsolescence. The rising effectiveness of R&D at generating firm 

productivity might well involve greater effectiveness at competing with rivals. We explore 

this possibility next by measuring the relationship between rivals’ R&D and own-firm 

investment in R&D. 

Measuring Technological Rivalry 

Previous work finds rivals’ R&D is associated with substantially reduced firm R&D 

investment all else equal (Bessen and Wang 2024).15 While spillovers from other firms’ R&D 

 

15 Bessen and Wang used a different sample (observations that are linked to the LBD revenue data and without 
some industries in NAICS 51 and 54), with different firm size measures, and additional right hand side 
variables (firm age, number of industries, number of zip codes, and number of rivals’ patents of each firm). 
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(not necessarily rival firms) provide a benefit to firms, especially large firms, the evidence 

shows a substantial negative relation between rival firms’ R&D and focal firm’s R&D on 

average. Here we want to explore how this technological rivalry has changed over time. We 

begin estimating our basic R&D investment demand equation, (9), over four periods since 

1976. 

Table 5 shows these regressions for each of the four periods. The regressions are 

weighted by our rebased sample weights and standard errors are clustered by detailed 

industry. The dependent variable is the log of real domestic R&D spending. To proxy for 

the size of the customer base, we use the log of real net sales. For 2008 and after, we use 

worldwide net sales from BRDIS. For earlier years, however, SIRD does not consistently 

report worldwide sales, so we use domestic net sales interacted with a dummy variable 

indicating whether the firm has foreign R&D spending, an indicator of foreign activities.16  

The coefficients of rivals’ investment, shown in the first row, are negative, meaning 

that rival firms’ R&D in the last period is negatively associated with focal firms’ R&D; and 

the magnitude increases substantially over time.17 We also test for industry variation but find 

no statistically significant differences.18 

There are several possible concerns with this finding. One is that the estimates may 

be contaminated by the inclusion of the sales measure which is endogenous. To address this 

concern, Panel A of Table 6 shows the regression without the sales-related terms. The 

coefficients for rivals’ R&D still increase substantially over time although the last period 

shows a dip. In the Appendix Table A4, we also show the full regression, but we instrument 

the sales variable. To obtain predicted sales, we regress firm log sales on firm age and a firm 

fixed effect. Using this predicted sales variable, we again obtain significant coefficients on 

rivals’ R&D that increase substantially over time although they are a bit lower than the 

coefficients in Table 5. 

 

16 Bessen and Wang (2024) run similar regressions with different sales measures and find similar results. 

17 Note that the coefficient on the interaction between revenue and rivals’ R&D is positive. This means that the 
combined effect of rivals’ R&D, the net externality, is positive for some large firms (capturing spillovers). See 
Bessen & Wang (2024 p. 22). 

18 In the sample of broader industries, we test for heterogeneity across four industry groups (i.e., 
manufacturing, information and professional services, retail and wholesale, and others). The differences are not 
statistically significant at the 5% level. 
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Another concern is that rivals’ R&D might be correlated with third factors that affect 

firm R&D. One possibility is that both the focal firm and rival firms may respond to 

common shocks, tending to bias the coefficients upwards. Another concern is that rivals’ 

R&D might be correlated with other characteristics of rival firms that affect focal firm 

investment rather than the rivals’ R&D itself. For instance, a rival with a large market share 

might tend to invest more in R&D and that market share might also reduce the prospects of 

the focal firm, leading it to reduce R&D. In Table 6 we include a variety of other controls 

that relate to the relative market position of the focal firm: the focal firm’s market share 

(which is one minus rivals’ aggregate market share), the share of the firm’s business that is 

outside of manufacturing, the firm’s markup, and the firm’s mean R&D tax cost.19 The 

significant coefficients on these control variables suggest that market competition affects 

R&D investment. For example, larger market share (smaller rivals’ market share) is strongly 

associated with greater R&D. But these controls do not diminish the coefficients on rivals’ 

R&D, suggesting that rivals’ R&D independently affects focal firm R&D and is more than 

just a proxy for rivals’ market share, etc. We also tested specifications (not shown) with 

controls for a variety of IO competition concerns.20 All of these specification still showed a 

statistically significant increase in the (negative) coefficient on rivals’ R&D. Finally, we also 

instrumented rivals’ R&D by regressing log R&D of every firm against log R&D tax cost 

and a firm fixed effect, obtaining the prediction, and calculating the weighted sum as in the 

base measure of rivals’ R&D. Table A5 in the Appendix shows the base regression with the 

predicted values for both sales and rivals’ R&D. Again, the coefficients on rivals’ R&D are 

similar.21 

 

19 Firm market share is the output-weighted market share of the firm’s manufacturing establishments. Non-
manufacturing share is the share of the firm’s total employment outside of manufacturing. Markup is the 
output-weighted markup of the firm’s establishments calculated using the Raval method for intermediate 
inputs. R&D tax cost is R&D-weighted mean of the firm’s tax cost (state and Federal) from Barth et al. (Barth 
et al. 2023). 

20 These included a flag for market leader and the market share of the industry’s top four firms; flags for 
incumbent and entrant firms (< 5 year of age); flags for laggard and leader firms (below/above median TFP); 
and flags for neck & neck competition vs. “unlevelled” competition (below/above median industry markup; 
also below/above industry TFP dispersion). 

21 We conducted a number of other robustness checks that are not reported, including alternative sales 
measures, a sample selection correction using inverse propensity weights, excluding observations with imputed 
R&D, and an alternative R&D instrument that excluded rivals in the same state as the focal firm. Results were 
all similar. 
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The instrumental variable analysis further suggests that the association between 

rivals’ R&D and focal firm investment is plausibly causal. If so, what mechanism produces 

this effect? Our model suggests that rival R&D creates innovations that partially or fully 

replace focal firm innovations, making them obsolete. There are other possible channels, 

however. Perhaps rival R&D spills over and allows the focal firm to reduce R&D by copying 

rival innovations. If so, we would expect rivals’ patents to make a difference, but earlier work 

found that while rivals’ R&D strongly affects focal firm R&D, rivals’ patents do not (Bessen 

and Wang 2024). Also, studies find that external R&D does not diminish focal firm R&D 

(Bloom, Schankerman, and Van Reenen 2013) or might even increase it (W. M. Cohen and 

Levinthal 1989; 1990). Another mechanism might arise if rivals’ R&D increases the 

competition for R&D inputs, mainly scientists and engineers. However, as above, we do not 

see a rise in the wage premiums of these occupations. Perhaps these labor markets are 

monopsonistic, constraining wage effects. But the rivalry we are concerned about occurs 

nationally while labor market competition is substantially local. Moreover, above we found 

only weak monopsonistic effects. 

We conclude that the coefficients on rivals’ R&D are plausible measures of 

technological rivalry, they have been increasing over time, and they correspond to rising 

obsolescence.  

Estimating obsolescence rates 

Equation (10) provides a method to estimate a lower-bound obsolescence rate based 

on the regression used in Table 5. The estimate is a lower bound because it only includes 

obsolescence arising from rivals’ R&D; it does not include exogenous sources of 

obsolescence such as the growth of microbial resistance to antibiotics. The bottom panel of 

Table 4 shows estimates of these obsolescence rates with bootstrapped standard errors. 

These estimates can be compared loosely to R&D depreciation rates reported in the 

literature and to those used by statistical agencies. The BEA uses R&D depreciation rates 

ranging from 10 percent to 40 percent and software depreciation rates ranging from 33 

percent to 55 percent. Li and Hall (2020) estimate rates for different industries for the period 

1987-2007 from 6 percent to 73 percent. They also review estimates from the previous 

literature. Excluding outlier studies, the estimated R&D depreciation rates range from 11 to 
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41 percent.22 Huang and Diewert (2011) estimate rates for US manufacturing industries from 

1953-2000 ranging from 1 percent to 29 percent overall.23 Thus, our obsolescence rates are 

loosely similar to those in the recent literature. However, the importance of our estimates lies 

not in their levels, but in the finding that they have increased dramatically over the last 40 

years. 

The last column of Table 4 shows the change in returns and lower-bound 

obsolescence rates from the first period to the last. The increase in returns to R&D ranges 

from 10% to 32%; obsolescence rates increased 19%, putting it right in the middle. Thus, 

rising obsolescence, stemming from growing technological rivalry, provides a plausible 

explanation for the rise in the returns to R&D. Moreover, it means that while gross marginal 

returns to R&D have risen sharply, net marginal returns—gross returns minus 

obsolescence—may have remained stable. 

5. Conclusion 

Our evidence challenges the hypothesis that research productivity has substantially 

declined. Instead, we find that a marginal increase in R&D yields a considerably greater 

proportional increase in firm productivity than it did in the past. Moreover, the rise in the 

revenue elasticity with respect to R&D reflects a broader shift in the nature and direction of 

industrial research: gross marginal returns have increased sharply, R&D intensity has grown 

substantially, technological rivalry has intensified, and obsolescence rates have doubled. 

Of course, R&D may become less productive in narrow technical areas as they are 

“fished out”; e.g., the growth in number of transistors on a CPU chip slows as designs bump 

up against physical limits. But our evidence implies that firm generation of productive ideas 

has not slowed overall. Bloom et al. (2020) show ample evidence that their measure of 

research productivity—the ratio of productivity growth to real R&D—has declined. Yet this 

measure is drawn from growth models such as Romer (1990). Notably these models do not 

 

22 Including outliers, the estimates range from -11 percent to 100 percent. 

23 De Rassenfosse and Jaffe (2018) use surveys of Australian inventors with patented inventions to estimate 
that inventions lose value at 2-7 percent per year. However, invention depreciation rates are not directly 
comparable to R&D depreciation rates and their survey had low responses because they could not find 
addresses for most inventors. It seems likely that inventors of obsolete inventions might be far more likely to 
lack an address. 
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consider obsolescence or do not consider growing obsolescence. When obsolescence is 

rising, their measure does not reflect real research productivity (see Ando and Bessen 2025). 

Nevertheless, Bloom et al. highlight an important puzzle: while industrial research 

appears to have become more effective at generating returns for individual firms, aggregate 

productivity has grown little. While it seems that innovative “ideas” are not harder to find, it 

may be harder to translate them into aggregate productivity growth. Fort et al. (2025), 

looking at firm growth rates, make a similar point. One reason may be the changing nature 

of R&D. Rising obsolescence implies that more R&D is effectively directed to replacing 

existing products rather than to developing new ones; it also implies a shorter average life for 

innovations. As a result, while gross marginal returns to R&D have more than doubled, net 

marginal returns may not have. In a related paper, we explore the possible significance of 

rising obsolescence in a growth model; we argue that rising obsolescence can decrease 

aggregate productivity growth for a time even when research productivity has not declined 

(Ando and Bessen 2025). While the replacement of products by superior versions increases 

productivity at the micro level, an overall rise in the rate of replacement can have a 

significantly negative effect on the aggregate productivity growth rate.  
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Tables 

Table 1. Estimates of the Elasticity of TFP with respect to R&D 

 (1) (2) (3) (4) 

Period 1977-1991 1992-1999 2000-2007 2008-2018 

A. Dependent variable: Log TFP (Levinsohn-Petrin), OLS 

Log R&Dt-1 0.010*** 0.010*** 0.013*** 0.019*** 

 (0.001) (0.002) (0.002) (0.002) 

Adjusted R2 0.485 0.470 0.394 0.435 

Observations  260,000 138,000 123,000 162,000 

     

B. Dependent variable: Log TFP (Levinsohn-Petrin), IV 
Log R&Dt-1 

predicted 0.010*** 0.009*** 0.014*** 0.019*** 

 (0.001) (0.002) (0.002) (0.002) 

Adjusted R2 0.480 0.469 0.391 0.434 

     

C. Dependent variable: Log TFP (Levinsohn-Petrin), OLS 

Log R&D stock 0.009*** 0.009*** 0.014*** 0.018*** 

 (0.001) (0.002) (0.002) (0.002) 

Adjusted R2 0.484 0.467 0.429 0.487 

     

D. Dependent variable: Log TFP (Levinsohn-Petrin), OLS 

Log R&Dt-1 0.013*** 0.012*** 0.014*** 0.018*** 

 (0.002) (0.003) (0.003) (0.002) 
Log No. of 
establishments 

-0.009*** -0.007 -0.000 0.001 

 (0.003) (0.005) (0.005) (0.004) 

Adjusted R2 0.485 0.470 0.394 0.435 

     

E. Dependent variable: Calculated Log TFP, OLS 

Log R&Dt-1 0.007*** 0.009*** 0.009*** 0.012*** 

 (0.001) (0.002) (0.002) (0.002) 

Adjusted R2 0.610 0.630 0.450 0.509 
Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * p<0.10). 
All regressions have year and 6-digit NAICS fixed effects and use adjusted sample weights. The Levinsohn-
Petrin TFP estimates used separate regressions for each 3-digit NAICS industry. Panel E uses TFP calculations 
based on cost shares. The details of the instrumental variable regression are described in text. The R&D stock 
in Panel C is calculated using a 15% obsolescence rate. The number of observations in Panel A is rounded to 
protect confidentiality. Observation counts for other panels in the corresponding sample periods are similar 
and therefore omitted from the table. FSRDC Project Number 2735 (CBDRB-FY25-P2735-R12155). 
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Table 2. Elasticity with respect to R&D, Production Function Estimates, OLS 

 (1) (2) (3) (4) 
Dependent variable: Log Real Output 

Log labor 0.282*** 0.258*** 0.286*** 0.300*** 

 (0.003) (0.002) (0.002) (0.005) 
Log 
intermediates 0.593*** 0.609*** 0.598*** 0.564*** 

 (0.003) (0.002) (0.003) (0.005) 
Log Capital 0.110*** 0.116*** 0.101*** 0.082*** 

 (0.002) (0.002) (0.002) (0.005) 
1977-1991 x 
Log R&Dt-1 

0.009*** 0.000 0.001 0.001 

 (0.001) (0.001) (0.001) (0.001) 
1992-1999 x 
Log R&Dt-1 0.014*** 0.003 0.001 0.004*** 

 (0.002) (0.002) (0.002) (0.001) 
2000-2007 x 
Log R&Dt-1 0.016*** 0.007*** 0.007*** 0.005*** 

 (0.001) (0.002) (0.001) (0.001) 
2008-2018 x 
Log R&Dt-1 0.023*** 0.011*** 0.014*** 0.010*** 

 (0.001) (0.001) (0.001) (0.001) 
Adjusted R2 0.932 0.925 0.943 0.968 
Observations 672,000 672,000 672,000 672,000 

Fixed effects Industry, 
year Firm, year Industry x 

year, firm 
Establishment, 
year 

Note: Robust standard errors are shown in parentheses (*** p<0.01, ** p<0.05, * p<0.10). Regressions cover 
establishments from 1977 to 2018 and use adjusted sample weights. The number of observations is rounded to 
protect confidentiality. FSRDC Project Number 2735 (CBDRB-FY25-P2735-R12155). 
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Table 3. Heterogeneity of R&D Elasticity 

 (1) (2) (3) (4) (5) (6) 

Dependent variable: Log TFP (Levinsohn-Petrin), OLS 

Log R&Dt-1 0.011*** 0.009*** 0.006*** 0.008*** 0.009*** 0.010*** 
 (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

       

Log R&Dt-1       

     x young firm -0.004***      

 (0.001)      

     x small firm  -0.011***     

  (0.003)     

     x digital firm   0.007***    

   (0.002)    

     x market leader    0.010***   

    (0.001)   

     x foreign R&D     0.000  

     (0.001)  

     x exporter      0.000 
      (0.001) 

Adjusted R2 0.481 0.481 0.481 0.483 0.481 0.482 

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * p<0.10). 
All regressions have year and 6-digit NAICS fixed effects and use adjusted sample weights. The regressions 
cover 683,000 observations from 1977-2018 (the last column only 663,000). The number of observations is 
rounded to protect confidentiality. FSRDC Project Number 2735 (CBDRB-FY25-P2735-R12155). 
 
 
 

Table 4. Gross Returns to R&D 

Obsolescence rate 1976-1991 1992-1999 2000-2007 2008-2018 Change 

10% .064 .043 .151 .165 .101 

15% .088 .058 .216 .235 .147 

20% .112 .074 .287 .311 .199 

25% .136 .090 .364 .394 .258 

30% .160 .106 .447 .483 .323 

Addendum:      
Estimated 
obsolescence rate 

.123 .080 .239 .315 .192 

 (0.058) (0.028) (0.060) (0.075)  
Note: To estimate the returns to R&D, output elasticities are first calculated by running the regression shown 
in Table 1, Panel C, using R&D capital stocks constructed with the specified obsolescence rate. These 
elasticities are then multiplied by the ratio of firm output to R&D stock. The table reports geometric means for 
each period. The obsolescence rates are calculated as described in the text from the regressions in Table 5. The 
standard errors of obsolescence rates are bootstrapped and shown in the parentheses. FSRDC Project Number 
2735 (CBDRB-FY25-P2735-R12155). 
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Table 5. R&D Investment and Technological Rivalry  

Period 1977-1991 1992-1999 2000-2007 2008-2018 

 (1) (2) (3) (4) 

Dependent variable: Log R&D 

Asinh(rival R&Dt-1) -0.867* -0.750* -1.667*** -2.134*** 

 (0.461) (0.408) (0.629) (0.373) 

Log(revenue) x asinh(rival R&Dt-1) 0.059 0.0205 0.068 0.104*** 

 (0.041) (0.030) (0.045) (0.028) 

Foreign = 0 x log(revenue) 0.569*** 0.794*** 0.620***  

 (0.127) (0.076) (0.089)  

Foreign = 1 x log(revenue) 0.684*** 0.840*** 0.671***  

 (0.131) (0.074) (0.089)  

Log(revenue)    0.397*** 

 
   (0.054) 

Adjusted R2 0.677 0.763 0.716 0.575 

Observations 20500 13000 17500 27000 

     
Note: Standard errors are shown in parentheses and are clustered by 6-digit industry (*** p<0.01, ** p<0.05, * 
p<0.10). Regressions include fixed effects for 6-digit industry and year and use adjusted sample weights. Rivals’ 
investment is lagged investment of all other firms in the same 6-digit industry. The number of observations is 
rounded to protect confidentiality. FSRDC Project Number 2735 (CBDRB-FY24-P2735-R11743, CBDRB-
FY25-P2735-R12155). 
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Table 6. R&D Investment and Technological Rivalry, Additional regressions 

Period 1977-1991 1992-1999 2000-2007 2008-2018 

 (1) (2) (3) (4) 

A. Minimal controls; Dependent variable: Log R&D 

Asinh(rival R&Dt-1) -0.288* -1.486*** -2.156*** -1.884*** 

 (0.147) (0.178) (0.196) (0.183) 

Adjusted R2 0.338 0.461 0.339 0.207 

Observations 20500 13000 17500 35000 

     

B. Additional controls; Dependent variable: Log R&D 

Asinh(rival R&Dt-1) -1.419*** -1.024*** -1.145*** -2.430*** 

 (0.391) (0.257) (0.366) (0.375) 

Log(revenue) x asinh(rival R&Dt-1) 0.100*** 0.041** 0.04 0.147*** 

 (0.031) (0.018) (0.026) (0.026) 

Foreign = 0 x log(revenue) 0.491*** 0.664*** 0.627***  

 (0.117) (0.051) (0.059)  

Foreign = 1 x log(revenue) 0.550*** 0.706*** 0.666***  

 (0.117) (0.050) (0.059)  

Log(revenue)    0.166*** 

    (0.052) 

Firm market share 6.599*** 3.530*** 2.940*** 7.478*** 

 (1.116) (0.687) (0.596) (0.895) 

Non-manufacturing share 0.991*** 0.820*** 1.098*** 1.647*** 

 (0.279) (0.251) (0.203) (0.197) 

Markup 0.025 0.195*** 0.130** 0.225*** 

 (0.111) (0.069) (0.059) (0.047) 

R&D tax cost 0.749 -2.118*** -1.476** -1.548** 

 (1.325) (0.771) (0.571) (0.677) 

Adjusted R2 0.742 0.745 0.741 0.612 

Observations 17000 11000 14000 20000 

     
Note: Standard errors are shown in parentheses and are clustered by 6-digit industry (*** p<0.01, ** p<0.05, * 
p<0.10). Regressions include fixed effects for 6-digit industry and year and use adjusted sample weights. Rivals’ 
investment is lagged investment of all other firms in the same 6-digit industry. Firm market share is the output-
weighted market share of the firm’s establishments. Non-manufacturing share is the share of the firm’s total 
employment outside of manufacturing. Markup is the output-weighted markup of the firm’s establishments 
calculated using the Raval method for intermediate inputs. The number of observations is rounded to protect 
confidentiality. FSRDC Project Number 2735 (CBDRB-FY25-P2735-R12155). 

 
  



 

 30 

 

Figures 

Figure 1. Innovation investment relative to value-added  

Source: BEA; TFP growth estimates from BLS [rndgro3] 
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Appendix 

Model 

Elasticity regression with flow vs. stock 

Under some general assumptions, estimates of R&D output elasticity based on the 
(lagged) current flow of R&D should equal estimates based on R&D capital stocks (see Hall, 
Mairesse, and Mohnen 2010, 1048). Assume that the R&D stock follows the perpetual 
inventory law of motion,  

𝐾𝑡 = 𝐼𝑡−1 + (1 − 𝑑)𝐾𝑡−1, 
where 𝐼𝑡 is current R&D spending. Also assume that 𝐼𝑡 grows at constant rate 𝑔—R&D 

grow rates tend to be highly persistent—so that 𝐼𝑡−1 = 𝐼𝑡/(1 + 𝑔). Then  

𝐾𝑡 = ∑(1 − 𝑑)𝜏−1𝐼𝑡−𝜏

∞

𝜏=1

= ∑
(1 − 𝑑)𝜏−1

(1 + 𝑔)𝜏
𝐼𝑡−1

∞

𝜏=1

=
𝐼𝑡−1

𝑔 + 𝑑
 

and equation (1) becomes 

ln 𝑅 = 𝛽 ln 𝐾 + ⋯ = 𝛽 ln 𝐼𝑡−1 − 𝛽 ln(𝑔 + 𝑑) … 
where the second term is absorbed into establishment or firm or industry fixed effects. The 

coefficient on ln 𝐼 is the same as on ln 𝐾. We find that our elasticity estimates are robust to 
different obsolescence rates and the use of current R&D. 

Obsolescence and firm size 

To consider how firm size affects R&D incentives, we rewrite the Bellman equation 
as 

𝑉(𝐾𝑡) = max
𝐾𝑡+1

[Π(𝐾𝑡) − 𝑝𝐾(𝐾𝑡+1 − (1 − 𝛿(𝐾𝑡))𝐾𝑡) +
1

1 + 𝑟
𝑉(𝐾𝑡+1)]  

so that the first order condition becomes 

𝑝𝐾 =
1

1 + 𝑟
𝑉′(𝐾𝑡+1) =

1

1 + 𝑟
[Π′(𝐾𝑡+1) − 𝑝𝐾 (1 − 𝛿 −

𝑑𝛿

𝑑𝐾
𝐾𝑡+1)] 

or 

𝑝𝐾 (𝑟 + 𝛿 +
𝑑𝛿

𝑑𝐾
𝐾) =  𝛽

𝑅𝑖

𝐾𝑖
. 

Taking the derivative of (8), 
𝑑𝛿

𝑑𝐾
= −𝛽𝛾 ln 𝑆

𝑟 + 𝛿

𝐾
. 

We assume that 𝛽𝛾 ln 𝑆 ≪ 1 so that ln(1 + 𝛽𝛾 ln 𝑆) ≈ 𝛽𝛾 ln 𝑆. Using this, and following 
the derivation in the text, R&D demand becomes 

ln 𝐼𝑖𝑡 = ln 𝑅𝑖𝑡 + (𝛽𝛾 − 𝜇) ∙ asinh 𝑆𝑖𝑡−1 + 𝛾 ∙ asinh 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡 − ln 𝑝𝐾 + 𝐹𝐸 + 𝜖. 
This is the same form as equation (9) in the text, but now 𝛾𝑆 =  𝛽𝛾 − 𝜇 instead of 

just −𝜇. This means 𝛾𝑆 understates the direct impact of rivalry on R&D investment, 
however, our coefficient estimates from both the R&D elasticity regressions and regressions 

of (9) find 𝛽𝛾 ≪ 𝜇, so this is a secondary effect. 
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Regression Bias from Construction of Rivalry Measure 

In the investment demand equation (9), the dependent variable, ln 𝐼𝑖𝑡, is implicitly 

related to the rivalry measure and that can cause a bias in the coefficient estimate for 𝑆𝑖𝑡. We 
can see this by “partialing out” these variables, that is, using the residuals of these two 
variables after regressing them on other independent variables, including fixed effects and 
the constant term.  Then the basic regression can be written in simplified form as 

ln 𝐼𝑖𝑡 = 𝛽𝑆𝑖𝑡 + 𝜖𝑖𝑡 ,      𝑆𝑖𝑡 = ln(𝑇𝑡−1 − 𝐼𝑖𝑡−1) , 𝑇𝑡 = ∑ 𝐼𝑗𝑡

𝑗

(𝐴1) 

where 𝐼𝑖𝑡 is the real R&D made by firm i at time t in a given industry, 𝑇𝑡−1 is the sum of 

these investments over all firms in that industry at time t-1, and  𝑆𝑖𝑡 is our rivalry measure.  

 There is a potential estimation problem because the construction of 𝑆𝑖𝑡 involves 

𝐼𝑖𝑡−1 which likely covaries with the dependent variable. We can see this by looking at the 
OLS estimator, 

𝛽̂ =
𝑐𝑜𝑣(log 𝐼𝑖𝑡 , 𝑆𝑖𝑡)

𝑣𝑎𝑟(𝑆𝑖𝑡)
. (𝐴2) 

To see the bias, it is helpful to decompose the error term in (A1) into two parts, 

𝜖𝑖𝑡 = 𝜙𝑖 + 𝜃𝑖𝑡 (𝐴3) 

where although 𝐸[𝜖𝑖𝑡] = 0, possibly  

 𝑐𝑜𝑣(𝜃𝑖𝑡 , 𝜃𝑗𝑡), 𝑐𝑜𝑣(𝜃𝑖𝑡 , 𝜃𝑖𝑡−1) ≠ 0. 
Plugging (A1) and (A3) into (A2), the OLS estimate is 

𝛽̂ =
𝑐𝑜𝑣(𝛽𝑆𝑖𝑡 , 𝑆𝑖𝑡) + 𝑐𝑜𝑣(𝜙𝑖 , 𝑆𝑖𝑡) + 𝑐𝑜𝑣(𝜃𝑖𝑡 , 𝑆𝑖𝑡)

𝑣𝑎𝑟(𝑆𝑖𝑡)
= 𝛽 + 𝐵, 

𝐵 ≡
𝑐𝑜𝑣(𝜙𝑖 , 𝑆𝑖𝑡)

𝑣𝑎𝑟(𝑆𝑖𝑡)
+

𝑐𝑜𝑣(𝜃𝑖𝑡 , 𝑆𝑖𝑡)

𝑣𝑎𝑟(𝑆𝑖𝑡)
. (𝐴4) 

B is thus the bias. We expect that the first term in the bias is negative, and the second 
term is positive. Decomposing the first term, we can see that it is negative: 

𝑐𝑜𝑣(𝜙𝑖 , 𝑆𝑖𝑡) = 𝑐𝑜𝑣 (𝜙𝑖 , log 𝑇𝑡−1 + log (1 −
𝐼𝑖𝑡−1

𝑇𝑡−1
)) ≈ −𝑐𝑜𝑣 (𝜙𝑖 ,

𝐼𝑖𝑡−1

𝑇𝑖𝑡−1
) < 0 (𝐴5) 

since 𝑐𝑜𝑣(𝜙𝑖 , log 𝑇𝑡−1) = 0 and log(1 + 𝑥) ≈ 𝑥 for small x. The second term in the 

numerator, 𝑐𝑜𝑣(𝜃𝑖𝑡 , 𝑆𝑖𝑡), is likely greater than zero because firms within an industry 
experience common shocks in R&D demand (shocks to business conditions, technological 
opportunities) that are serially correlated. Hence the net bias could be either positive or 
negative. Note that this bias only affects the investment demand equation and does not 
come into play in the regressions on whether firms choose to invest or not. 

Fortunately, we can estimate the magnitude of this bias by proxying 𝜙𝑖 with the 

sample mean of log 𝐼𝑖𝑡 for each firm, log 𝐼𝑖
̅̅ ̅̅ ̅̅ =

1

𝑇
∑ log 𝐼𝑖𝑡𝑡 . We can show that24 

 

24 From (A1) and (A3), log 𝐼𝑖𝑡 = 𝛽𝑆𝑖𝑡 + 𝜙𝑖 + 𝜃𝑖𝑡 so that log 𝐼𝑖
̅̅ ̅̅ ̅̅ = 𝛽𝑆𝑖̅ + 𝜙𝑖  since 𝐸[𝜃𝑖𝑡] = 0. Further, 

following the analysis in (A5), 𝑆𝑖̅ ≈ log 𝑇𝑖
̅̅ ̅̅ ̅̅ ̅ − (

𝐼𝑖

𝑇𝑖
)

̅̅ ̅̅ ̅
 Note also that 𝑐𝑜𝑣 ((

𝐼𝑖

𝑇𝑖
)

̅̅ ̅̅ ̅
,

𝐼𝑖𝑡−1

𝑇𝑖𝑡−1
) = 𝑣𝑎𝑟 (

𝐼𝑖

𝑇𝑖
)

̅̅ ̅̅ ̅
 so that 

𝑐𝑜𝑣 (log 𝐼̅̅ ̅̅ ̅̅ ,
𝐼𝑖𝑡−1

𝑇𝑖𝑡−1
) ≈ 𝑐𝑜𝑣 (𝜙𝑖 ,

𝐼𝑖𝑡−1

𝑇𝑖𝑡−1
) − 𝛽𝑣𝑎𝑟 (

𝐼𝑖

𝑇𝑖
)

̅̅ ̅̅ ̅
.  
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𝑐𝑜𝑣(𝜙𝑖 , 𝑆𝑖𝑡)

𝑣𝑎𝑟(𝑆𝑖𝑡)
≈ −

𝑐𝑜𝑣 (log 𝐼𝑖
̅̅ ̅̅ ̅̅ ,

𝐼𝑖𝑡−1
𝑇𝑖𝑡−1

)

𝑣𝑎𝑟(𝑆𝑖𝑡)
+ 𝛽

𝑣𝑎𝑟 (
𝐼𝑖
𝑇𝑖

)
̅̅ ̅̅ ̅

𝑣𝑎𝑟(𝑆𝑖𝑡)
. (𝐴6)

 

We estimate the first term on the right and find it is small relative to the coefficient 

estimates for both R&D (see Table). We also estimate 𝑣𝑎𝑟 (
𝐼𝑖

𝑇𝑖
)

̅̅ ̅̅ ̅
𝑣𝑎𝑟(𝑆𝑖𝑡)⁄  and find that it, 

too, is small but positive, reducing the net negative bias further. Relative to the estimates of 

𝛽̂ from Table 5, the negative bias in (A4) is less than 10% except for the first period. 

Moreover, it is offset by the positive bias term, 𝑐𝑜𝑣(𝜃𝑖𝑡 , 𝑆𝑖𝑡). Hence, we do not think that 
the net bias substantially affects our results, so we ignore it in the main paper. 

 
Table. Bias estimates 

 
−

𝑐𝑜𝑣 (log 𝐼𝑖
̅̅ ̅̅ ̅̅ ,

𝐼𝑖𝑡−1
𝑇𝑖𝑡−1

)

𝑣𝑎𝑟(𝑆𝑖𝑡)
 

𝑣𝑎𝑟 (
𝐼𝑖
𝑇𝑖

)
̅̅ ̅̅ ̅

𝑣𝑎𝑟(𝑆𝑖𝑡)
 

1977-1991 -.22 .065 

1992-1999 -.07 .054 

2000-2007 -.104 .079 

2008-2018 -.135 .072 
Note: These estimates are calculated on the samples for Table 5. FSRDC Project Number 2735 

(CBDRB-FY25-P2735-R12155). 
 
 

Profit function 

The knowledge production function can be written  

𝑅 = 𝐴𝑋𝛼𝐾𝛽. 
Maximizing with respect to the input factor given input price 𝑝𝑋, 

𝑋̂ =
𝛼𝑅

𝑝𝑋
. 

Substituting 𝑋̂ into the knowledge production function and rearranging, 

𝑅̂(𝐾) = 𝐴
1

1−𝛼⁄ (
𝛼

𝑝𝑋
)

𝛼
1−𝛼⁄

𝐾
𝛽

1−𝛼⁄ . 

Also 

Π = 𝑅̂ − 𝑝𝑋𝑋̂ = (1 − 𝛼)𝑅̂ 
from which it follows that  

𝛱(𝐾) = (1 − α)𝑅̂(𝐾),      𝛱′(𝐾) = 𝛽
𝑅̂(𝐾)

𝐾
. (𝐴7) 

We can obtain a similar expression from the Grossman/Helpman model. Here, let 

𝑛(1 − 1 𝜆⁄ ) = 𝐾𝛽. 

We have 

𝑅 = 𝑛𝐸,    𝜋 =  𝑛(1 − 1 𝜆⁄ )𝐸 

so that 
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𝜕𝜋

𝜕𝐾
=

𝛽𝜋

𝐾
= 𝛽

𝑅

𝐾
(1 − 1 𝜆⁄ ). (𝐴8) 

In the empirical implementation, we use version (A7) because we estimate 𝛽 from the 

knowledge production function. Implementation using equation (A8) would simply sweep 

(1 − 1 𝜆⁄ ) into the fixed effects. 
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Supplementary Tables 

Table A1. Levinsohn-Petrin Production Function Estimates 

Labor 0.2428 

Capital 0.1836 

Intermediate inputs 0.5126 
Note: A Stata command prodest is used to estimate a production function, log(q) = coeff_labor x log(labor) + 
coeff_capital x log(capital) + coeff_intermediate x log(intermediate) + error term, separately for each 3-digit 
NAICS industry. Here, the average of all 3-digit industries in the manufacturing sector is reported. FSRDC 
Project Number 2735 (CBDRB-FY25-P2735-R12155). 
 

 
Table A2. First Stage Regression for R&D Instrument 

 Log R&D 

Log theta -1.404*** 

 (0.174) 

Adjusted R2 0.971 

Observations 196,000 

Fixed Effects Year, firm 

F Test 65.04 

Period 1977-2017 

  

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * p<0.10). 
The variable theta indicates the tax price of R&D, computed as one minus the effective rate of R&D tax credit. 
The number of observations is rounded to protect confidentiality. Regression uses adjusted sample weights. 
FSRDC Project Number 2735 (CBDRB-FY25-P2735-R12155). 
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Table A3. Elasticity with respect to R&D from Compustat Panel 

Dependent variable: Log Real Sales 

Log labor 0.302*** 0.132*** 

 (0.010) (0.008) 
Log intermediates 0.347*** 0.551*** 

 (0.009) (0.012) 
Log Capital 0.291*** 0.193*** 

 (0.016) (0.016) 

1977-1991 x Log R&Dt-1 
0.025*** 0.070*** 

 (0.003) (0.006) 

1992-1999 x Log R&Dt-1 0.050*** 0.086*** 

 (0.003) (0.006) 

2000-2007 x Log R&Dt-1 0.069*** 0.092*** 

 (0.004) (0.006) 

2008-2018 x Log R&Dt-1 0.074*** 0.089*** 

 (0.004) (0.006) 
Adjusted R2 0.981 0.994 
Observations 8727 8727 

Fixed effects -- Firm, year 
   

Note: Robust standard errors are shown in parentheses (*** p<0.01, ** p<0.05, * p<0.10). Panel from 1976 to 
2018 of firms that reported in both the first and last years of the panel. Intermediates are calculated as xopr - 
dp – xstf; if personnel costs are not reported, we impute them from industry compensation; if operating 
expense is not reported, we use cogs + xsga. 
 
 
 
Table A4. R&D Investment with Instrument for Log Sales 

Period 1977-1991 1992-1999 2000-2007 2008-2018 

 (1) (2) (3) (4) 

Dependent variable: Log R&D 

Asinh(rival R&Dt-1) -0.258 -0.641** -1.067*** -1.283*** 

 (0.474) (0.257) (0.369) (0.298) 
Log(pred. revenue) x asinh(rival 
R&Dt-1) 

-0.007 0.009 0.025 0.052** 

 (0.048) (0.019) (0.027) (0.023) 

Log(pred. revenue) 0.805*** 0.851*** 0.762*** 0.614*** 

 (0.149) (0.043) (0.051) (0.042) 

Adjusted R2 0.646 0.737 0.705 0.624 

Observations 25000 19500 28500 48500 

     
Note: Standard errors are shown in parentheses and are clustered by 6-digit industry (*** p<0.01, ** p<0.05, * 
p<0.10). Regressions include fixed effects for 6-digit industry and year and use adjusted sample weights. Rivals’ 
investment is lagged investment of all other firms in the same 6-digit industry. Predicted revenue is obtained 
from a regression of log revenue on year and a firm fixed effect. The number of observations is rounded to 
protect confidentiality. FSRDC Project Number 2735 (CBDRB-FY25-P2735-R12155). 
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Table A5. R&D Investment with Instruments for Log Sales and for Rivals’ R&D 

Period 2000-2007 2008-2018 

 (1) (2) 

Asinh(pred. rival R&Dt-1) -0.910*** -1.325*** 

 (0.256) (0.271) 
Log(pred. revenue)  
x asinh(pred. rival R&Dt-1) 0.0239 0.0600*** 

 (0.0181) (0.0200) 

Log(pred. revenue) 0.763*** 0.587*** 

 (0.0380) (0.0426) 

Adjusted R2 0.726 0.651 

Observations 25000 41500 

   
Note: Standard errors are shown in parentheses and are clustered by 6-digit industry (*** p<0.01, ** p<0.05, * 
p<0.10). Regressions include fixed effects for 6-digit industry and year and use adjusted sample weights. Rivals’ 
investment is lagged investment of all other firms in the same 6-digit industry. Predicted revenue is obtained 
from a regression of log revenue on firm age, year, and a firm fixed effect. Predicted rivals’ R&D is obtained by 
regressing log R&D against log R&D tax cost and a firm fixed effect, obtaining the prediction, and calculating 
the weighted sum as in the base measure of rivals’ R&D. Here, state-level R&D tax price data are used and are 
not available for all years prior to 2000. The number of observations is rounded to protect confidentiality. 
FSRDC Project Number 2735 (CBDRB-FY25-P2735-R12155). 
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