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Abstract

This study provides empirical evidence documenting how COVID-19 affects in-

tertemporal pricing and price dispersion in the U.S. domestic airline market. Studying a

unique panel of 43 million fares collected before and after the outbreak of the pandemic,

we find that airlines discounted fares by an average of 57% in the first five months of

the pandemic relative to the five months that immediately preceded the pandemic. We

also find that flight-level prices increased at a lower rate, particularly in the last week to

departure. As a consequence, flight-level price dispersion decreased. These findings are

consistent with the theoretical predictions arising from models of stochastic peak-load

pricing and intertemporal price discrimination.
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1 Introduction

This paper studies the pricing of airline tickets during the COVID-19 pandemic and finds

patterns that are consistent with the theoretical predictions arising from models of intertem-

poral price discrimination and stochastic peak-load pricing. Intertemporal price discrimi-

nation refers to the practice of charging different prices during the booking period, and in

particular, higher prices to inelastic late-booking passengers (typically business travelers).

Due to the drastic decline in the demand for business travel during the pandemic, the mix of

traveling passengers was more homogeneous and comprised of a larger proportion of leisure

travelers.1 Given the reduction in the share of business travel, the rate of intertemporal price

increases in the last few weeks to departure is expected to be lower during the pandemic,

resulting in a decrease in price dispersion.

This theoretical prediction also arises in models of stochastic peak-load pricing. In these

models, the optimal peak-load price reflects marginal operating costs plus a charge based

on the probability that demand will exceed capacity at the time the ticket is sold and the

expected shadow cost of capacity if demands ends up exceeding capacity (Borenstein and

Rose, 1994; Crew and Kleindorfer, 1986). Given that business travel demand drastically

declined during the pandemic, demand was unlikely to exceed capacity during the late part

of the booking period, implying that the shadow cost of capacity fell. These lower shadow

costs are expected to translate to lower fares, lower increases in fares, and thus, lower price

dispersion.

To determine how COVID-19 affects both intertemporal price discrimination and price

dispersion, we exploit a unique panel of over 43 million fares. Flights in our sample depart

1U.S. companies’ travel budgets declined by 90% or more in 2020. See https://time.com/6108331

/business-travel-decline-covid-19/ and https://www2.deloitte.com/us/en/insights/foc

us/transportation/future-of-business-travel-post-covid.html. Reports by the International
Air Transport Association and the World Travel & Tourism Council further confirm that business travel
was more significantly impacted than leisure travel due to increased workforce flexibility, swift adjustments
to corporate travel policies, and limited air connectivity (de Juniac, 2020; WTTC, 2021). “Globally, leisure
spending decreased by 49 percent, and business spending decreased by 61 percent from 2019 to 2020” (WTTC,
2021).
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between October 1st, 2019 and August 31st, 2020, providing us with over five months of data

prior to COVID-19 being declared a national emergency in the United States (U.S.) and

over five months of data during the national emergency.2 Because we track the price of each

flight in the sixty-day period before departure, we are able to examine how new COVID-19

case counts at the origin and destination markets in addition to changes in stay-at-home

orders and quarantine policies during a flight’s booking period affect both prices and price

dispersion.3

We have five main findings. Foremost, as COVID-19 spread across the country, airlines

responded by discounting fares by an average of 57% in the first five months of the pandemic

relative to the five months that immediately preceded the pandemic.4 Second, although

fares exhibit the typical pattern of increasing as the departure date approaches, the rate of

intertemporal price hikes declined during the pandemic, especially in the last week to depar-

ture. Third, we find that an increase in new COVID-19 cases at the destination decreases

fares. Fourth, we find that mandates requiring travelers to quarantine upon arrival decreases

fares by an average of 7.2%. Fifth, we find that flight-level price dispersion decreased during

the pandemic. As previously discussed, these findings are consistent with the theoretical

predictions arising from models of intertemporal price discrimination (i.e., the decline in the

share of business travel resulted in airlines adjusting their intertemporal pricing strategy

by decreasing the rate at which fares increased for late-booking passengers) and stochastic

peak-load pricing (i.e., the sharp decline in travel demand during the pandemic decreased

2COVID-19 was declared a national emergency in the U.S. on March 13th, 2020. The first state to issue
a statewide stay-at-home order was California on March 19th, 2020.

3The closest recent paper to ours is Morlotti and Redondi (2023), who find that fares for European flights
to and from Italy decreased by 31% per kilometer as a result of the COVID-19 pandemic. In contrast to
Morlotti and Redondi (2023), we analyze a larger market and our richer dataset allows us to examine how
stay-at-home orders, quarantine mandates, and COVID-19 infection rates at the origin and destination affect
price levels and price dispersion. We also link our findings to the theoretical predictions arising from models
of stochastic peak-load pricing and intertemporal price discrimination.

4Consistent with this finding, the Bureau of Transportation Statistics (BTS) recorded the lowest inflation-
adjusted annual fare of $292 in 2020, down 19% from the previous low of $359 in 2019. See Release Number:
BTS 27-21, available at https://www.bts.gov/newsroom/average-air-fares-dropped-all-time-low-2
020.
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the shadow cost of capacity, resulting in lower fares and lower increases in fares).

Although we find that pandemic fare decreases are driven primarily by the diffusion of

COVID-19, an increase in new cases at the destination decreases fares while new cases at the

origin has no statistically measurable effect. We believe these findings are reasonable. Since

shutdowns and other pandemic restrictions are highly correlated with the local number of

COVID-19 cases, travelers leaving home will only care about restrictions that are in effect

at the destination because restrictions at the origin likely do not affect the utility of their

trip. For example, most leisure travelers do not want to travel to markets where restaurants,

bars, museums, and other attractions are closed due to local pandemic restrictions and most

business travelers do not want to travel to markets where in-person meetings are not possible

due to office closures. Accordingly, if the number of new COVID-19 cases at the destination

are high, fares must be heavily discounted to entice prospective passengers to purchase when

the likelihood of new pandemic restrictions being introduced at the destination increases.

The rest of this article is organized as follows. The remainder of Section 1 summarizes

previous literature and how this paper relates to them. Section 2 describes the data sources

used in the empirical analysis. Section 3 presents a descriptive analysis of the dynamics of

airline pricing during the booking period. Section 4 describes the econometric model used to

examine intertemporal pricing and presents intertemporal pricing results. Section 5 describes

the econometric model used to examine price dispersion and presents price dispersion results.

Section 6 presents robustness checks. Finally, Section 7 provides concluding remarks.

1.1 Related Literature

It is well-documented that deviations from the law of one price occur in a variety of retail

markets. Instead of charging a single price for the same product, a distribution of prices

often exists in the airline, automobile, book, gasoline, grocery, housing, insurance, mortgage,
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prescription drug, and wine markets.5 A considerable empirical and theoretical literature has

developed to better understand the principal determinants of this observed price dispersion.6

We add to this literature by examining how intertemporal price dispersion is affected by the

global economic slowdown caused by the COVID-19 pandemic.

The focus of our study is the U.S. airline industry and how price dispersion is correlated

with prevailing macroeconomic conditions.7 Previous research has shown that airline price

dispersion tends to move pro-cyclically with the business cycle—increasing during expan-

sionary phases and decreasing during recessionary phases (Cornia et al., 2012). This finding

suggests that the economic downturn caused by the COVID-19 pandemic is likely to result

in a reduction in price dispersion. The COVID-19 recession, however, was characterized

by several unprecedented features that differentiate it from prior recessions, such that the

generalizability of earlier findings are debatable.

The exogenous shock that caused the COVID-19 recession was unusually broad and mul-

tifaceted, with stay-at-home orders and quarantine mandates disrupting a wide range of

industries. Another unique feature was the extraordinary airline responses. In addition to

adjusting capacity and flight schedules, most U.S. airlines temporarily waived cancellation

and change fees—an important component of product differentiation.8

Although these unique features bring into question the applicability of previous research,

we demonstrate in the sections that follow that the standard predictions from models of

stochastic peak-load pricing and intertemporal price discrimination do an excellent job of

5See Allen et al. (2014); Borenstein and Rose (1994); Cardebat et al. (2017); Chandra and Tappata (2011);
Clay et al. (2001); Dahlby and West (1986); Gerardi and Shapiro (2009); Goldberg and Verboven (2001);
Lewis (2008); Li et al. (2013); MacDonald (2000); Sorensen (2000); Van Nieuwerburgh and Weill (2010).

6See Barron et al. (2004); Burdett and Judd (1983); Dana (1999, 2001); Kaplan et al. (2019); McAfee
(1995); Pennerstorfer et al. (2020); Reinganum (1979); Salop (1977); Salop and Stiglitz (1977, 1982); Shepard
(1991).

7Other studies that examine airline price dispersion include Aryal et al. (2023); Borenstein and Rose
(1994); Dai et al. (2014); Dana (1999); Kim et al. (2021); Gaggero and Piga (2011); Gerardi and Shapiro
(2009); Hayes and Ross (1998); Mantin and Koo (2009); Orlov (2011); Sengupta and Wiggins (2014).

8The increase in flexibility afforded to passengers purchasing tickets during the pandemic made the quality
of airline tickets more homogeneous and, because of refundability, higher relative to airline tickets issued prior
to the pandemic (Escobari and Jindapon, 2014).
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explaining the pricing patterns that were observed in the U.S. airline industry during the

first five months of the pandemic.

2 Data

2.1 Fare and Itinerary Data

Fare and itinerary data are obtained from a major online travel agency (OTA).9 In lieu of

collecting data for all possible domestic routes, data from the Department of Transportation’s

Airline Origin and Destination Survey (DB1B) from the third and fourth quarters of 2018

were first used to identify the top directional airport-pair markets within the continental U.S.

ranked by total passenger traffic.10 148 of these top directional airport-pairs were selected for

analysis and include a mix of competitive, monopoly, duopoly, and connecting only markets.

Figure 1 displays a map of these 148 markets.

To construct the analysis sample, data were collected for flights departing between Oc-

tober 1st, 2019 and August 31st, 2020. Daily economy-class fare quotes were collected for

one-way travel between each of the directional airport-pairs in Figure 1.11 For each route,

fares for each of the next sixty travel days were collected to capture leisure travelers who

purchase well in advance of the departure date and business travelers who purchase closer to

the date of departure. This strategy allows us to track the price of an individual flight (or

pair of flights for connecting trips) over the sixty-day period prior to departure.

Our sampling procedure resulted in a unique sample of 43,160,581 observations. Roughly

35% of the observations are for connecting trips. The airlines included in our sample include

four full-service carriers (Alaska, American, Delta, and United) and five low-cost carriers

9Major OTAs include Expedia, Google Flights, and Kayak. Previous studies that rely on OTA data
include Escobari (2009), Gaggero and Luttmann (2023), and Luttmann (2019), among others.

10Given this directional definition, Los Angeles (LAX)-Chicago (ORD) and Chicago (ORD)-Los Angeles
(LAX) are treated as separate markets.

11We focus on one-way trips due to difficulties in specifying trip duration (Alderighi et al., 2022; Bilotkach
et al., 2010; Escobari et al., 2019; Luttmann and Gaggero, 2024; Luttmann, 2019). Due to our focus on
economy-class tickets, we do not study product differentiation across fare classes.
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Figure 1: U.S. domestic routes included in our analysis sample
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(Allegiant, Frontier, JetBlue, Spirit, and Sun Country).12

2.2 COVID-19 Cases, Stay-at-Home-Orders, and Quarantine Poli-

cies

From the National Center for Health Statistics (NCHS), we downloaded the daily number of

new COVID-19 cases for each state in the continental U.S.13 These daily numbers were then

used to construct seven-day moving average new COVID-19 case counts for each origin and

destination market in Figure 1.

Information on the timing and duration of stay-at-home orders and interstate travel re-

12Fare quotes for Southwest were not available on travel aggregator websites such as Google Flights at the
time of our data collection. Southwest is accounted for in our empirical analysis when we construct market
structure variables such as the Herfindahl-Hirschman Index.

13See https://covid.cdc.gov/covid-data-tracker/. Navigate to “Cases & Death” to select “Cases &
Death by States” and then click on “View Historic Case and Death Data” to download the data.
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strictions (i.e., quarantine mandates) were gathered from publicly available sources such as

Ballotpedia, CNN, NBC News, and state government websites in addition to select peer-

reviewed studies (e.g., Bergquist et al., 2020; Jacobsen and Jacobsen, 2020; Studdert et al.,

2020).14

2.3 Market Structure Variables

The daily number of nonstop flights for each airline and route in Figure 1 were obtained from

the Department of Transportation’s Airline On-Time Performance database. These numbers

were then used to construct airline market shares and the Herfindahl-Hirschman Index.

3 Descriptive Analysis

3.1 COVID-19 and Airfares

To provide preliminary evidence on the impact of COVID-19 on fares, Figure 2 displays

the average fare per mile for nonstop flights across each booking date in our sample (NOT

each departure date). The booking date is the date the fare is observed and includes flights

departing in the next few days as well as flights departing up to sixty days in the future. The

proportion of flights departing in the next few days and the proportion of flights departing

in the next sixty days are approximately equal across booking dates, implying that pricing

dynamics in Figure 2 are displayed over a time horizon of similar average length.

To relate the pricing decision of airlines to the diffusion of COVID-19, we calculated

the average number of new COVID-19 cases across each state and booking date in our

sample. Then, to smooth any reporting differences, we computed the seven-day moving

14See https://edition.cnn.com/interactive/2020/us/states-reopen-coronavirus-trnd/; https:
//www.nbcnews.com/health/health-news/here-are-stay-home-orders-across-country-n1168736;
https://ballotpedia.org/Travel_restrictions_issued_by_states_in_response_to_the_coronavi

rus_(COVID-19)_pandemic,_2020-2022.
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Figure 2: Average nonstop fare per mile and average new COVID-19 cases by booking date
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average number of new cases.15 This moving average is displayed on the secondary Y-axis.

As demonstrated by Figure 2, there is clear evidence of an inverse relationship between

the number of new COVID-19 cases and the average nonstop fare. In early March 2020,

fares fell substantially as the pandemic began to spread in the United States.16 Then, as

the number of new COVID-19 cases declined between May and June 2020, average fares

increased.

To further illustrate how the intertemporal behavior of fares evolved prior to and during

the pandemic, Figure 3 displays the average nonstop fare per mile by number of days to

departure for full-service carriers (FSCs) in Panel A and low-cost carriers (LCCs) in Panel

B. Flights are grouped by month of departure to demonstrate the impact of COVID-19 on

15The pattern of the seven-day moving average in our sample is similar to what is observed over the entire
United States. See https://covid.cdc.gov/covid-data-tracker/#trends_dailytrendscases.

16The initial fare decline occurs prior to the large increase in COVID-19 cases, suggesting that lower fares
did not directly contribute to the spread of COVID-19.
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fares over time.

In general, fares are lower during the pandemic months (March 2020 through August

2020). This result is particularly clear for FSCs (Panel A), but less evident for LCCs (Panel

B). Since price-cost margins for LCCs are already low, LCCs likely do not have substantial

room to decrease fares in response to adverse demand shocks. In contrast, FSCs typically

operate with higher price-cost margins, implying more leeway to decrease fares in response

to an adverse demand shock.

Since most differences in Figure 3 are observed for FSCs, the subsequent discussion pri-

marily focuses on the intertemporal pricing behavior of FSCs. However, some of the following

discussion also applies to LCCs.

Given that our data collection window begins sixty days prior to a flight’s departure, the

March and April 2020 diagrams in Figure 3 include fares collected during the pre-pandemic

and pandemic periods. Although we suspect the decline in average fares observed in April

2020 and the steep increase in the last week to departure observed in March 2020 were due to

the pandemic, we cannot definitively state that these changes were solely due to COVID-19.17

All diagrams from May 2020 onwards in Figure 3 are fully affected by the pandemic. For

FSCs, it is worth comparing the May, June, and July 2020 diagrams with those completely

unaffected by COVID-19 (i.e., the October, November, and December 2019 diagrams). Two

important regularities are observed in the fare diagrams for the last three months of 2019.

Foremost, the average fare monotonically increases as the departure date approaches, with

four well-defined fare hikes occurring from twenty-one to twenty, fourteen to thirteen, seven

to six, and three to two days prior to departure.18 Second, average fares across carriers

mostly overlap, indicating that FSCs adopt very similar intertemporal pricing strategies.

These regularities are not observed in the May, June, and July 2020 diagrams for FSCs. In

17Since COVID-19 was not declared a national emergency in the U.S. until March 13th, 2020 and the first
statewide stay-at-home order was not issued until March 19th, 2020, the majority of observations within one
week of departure in the March diagrams were collected during the pre-pandemic period.

18These fare hikes likely reflect the expiration of discount fare classes attached to the three-week, two-week,
one-week, and three-day advance purchase requirements (Luttmann and Gaggero, 2024).
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Figure 3: Average nonstop fare per mile by days to departure and month of departure
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Figure 3: Average nonstop fare per mile by days to departure and month of departure (cont.)

(b) Low-cost carriers
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these months, average fares do not monotonically increase as the departure date approaches.

The pricing curves for each of the FSCs also do not overlap in the same manner as the pre-

pandemic diagrams (e.g., compare July 2020 with October 2019 in Panel A of Figure 3). The

irregular pricing curves for United and Alaska in July 2020 and the irregular pricing curve for

Delta in May 2020 suggest that each FSC employed differential pricing responses during the

first few months of the pandemic. This type of behavior is expected if revenue management

staff for each FSC manually intervened in the process of updating fares, ignoring the output

suggested by pricing algorithms that were not accustomed to dealing with the drastic drop

in demand induced by COVID-19.19

A similar argument generally applies to LCCs. It is worth noting that JetBlue, one of the

major LCCs in the U.S., displays a different pricing pattern than Allegiant, a minor LCC.

JetBlue gradually increases fares at three weeks, two weeks, and one week prior to departure,

whereas Allegiant fares are relatively stable until seven days prior to departure when fares

begin to substantially increase. This finding may be suggestive of leader-follower behavior

amongst LCCs (Bergantino et al., 2018; Kim et al., 2021).

Finally, the regularities observed during the pre-pandemic months reappear in August

2020 with well-defined fare hikes observed from fourteen to thirteen, seven to six, and three

to two days prior to departure. However, average fares remain lower than those observed

during the pre-pandemic period for both FSCs and LCCs.

3.2 COVID-19 Policies

Various policies and regulations have been implemented to limit the spread of COVID-19:

stay-at-home orders, vaccine mandates, face mask mandates, social distancing, work from

19At the Airline Group of the International Federation of Operations Research conference, Richard Cleaz-
Savoyen, the Managing Director of Revenue Optimization at Air Canada, stated: “all of our forecasting
techniques developed over the years became incorrect and at the beginning of the pandemic, revenue man-
agement became manual and very much micromanaged on a day-by-day basis”. Sander Stomph, the Vice
President at KLM, mentioned that KLM’s machine learning algorithms were not forecasting well because the
historical data they were trained on were from a very different era, and therefore no longer valid (Garrow
and Lurkin, 2020).
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home, and travel restrictions, among others. The two primary health-related COVID-19

policies with considerable variation in timing and duration across states that we account for

in our empirical analysis are stay-at-home orders and interstate quarantine mandates.

The stay-at-home order, also known as a “lockdown” or “shelter-in-place” order, required

residents to remain in their homes except for essential activities (e.g., grocery shopping,

walking dogs, medical care). These stay-at-home orders differed across states, with some

states reluctant to implement such a policy (e.g., Georgia) whereas others implemented stay-

at-home orders for a long period of time (e.g., New Jersey). By the summer of 2020, most

states removed their stay-at-home orders. Figure 4 provides an overview of the timing and

duration of COVID-19 stay-at-home orders for each state in our analysis sample.

Figure 4: Duration of COVID-19 stay-at-home orders by state
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The quarantine mandate was a COVID-19 policy that required interstate travelers to

quarantine once they reached their destination. Figure 5 reveals which states included in our
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sample implemented a quarantine policy and the period of time that the policy was in effect.

Relative to Figure 4, the number of states is smaller because not every state in our analysis

sample implemented a quarantine restriction. For example, California and Colorado did not

require out-of-state travelers to quarantine during our sample period.

Figure 5: Quarantine orders restricting interstate travel
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Quarantine for all entrants
Quarantine for entrants from select states

It is also worth stressing that some states issued a quarantine restriction for all inter-

state travelers, whereas quarantine restrictions implemented by other states applied only to

travelers from select states (e.g., states where the COVID-19 infection rate was higher than

a certain threshold). These quarantine mandates were often state-time varying, as the list

of states subject to quarantine restrictions was generally updated on a weekly basis accord-

ing to the COVID-19 infection rate of each state. For example, starting on July 6th, 2020,

individuals entering Chicago, IL from a COVID-19 “high-incidence” state were subject to

mandatory self-quarantine.20 Wisconsin, Missouri, North Dakota, and Nebraska were not

20See Section 1 of Public Health Order No. 2020-10 order: Quarantine Restrictions on Persons Entering
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initially on this list, but entered the list on July 28th, 2020.21 Similarly, if infections fell

below the threshold to qualify as a high-incidence state, that state was removed from the

quarantine list. For instance, Utah, which had been on the list of states since the quarantine

policy was first introduced by the City of Chicago, exited the list on August 11th, 2020.22

4 COVID-19 and Intertemporal Pricing

4.1 Econometric Model of Intertemporal Pricing

To identify how intertemporal pricing changed during the COVID-19 pandemic, we estimate

equation (1),

log(Pricerafdb) = ψ ·MktShareradb + χ ·HHIrdb +
4∑

T=1

δT ·DaysToDepartureTb +

+γ · Covidb +
4∑

T=1

γT · Covidb ×DaysToDepartureTb +

+π · Covidb × LCCa + α · InfectionsOrigrb + β · InfectionsDestrb +

+θ · StayHomeOrigrb + ϕ · StayHomeDestrb + φ ·Quarantinerb +

+ρrafd + εrafdb (1)

where the individual dimension of the panel is the combination of directional airport-pair

route r, airline a, and flight itinerary f that is scheduled to depart on a given day d.23 The

Chicago from High Case-Rate States, issued by the Commissioner of Health of the City of Chicago, https:
//www.chicago.gov/city/en/sites/covid-19/home/health-orders.html. A state with a new COVID-
19 case rate greater than 15 COVID-19 cases per 100,000 residents per day (7-day rolling average) was
classified as a high-incidence state.

21See https://abc7chicago.com/chicago-quarantine-wisconsin-covid-travel-order-update/63

38248/.
22See https://cbs2iowa.com/news/local/chicago-removes-iowa-two-other-states-from-its-eme

rgency-travel-order.
23The nonstop American flight from Chicago (ORD) to Los Angeles (LAX) on April 22nd, 2020 that departs

at 7:23am is an example of f . A combination of flights on the same itinerary is another example of f (e.g.,
the pair of Delta flights on November 15th, 2019 from Chicago (MDW) to Atlanta (ATL) and ATL to Las
Vegas).
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time dimension of the panel is represented by b, which records the date the fare is booked

(i.e., observed), henceforth referred to as the booking date.

In this specification, the flight-date fixed-effect ρ identifies the unique combination of

flight, airline, route, and departure date. This fixed effect controls for any time-invariant

flight, airline, departure date, and route-specific characteristics that affect fares.

The third term on the right hand side of equation (1) are the set of booking period

dummies. As suggested by Figure 3 and the analysis in Luttmann and Gaggero (2024), we

split the booking period into five mutually exclusive groups: 60 to 21, 20 to 14, 13 to 7, 6

to 3, and 1-2 days before departure. The earliest days-to-departure group (60 to 21 days) is

excluded, so that the coefficients on the included DaysToDeparture dummies indicate the

change in fare relative to this earliest booking period.

The effect of the COVID-19 pandemic on fares is accounted for by Covid, InfectionsOrig,

InfectionsDest, StayHomeOrig, StayHomeDest, and Quarantine. Covid is a dummy equal

to one if the booking date is after March 13th, 2020, the date when COVID-19 was declared a

national emergency in the United States. InfectionsOrig (InfectionsDest) is the 7-day moving

average of new positive COVID-19 cases in thousands in the state of the origin (destination)

airport on the booking date. We use the 7-day moving average to reduce the impact of

possible reporting differences across states, as well as to allow for possible spillover effects of

nearby booking dates on fares. StayHomeOrig (StayHomeDest) is a dummy that equals

one if a stay-at-home order is in effect in the origin (destination) state on the booking date.

Quarantine is a dummy that equals one if the destination state requires travelers coming

from the origin state to quarantine on the booking date.

The variable Covid×LCC interacts Covid with a low-cost carrier indicator to test whether

the impact of the pandemic on fares differs by carrier type.

MktShare is airline a’s market share on route r and booking date b, computed using

the daily number of nonstop flights on the route that were for sale on booking date b.

HHI is the Herfindahl-Hirschman Index for route r on booking date b. Under normal
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circumstances, MktShare and HHI would be absorbed by the flight-date fixed effects since

they would not vary during a flight’s booking period. During the pandemic, airlines were

frequently rescheduling and canceling flights to meet the drastic drop of demand, resulting

in competition that varies during a flight’s booking period.

The inclusion ofMktShare and HHI raises the concern of simultaneity bias.24 To correct

for this potential endogeneity, we adopt a two-stage least squares (2SLS) approach. Because

the flight-date fixed effects capture factors that are time-invariant during the booking period,

the instrumental variables we employ must vary during the booking period of a given flight.

Our first instrument is the 5-week lag of airline a’s market share at the same number

of days to departure as the observed flight, computed using airline a’s number of flights

scheduled five weeks before the observed flight on the same route. As an example, consider a

Delta flight from JFK to LAX departing on June 30th, 2020 observed at ten days to departure

(i.e., on June 20th, 2020). The instrument we construct is Delta’s market share on the JFK-

LAX route obtained using all JFK-LAX flights that are scheduled to depart five weeks before

June 30th, 2020 (i.e., on May 26th, 2020) that are for sale at ten days to departure (i.e., on

May 16th, 2020). Our second instrument is the five-week lag of HHI at the same number of

days to departure as the observed flight, constructed using the aforementioned 5-week lag of

market shares.

The validity of these instruments relies on the fact that COVID-19 waves lose momentum

several weeks after the start of each wave due to increased immunity and fewer potential

hosts to infect (Swain and Wallentin, 2024). The five-week lag also allows us to sample

flights on similar market conditions such as the same day of the week and approximate season

(Alderighi et al., 2015b, 2022; Bilotkach et al., 2015). While previous market structure is

certainly correlated with current market structure, these two instruments are only valid if

24Simultaneity bias is likely minimal in our context because airlines’ cancellation and rescheduling behavior
was so dynamic and unpredictable during the pandemic that the revenue management office of each airline
likely ignored the behavior of its competitors. Gayle and Wu (2013) demonstrate that accounting for en-
dogenous carrier entry using a structural model has a negligible impact on fares in a subsequent regression,
suggesting that simultaneity bias is not a major concern.
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unobserved cost and demand shocks that apply to the current period are not correlated with

the unobserved cost and demand shocks that occurred five-weeks prior (Evans et al., 1993).25

The variables of interest in equation (1) are the set of interactions between Covid and

DaysToDeparture. Compared to the pre-pandemic period (i.e., before March 13th, 2020), the

coefficients on these interactions indicate how the rate of intertemporal price hikes changed

during the pandemic for flight’s booked 1-2, 3-6, 7-13, and 14-20 days prior to departure.

According to the predictions from the intertemporal pricing model, the decline in the share

of business travel during the COVID-19 pandemic should decrease the rate at which fares

increase for late-booking passengers. Hence, the coefficients on these interaction terms are

expected to be negative, especially in the last week to departure.

Finally, equation (1) is estimated using 2SLS with standard errors that are clustered at

the route-level to allow for the residuals of flights operated by the same airline and other

airlines on a given route to be correlated.

4.2 Intertemporal Pricing Results

Table 1 presents results from estimating equation (1). The first column includes only the

market structure variables, DaysToDeparture dummies, and flight-date fixed effects and

confirms the well-documented empirical result that fares increase as the flight’s departure

date approaches.26 For example, the coefficient of 0.676 on DaysToDeparture 1-2 indicates

that flights booked in the last two days before departure are, on average, 97% higher than

comparable flights booked 21 to 60 days before departure.27

25As a robustness check, we report ordinary least squares estimates in Appendix Table A.4.
26See Alderighi et al. (2015a); Avogadro et al. (2021); Bergantino and Capozza (2015a); Escobari (2012,

2014); Escobari and Jindapon (2014); Gaggero and Piga (2010); Gaggero and Luttmann (2023).
27The marginal effect is (e0.676 − 1)% = 96.6%.
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Table 1: Intertemporal pricing results

(1) (2) (3) (4) (5)
Dependent variable: ln(Price) ln(Price) ln(Price) ln(Price) ln(Price)

MktShare -0.060 -0.197 -0.044 -0.172 -0.164
(0.280) (0.274) (0.257) (0.267) (0.268)

HHI 0.370*** 0.337*** 0.237*** 0.322*** 0.319***
(0.110) (0.100) (0.082) (0.093) (0.093)

DaysToDeparture 1-2 0.676*** 0.754*** 0.754*** 0.805*** 0.805***
(0.019) (0.018) (0.019) (0.022) (0.022)

DaysToDeparture 3-6 0.442*** 0.516*** 0.515*** 0.542*** 0.542***
(0.023) (0.022) (0.023) (0.027) (0.027)

DaysToDeparture 7-13 0.214*** 0.275*** 0.276*** 0.274*** 0.274***
(0.020) (0.018) (0.019) (0.020) (0.020)

DaysToDeparture 14-20 0.020** 0.067*** 0.067*** 0.073*** 0.073***
(0.008) (0.007) (0.007) (0.007) (0.007)

Covid -0.837*** -0.793*** -0.731***
(0.029) (0.030) (0.031)

Covid × LCCs -0.285***
(0.048)

BookingMarch2020 -0.607***
(0.018)

BookingApril2020 -0.566***
(0.031)

BookingMay2020 -0.390***
(0.035)

BookingJune2020 -0.306***
(0.040)

BookingJuly2020 -0.470***
(0.044)

BookingAugust2020 -0.437***
(0.052)

Covid × DaysToDep. 1-2 -0.145*** -0.146***
(0.022) (0.022)

Covid × DaysToDep. 3-6 -0.076*** -0.077***
(0.024) (0.024)

Covid × DaysToDep. 7-13 0.001 0.001
(0.016) (0.016)

Covid × DaysToDep. 14-20 -0.018** -0.018**
(0.008) (0.008)

InfectionsOrig 0.003 0.004
(0.005) (0.005)

InfectionsDest -0.019*** -0.019***
(0.004) (0.004)

StayHomeOrig -0.057*** -0.059***
(0.017) (0.017)

StayHomeDest 0.010 0.004
(0.017) (0.017)

Quarantine -0.075*** -0.071***
(0.026) (0.025)

Kleibergen-Paap χ2 Stat. 36.926*** 36.952*** 37.265*** 37.670*** 37.628***
Kleibergen-Paap Wald F Stat. 33.346*** 33.456*** 33.504*** 33.617*** 33.575***
Adjusted R2 0.133 0.269 0.227 0.274 0.276
Observations 42,801,983 42,801,983 42,801,983 42,801,983 42,801,983

Notes: MktShr and HHI are treated as endogenous variables and instrumented for using five-week lags of
MktShr and HHI on the same route and same number of days to departure as the observed flight. First-
stage estimates are reported in Appendix Tables A.2 and A.3. Summary statistics are provided in Appendix
Table A.1. Marginal effects are interpreted as the (eβ-1)% change in fare. All specifications include flight-date
fixed effects that control for any time-invariant flight, carrier, and route-specific characteristics that affect
fares. Standard errors are clustered at the route-level. *** Significant at the 1 percent level, ** Significant
at the 5 percent level, * Significant at the 10 percent level.



To provide a baseline for how fare levels differ across the pre-pandemic and pandemic

periods of our sample, column 2 adds the Covid dummy to the specification in column 1.

The Adjusted R2 doubles, illustrating the importance of Covid for explaining pandemic fares.

The coefficient of -0.837 on Covid indicates that domestic fares for flights departing in the

five-month period after COVID-19 was declared a national emergency were, on average, 57%

cheaper than comparable fares for flights departing in the five-month period immediately

preceding the emergency.

Column 3 replaces the Covid variable with six monthly dummies, one for each month

since COVID-19 was declared a national emergency. The omitted group is the seven-month

booking period prior to COVID-19 being declared a national emergency. The negative co-

efficients on these six monthly dummies confirm that the pandemic had a negative impact

on fares. Consistent with the descriptive analysis in Section 3, the magnitude of the coeffi-

cients demonstrate that the negative effect of the pandemic on fares was largest in the very

early stages (March and April 2020) when stay-at-home and quarantine mandates were first

introduced.28

Column 4 adds the set of interactions between Covid and theDaysToDeparture dummies

to the specification in column 2. Consistent with the predictions from the intertemporal

pricing model, the negative coefficients on the four interaction terms indicate that the rate of

intertemporal fare hikes during the pandemic are lower relative to the pre-pandemic period.29

This rate slowdown is especially evident in the last week to departure.30

To examine how heterogeneity in the diffusion of COVID-19 affects fares, column 4 also

includes the 7-day moving average number of new positive COVID-19 cases in the origin

28We conducted a placebo test by including February 2020, and then January and February 2020 among
the set of monthly dummies. The coefficients on these pre-pandemic dummies are positive and statistically
significant, confirming that the structural break occurred in March 2020 (see Appendix Table A.5).

29The statistically insignificant coefficient on Covid × DaysToDeparture 7-13 suggests that the slower rate
of intertemporal fare hikes is not ubiquitous across days to departure groups. This finding is consistent with
the fare hikes observed 7-13 days before departure in Panel A of Figure 3 for FSCs during the pandemic
months (e.g., Alaska in May-August 2020 or American and Delta in June 2020).

30As illustrated in Panel B of Figure 3, this result may be driven by LCCs who did not substantially
increase fares in the last week to departure during the pandemic months of our sample.
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(InfectionsOrig) and destination (InfectionsDest) states, indicators if a stay-at-home order

was in place in the origin (StayHomeOrig) and destination (StayHomeDest) states, and an

indicator if a quarantine mandate applied to passengers traveling from the origin state to the

destination state (Quarantine). The coefficient on InfectionsDest is negative and statisti-

cally significant, providing additional evidence that COVID-19 adversely affected fares. The

statistically insignificant coefficient on InfectionsOrig implies that pandemic fare decreases

are mainly driven by the diffusion of COVID-19 at the destination. This finding is consis-

tent with the negative and statistically significant coefficient on Quarantine as passengers

dislike traveling to destinations that require them to quarantine on arrival. The negative

and statistically significant coefficient on StayHomeOrig and the statistically insignificant

coefficient on StayHomeDest are also reasonable, since a stay-at-home order that is effective

at the origin is likely more relevant than a stay-at-home-order at the destination because

stay-at-home orders at the origin inhibit traveling anywhere, irrespective of the destination

market.

We believe these findings are rational from the passenger perspective. If the number

of new COVID-19 cases at the destination are high, fares must be heavily discounted to

entice prospective passengers to purchase when the likelihood of new pandemic restrictions

being introduced at the destination increases. The coefficient on InfectionsDest provides an

estimate of this effect: an increase of 1,000 new COVID-19 cases in the state of the destination

airport is associated with a 1.9% fare decrease. Similarly, a quarantine mandate that is in

effect at the destination is associated with a 7.2% fare decrease.

To investigate whether pandemic pricing differed between FSCs and LCCs, column 5

adds the interaction between Covid and a LCC indicator. The negative and statistically

significant coefficient on Covid×LCC indicates that LCC fares were on average 24.8% lower

than FSC fares during the pandemic months of our sample. Relative to the pre-pandemic

period, FSC fares were 51.9% lower and LCC fares 63.8% lower.

To further examine intertemporal pricing, we perform a sensitivity check on our booking
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period groupings by replacing the four days to departure variables with 59 mutually exclusive

days to departure dummies. Results from this sensitivity are presented in Figure 6.

The solid blue line in Figure 6 plots the estimated coefficients on the 59 days to departure

dummies while the dashed red line plots the linear combination of the DaysToDeparture

dummies and Covid variables. The shaded gray area encompassing the solid blue and dashed

red lines represents the 95% confidence interval. Consistent with the descriptive analysis in

Section 3, the dashed red line in Figure 6 demonstrates that both fares and the rate of

intertemporal price increases are lower during the pandemic months.31 Relative to the solid

blue line (pre-pandemic period), the height of the price jumps from seven to six and three to

two days before departure are smaller in the dashed red line (pandemic period).32

Figure 6: Estimated coefficients on the daily DaysToDeparture dummies with 95% confidence
interval during the pre-pandemic and pandemic periods
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31Coefficients on the non-interacted Covid variables in this sensitivity are qualitatively similar to the
coefficients reported in Table 1.

32The absolute variation on the Y-axis when moving from 7 to 1 day prior to departure is approximately
0.5 for the solid blue line (moving from 0.3 to 0.8) and less than 0.4 for the dashed red line (moving from
-0.5 to -0.1).
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5 COVID-19 and Price Dispersion

As discussed in Section 1, the expected impact of the COVID-19 pandemic on price dispersion

is negative. In models of stochastic peak-load pricing, the drastic decline in business travel

demand during the pandemic should decrease the shadow cost of capacity, resulting in lower

fares and lower increases in fares. In models of intertemporal price discrimination, the decline

in the share of business travel during the pandemic should result in airlines adjusting their

intertemporal pricing strategy by decreasing the rate at which fares increase in the last few

weeks to departure, leading to lower price dispersion.

5.1 Econometric Model of Price Dispersion

Our model of price dispersion is summarized by the following equation,

PriceDisprafd = ϕ ·MktShrrad + θ ·HHIrd + σ ·Holidayd + δ ·Weekendd +

+γ1 · PartialCovidBookd + γ2 · FullCovidBookd +

+α · InfectionsOrigBook rd + β · InfectionsDestBook rd +

+η · StayHomeOrigBookrd + µ · StayHomeDestBookrd +

+ϱ ·QuarantineBookrd + λraf + νrafd (2)

where the dependent variable PriceDisp stands for price dispersion, which we measure using

several different metrics (Cui et al., 2019). First, consistent with previous studies of the airline

industry, we measure price dispersion using the Gini log-odds ratio, ln[Gini/(1−Gini)].33 We

adopt different nuances of this index: the Gini coefficient computed using all fares collected

during the sixty-day booking period of each flight f , Ginilodd, and then the same coefficient

using only fares collected in the last 30 or the last 20 days before departure (Gini30lodd and

33See Borenstein and Rose (1994); Gaggero and Piga (2011); Gerardi and Shapiro (2009); Kim et al. (2021).
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Gini20lodd, respectively).34 Other measures of price dispersion employed as the dependent

variable are the natural logarithm of the flight-level coefficient of variation (CV ) and the

natural logarithm of the flight-level price range (i.e., Pmax − Pmin).
35

Similar to equation (1), r refers to the route, a the airline, and f the flight; the combination

raf identifies the individual component of the panel. The time dimension of the panel is now

d, the departure date for flight f . Consistent with Gaggero and Piga (2011), we refer to λ as

the set of flight-code fixed effects. Since an observation is the price dispersion of an individual

flight, these flight-code fixed effects control for any flight-code-invariant characteristics that

do not differ across departure dates (e.g., route, airline, time-of-departure).36 In this respect,

λ differs from ρ, the fixed-effect in equation (1), which identified an individual flight and

departure date combination.

To control for the effect that the level of competition has on price dispersion, we include

the airline’s market share on the route (MktShr) and the route’s Herfindahl-Hirschman Index

(HHI). These two regressors are computed using the daily number of nonstop flights on the

route to better capture the competition that each airline faces on the route on a given day

(Bergantino and Capozza, 2015b).

Due to the possible simultaneity of price and quantity, MktShr and HHI are treated as

endogenous variables and equation (2) is estimated using 2SLS. We correct for this potential

endogeneity using three instruments: (i) the airline’s MktShr on the route on the same

corresponding day during the previous year,37 (ii) the HHI of the route on the same cor-

34Since Figures 3 and 6 demonstrate that fare changes are limited between 21 and 60 days before departure,
Gini30lodd and Gini20lodd examine whether estimates are affected by the duration of the booking period used
to compute the Gini coefficient.

35Because several flights were canceled during the pandemic, the average number of fare observations for
each flight f is 42. We restrict the calculation of each price dispersion metric to f ’s with more than 10
observations, since this threshold reduces potential small sample bias (Deltas, 2003).

36The fixed effects in equation (2) are different than those in studies that rely on quarterly data. Instead
of separate carrier-route and quarter fixed effects (e.g., Gerardi and Shapiro, 2009; Cornia et al., 2012), we
employ flight-code fixed effects to allow for the possibility that price dispersion for an airline’s flights on the
same route differ across flight codes. Due to unobserved factors, the 7:05am Delta flight from Atlanta to
Boston (DL 327) may display a different price dispersion pattern than the 5:00pm Delta flight from Atlanta
to Boston (DL 360).

37By “same corresponding day” we mean that observations are matched with respect to the same day-of-
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responding day during the previous year, and (iii) the number of U.S. cities served nonstop

by the observed airline from the destination airport of the route on the departure date. The

first two instruments reflect that lagged market structure is correlated with current market

structure.38 The last instrument hinges on the idea that the number of cities that an airline

serves from the endpoint airport on the route affects the marginal cost of serving that route

through economies of traffic density (Berry and Jia, 2010; Brueckner and Spiller, 1994). The

exogeneity of this instrument relies on the assumption that the number of cities that the

airline serves from the endpoint airport on the route does not directly affect demand for that

route.39

To control for flight-specific characteristics, we use a series of indicators. Holiday equals

one if the departure date of flight f falls on a holiday.40 We expect lower fare dispersion on

holidays due to systematic peak-load pricing. Weekend equals one if flight f departs on a

Saturday or Sunday. We expect lower fare dispersion on weekends due to a more homogeneous

mix of passengers since business travelers typically do not fly on weekends.

The variables of interest in equation (2) are those that capture the effect of the pandemic:

PartialCovidBook, FullCovidBook, InfectionsOrigBook, InfectionsDestBook, StayHomeOrigBook,

StayHomeDestBook, and QuarantineBook. The first two regressors are indicators that

specify the departure date of the flight: PartialCovidBook equals one if the flight departs

between March 13th, 2020 and May 12th, 2020 while FullCovidBook equals one for flights de-

week, although this may be a different calendar date across years. For example, the airline’s market share
on a given route on Tuesday October 1st, 2019 is paired with the airline’s market share on same route on
Tuesday October 2nd, 2018.

38Other papers that instrument for market structure using lagged measures include Davis (2005), Evans
et al. (1993), Gaggero and Luttmann (2025), Greenfield (2014), and Whalen (2007).

39A previous version employed jet fuel prices and the interaction of jet fuel prices with route distance
as instruments. An anonymous referee correctly pointed out that jet fuel prices were directly affected by
COVID-19 as a result of the drastic decline in travel demand. Although the number of routes an airline
serves from the destination airport may have also been affected by COVID-19, the number of routes was
likely less directly affected than jet fuel prices. For example, an airline could have reduced flight frequency
on a given route without completely exiting the route.

40Twelve holidays occur during our sample period: Columbus Day, Veterans Day, Thanksgiving, Black
Friday, Christmas Eve, Christmas Day, New Year’s Eve, New Year’s Day, Martin Luther King Jr. Day,
Presidents’ Day, Memorial Day, and Independence Day.
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parting after May 12th, 2020. Because our fare collection begins sixty days prior to departure,

the set of fares used to calculate price dispersion for flights indexed by PartialCovidBook

are collected in both the pre-pandemic and pandemic periods, whereas the set of fares used to

calculate price dispersion for flights indexed by FullCovidBook are collected entirely during

the pandemic.

To account for the spread of COVID-19 at the origin and destination, InfectionsOrigBook

and InfectionsDestBook are set equal to the average number of new COVID-19 cases across

the sixty-day booking period in the state of flight f ’s origin and the state of flight f ’s desti-

nation, respectively. These variables test whether the pandemic’s effect on price dispersion

is predominantly driven by the spread of COVID-19 at one route endpoint over another.

StayHomeOrigBook and StayHomeDestBook are defined as the fraction of days during

flight f ’s sixty-day booking period that a stay-at-home order was in effect in the origin and

destination airport states, respectively. Finally, QuarantineBook is the fraction of days

during flight f ’s sixty-day booking period that a quarantine mandate was in effect at the

destination state for passengers arriving from the origin state.

5.2 Price Dispersion Results

The results of estimating equation (2) with 2SLS are provided in Table 2. The first three

columns present results for three different nuances of the Gini coefficient, the fourth column

presents results when the natural logarithm of the coefficient of variation is the dependent

variable, and the fifth column presents results when the natural logarithm of the price range

is the dependent variable. Column (1) represents our preferred specification since it is the

closest to those adopted in Gerardi and Shapiro (2009) and Gaggero and Piga (2011).

The positive and statistically significant coefficient on MktShr suggests that an increase

in an airline’s market share on a route enables the airline to better intertemporally price dis-

criminate, which ultimately results in a higher level of price dispersion. HHI is also positive

and statistically significant at conventional levels, indicating that a decrease in competition
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Table 2: Price dispersion results

(1) (2) (3) (4) (5)
Dependent variable: Ginilodd Gini30lodd Gini20lodd ln(CV) ln(Pmax−Pmin)
Estimator: FE-2SLS FE-2SLS FE-2SLS FE-2SLS FE-2SLS

MktShare 1.013*** 0.110 0.245 0.749*** -0.079
(0.291) (0.225) (0.205) (0.233) (0.197)

HHI 0.593** -0.606** -0.029 0.464** -0.841***
(0.282) (0.296) (0.298) (0.215) (0.199)

Holiday -0.044*** -0.155*** -0.166*** -0.074*** 0.058***
(0.013) (0.017) (0.018) (0.012) (0.011)

Weekend -0.022*** -0.079*** -0.078*** -0.035*** 0.065***
(0.005) (0.008) (0.009) (0.005) (0.008)

PartialCovidBook -0.057 0.040 -0.059* -0.154*** -0.352***
(0.045) (0.041) (0.034) (0.039) (0.038)

FullCovidBook -0.259*** -0.114** -0.287*** -0.312*** -0.628***
(0.053) (0.052) (0.057) (0.045) (0.046)

InfectionsOrigBook -0.004 0.014 0.037*** -0.001 -0.022*
(0.014) (0.011) (0.011) (0.012) (0.012)

InfectionsDestBook 0.025** 0.006 0.023** 0.024*** -0.001
(0.011) (0.010) (0.009) (0.008) (0.011)

StayHomeOrigBook -0.086 -0.049 -0.135 -0.098* -0.189***
(0.060) (0.081) (0.086) (0.051) (0.064)

StayHomeDestBook -0.220*** -0.036 0.026 -0.144** -0.108
(0.074) (0.067) (0.076) (0.061) (0.066)

QuarantineBook 0.074 0.128 0.129 0.110* -0.040
(0.081) (0.092) (0.109) (0.065) (0.071)

Kleibergen-Paap χ2 Stat. 31.434*** 33.034*** 26.919*** 31.434*** 31.434***
Kleibergen-Paap Wald F Stat. 11.757** 11.998** 8.131* 11.757** 11.757**
Hansen J Stat. 0.093 0.804 1.206 0.026 1.620
R2 0.019 0.015 0.006 0.017 0.140
Observations 787,994 569,272 499,726 787,994 787,994

Notes: Summary statistics are provided in Appendix Table A.1. All specifications include flight-code fixed
effects that control for any flight-code-invariant characteristics that do not differ across departure dates (e.g.,
route, operating carrier, time-of-departure). Constant is included but not reported. Standard errors are
clustered at the route-level. MktShr and HHI are treated as endogenous variables and instrumented for
using past-year values of MktShr and HHI in addition to the number of U.S. cities served nonstop by the
observed airline from the destination airport on the departure date. First-stage estimates are provided in
Appendix Table A.6. *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant
at the 10 percent level.

increases price dispersion. This finding is consistent with the results in Gerardi and Shapiro

(2009) who find that an increase in the number of competitors reduces the higher percentiles

of the fare distribution to a greater extent than the lower percentiles, thereby resulting in

lower price dispersion.41

41This finding is also consistent with the results in Dai et al. (2014) and Gaggero and Piga (2011).
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The negative and statistically significant coefficient on Holiday is consistent with the

results in Gaggero and Piga (2011), who find lower levels of price dispersion for flights de-

parting during holiday periods. Due to systematic peak-load pricing, fares are higher and

less dispersed during the entire booking period for these holiday flights.42

The negative and statistically significant coefficient on Weekend indicates lower price

dispersion for flights departing on a Saturday or Sunday. This result likely reflects a more

homogeneous mix of passengers on weekends relative to weekdays. Since business travelers

seldom travel on weekends, most passengers traveling on Saturdays and Sundays are leisure

travelers. The lack of weekend business travel limits an airline’s ability to price discriminate,

which translates to lower price dispersion.

The second part of Table 2 is new to the price dispersion literature and presents the im-

pact of COVID-19 on price dispersion. The negative and statistically significant coefficients

on PartialCovidBook and FullCovidBook indicate that fares collected during the pandemic

exhibit less price dispersion than similar fares collected prior to the pandemic. In all speci-

fications, the absolute value of the coefficient on FullCovidBook is larger than the absolute

value of the coefficient on PartialCovidBook, indicating that lower levels of price dispersion

are observed when all fares, rather than some fares, are collected during the pandemic.

The finding that flights during the pandemic exhibit lower price dispersion is consistent

with our analysis of intertemporal pricing that documented a lower rate of fare hikes in

the last week to departure (see Table 1), suggesting that price dispersion decreased during

the pandemic. This result is likely reflective of a more homogeneous passenger mix, with a

lower proportion of business travelers flying during the pandemic. Alternatively, this finding

is also consistent with the theoretical prediction arising from stochastic peak-load pricing

models. Due to the drastic decline in business travel demand, the shadow cost of capacity

fell during the pandemic, resulting in lower fares, lower increases in fares, and thus, lower

42The data in Gaggero and Piga (2011) cover a sample of European routes. To the best of our knowledge,
this paper is the first to document the holiday effect on price dispersion for the U.S. domestic market.
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price dispersion.

The evidence on InfectionsOrigBook and InfectionsDestBook is mixed, with the coeffi-

cients on these variables often statistically insignificant. Since InfectionsOrigBook and In-

fectionsDestBook are averages of new COVID-19 cases during the booking period, averaging

across the sixty-day time horizon may have attenuated any effect that new COVID-19 cases

have on flight-level price dispersion.

StayHomeOrigBook and StayHomeDestBook are generally negative and, in some in-

stances, statistically significant, implying that stay-at-home orders reduce price dispersion.

In contrast, the coefficients on QuarantineBook are statistically insignificant in almost all

Table 2 specifications, suggesting that quarantine mandates did not affect price dispersion.

6 Robustness: Impact of Flight Cancellations

Figure 7 displays the percentage of canceled flights in the U.S. domestic market during our

sample period (as reported in the Airline On-Time Performance database). As the pandemic

surges, the percentage of canceled flights spikes to slightly above 50% in the middle of March

2020. Cancellation rates remain at abnormally high levels between the middle of March

and late May 2020. Then, from late-May 2020 onwards, cancellation rates return to levels

observed prior to the pandemic. Specifically, the mean cancellation rate was: 0.97% before

March 13th, 2020 (the date when COVID-19 was declared a national emergency in the U.S.);

23.92% between March 13th and May 31st, 2020; and 0.79% from June 1st, 2020 through the

end of our sample.

The primary threat to identification stemming from cancellations is that our dependent

variables may be measured with error that is non-random, and this measurement error may

result in coefficient estimates that are biased. When flights are canceled late in the booking

period, a shorter fare series comprised mostly of low fares is used to compute our measures

of price dispersion (i.e., higher fares that are typical close to departure are not observed).
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Figure 7: Percentage of canceled flights in the U.S. domestic market (October 2019-August
2020)
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Departure date

Failure to observe fares close to departure is likely more of an issue in the price dispersion

regressions than in the intertemporal pricing regressions because the lack of more expensive

fares late in the booking period will systemically imply lower price dispersion for those flights.

To investigate the impact that canceled flights may have on our price dispersion results, we

perform a robustness check by estimating a series of “donut” regressions that exclude the time

period characterized by the abnormally high rate of flight cancellations. As demonstrated in

Figure 7, this period ranges from March 13th, 2020 to May 31st, 2020.

The results from this “donut” specification are reported in Table 3. Because we exclude

flights departing in the period from March 13th, 2020 to May 31st, 2020, PartialCovidBook

disappears from the regressions. Overall, results from this robustness check are qualitatively

consistent with those reported in Table 2. The negative coefficient on FullCovidBook in all

Table 3 columns indicates that price dispersion decreased during the pandemic.
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Table 3: Price dispersion results: donut regressions

(1) (2) (3) (4) (5)
Dependent variable: Ginilodd Gini30lodd Gini20lodd ln(CV) ln(Pmax−Pmin)
Estimator: FE-2SLS FE-2SLS FE-2SLS FE-2SLS FE-2SLS

MktShare 1.406** -0.012 -0.233 1.269** 1.024*
(0.625) (0.360) (0.319) (0.592) (0.544)

HHI 1.669* 1.744*** 1.344** 1.892** 1.501
(1.010) (0.628) (0.556) (0.965) (0.986)

Holiday -0.071*** -0.162*** -0.176*** -0.096*** 0.054***
(0.018) (0.022) (0.021) (0.018) (0.013)

Weekend -0.068*** -0.118*** -0.118*** -0.075*** 0.028***
(0.009) (0.012) (0.012) (0.009) (0.007)

FullCovidBook -0.528*** -0.142 -0.263 -0.520*** -1.079***
(0.120) (0.186) (0.187) (0.112) (0.134)

InfectionsOrigBook 0.001 0.000 0.029* -0.002 -0.017
(0.020) (0.015) (0.015) (0.017) (0.018)

InfectionsDestBook 0.021 0.003 0.019* 0.018 -0.001
(0.016) (0.010) (0.010) (0.013) (0.012)

StayHomeOrigBook -0.216** -0.204* -0.166 -0.230*** -0.213***
(0.084) (0.121) (0.124) (0.072) (0.081)

StayHomeDestBook -0.329*** -0.127 -0.165 -0.264** -0.272**
(0.127) (0.092) (0.107) (0.116) (0.117)

QuarantineBook 0.147 0.217** 0.112 0.190** 0.027
(0.104) (0.103) (0.122) (0.096) (0.102)

Kleibergen-Paap χ2 Stat. 7.707** 9.374*** 10.246*** 7.707** 7.707**
Kleibergen-Paap Wald F Stat. 2.753 3.454 3.379 2.753 2.753
Hansen J Stat. 1.066 2.302 0.306 0.756 1.091
R2 0.027 0.005 0.001 0.018 0.122
Observations 578,340 447,267 409,554 578,340 578,340

Notes: The analysis sample excludes flights that depart between March 13th, 2020 and May 31st, 2020. All
specifications include flight-code fixed effects that control for any flight-code-invariant characteristics that do
not differ across departure dates (e.g., route, operating carrier, time-of-departure). Constant is included but
not reported. Standard errors are clustered at the route-level. MktShr and HHI are treated as endogenous
variables and instrumented for using past-year values of MktShr and HHI in addition to the number of
U.S. cities served nonstop by the observed airline from the destination airport on the departure date. ***
Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.

7 Conclusion

In this paper, we documented how the economic downturn caused by the COVID-19 pandemic

affected intertemporal price discrimination and price dispersion in the U.S. airline industry.

Exploiting a unique panel of 43 million fares collected before and during the pandemic, we

find that airlines discounted ticket prices by an average of 57% in the first five months after
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COVID-19 was declared a national emergency (relative to flights departing in the five month

period immediately preceding the emergency declaration). The rate of intertemporal price

increases also declined, particularly in the last week to departure. We also find that an

increase in new COVID-19 cases at the destination decreases fares while an increase in new

cases at the origin has no statistically measurable effects. Policies requiring travelers to

quarantine upon arrival were also found to decrease fares by an average of 7.2%. Finally, we

find that flight-level price dispersion decreased during the pandemic.

Our findings are consistent with the theoretical predictions arising from models of in-

tertemporal price discrimination and stochastic peak-load pricing. In the intertemporal pric-

ing model, the decline in the share of business travel during the pandemic resulted in air-

lines adjusting their intertemporal price discrimination strategy by decreasing the rate at

which fares increased for late-booking passengers, resulting in lower price dispersion. In the

stochastic peak-load pricing model, the drastic decline in business travel demand during the

pandemic decreased the shadow cost of capacity, resulting in lower fares, lower increases in

fares, and lower price dispersion.

The analysis presented in this paper offers some fruitful avenues for future research.

Since COVID-19 has likely had differential impacts across industries, it would be interesting

to determine if similar price dispersion impacts have occurred in other oligopolistic industries

such as the automobile, gasoline, grocery, hotel, or shipping industries. In particular, the

decline in business travel and the movement of conferences to online formats have likely

caused similar impacts on prices and price dispersion in the hospitality industry.

Because the analysis in this paper focused on one-way tickets, future work could also

examine how adding roundtrip tickets to the analysis impacts results. If one-way tickets

are more appealing to business travelers, then the decrease in the rate of intertemporal price

discrimination that we observed during the pandemic could be attenuated in an analysis that

includes roundtrip tickets.43

43We would like to thank an anonymous referee for raising this point.
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Another question that remains unanswered is how airlines will adjust to the potential

permanent decline in business travel. As society gets more accustomed to online meetings, the

demand for business travel is likely to fall. At the same time, the continued adoption of online

communication tools (e.g., Microsoft Teams and Zoom) provides additional opportunities to

get in touch with new commercial partners who may eventually demand face-to-face meetings.

The broader acceptance of remote work allows a larger share of professionals to travel and

work from a variety of attractive destinations. Such digital nomadism may disproportionately

affect air travel to a specific subset of desired destinations. Understanding which of these

potential factors dominates or how they interact with one another would provide airline

managers with vital information that will help them choose the most optimal route network

and implement the most appropriate pricing strategy in the post-COVID-19 era.

References

Alderighi, M., Gaggero, A. A., and Piga, C. A. (2015a). The effect of code-share agreements

on the temporal profile of airline fares. Transportation Research Part A: Policy and

Practice, 79(C):42–54.

Alderighi, M., Gaggero, A. A., and Piga, C. A. (2022). Hidden prices with fixed inventory:

Evidence from the airline industry. Transportation Research Part B: Methodological,

157:42–61.

Alderighi, M., Nicolini, M., and Piga, C. A. (2015b). Combined effects of capacity and

time on fares: Insights from the yield management of a low-cost airline. The Review of

Economics and Statistics, 97(4):900–915.

Allen, J., Clark, R., and Houde, J.-F. (2014). Price dispersion in mortgage markets. The

Journal of Industrial Economics, 62(3):377–416.

Aryal, G., Murry, C., and Williams, J. W. (2023). Price Discrimination in International

Airline Markets. The Review of Economic Studies, 91(2):641–689.

Avogadro, N., Malighetti, P., Redondi, R., and Salanti, A. (2021). A tale of airline competi-

tion: When full-service carriers undercut low-cost carriers fares. Journal of Air Transport

Management, 92:102027.

34



Barron, J. M., Taylor, B. A., and Umbeck, J. R. (2004). Number of sellers, average prices, and

price dispersion. International Journal of Industrial Organization, 22(8-9):1041–1066.

Bergantino, A., Capozza, C., and Capurso, M. (2018). Pricing strategies: Who leads and

who follows in the air and rail passenger markets in Italy. Applied Economics, 50:1–17.

Bergantino, A. S. and Capozza, C. (2015a). Airline pricing behavior under limited inter-

modal competition. Economic Inquiry, 53(1):700–713.

Bergantino, A. S. and Capozza, C. (2015b). One price for all? Price discrimination and

market captivity: Evidence from the Italian city-pair markets. Transportation Research

Part A: Policy and Practice, 75:231–244.

Bergquist, S., Otten, T., and Sarich, N. (2020). COVID-19 pandemic in the United States.

Health Policy and Technology, 9(4):623–638.

Berry, S. and Jia, P. (2010). Tracing the woes: An empirical analysis of the airline industry.

American Economic Journal: Microeconomics, 2(3):1–43.

Bilotkach, V., Gaggero, A. A., and Piga, C. A. (2015). Airline pricing under different market

conditions: Evidence from European low-cost carriers. Tourism Management, 47:152–

163.

Bilotkach, V., Gorodnichenko, Y., and Talavera, O. (2010). Are airlines’ price-setting strate-

gies different? Journal of Air Transport Management, 16(1):1–6.

Borenstein, S. and Rose, N. L. (1994). Competition and price dispersion in the U.S. airline

industry. Journal of Political Economy, 102(4):653–683.

Brueckner, J. K. and Spiller, P. T. (1994). Economies of traffic density in the deregulated

airline industry. The Journal of Law and Economics, 37(2):379–415.

Burdett, K. and Judd, K. L. (1983). Equilibrium price dispersion. Econometrica, 51(4):955–

969.

Cardebat, J.-M., Faye, B., Le Fur, E., and Storchmann, K. (2017). The law of one price?

Price dispersion on the auction market for fine wine. Journal of Wine Economics,

12(3):302–331.

Chandra, A. and Tappata, M. (2011). Consumer search and dynamic price dispersion: An

application to gasoline markets. The RAND Journal of Economics, 42(4):681–704.

35



Clay, K., Krishnan, R., and Wolff, E. (2001). Prices and price dispersion on the web: Evidence

from the online book industry. The Journal of Industrial Economics, 49(4):521–539.

Cornia, M., Gerardi, K. S., and Shapiro, A. H. (2012). Price dispersion over the business cycle:

Evidence from the airline industry. The Journal of Industrial Economics, 60(3):347–373.

Crew, M. A. and Kleindorfer, P. R. (1986). The economics of public utility regulation.

Springer.

Cui, Y., Orhun, A. Y., and Duenyas, I. (2019). How price dispersion changes when upgrades

are introduced: Theory and empirical evidence from the airline industry. Management

Science, 65(8):3835–3852.

Dahlby, B. and West, D. S. (1986). Price dispersion in an automobile insurance market.

Journal of Political Economy, 94(2):418–438.

Dai, M., Liu, Q., and Serfes, K. (2014). Is the effect of competition on price dispersion

nonmonotonic? Evidence from the U.S. airline industry. The Review of Economics and

Statistics, 96(1):161–170.

Dana, J. D. (1999). Equilibrium price dispersion under demand uncertainty: The roles of

costly capacity and market structure. The RAND Journal of Economics, 30(4):632–660.

Dana, J. D. J. (2001). Monopoly price dispersion under demand uncertainty. International

Economic Review, 42(3):649–670.

Davis, P. (2005). The effect of local competition on admission prices in the U.S. motion

picture exhibition market. The Journal of Law & Economics, 48(2):677–707.

de Juniac, A. (2020). IATA Annual Review 2020. Technical report, International Air Trans-

port Association (IATA). https://www.iata.org/contentassets/c81222d96c9a4e0

bb4ff6ced0126f0bb/iata-annual-review-2020.pdf.

Deltas, G. (2003). The small-sample bias of the gini coefficient: Results and implications for

empirical research. The Review of Economics and Statistics, 85(1):226–234.

Escobari, D. (2009). Systematic peak-load pricing, congestion premia and demand diverting:

Empirical evidence. Economics Letters, 103(1):59–61.

Escobari, D. (2012). Dynamic pricing, advance sales and aggregate demand learning in

airlines. The Journal of Industrial Economics, 60(4):697–724.

36



Escobari, D. (2014). Estimating dynamic demand for airlines. Economics Letters, 124(1):26–

29.

Escobari, D. and Jindapon, P. (2014). Price discrimination through refund contracts in

airlines. International Journal of Industrial Organization, 34:1–8.

Escobari, D., Rupp, N. G., and Meskey, J. (2019). An analysis of dynamic price discrimination

in airlines. Southern Economic Journal, 85(3):639–662.

Evans, W. N., Froeb, L. M., and Werden, G. J. (1993). Endogeneity in the concentration-

price relationship: Causes, consequences, and cures. Journal of Industrial Economics,

41(4):431–438.

Gaggero, A. A. and Luttmann, A. (2023). The determinants of hidden-city ticketing: Com-

petition, hub-and-spoke networks, and advance-purchase requirements. Transportation

Research Part E: Logistics and Transportation Review, 173:103086.

Gaggero, A. A. and Luttmann, A. (2025). Systematic peak-load pricing during holiday peri-

ods: Evidence from the U.S. airline industry. Economics of Transportation, 41:100395.

Gaggero, A. A. and Piga, C. A. (2010). Airline competition in the British Isles. Transportation

Research Part E: Logistics and Transportation Review, 46(2):270–279.

Gaggero, A. A. and Piga, C. A. (2011). Airline market power and intertemporal price

dispersion. The Journal of Industrial Economics, 59(4):552–577.

Garrow, L. and Lurkin, V. (2020). How COVID-19 is impacting and reshaping the airline

industry. Journal of Revenue and Pricing Management, 20:3–9.

Gayle, P. G. and Wu, C.-Y. (2013). A re-examination of incumbents’ response to the threat

of entry: Evidence from the airline industry. Economics of Transportation, 2(4):119–130.

Gerardi, K. S. and Shapiro, A. H. (2009). Does competition reduce price dispersion? New

evidence from the airline industry. Journal of Political Economy, 117(1):1–37.

Goldberg, P. K. and Verboven, F. (2001). The evolution of price dispersion in the European

car market. The Review of Economic Studies, 68(4):811–848.

Greenfield, D. (2014). Competition and service quality: New evidence from the airline in-

dustry. Economics of Transportation, 3(1):80–89.

37



Hayes, K. J. and Ross, L. B. (1998). Is airline price dispersion the result of careful planning

or competitive forces? Review of Industrial Organization, 13(5):523–541.

Jacobsen, G. D. and Jacobsen, K. H. (2020). Statewide COVID-19 stay-at-home orders and

population mobility in the United States. World Medical Health Policy, 12(4):347–356.

Kaplan, G., Menzio, G., Rudanko, L., and Trachter, N. (2019). Relative price dispersion:

Evidence and theory. American Economic Journal: Microeconomics, 11(3):68–124.

Kim, D., Kim, M., and Tan, K. (2021). Tacit collusion and price dispersion in the presence

of Southwest Airlines. Southern Economic Journal, 88(1):3–32.

Lewis, M. (2008). Price dispersion and competition with differentiated sellers. The Journal

of Industrial Economics, 56(3):654–678.

Li, X., Gu, B., and Liu, H. (2013). Price dispersion and loss-leader pricing: Evidence from

the online book industry. Management Science, 59(6):1290–1308.

Luttmann, A. (2019). Are passengers compensated for incurring an airport layover? Estimat-

ing the value of layover time in the U.S. airline industry. Economics of Transportation,

17:1–13.

Luttmann, A. and Gaggero, A. A. (2024). Purchase discounts on federal holidays and adjacent

shopping holidays: Evidence from the airline industry. Southern Economic Journal,

91(2):465–499.

MacDonald, J. M. (2000). Demand, information, and competition: Why do food prices fall

at seasonal demand peaks? The Journal of Industrial Economics, 48(1):27–45.

Mantin, B. and Koo, B. (2009). Dynamic price dispersion in airline markets. Transportation

Research Part E: Logistics and Transportation Review, 45(6):1020–1029.

McAfee, R. P. (1995). Multiproduct equilibrium price dispersion. Journal of Economic

Theory, 67(1):83–105.

Morlotti, C. and Redondi, R. (2023). The impact of COVID-19 on airlines’ price curves.

Journal of Air Transport Management, 107:102328.

Orlov, E. (2011). How does the internet influence price dispersion? Evidence from the airline

industry. The Journal of Industrial Economics, 59(1):21–37.

38



Pennerstorfer, D., Schmidt-Dengler, P., Schutz, N., Weiss, C., and Yontcheva, B. (2020).

Information and price dispersion: Theory and evidence. International Economic Review,

61(2):871–899.

Reinganum, J. F. (1979). A simple model of equilibrium price dispersion. Journal of Political

Economy, 87(4):851–858.

Salop, S. (1977). The noisy monopolist: Imperfect information, price dispersion and price

discrimination. The Review of Economic Studies, 44(3):393–406.

Salop, S. and Stiglitz, J. (1977). Bargains and ripoffs: A model of monopolistically compet-

itive price dispersion. The Review of Economic Studies, 44(3):493–510.

Salop, S. and Stiglitz, J. E. (1982). The theory of sales: A simple model of equilibrium price

dispersion with identical agents. The American Economic Review, 72(5):1121–1130.

Sengupta, A. and Wiggins, S. N. (2014). Airline pricing, price dispersion, and ticket char-

acteristics on and off the internet. American Economic Journal: Economic Policy,

6(1):272–307.

Shepard, A. (1991). Price discrimination and retail configuration. Journal of Political Econ-

omy, 99(1):30–53.

Sorensen, A. T. (2000). Equilibrium price dispersion in retail markets for prescription drugs.

Journal of Political Economy, 108(4):833–850.

Studdert, D. M., Hall, M. A., and Mello, M. M. (2020). Partitioning the curve — interstate

travel restrictions during the Covid-19 pandemic. New England Journal of Medicine,

383(13):e83.

Swain, R. B. o. X. L. and Wallentin, F. Y. (2024). COVID-19 pandemic waves: Identification

and interpretation of global data. Heliyon, 10(3):e25090.

Van Nieuwerburgh, S. and Weill, P.-O. (2010). Why has house price dispersion gone up?

The Review of Economic Studies, 77(4):1567–1606.

Whalen, W. T. (2007). A panel data analysis of code-sharing, antitrust immunity, and

open skies treaties in international aviation markets. Review of Industrial Organization,

30(1):39–61.

39



WTTC (2021). Adapting to Endemic Covid-19: The Outlook For Business Travel. Technical

report, World Travel & Tourism Council (WTTC). https://wttc.org/Portals/0/D

ocuments/Reports/2021/WTTC\%20Adapting\%20to\%20Endemic\%20Covid\%20-\%2

0Business\%20Travel\%20Outlook\%20011121.pdf?ver=2021-11-02-082813-280.

Appendix A: Supplementary Tables

Table A.1: Descriptive Statistics and brief description of the variables included in the analysis

Intertemporal pricing regressions: Equation (1) - Nbr. observations 43,160,581

Variables Description Mean Std. Dev. Min Max

Price One-way airline fare, in U.S. dollars 167.2 132.6 11.00 6,155
MktShare Airline a’s market share, computed using the

number of daily nonstop flights on the route for
sale on booking date b

0.289 0.262 0.000 1.000

HHI Route Herfindahl-Hirschman Index on booking

date b. In formula:
n∑

a=1
MktShare2ab

0.372 0.236 0.000 1.000

DaysToDeparture 1-2 Dummy=1 if DaysToDeparture ∈ [1, 2] 0.031 0.173 0.000 1.000
DaysToDeparture 3-6 Dummy=1 if DaysToDeparture ∈ [3, 6] 0.063 0.243 0.000 1.000
DaysToDeparture 7-13 Dummy=1 if DaysToDeparture ∈ [7, 13] 0.110 0.312 0.000 1.000
DaysToDeparture 14-20 Dummy=1 if DaysToDeparture ∈ [14, 20] 0.109 0.312 0.000 1.000
DaysToDeparture 21-60 Dummy=1 if DaysToDeparture ∈ [21, 60], omit-

ted category in the regressions
0.687 0.464 0.000 1.000

Covid Dummy=1 if fare collection is after March 13th,
2020

0.348 0.476 0.000 1.000

LCC Dummy=1 if airline is a low-cost carrier (LCC) 0.192 0.394 0.000 1.000
Covid × LCC Interaction of Covid variable with LCC variable 0.061 0.239 0.000 1.000
BookingMarch2020 Dummy=1 if the fare is collected in March 2020 0.101 0.301 0.000 1.000
BookingApril2020 Dummy=1 if the fare is collected in April 2020 0.072 0.259 0.000 1.000
BookingMay2020 Dummy=1 if the fare is collected in May 2020 0.071 0.257 0.000 1.000
BookingJune2020 Dummy=1 if the fare is collected in June 2020 0.073 0.260 0.000 1.000
BookingJuly2020 Dummy=1 if the fare is collected in July 2020 0.055 0.229 0.000 1.000
BookingAugust2020 Dummy=1 if the fare is collected in August 2020 0.017 0.131 0.000 1.000
InfectionsOrig 7-day moving average of new positive COVID-

19 cases (in 1,000s) in the state of the origin
airport

0.658 1.692 0.000 11.93

InfectionsDest 7-day moving average of new positive COVID-19
cases (in 1,000s) in the state of the destination
airport

0.753 1.927 0.000 11.93

StayHomeOrig Dummy=1 if a stay-at-home order is in effect in
the origin airport state

0.142 0.349 0.000 1.000
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StayHomeDest Dummy=1 if a stay-at-home order is in effect in
the destination airport state

0.132 0.339 0.000 1.000

Quarantine Dummy=1 if a quarantine mandate is in effect
in the destination airport state for travelers ar-
riving from the origin airport state

0.065 0.246 0.000 1.000

Instruments

5-week lag MktShare Airline a’s market share observed at t days to
departure, computed using the number of daily
nonstop flights on the route that depart 5 weeks
before the examined flight at the same t days to
departure

0.243 0.261 0.000 1.000

5-week lag HHI Route Herfindahl-Hirschman Index observed at
t days to departure, computed using the num-
ber of nonstop flights on the route that de-
part 5 weeks before the examined flight at
the same t days to departure. In formula:
n∑

a=1
5-week lag MktShare2at

0.320 0.252 0.000 1.000

Price dispersion regressions: Equation (2) - Nbr. observations 788,114†

Variables Mean Std. Dev. Min Max

Ginilodd Flight-level Gini log-odds ratio of prices,
ln[Gini/(1−Gini)]

-1.913 0.959 -8.638 1.267

Gini30lodd Flight-level Gini log-odds ratio of prices col-
lected on the last 30 days to departure

-1.658 0.769 -8.536 1.289

Gini20lodd Flight-level Gini log-odds ratio of prices col-
lected on the last 20 days to departure

-1.698 0.711 -8.661 1.348

CV Flight-level Coefficient of Variation, ratio of the
standard deviation to the mean of the price dis-
tribution

0.358 0.241 0.001 3.401

Pmax−Pmin Flight-level difference between the max and min
price of the price distribution

199.2 205.0 1.000 4087

MktShare Airline a’s market share, computed using the
number of daily nonstop flights on the route

0.317 0.281 0.000 1.000

HHI Route Herfindahl-Hirschman index. In formula:
n∑

a=1
MktShare2a

0.382 0.346 0.001 1.000

Holiday Dummy=1 if the flight departs during holiday 0.031 0.173 0.000 1.000
Weekend Dummy=1 if the flight departs on a weekend 0.270 0.444 0.000 1.000
PartialCovidBook Dummy=1 if the flight departs between March

13th, 2020 and May 12th, 2020
0.196 0.397 0.000 1.000

FullCovidBook Dummy=1 if the flight departs after May 12th,
2020

0.342 0.474 0.000 1.000

InfectionsOrigBook Mean new positive COVID-19 cases (in 1,000s),
across the 60-day booking period, in the state of
the origin airport

0.848 1.728 0.000 11.29
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InfectionsDestBook Mean new positive COVID-19 cases (in 1,000s),
across the 60-day booking period, in the state of
the destination airport

0.946 1.959 0.000 11.62

StayHomeOrigBook Fraction of days during the booking period that
a stay-at-home order was in effect in the desti-
nation airport state

0.197 0.350 0.000 1.000

StayHomeDestBook Fraction of days during the booking period that
a stay-at-home order was in effect in the origin
airport state

0.183 0.339 0.000 1.000

QuarantineBook Fraction of days during the booking period that
a quarantine mandate was in effect in the des-
tination airport state for travelers arriving from
the origin airport state

0.084 0.257 0.000 1.000

Instruments

Past-year MktShare Past-year value of MktShare 0.295 0.255 0.000 1.000
Past-year HHI Past-year value of HHI 0.299 0.292 0.001 1.000
NbrCities Number of U.S. cities (in units of 10) served non-

stop by a given airline from the destination air-
port of a given route on the departure date

2.718 3.631 0.000 17.70

†Except for Gini30lodd and Gini20lodd, which respectively encompass 569,272 and 499,726 observations.
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Table A.2: First-stage estimates of MtkShare for Table 1

(1) (2) (3) (4) (5)
Dependent variable: MtkShare MtkShare MtkShare MtkShare MtkShare

5-week lag MktShare 0.059*** 0.059*** 0.059*** 0.058*** 0.058***
(0.007) (0.007) (0.007) (0.007) (0.007)

5-week lag HHI 0.003 0.003 -0.000 0.004 0.004
(0.002) (0.002) (0.002) (0.002) (0.002)

DaysToDeparture 1-2 0.007*** 0.006*** 0.003*** 0.002*** 0.002***
(0.001) (0.001) (0.000) (0.000) (0.000)

DaysToDeparture 3-6 0.006*** 0.005*** 0.002*** 0.001*** 0.001***
(0.001) (0.000) (0.000) (0.000) (0.000)

DaysToDeparture 7-13 0.005*** 0.004*** 0.001*** 0.000*** 0.000***
(0.000) (0.000) (0.000) (0.000) (0.000)

DaysToDeparture 14-20 0.004*** 0.004*** 0.002*** 0.000*** 0.000***
(0.000) (0.000) (0.000) (0.000) (0.000)

Covid 0.011*** -0.002** -0.005***
(0.001) (0.001) (0.002)

Covid × LCCs 0.012***
(0.003)

BookingMarch2020 0.000
(0.000)

BookingApril2020 0.068***
(0.004)

BookingMay2020 0.111***
(0.007)

BookingJune2020 0.118***
(0.008)

BookingJuly2020 0.123***
(0.009)

BookingAugust2020 0.130***
(0.010)

Covid × DaysToDep. 1-2 0.013*** 0.013***
(0.002) (0.002)

Covid × DaysToDep. 3-6 0.013*** 0.013***
(0.002) (0.002)

Covid × DaysToDep. 7-13 0.012*** 0.012***
(0.001) (0.001)

Covid × DaysToDep. 14-20 0.012*** 0.012***
(0.001) (0.001)

InfectionsOrig 0.002*** 0.002***
(0.001) (0.001)

InfectionsDest 0.001** 0.001**
(0.000) (0.000)

StayHomeOrig 0.006*** 0.006***
(0.001) (0.001)

StayHomeDest 0.011*** 0.012***
(0.002) (0.002)

Quarantine 0.016*** 0.016***
(0.004) (0.004)

R2 0.654 0.570 0.048 0.419 0.415
Observations 42,801,983 42,801,983 42,801,983 42,801,983 42,801,983

Notes: All specifications include flight-date fixed effects that control for any time-invariant flight, carrier, and route-specific
characteristics that affect fares. Standard errors are clustered at the route-level. *** Significant at the 1 percent level, **
Significant at the 5 percent level, * Significant at the 10 percent level.
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Table A.3: First-stage estimates of HHI for Table 1

(1) (2) (3) (4) (5)
Dependent variable: HHI HHI HHI HHI HHI

5-week lag MktShare -0.078*** -0.078*** -0.078*** -0.079*** -0.079***
(0.009) (0.009) (0.010) (0.009) (0.009)

5-week lag HHI 0.165*** 0.165*** 0.164*** 0.168*** 0.168***
(0.015) (0.015) (0.015) (0.015) (0.015)

DaysToDeparture 1-2 0.009*** 0.007*** 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001)

DaysToDeparture 3-6 0.006*** 0.005*** 0.003*** 0.002*** 0.002***
(0.001) (0.001) (0.001) (0.000) (0.000)

DaysToDeparture 7-13 0.004*** 0.003*** 0.001*** 0.001*** 0.001***
(0.001) (0.001) (0.000) (0.000) (0.000)

DaysToDeparture 14-20 0.004*** 0.003*** 0.001*** 0.001** 0.001**
(0.001) (0.001) (0.000) (0.000) (0.000)

Covid 0.014*** -0.001 -0.001
(0.002) (0.002) (0.002)

Covid × LCCs 0.000
(0.003)

BookingMarch2020 0.001
(0.001)

BookingApril2020 0.080***
(0.006)

BookingMay2020 0.104***
(0.009)

BookingJune2020 0.107***
(0.009)

BookingJuly2020 0.108***
(0.011)

BookingAugust2020 0.110***
(0.012)

Covid × DaysToDep. 1-2 0.008*** 0.008***
(0.003) (0.003)

Covid × DaysToDep. 3-6 0.009*** 0.009***
(0.003) (0.003)

Covid × DaysToDep. 7-13 0.007*** 0.007***
(0.002) (0.002)

Covid × DaysToDep. 14-20 0.007*** 0.007***
(0.002) (0.002)

InfectionsOrig 0.003*** 0.003***
(0.001) (0.001)

InfectionsDest 0.002** 0.002**
(0.001) (0.001)

StayHomeOrig 0.008*** 0.008***
(0.003) (0.003)

StayHomeDest 0.020*** 0.020***
(0.003) (0.003)

Quarantine 0.015*** 0.015***
(0.006) (0.006)

R2 0.399 0.381 0.177 0.357 0.357
Observations 42,801,983 42,801,983 42,801,983 42,801,983 42,801,983

Notes: All specifications include flight-date fixed effects that control for any time-invariant flight, carrier, and route-specific
characteristics that affect fares. Standard errors are clustered at the route-level. *** Significant at the 1 percent level, **
Significant at the 5 percent level, * Significant at the 10 percent level.
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Table A.4: Intertemporal pricing results with Ordinary Least Squares

(1) (2) (3) (4) (5)
Dependent variable: ln(Price) ln(Price) ln(Price) ln(Price) ln(Price)

MktShare -0.095*** 0.016 -0.191*** 0.055 0.067*
(0.036) (0.038) (0.033) (0.039) (0.039)

HHI 0.052** 0.125*** 0.040** 0.142*** 0.138***
(0.025) (0.024) (0.019) (0.026) (0.025)

DaysToDeparture 1-2 0.680*** 0.755*** 0.756*** 0.806*** 0.805***
(0.019) (0.019) (0.019) (0.023) (0.023)

DaysToDeparture 3-6 0.444*** 0.516*** 0.516*** 0.542*** 0.542***
(0.024) (0.022) (0.023) (0.027) (0.027)

DaysToDeparture 7-13 0.216*** 0.275*** 0.277*** 0.274*** 0.274***
(0.020) (0.018) (0.019) (0.020) (0.020)

DaysToDeparture 14-20 0.021*** 0.067*** 0.068*** 0.073*** 0.073***
(0.008) (0.007) (0.007) (0.007) (0.007)

Covid -0.837*** -0.793*** -0.730***
(0.029) (0.031) (0.030)

Covid × LCCs -0.288***
(0.048)

BookingMarch2020 -0.607***
(0.018)

BookingApril2020 -0.541***
(0.025)

BookingMay2020 -0.352***
(0.018)

BookingJune2020 -0.267***
(0.023)

BookingJuly2020 -0.429***
(0.031)

BookingAugust2020 -0.395***
(0.039)

Covid × DaysToDep. 1-2 -0.146*** -0.147***
(0.021) (0.021)

Covid × DaysToDep. 3-6 -0.077*** -0.078***
(0.024) (0.024)

Covid × DaysToDep. 7-13 0.000 -0.000
(0.015) (0.015)

Covid × DaysToDep. 14-20 -0.019** -0.020***
(0.007) (0.007)

InfectionsOrig 0.003 0.004
(0.005) (0.005)

InfectionsDest -0.019*** -0.019***
(0.004) (0.004)

StayHomeOrig -0.057*** -0.059***
(0.017) (0.017)

StayHomeDest 0.011 0.005
(0.017) (0.017)

Quarantine -0.076*** -0.072***
(0.025) (0.025)

Adjusted R2 0.171 0.300 0.261 0.304 0.307
Observations 43,160,581 43,160,581 43,160,581 43,160,581 43,160,581

Notes: All specifications include flight-date fixed effects that control for any time-invariant flight, carrier, and route-specific
characteristics that affect fares. Standard errors are clustered at the route-level. *** Significant at the 1 percent level, **
Significant at the 5 percent level, * Significant at the 10 percent level.
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Table A.5: Placebo test on intertemporal pricing results

(1) (2) (3) (4)
Dependent variable: ln(Price) ln(Price) ln(Price) ln(Price)

MktShare -0.032 -0.250 -0.009 -0.226
(0.258) (0.252) (0.259) (0.253)

HHI 0.242*** 0.122 0.238*** 0.120
(0.082) (0.077) (0.082) (0.077)

DaysToDeparture 1-2 0.744*** 0.753*** 0.722*** 0.731***
(0.019) (0.019) (0.019) (0.019)

DaysToDeparture 3-6 0.506*** 0.514*** 0.485*** 0.494***
(0.023) (0.023) (0.022) (0.023)

DaysToDeparture 7-13 0.268*** 0.275*** 0.251*** 0.258***
(0.019) (0.019) (0.018) (0.018)

DaysToDeparture 14-20 0.061*** 0.067*** 0.048*** 0.055***
(0.007) (0.007) (0.007) (0.007)

BookingJanuary2020 0.121*** 0.117***
(0.005) (0.005)

BookingFebruary2020 0.057*** 0.048*** 0.176*** 0.163***
(0.005) (0.005) (0.009) (0.009)

BookingMarch2020 -0.554*** -0.521*** -0.425*** -0.396***
(0.020) (0.019) (0.022) (0.022)

BookingApril2020 -0.512*** -0.192*** -0.380*** -0.066***
(0.031) (0.025) (0.032) (0.026)

BookingMay2020 -0.333*** -0.101*** -0.196*** 0.031
(0.035) (0.033) (0.035) (0.033)

BookingJune2020 -0.246*** -0.172*** -0.101** -0.033
(0.040) (0.039) (0.040) (0.039)

BookingJuly2020 -0.406*** -0.248*** -0.252*** -0.103**
(0.045) (0.042) (0.045) (0.043)

BookingAugust2020 -0.368*** -0.245*** -0.200*** -0.086*
(0.051) (0.047) (0.051) (0.047)

InfectionsOrig -0.006 -0.006
(0.006) (0.006)

InfectionsDest -0.024*** -0.023***
(0.005) (0.005)

StayHomeOrig -0.219*** -0.219***
(0.022) (0.022)

StayHomeDest -0.147*** -0.147***
(0.023) (0.023)

Quarantine -0.108*** -0.108***
(0.028) (0.028)

Kleibergen-Paap χ2 Stat. 37.258*** 37.585*** 37.254*** 37.580***
Kleibergen-Paap Wald F Stat. 33.488*** 33.948*** 33.477*** 33.938***
Adjusted R2 0.228 0.250 0.231 0.253
Observations 42,801,983 42,801,983 42,801,983 42,801,983

Notes: MktShr and HHI are treated as endogenous variables and instrumented for using five-week lags of MktShr and HHI
on the same route and number of days to departure as the observed flight. All specifications include flight-date fixed effects that
control for any time-invariant flight, carrier, and route-specific characteristics that affect fares. Standard errors are clustered at
the route-level. *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.
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Table A.6: First-stage estimates for Table 2

(1) (2) (3) (4) (5) (6)
Dependent variable MktShare HHI MktShare HHI MktShare HHI
Past-year MktShare 0.497*** -0.307*** 0.396*** -0.129*** 0.346*** -0.054

(0.034) (0.053) (0.025) (0.047) (0.022) (0.042)
Past-year HHI -0.007*** 0.018* -0.003* 0.021** -0.002 0.019**

(0.002) (0.009) (0.001) (0.009) (0.001) (0.008)
NbrDestinations -0.004* -0.042*** 0.000 -0.034*** 0.002 -0.028***

(0.002) (0.007) (0.002) (0.006) (0.002) (0.006)
Holiday 0.004*** -0.011** 0.006*** -0.007 0.006*** -0.006

(0.001) (0.005) (0.001) (0.005) (0.001) (0.005)
Weekend 0.001 -0.002 0.002** -0.001 0.002*** -0.001

(0.001) (0.002) (0.001) (0.002) (0.001) (0.002)
PartialCovidBook 0.026*** 0.047*** 0.018*** 0.026*** 0.013*** 0.017**

(0.006) (0.011) (0.005) (0.008) (0.004) (0.007)
FullCovidBook 0.009 -0.011 0.016*** -0.012 0.017*** -0.011

(0.006) (0.011) (0.006) (0.012) (0.005) (0.012)
InfectionsOrigBook 0.003 0.009* 0.004 0.010** 0.003 0.010**

(0.002) (0.005) (0.003) (0.004) (0.002) (0.004)
InfectionsDestBook 0.004*** 0.008** 0.005** 0.010** 0.004* 0.008**

(0.001) (0.004) (0.002) (0.004) (0.002) (0.004)
StayHomeOrigBook 0.027*** 0.043*** 0.074*** 0.126*** 0.084*** 0.115***

(0.007) (0.012) (0.012) (0.027) (0.011) (0.026)
StayHomeDestBook 0.016** 0.039*** 0.053*** 0.039 0.053*** 0.050**

(0.008) (0.014) (0.012) (0.026) (0.012) (0.024)
QuarantineBook 0.013 0.005 0.005 -0.003 -0.001 -0.028

(0.015) (0.022) (0.018) (0.030) (0.015) (0.026)
R2 0.078 0.038 0.076 0.025 0.069 0.016
Observations 787,994 787,994 569,272 569,272 499,726 499,726

Notes: Due to varying sample sizes, columns (1) and (2) apply when Ginilodd, ln(CV), or ln(Pmax−Pmin) are
the dependent variables; columns (3) and (4) apply when Gini30lodd is the dependent variable; columns (5)
and (6) apply when Gini20lodd is the dependent variable. All specifications include flight-code fixed effects
that control for any flight-code-invariant characteristics that do not differ across departure dates (e.g., route,
operating carrier, time-of-departure). Constant is included but not reported. Standard errors are clustered
by route. *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10
percent level.
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