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Abstract

This meta-study analyzes the productivity effects of industrial robots. More

than 1800 estimates from 85 primary studies are collected. The meta-analytic ev-

idence suggests that robotization has so far provided, at best, a small boost to

productivity. There is strong evidence of positive publication bias. These findings

are observed across all measures of productivity used in the primary literature and

are robust to several modern meta-analytic estimators. My analysis of the drivers

of heterogeneity among the findings of primary studies points to diminishing re-

turns to robot adoption. I also find evidence that econometric methods, the level of

analysis, as well as the choice of control variables and robot data can influence the

effect size. Finally, several explanatory factors for the emergence of a productivity

paradox in the context of robotics are discussed.
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1 Introduction

One of the key lessons in economics is that increases in productivity are the prerequisite

for long-term economic growth (Solow, 1956; Swan, 1956; Kaldor, 1961). Nobel laureate

Paul Krugman (1997, p. 11) famously wrote: ”Productivity isn’t everything, but in the

long run it is almost everything.” He further elaborates: ”A country’s ability to improve

its standard of living over time depends almost entirely on its ability to raise its output

per worker.” In line with this, continuous growth of labor productivity is the key for

sustained economic growth, and a large body of the economic literature deals with pro-

ductivity and its determinants (Kim and Loayza, 2019). Within this body of literature,

a strong focus has been placed on the role of innovation, R&D, and new technologies for

economic growth (e.g., Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt,

1992; Bresnahan and Trajtenberg, 1995; McGuckin et al., 1998; Jones, 2002; Edquist

and Henrekson, 2006; Jones and Liu, 2024). The influence of investments in information

and communication technologies (ICT) on productivity has attracted particular interest

(Stiroh, 2005; Cardona et al., 2013; Polák, 2017; Stanley et al., 2018; Inklaar et al., 2020;

Nordhaus, 2021; Growiec, 2023). Within the last decade, the pioneering studies of Jäger

et al. (2015), Jäger et al. (2016), and Graetz and Michaels (2018) extended the scope of

examined technologies by fueling a new strand of literature that focuses on the produc-

tivity effects of industrial robots. Industrial robots are fully autonomous machines that

do not require a human operator and can be re-programmed to perform several tasks

such as handling or processing operations (e.g., assembling, painting, welding, cutting,

or grinding) (Jurkat et al., 2022). Graetz and Michaels (2018) showed a clear positive

impact of robot use on the growth in labor productivity, caused by an increase in value

added not accompanied by a reduction in hours worked. Since then, many further articles

have scrutinized the relationship between robot adoption and productivity, using various

methods and levels of analysis, covering different countries, and reporting varying effect

sizes. My quantitative meta-study on the average effect and the drivers of heterogeneity

within this field of research contributes to several strands of the literature dealing with

the determinants of productivity and economic growth.

First, this meta-study contributes to the longstanding academic debate on the so-called

“productivity paradox” of ICT (Brynjolfsson, 1993). Solow (1987) foundationally ex-

pressed in his well-known quote: “You can see the computer age everywhere but in the

productivity statistics.” Despite the enormous innovation, investments, and usage of ICT,

little productivity growth was observed. The wealth of studies examining the growth and

productivity effects of ICT has paved the way for several meta-studies in this field: Stan-

ley et al. (2018, p. 716) analyze the effect of different types of ICT on economic growth

at the country level and conclude that ICT has made a positive contribution on average,
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while this effect is “unexpectedly weak”. Similarly, Polák (2017) finds only a small pro-

ductivity effect of ICT at the firm-level, which is more than ten times lower than the result

of Stiroh (2005)’s meta-analysis after updating the literature and additionally correcting

for publication bias. The link between ICT and robots consists in the fact, that the in-

stallation of robots typically involves designing a completely revised production system

with a significant amount of complementary investment in ICT equipment (IFR, 2020, p.

49). Thus, my meta-analysis addresses the question whether robots can help overcome

the productivity paradox of ICT.

The second strand deals with the clear slowdown in productivity growth in recent decades

that many advanced economies have suffered (Cette et al., 2021a; Cette et al., 2021b; Eder

et al., 2023; Goldin et al., 2024). This pattern is illustrated in Figure 1. The sluggish

productivity development will likely be exacerbated by the projected reduction in the

workforce due to the demographic decline in these countries (Park et al., 2021). For in-

stance, Leitner and Stehrer (2019) estimate that the growth of labor productivity must be

more than doubled to keep real GDP growth constant in face of the shrinking workforce.

At the same time, robot usage has significantly increased (see Figure 1). My meta-analysis

helps answer the question if robot deployment can sufficiently raise productivity to cush-

ion the reduced growth potential of economies challenged by a demographic decline.

Third, technological progress, typically measured by total factor productivity (TFP), is

essential for the successful climate-neutral transformation of economies without cutting

prosperity. Robotized production systems may increase efficiency enabling a reduction in

material and energy inputs for the same output, thereby reducing the emission of pollu-

tants (Chen et al., 2022; Huang et al., 2022; Li et al., 2022; Liu et al., 2022a; Liu et al.,

2022b; Wu, 2023). However, efficiency gains may also be associated with reduced produc-

tions costs, increasing demand, and a upscaling of production, leading to a rebound effect

that adversely affects environmental outcomes (Luan et al., 2022). Including articles in

my study that focus on the “green productivity” effects of robotization contributes to the

empirical question whether robots enable sustainable economic growth not only by in-

creasing TFP and labor productivity but also through improved environmental efficiency.

Fourth, by examining whether there are different magnitudes of productivity increases

through robotization between advanced and developing/emerging economies, I contribute

to explaining economic convergence. For instance, the findings of Eder et al. (2023) sug-

gest that the contribution of robots to labor productivity growth is higher for emerging

countries than for developed economies, supporting the idea of varying productivity im-

pacts across different economic contexts.

Fifth, the multi-faceted literature on the labor market effects of automation distinguishes

three main transmission channels (Acemoglu and Restrepo, 2019; Acemoglu and Restrepo,
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(a) Labor productivity growth (GDP per hour worked), 5-year moving average.

Source: OECD (2024c), own calculations.

(b) Robot density (stock per million hours worked).

Source: IFR (2023), OECD (2024a), OECD (2024b), own calculations.

Figure 1: Evolution of labor productivity growth and robot density

2020; Hötte et al., 2024): 1) a displacement effect that reduces labor demand and thus

wages as robots perform tasks previously done by workers; 2) a reinstatement effect com-

prising the creation of new tasks and occupations, as well as the reallocation of labor

within and across industries or firms; 3) a productivity effect as the replacement of less

cost-effective labor and technological progress increases productivity in automated tasks

as well as the value-added by workers performing tasks complementary to robots. My

meta-analysis enables an evaluation of the strength of this productivity effect.

In light of the rapid technological progress in artificial intelligence (AI), synthesizing the

empirical literature on the productivity effects of robots to provide answers to these five

fundamental aspects of recent economic research is particularly pressing. This progress

has the potential to enormously expand the scope of technological feasibility of automat-

ing tasks through AI-based robots (IFR, 2023, pp. 5). Some authors view robotization as

part of a ”fourth industrial revolution” (e.g., Schwab, 2016; Philbeck and Davis, 2018).
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Others, in turn, emphasize that robot adoption is a normal pattern of industrial develop-

ment (Fernández-Maćıas et al., 2021) or a continued structural change towards a service

and information society that was initiated by digital technologies (”third industrial revolu-

tion”) (Vermeulen et al., 2018; Cetrulo and Nuvolari, 2019; Matthess and Kunkel, 2020).

Assessing the strength of the productivity boost robots have exerted so far, contributes

to the discussion on how revolutionary this technology may be.

My meta-study closely follows the guidelines as suggested by Havránek et al. (2020) and

Irsova et al. (2023). By means of a systematic literature research, I identified 85 studies

with 1849 estimates for the impact of robots on productivity. Most of these papers are

examining the impact of robot use on labor productivity and TFP. I compute partial cor-

relation coefficients (PCCs) as comparable effect size and employ several meta-regression

models. The meta-analytic evidence suggests that robotization has so far provided, at

best, a small boost to productivity. I find strong evidence of positive publication bias.

These findings are observed across all measures of productivity used in the primary liter-

ature and robust to several modern, meta-analytic estimators. My analysis of the drivers

of heterogeneity in the primary literature points to diminishing returns to robot adoption.

This can be harmonized with the notion of an increasing level of difficulty in automating

further tasks (Acemoglu, 2024) and the deployment of ”so-so technologies” with advanc-

ing automation, or inefficiencies from excessive automation as mentioned by Acemoglu

and Restrepo (2019). I also find evidence that econometric methods, the level of analysis,

as well as the choice of control variables and robot data can influence the effect size.

The remainder of my paper is structured as follows: Section 2 provides an overview of the

existing empirical literature on the productivity effects of robotization and some related

meta-studies in economics. Section 3 presents the process of data collection and Section

4 describes the methodology. Section 5 studies the overall effect of robot adoption on

productivity and tests for publication bias. Section 6 analyzes the heterogeneity of em-

pirical results by means of a multivariate meta-regression framework including a matrix of

moderator variables. In Section 7, several robustness checks are implemented. Section 8

discusses explanatory factors that may contribute to the productivity paradox of robots.

Finally, Section 9 concludes and provides some recommendations for future research.

2 Literature review

The strand of literature on the productivity effects of robotization was pioneered by Graetz

and Michaels, 2018. Using data from the International Federation of Robotics (IFR) for

17 industrialized countries in 14 sectors from 1993-2007, they identified a clear, positive

relationship between robot use and growth in labor productivity, which is caused by an
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increase in value added and not by a reduction in hours worked. According to Graetz and

Michaels (2018), the increase in value added by the robotization of production results in

price reductions on the goods markets that benefit consumers. They also show a positive

link between robotization and the development of TFP. Using a counterfactual analysis,

the authors calculate that labor productivity would have been 5.1 percent lower on aver-

age without robotization, which implies an annual productivity growth of 0.36 percentage

points for the period under investigation.

Building upon the pioneer study of Graetz and Michaels (2018), many further studies ex-

amined the productivity effects of robot adoption. The results are predominantly positive

but reveal a more nuanced picture. Jungmittag and Pesole (2019) and Kromann et al.

(2020) model robot usage as capital-augmenting technological progress that increases the

quality of the non-ICT capital input and find a positive effect on productivity growth

at the country-industry level. Acemoglu et al. (2020a), Alguacil et al. (2022), Bettiol

et al. (2024), Bonfiglioli et al. (2024), Duan et al. (2023), and Koch et al. (2021) provide

evidence for positive productivity effects of robot adoption at the firm level. Bekhtiar

et al. (2024) criticize the identification strategy of Graetz and Michaels (2018) and repli-

cate their study by focusing on those industries with a significant use of industrial robots

(manufacturing + mining). In the reduced sample, the effect on labor productivity is

only half as large as the results published by Graetz and Michaels (2018) and the price

effects lose their statistical significance. Almeida and Sequeira (2023) fail even to find

any significant productivity-enhancing effect in the manufacturing sector. Almeida and

Sequeira (2024) extend Graetz and Michaels (2018)’s empirical analysis by covering more

countries and a longer timer period from 1997 to 2017. They find that the productivity

effects from robotization have markedly decreased in the more recent period from 2008

to 2017.

According to Fu et al. (2021), the positive effect of robots on labor productivity is limited

to industrialized countries and cannot be proven in developing countries. In contrast,

Eder et al. (2023) find that the contribution of robots to labor productivity growth is

higher for emerging countries than developed economies, thereby fostering economic con-

vergence. Also, quite a number of studies report positive productivity effects for devel-

oping/emerging countries, e.g., Rodrigo (2021) for Brazil, Cal̀ı and Presidente (2022) for

Indonesia, Starovatova (2023) for the Russian Federation, as well as Wu (2023), Zhang

et al. (2023b), Zhao et al. (2024), and Wang et al. (2024) for China. Moreover, Capello

et al. (2022) do not detect any influence of the use of robots on labor productivity in

260 regions of 24 European countries in the period from 2013 to 2017. Following the

”Solow paradox” (Solow, 1987) in the ICT context, they therefore speak of a ”modern

Solow paradox”. As the main reason behind this paradox, Capello et al. (2022) identify a
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negative reinstatement effect: labor is reallocated from the manufacturing sector to less

productive sectors. Similarly, Park et al. (2021) do not find evidence that robot adoption

directly raises productivity in the Republic of Korea.

As Stiebale et al. (2024) show at the industry level, robotization increases the productiv-

ity, profit margins, and total profits of firms with the highest initial productivity, profit

margins, or profitability, but has insignificant or negative effects on the other firms in the

respective industry. They conclude that the use of robots primarily drives market concen-

tration through the emergence of ”superstar firms” and thus prevents possible price reduc-

tions. Almeida and Sequeira (2024), however, employ a quantile regression approach and

find a stronger, positive effect of robotization on labor productivity in country-industry

pairs with lower productivity. Almeida and Sequeira (2023) additionally estimate the

productivity effects for different intensities of robot use and document significantly neg-

ative effects for the lowest intensity and null effects for the highest intensity, while the

strongest link between robotization and productivity gains is found in the middle of the

distribution.

From a theoretical point of view, several mechanisms linking robot usage and productiv-

ity can be distinguished. In a standard Cobb-Douglas production function with constant

returns to scale, changes in output are determined by variations in the production fac-

tors, labor and capital, or a change in TFP. Dividing output by the labor volume (hours

worked) results in labor productivity, which can be increased through three main mech-

anisms (GCEE, 2016, pp. 284–85). Firstly, it can result from raising capital per hour

worked, i.e., capital deepening. This illustrates the direct link between investments in

equipment such as ICT or robots and labor productivity. If robots displace workers from

tasks previously performed by human labor, the capital deepening effect will be par-

ticularly pronounced and may allow firms to benefit from cost-savings by substituting

relatively more expensive labor (Acemoglu and Restrepo, 2019). In a task-based model,

one can additionally capture a productivity-enhancing reinstatement effect as automa-

tion creates new tasks that exploit the comparative advantage of labor (Acemoglu and

Restrepo, 2019; Acemoglu and Restrepo, 2018c; Acemoglu and Restrepo, 2018b). Sec-

ondly, an increase in TFP can boost labor productivity. TFP is supposed to measure

technological progress as a result of process and product innovation that enables produc-

ing more with the same amount of input factors. Robotic systems may be used to increase

the efficiency of production processes (e.g., by increasing accuracy, avoiding human errors,

or improving management efficiency), to realize product innovations, or to spend more on

R&D by saving labor costs (Deng et al., 2024; Duan et al., 2023; Liu et al., 2020; Zhang

et al., 2023b; Zhao and Yang, 2022; Dixon et al., 2021). Thirdly, improving the skills of

the workforce can contribute to a rise in labor productivity. If robots primarily replace
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less-skilled workers, create incentives for investment in training, or facilitate knowledge

spillovers, this can raise labor productivity by improving the human capital structure

as suggested by Graetz and Michaels (2018), Duan et al. (2023), Zhang et al. (2023b),

Zhang et al. (2024), and Zhao and Yang (2022)). Moreover, these three mechanisms are

closely related to each other. For example, a higher skill-level of employees may increase

innovation activity and incentivize further investment in advanced equipment, i.e., further

capital deepening, thereby possibly improving TFP. A mismatch between required skills

and the needs of automation technologies may hamper technology adoption or reduce the

productivity gains after adoption (Acemoglu and Restrepo, 2018a).

Applying the empirical estimates of the productivity increase through robot usage from

Graetz and Michaels (2018) to a growth accounting framework, Cette et al. (2021a) and

Cette et al. (2021b) find empirical evidence for the first and second theoretical mechanism,

i.e., a contribution of robot usage to productivity growth via capital deepening and TFP.

However, they also show that robots are not a main driver of labor productivity growth in

the period from 1960 to 2019 (Cette et al., 2021a) and conclude that ”robotization does

not appear to be the source of a significant revival in productivity” (Cette et al., 2021b).

Upchurch (2018) and Nordhaus (2021) discuss whether we are approaching an ”economic

singularity”, i.e., a situation in which super-intelligent machines are able to innovate

production processes, thereby enabling rapid technological progress and unbounded eco-

nomic growth, while leaving the relative performance of humans negligible. In a related

approach, Growiec (2023) develops a growth model with hardware (”brawn input”, com-

prising physical capital and human physical labor) and software (”brain input”, compris-

ing pre-programmed software and human cognitive work) as input factors instead of tradi-

tional labor and capital. In this framework, a fraction of physical capital is programmable

hardware like industrial robots. He outlines a scenario of full automation where the pace

of accumulation of programmable hardware will determine the pace of economic growth,

i.e., digital performance indicators (e.g., computing power, storage capacity, bandwidth)

and the abilities of robotic hardware would become the engine of economic growth. If

additionally technological progress is assumed to be partly ”hardware-augmenting”, for

example by increasing the energy efficiency of computers and robots, this would lead to

an ever-increasing long-run growth rate of GDP, i.e., an ”economic singularity”. Based on

theoretical and empirical arguments, Nordhaus (2021) concludes that such a singularity

will, if at all, only be seen in the distant future. Similarly, Acemoglu (2024) predicts only

modest TFP gains from AI over the next 10 years of less than 0.53% in total.

In general, leveraging the full potential from adopting new technologies requires comple-

mentary investments and innovations in the realm of business organization, workplace

practices, intangible capital, and human capital (Bresnahan et al., 2002; Brynjolfsson and
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Hitt, 2000; Dixon et al., 2021; Vrontis et al., 2021; Brynjolfsson et al., 2021; Fornino

and Manera, 2022). This argument also suggests that it takes time until the productivity

effects of robotization can fully materialize. In the short-run, adjustment costs associ-

ated with complementary measures may even explain a decline in productivity (Basu et

al., 2001; Brynjolfsson et al., 2021). This view is supported by Du and Lin (2022) who

find evidence in favor of a U-shaped relationship between robot use and TFP in China.

An ”economic singularity” as discussed by Nordhaus (2021) and Growiec (2023) would

require an exponential relationship between robots and productivity after crossing a U-

shaped turning point, leading to ever-increasing economic growth. Cal̀ı and Presidente

(2022), however, find evidence for diminishing productivity returns to robot adoption at

the plant-level in Indonesia. A concave relationship between automation and produc-

tivity gains is also in line with Nordhaus (2021) who concludes that ”the Singularity is

not near”. Capello et al. (2022), however, do not find evidence that robot adoption is

characterized by decreasing or increasing productivity returns.

A significant number of studies included in my meta-study view a positive productivity

effect of robot use as a mechanism for other relationships examined, especially when the

focus is on the impact of robot adoption on indicators of environmental sustainability. In

a sample of 17 manufacturing sectors in 38 countries Wang et al. (2022) find that indus-

trial robots improved energy intensity between 2000 and 2014, while an increase in TFP is

shown to be one of the mechanisms. Similarly, Liu et al. (2021), Huang et al. (2022), and

Li et al. (2023) document that productivity gains are a mechanism for improving energy

performance through robot adoption. Zhang and Shen (2023), Li et al. (2022), Zhu et al.

(2023), and Song et al. (2022) show that robot use can reduce the intensity of indus-

trial emissions by raising productivity. Moreover, there are studies that use ”green TFP”

(GTFP) as dependent variable, i.e., a special concept of TFP additionally accounting for

undesired output in the form of emissions, pollutants, or waste. For instance, Zhang et al.

(2022), Zhao et al. (2022), Wu (2023), and Chen et al. (2024) find that robotization can

contribute to sustainable or ”green” growth. Yang and Liu (2024) restrict that robot use

only improves GTFP if strong environmental regulation is in place.

My paper is further related to the growing literature of meta-studies in economics. Several

of these meta-studies deal with the determinants of economic growth: Doucouliagos and

Ulubaşoğlu (2008) analyze the relationship between democracy and economic growth,

Klomp and Valckx (2014) examine the influence of natural disasters, Valickova et al.

(2015), Bijlsma et al. (2018), and Iwasaki and Kočenda (2024) study the significance of

financial development, Havranek et al. (2016) the effect of natural resources, Baskaran et

al. (2016) the impact of government decentralization, Cazachevici et al. (2020) scrutinize

the role of remittances, Afonso et al. (2020) the effect of the shadow economy, Gechert
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and Heimberger (2022) the impact of corporate tax cuts, Ridhwan et al. (2022) the role of

health, Heimberger (2023) the influence of public debt levels, and Ridhwan et al. (2024)

meta-analyze the real exchange rate-growth nexus. Further, Doucouliagos and Laroche

(2003) examine the effect of unions on productivity, Ugur et al. (2020) meta-analyze the

productivity effects from R&D spillovers, and several meta-studies consider productivity

spillovers from FDI (Gorg and Strobl, 2001; Meyer and Sinani, 2009; Wooster and Diebel,

2010; Havranek and Irsova, 2010; Iršová and Havránek, 2013; Mebratie and Bergeijk,

2013; Iwasaki and Tokunaga, 2016; Demena and Bergeijk, 2017; Bruno and Cipollina,

2018).

A strand of literature closely related to the productivity effects of robots is the long-

standing debate on the productivity effects of ICT as well as technology adoption in

general. Cardona et al. (2013), Schweikl and Obermaier (2020), and Vu et al. (2020) pro-

vide a review of the empirical literature on the relationship between ICT, productivity,

and growth. Foster and Rosenzweig (2010), Mondolo (2021), Filippi et al. (2023), Mon-

tobbio et al. (2023), Hötte et al. (2023), and Restrepo (2023) take a broader perspective

by reviewing the economic effects of technology adoption. A comprehensive review of

the economic and social effects of robot adoption can be found in Klump et al. (2021); a

review of the economic effects of AI is available in Lu and Zhou (2021). Going beyond

descriptive evidence, Kohli and Devaraj (2003), Stiroh (2005), Polák (2017) and Stanley

et al. (2018) meta-analyze the effect of ICT on economic performance. Although these

meta-studies reject the Solow-paradox in its strongest form, i.e., a null effect of ICT on

productivity, they support it in its less strict form, i.e., an economically weak effect, es-

pecially after correcting the primary literature for publication bias. There are already a

few meta-studies on the economic effects of robots and automation: Pinheiro et al. (2023)

find evidence for a positive link between automation and reshoring; Jurkat et al. (2023)

and Guarascio et al. (2025) meta-analyze the labor-market effects of robots and both find

only negligible effects.

3 Data collection

3.1 Literature research and selection criteria

My systematic literature research was conducted at the end of December 2023. I employed

Google Scholar, JSTOR, and IDEAS/RePEc as search engines using the keywords ”in-

dustrial + robot + productivity” and 2018 as start year. This research resulted in more

than 2,000 hits in total.1 I chose 2018 as the start year because it marks the year in which

1From Google Scholar, the first 1,000 hits (sorted by relevance) were retrieved.
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the first article on the productivity effects of robots by Graetz and Michaels (2018) was

published in a scientific journal. To identify relevant studies, my literature research was

assisted by machine learning using the software ASReview (van de Schoot et al., 2021).

This AI tool sorts the literature records by relevance after specifying prior knowledge on

relevant and irrelevant records. After labeling 25 relevant and 30 irrelevant records, I

used the default settings for the active learning model based on Näıve Bayes and started

screening titles and abstracts. Defining the criterion for stopping the screening process is

left to the reviewer and needs to balance the costs of continued screening with the risk

of not including relevant records (Boetje and van de Schoot, 2024). To comply with the

guidelines of Irsova et al. (2023) for meta-analyses and the recommendations of Ros et al.

(2017), van de Schoot et al. (2021), Campos et al. (2024), and Boetje and van de Schoot

(2024) for active learning-based screening, I apply a mixed strategy: screening stops when

at least 500 records had been screened AND an uninterrupted sequence of 5% irrelevant

records was observed (i.e., a row of 2152× 0.05 ≈ 108 irrelevant records).2 Furthermore,

I applied ”snowballing” by checking the references of all eligible studies to find additional

relevant studies (Irsova et al., 2023). The collection of primary studies was updated for

meanwhile published studies until the end of June 2024.

I selected all primary studies which meet the following criteria: (1) The paper must deal

with industrial robots according to ISO standard 8373:2012 (§ 2.9) and their effect on an

appropriate measure of productivity by applying econometric methods. The IFR (2020)

defines an industrial robot according to the ISO standard 8373:2012 (§ 2.9) as an “auto-

matically controlled, reprogrammable, multipurpose manipulator programmable in three

or more axes, which may be either fixed in place or mobile for use in industrial automa-

tion applications”. I adhere to this definition and exclude papers with a broader measure

of automation comprising, for instance, service robots, numerically controlled machines,

digital technologies, or AI (e.g., Benassi et al., 2022; Dinlersoz and Wolf, 2024; Horvat

et al., 2019; Lyu and Liu, 2021; Xia et al., 2024; Zhu et al., 2024). Industrial robots differ

significantly from other types of automated capital in the sense that they can truly sub-

stitute for human labor. The precise definition of industrial robots in the ISO standard

avoids confusing the productivity effects of robots with other automation technologies as

well as a significantly varying scope of technologies across studies. Nevertheless, data on

the usage of industrial robots can be understood as a proxy for automation in general

(Jurkat et al., 2022). For the sake of comparability, estimations within primary studies

2van de Schoot et al. (2021) show that ASReview enables to find 95% of the eligible studies among the

records obtained from the literature research after screening between only 8% to 33% of the studies.

Information on the reproducibility of ASReview-assisted literature research is provided in Lombaers

et al. (2024). An extensive discussion on stopping rules in AI-assisted screening is available in König

et al., 2024.
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that further split the robot measure into certain robot types (e.g., Deng et al., 2024 and

Li et al., 2024) or only consider robots in specific industries to estimate the productivity

effects in the full study sample are excluded (e.g., Chang et al., 2023; Zhao et al., 2022).

(2) Measures of productivity considered suitable are continuous measures of labor pro-

ductivity, TFP, or GTFP.3 Within these three categories, different measures and compu-

tational methods were used in the primary literature. Labor productivity encompasses

varying measures that divide output (value added, revenue, or GDP) by labor input

(workers, employees, hours worked, or labor expenses).4 The simplest method to com-

pute TFP is using the ”Solow-residual” from an OLS regression of output on the capital

stock, labor input, and intermediate inputs (e.g., Hötte et al., 2024; Deng et al., 2024;

Acemoglu et al., 2020a). OLS estimates of production functions, however, are suspected

of producing biased parameters and thus biased estimates of productivity, owing to a

potential correlation between unobserved productivity shocks and input levels (Olley and

Pakes, 1996; Levinsohn and Petrin, 2003). As a result, several methods have been de-

veloped to overcome this endogeneity issue. The most frequently employed methods for

estimating TFP are the Olley-Pakes (OP) and Levinsohn-Petrin (LP) method. Olley and

Pakes (1996) develop a semi-parametric two-step estimation procedure that uses invest-

ment as a proxy for unobservable productivity shocks (for a practical implementation see

Yasar et al. (2008)). Levinsohn and Petrin (2003) extend the OP estimation framework

and suggest using intermediate inputs instead of investment as a proxy for unobservable

shocks (for a practical implementation see Petrin et al., 2004). A further refinement of

the two-step estimation procedure was introduced by the control function approach of

Ackerberg et al. (2015) (for a practical implementation see Manjón and Manez (2016)).

Wooldridge (2009) instead proposed a one-step estimation based on generalized method

of moments.

Furthermore, quite a number of authors use a distance function approach that evaluates

the distance of decision-making units from the production efficiency frontier and results

in a Malmquist productivity index as a measure of TFP (Malmquist, 1953; Carlaw and

Lipsey, 2003). In this approach, the production frontier is typically constructed non-

3A very low number of estimates is reported for a single-factor productivity other than labor productivity:

Hötte et al. (2024) report estimates for capital productivity; three studies use varying measures of energy

productivity: Chen et al. (2024) report three estimations with energy productivity (ratio of GDP to

energy consumption) as dependent variable; the study of Li et al. (2023) contains one estimation with

the ratio of output to fuel coal consumption as outcome variable; Zhou et al. (2024) uses the ratio of

GDP to electricity consumption as dependent variable. For the sake of comparability, these estimates

are excluded from my meta-study.
4Studies (or estimations within studies) that only use output as the dependent variable are excluded

(e.g., Acemoglu et al., 2023; Dixon et al., 2021).
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parametrically by means of Data Envelopment Analysis (DEA) (Du and Lin, 2022; Li

and Zhou, 2024; Liu et al., 2022b); for a practical implementation of DEA see Ji and Lee

(2010). GTFP is always measured by variants of the Malmquist index, while output is

decomposed into desirable output (GDP or value of industrial output) and undesirable

output (emissions or waste) (Oh, 2010; Zhao et al., 2022; Zhang et al., 2022; Yang and

Liu, 2024). All these methods for measuring TFP and GTFP were deemed eligible for

inclusion in my meta-analysis. A more detailed discussion of the different methods for

TFP estimation can be found in Carlaw and Lipsey (2003), Rovigatti and Mollisi (2018),

and Fragkandreas (2021).

(3) Primary studies must be published in English with public access (via a paid journal

or open access). I did not restrict my search to peer-reviewed papers as the economic

research on the productivity effects of robots is still a young and rapidly evolving field,

resulting in a significant number of working papers.

(4) The study design must provide valid and comparable estimates of the relationship

between robots and productivity. Within a few studies, I omitted event study designs

that are only presented as a figure without exact numbers (Bonfiglioli et al., 2024; Wang,

2022; Huang et al., 2023). The studies by Cette et al. (2021b) and Eder et al. (2023)

were not eligible for inclusion as they measured the percentage contribution of robots to

productivity growth in a growth accounting/decomposition framework, without directly

regressing the respective measure of productivity on robot usage.5 My sample of primary

estimates also focuses on the direct effect of robots on productivity, while estimates of

pure spillover effects (e.g., the impact of robot adoption in other firms on firms without

robot use) are excluded (Lin et al., 2022; Li et al., 2024; Venturini, 2022). The study by

Zhou and Zhang (2024) was dropped due to a very specific study sample focusing on firms

with financial difficulties (”zombie firms”), making it non-comparable to other firm-level

studies.

As will be described in Section 4, I need coefficients and their respective standard errors

(or t-values) as well as the degrees of freedom in order to calculate a comparable effect

size. Sometimes, the reported statistical information was incomplete or required method-

ological information remained unclear. I contacted the authors whenever I faced lacking

information or uncertainty on how to interpret the information provided in the respective

study. In rare cases, when no suitable information was provided by the authors, I had to

exclude the concerned primary estimates from my meta-analysis. In total, I was able to

code 85 primary studies with 1849 estimates. A comprehensive list of all primary studies

included is available in the appendix (see Table A1). The number of estimates per study

5Stanley et al. (2018) also exclude growth accounting studies from their meta-analysis of the effect of

ICT on economic growth.
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ranges from 1 to 549, with a mean of 22 and a median of 6 estimates per study. The

systematic literature research is illustrated in a PRISMA flow diagram in the appendix

(see Figure A1).

3.2 Moderator variables

To examine the drivers of heterogeneity in the primary literature’s findings, a matrix of

moderator variables is coded. It captures study-dependent or estimation-specific char-

acteristics and targets potential biases from omitted variables and misspecification. The

heterogeneity analysis comprises five main groups of moderator variables: (1) data and

estimation characteristics, (2) the measure of productivity, (3) omitted control variables,

(4) subpopulations, and (5) publication quality/ status (see Table 1). Most of the mod-

erator variables are constructed as binary indicators taking on a value of 1 if the estimate

fits the category and 0 otherwise. The description of moderator variables is available in

Table 1.

Three levels of analysis are distinguished. 43 studies are of micro-economic nature at the

firm level, observing the productivity effect of robots at the level where they are actually

deployed. The remainder of estimates comes from more aggregated levels: 12 studies are

at the industry level and 30 studies are at the level of geographic units (countries, regions,

or cities).

The sophistication of econometric methods is captured through the variable non msms. It

indicates estimates that fail to move closer to establishing causality by employing econo-

metric methods meeting the criteria of the ”Maryland Scientific Method Scale” (WW-

CLEG, 2016) for a score of 3 or 4. Methods satisfying these criteria are instrumental

variable (IV) estimations, difference-in-difference (DID) estimations, as well as panel esti-

mations that include year effects, fixed effects at the unit of observation and appropriate

control variables).6 Treating endogeneity by such methods may be important for several

reasons: (i) unobserved shocks can affect both robot adoption and productivity, e.g., a

local recession or industry-specific institutional changes (Acemoglu and Restrepo, 2020);

(ii) certain industries, regions, or firms may select into robot adoption and fundamentally

differ from non-adopting industries/regions/firms, thereby following different trends in

productivity evolution even absent automation; (iii) simultaneity or reverse causality can

be at work, if only more productive firms are able to afford the costs of robot adoption

or if higher labor productivity is associated with higher labor costs that incentivize robot

adoption (Koch et al., 2021; Almeida and Sequeira, 2023). The most frequently applied IV

approach in the primary literature is to instrument robot adoption in the country/region

6The maximum score of 5 is reserved for randomized control trials, which are not available in the primary

literature under research.
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under research by robot adoption in other, comparable countries/regions (Acemoglu and

Restrepo, 2020; Stiebale et al., 2024) or by a measure of task replaceability (Graetz and

Michaels, 2018; Wang et al., 2024).

Data coverage on industrial robots mainly begins in the 1990s (Jurkat et al., 2024). How-

ever, in the initial years, robot adoption rates were rather low. To check if the returns to

robotization change with an increasing intensity of robot adoption, I collect the sample

period for each estimation and calculate its mid-year. I use 2007 as the cutoff to separate

estimates with a mid-year after 2007 from those with a mid-year before or equal to 2007.

The year 2007 is chosen because it is the year before the Financial Crisis and is frequently

used as the final year in primary estimations (e.g., Graetz and Michaels, 2018; Acemoglu

and Restrepo, 2020; Kromann et al., 2020; Bekhtiar et al., 2024).

To assess the quality of the publications, I follow Picchio and Ubaldi (2024) and use the

SCImago Journal Ranking (SJR) index for the respective publication year.7 Unpublished

studies are assigned a SJR value of zero. 91% of the primary estimates come from 68

articles published in academic journals with a mean SJR index of 1.9. 17 studies are

unpublished, i.e., mainly working papers and some dissertations.

7Three journals are not indexed in SCImago: Starovatova (2023) and Zhao et al. (2024) are assigned a

SJR index of zero; for Acemoglu et al. (2020a), the impact factor according to CitEc was used as SJR

index. Articles published in 2024 are assigned the SJR index for year 2023 since the SJR index for 2024

was not yet available.
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4 Methodology

4.1 Partial correlation coefficients

A meta-regression analysis (MRA) requires comparable effect sizes to assess the strength

and direction of empirical estimates (Stanley and Doucouliagos, 2012, pp. 22). To make

the relationship between robots and productivity comparable across diverse specifications

and alternate measures of productivity, I follow the recent literature on economic meta-

analyses and convert each estimated coefficient to a PCC as common effect size (Stanley

et al., 2018; Duan et al., 2020; Cazachevici et al., 2020; Pinheiro et al., 2023; Picchio and

Ubaldi, 2024). PCCs are a unitless measure ranging from −1 to +1 for the strength and

direction of the association between two variables, while holding other variables constant

(Stanley and Doucouliagos, 2012, pp. 24-25; Gustafson, 1961). The PCCis is defined by

the following equation:

PCCis =
tis√

t2is + dfis
(1)

where t denotes the t-statistic and df the degrees of freedom from estimate i in study

s. Following Stanley et al. (2024), the degrees of freedom of primary estimations are

calculated by df = N − k− 1, where N is the number of observations and k is the number

of regressors and/or fixed effects included in the estimation. The PCCs are quite robust

to imprecise measures of df (Stanley and Doucouliagos, 2012, p. 156).8 Table 2 presents

summary statistics for the effect size variables. Doucouliagos (2011) gives guidelines for

the relative strength of PCCs based on 22,000 PCCs drawn from various meta-studies. A

partial correlation coefficient above ±0.33 can be considered large, while a PCC between

±0.17 and ±0.33 constitutes a moderate effect, and a PCC between ±0.07 and ±0.17 is

considered as a small effect.

My meta-study also includes primary estimations that employ an interaction or quadratic

term for the robot variable and thus report more than one coefficient for the relation of

interest.9 To make interaction terms fit into my meta-analysis, I follow Cazachevici et

8In a few cases, the degrees of freedom had to be approximated by making assumptions on the number

of fixed effects included because the exact number was neither provided within the primary study nor

obtained upon request. Specifically, the number of entity fixed effects was approximated by dividing the

number of observations by the number of sample years.
9Estimations with more than one interaction term are excluded from the meta-analysis, e.g., in Du and

Lin (2022), Koch et al. (2021), or Li et al. (2024). Likewise, Tobit estimates are excluded since the

corresponding marginal effect would depend on the value of ALL explanatory variables and the variance

of the error term (relevant for Liu et al. (2022b), Zhang et al. (2022), and Qian and Wang (2022)).
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Table 2: Descriptive statistics for effect size variables

Measure Mean Median SD Min Max

t-value 3.25 2.61 5.03 -12.42 48.96

df 112200.95 3033 495309 5 6227990

PCC 0.07 0.04 0.20 -0.91 0.98

SEPCC 0.04 0.02 0.05 0.00 0.33

Notes: N= 1849. Mean, median, and standard deviation are

weighted using the inverse number of estimates reported per study

as weights.

al. (2020) by computing the marginal effect at the mean and using the delta method to

approximate the associated standard error10:

β = β̂1 + β̂2x̄; SE(β) =

√
SE(β̂1)2 + SE(β̂2)2x̄2 (2)

where β1 denotes the estimate of the robot coefficient for the linear term, β2 is the estimate

of the coefficient for the interaction term, x̄ is the sample mean of the variable interacted11

with the robot measure, SE(β1) is the standard error of the reported coefficient for the

linear term, and SE(β2) is the standard error of the reported coefficient for the interaction

term.

In case of a quadratic term, the effect of robots on productivity is linearized using the

following formula for the marginal effect (Zigraiova and Havranek, 2016):

β = β̂1 + 2β̂2x̄; SE(β) =

√
SE(β̂1)2 + 4SE(β̂2)2x̄2 (3)

where β1 denotes the estimate of the robot coefficient for the linear term, β2 is the estimate

of the robot coefficient for the quadratic term, x̄ is the sample mean of the robot measure,

SE(β1) is the standard error of the reported coefficient for the linear term, and SE(β2) is

the standard error of the reported coefficient for the quadratic term. The marginal effects

and their standard errors computed by Equation (2) or Equation (3) are subsequently

transformed into the PCC in line with Equation (1).

10Since the original datasets used in the respective primary studies are not available, I omit the co-

movement between the estimated coefficients from the formula for SE(β) by assuming the covariances

to be zero.
11If the interacted variable is a binary variable, x̄ is set equal to 1 to compute the marginal effect for the

respective subpopulation.
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4.2 Meta-analytic estimators

Using the PCCs derived from the primary studies, I can now aggregate the information to

an overall mean effect of robots on productivity by computing weighted averages. Meta-

analytic theory and simulations show that the optimal meta-analytic weighting scheme is

based on precision, i.e., the inverse of the estimate’s standard error (Stanley and Doucou-

liagos, 2012, p. 46 ff.Irsova et al., 2023). For each PCCis, the associated standard error

of the effect size is calculated according to (Stanley and Doucouliagos, 2012, p. 25):

SEPCCis
=

√
1− PCC2

is

dfis
=

PCCis

tis
(4)

where tis is the t-value of estimate i in study s and thus identical to the t-value of the

respective PCC. The precision weight is then equal to the inverse of the standard error:

FE1 =
1

SEPCCis

(5)

Assigning these precision weights to primary estimates to summarize an overall effect is

known as the fixed effect estimator (FE) in MRA (Stanley and Doucouliagos, 2012, p.

46).12 Stanley and Doucouliagos (2015) and Stanley and Doucouliagos (2017) argue that

the most appropriate meta-analytic estimator is an unrestricted weighted least squares

(UWLS) estimator using precision weights in the following basic regression:

PCCis = µ+ ϵis (6)

where, in the absence of any bias, µ represents the overall effect, and the error term

ϵis ∼ N(0, σ2
ϵis
) describes the primary sampling error.13

As typically done in economic meta-studies, I include all estimates provided by a primary

12This FE estimator should not be mistaken for a panel-fixed effect estimator in econometric terms. The

intuition is that a more precise estimate (as measured by a smaller standard error) allows a smaller

estimated effect to retain a statistically significant coefficient. Therefore, more weight is attributed to

more precise PCCs.
13Measuring Equation (6) by OLS is not appropriate since the error term is a function of the sampling

error and therefore heteroskedastic, i.e., not independently and identically distributed (Stanley and

Doucouliagos, 2012, p. 61). Thus, Equation (6) must be estimated by weighted least squares to receive

unbiased, consistent, and efficient estimates.
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study if they fit the selection criteria.14 As mentioned in Section 3, the distribution of the

number of estimates per study is highly right-skewed. To avoid an overinflated influence

of a few studies with a large number of estimates, I employ weights additionally adjusted

for the number of estimates per study:

FE2 =
1

SEPCCis
· √ni∈s

(7)

where n is the number of estimates of study s. In doing so, I assign equal weight to studies

rather than estimates for a given precision (Duan et al., 2020). Multiple estimates per

study further raise the concern of study dependence. Estimates from one primary study

usually rely on the same data and similar econometric techniques. This could undermine

the basic assumption of regression analysis that the error terms are independently and

identically distributed. Therefore, I always use robust standard errors clustered at the

study-level to address within-study dependence (Stanley and Doucouliagos, 2012, p. 71).

Moreover, in the multivariate MRA my moderator matrix will capture varying estimation

characteristics and subpopulations examined within a given primary study. In view of

the highly right-skewed distribution of the number of estimates per study, it appears

necessary to adjust the weighting scheme for the number of estimates per study to avoid

an inflated impact of a few studies with a high number of estimates. Thus, FE2 weights

are preferred over FE1 weights.

5 Overall mean effect and publication bias

A simple vote counting based on the 5% significance level reveals that 57% of the estimates

show a positive and statistically significant effect, while 3% report a significantly negative

effect. Forty percent are statistically insignificant, with 29% showing a positive sign and

11% with a negative sign. However, as described by Stanley and Doucouliagos (2012, pp.

43-45), the loss of information involved in the categorical approach of vote counting can

be misleading. Therefore, I calculate further summary measures of the effect size and

14In other disciplines, it is often argued that only one estimate per study should enter the meta-analysis to

avoid study dependence. This could be achieved by selecting the ”best estimate” per study as preferred

by the authors of the primary study or by the meta-analyst; alternatively, one could use an average

effect size per study. In both cases, this would prevent leveraging within-study variation, leading to

a loss of information. Moreover, results could suffer from an arbitrary selection of estimates with the

most favorable sign or effect size. Choosing only one estimate per study is especially misleading if

studies provide estimates for several subpopulations. See Stanley and Doucouliagos (2012, pp. 32-33)

for a discussion of this issue.
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formally test for publication bias.

5.1 Summary measures

Table 3 presents summary measures for the PCCs computed for all primary estimates

collected, while Figure 2 demonstrates the frequency distribution of PCCs by means of

a histogram.15 The summary measures are statistically significant. In terms of economic

significance, only the unweighted mean indicates a small positive effect slightly above

the threshold of 0.07 (Doucouliagos, 2011). With an overall effect size of 0.01, both

FE1 and FE2 suggest a very small effect. This is in line with the highest frequencies of

PCCs being centered around small positive values as shown in Figure 2. The substantial

decline in the mean effect caused by assigning larger weights to more precise studies,

may point to publication bias. In case of publication selection, all averages, weighted or

not, can be biased. Furthermore, under systematic heterogeneity, any measure of average

effect size may blur the picture of the economic phenomenon under research. To capture

systematic heterogeneity, I will include my moderator matrix in Section 6. In the following

subsections, I will investigate the evidence of publication bias.

Table 3: Summary measures of PCCs

Measure Obs. Estimate SE 95% CI

Mean 1837 0.0926 0.0147 [0.0634, 0.1217]

UWLS FE1 1837 0.0104 0.0031 [0.0043, 0.0165]

UWLS FE2 1837 0.0102 0.0019 [0.0063, 0.0140]

Note: Standard errors are clustered at the study level.

5.2 Publication bias

Publication selection describes the process of choosing research results according to sta-

tistical significance or compliance with conventional theories (Stanley and Doucouliagos,

2012, pp. 51). Many existing meta-analyses in economics show evidence of publica-

tion bias (Doucouliagos and Stanley, 2013; Ioannidis et al., 2017), including meta-studies

related to the determinants of economic growth (e.g., Gechert and Heimberger, 2022;

Gunby et al., 2017; Havranek and Irsova, 2011) and on the impact of ICT on productivity

(Polák, 2017; Stanley et al., 2018). Thus, it is essential to formally test and correct for

15When aggregating the effect sizes from all primary studies, 12 primary estimates are dropped to avoid

double counting. These estimates come from Almeida and Sequeira (2024), who report 12 estimates

with cluster-robust standard errors in addition to only robust standard errors. These estimates will be

included in the multivariate MRA of Section 6, as the moderator variable non clse captures whether

primary estimates are based on clustered standard errors.
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Figure 2: Histogram of PCCs

Notes: N = 1837, from 85 studies.

publication bias in the literature on the productivity effects of industrial robots. Usually,

economists assume that the adoption of advanced technologies boosts productivity and

economic growth, and this belief is supported by many well-published theoretical and em-

pirical articles (e.g., Romer, 1990; Parente and Prescott, 1994; Carlaw and Lipsey, 2003;

Acemoglu and Restrepo, 2020; DeCanio, 2016). As a result, researchers might selectively

report positive effects of robots on productivity because they expect such findings to align

with the prevailing view and, therefore, be more likely to be published. Different forms of

publication bias can be distinguished: Authors might decide not to publish insignificant

results or findings that contradict theoretical conventions (Andrews and Kasy, 2019); or

authors ”manipulate” or ”p-hack” their findings by searching for and selectively report-

ing specifications that deliver the desired outcome (Brodeur et al., 2016; Simonsohn et

al., 2014). Accordingly, there are also different approaches to tackle publication bias in

meta-studies that can be grouped into two categories: selection models and funnel-based

techniques (Irsova et al., 2023). Complying with the guidelines in Irsova et al. (2023), the

following subsections implement several models from both categories.

5.2.1 Distribution of t-statistics and selection models

To illustrate the distribution of t-statistics reported in the primary literature, I plot a

histogram and Kernel density estimate in Figure 3. The histogram is suggestive of jumps

at zero and above the critical value for the 5% significance level (t-value = 1.96). The

density also peaks closely above this value. This pattern may point to selective reporting

or p-hacking, i.e., selecting or ”manipulating” estimates for their sign and statistical sig-
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nificance (Andrews and Kasy, 2019; Brodeur et al., 2016; Simonsohn et al., 2014).

To investigate a potential bunching of primary estimates above the 5% significance level,

I follow Cattaneo et al. (2018, 2020) and Picchio and Ubaldi (2024) and test for a dis-

continuity of t-statistics at the value of 1.96, using a nonparametric local polynomial

density estimator. A potential pitfall in examining such a discontinuity is that collecting

coefficients and standard errors from reported regression tables to compute t-statistics is

subject to rounding errors because the number of decimal points shown is limited. This

could generate a bunching of t-statistics at a value of 2 merely as an artifact (Brodeur

et al., 2016). The range of variation of the original t-statistic might even go from insignif-

icant values to highly significant ones (Kranz and Pütz, 2022). To overcome this issue,

Brodeur et al. (2016) propose a de-rounding approach that draws missing digits from a

uniform distribution and Kranz and Pütz (2022) suggest a method that drops observa-

tions which are too coarsely rounded.16 Figure 4 illustrates the evidence of a significant

discontinuity in the reported t-statistics at a value of 1.96.

A related approach is formed by selection models. They aim to capture researchers’ deci-

sions whether or not to submit empirical results, and reviewer decisions whether or not to

publish submissions. In doing so, primary estimates with different significance levels (or

sign) are assumed to have different probabilities of publication (Andrews and Kasy, 2019;

Irsova et al., 2023). It is important to note that the presence of multiple estimates per

study complicates the implementation of selection models. The model of Andrews and

Kasy (2019) (henceforth AK), however, allows to cluster standard errors at the study level.

AK model the publication process through a truncated sampling process. They assume

a population of latent (published or unpublished) studies within an empirical literature.

The result of each study is drawn from a normal distribution, conditional on the true effect

(denoted by Θ) and standard error (denoted by Σ), which are both allowed to vary across

studies. Only the truncated sample of published studies, comprising journal articles and

uploaded working papers, is observable. The probability of publication is modeled as a

function of the t-statistics (denoted by the random variable T with realizations t), i.e.,

16The rounding issue and the discontinuity test is further complicated by the inclusion of marginal

effects in my meta-dataset according to Equations 2 and 3. In specifications with interaction terms, it

might be less clear which term (the linear robot variable or the interaction term?) receives the most

focus from the authors. Moreover, computing marginal effects automatically results in estimates and

standard errors with a higher number of decimal points, compared to the other primary estimates.

These marginal effects are, however, still computed from rounded numbers reported in the respective

study. They might even introduce an additional measurement error as they are based on two coefficients

and two standard errors. Therefore, I follow Picchio and Ubaldi (2024) and exclude specifications with

interaction or quadratic terms from my meta-dataset before performing the discontinuity test.

24



the ratio of the study’s estimate and standard error:

Θ∗ ∼ θ̄ + t(ν̃) · τ̃ , p(T ) ∝



βp,1 if T < −1.96

βp,2 if − 1.96 ≤ T < 0

βp,3 if 0 ≤ T < 1.96

1 if T ≥ 1.96

(8)

Θ∗ denotes the true effect of latent studies and is modeled using a t-distribution with

degrees of freedom ν̃ and location and scale parameters θ̄ and τ̃ , respectively (Andrews

and Kasy, 2019). The probability of publication is allowed to depend on the sign of the

t-statistic T. This is important, as it seems plausible that the publication prospects of a

study might differ depending on whether it found a positive or negative effect of robots on

productivity; and this pattern is also supported by the histogram in Figure 3. Specifically,

the probability of publication is modeled as a step function, with jumps at conventional

critical values, as well as at zero (see Equation 8). Since the probability is only identified

up to scale, the normalization p(t) = 1 for t ≥ 1.96 is imposed.17 Thus, βp,i measure the

publication probability relative to a result that is statistically significant at the 5% level.

Selective publication implies that the distribution of T is reweighted by p(t). Intuitively,

to correct for this form of selectivity, the observed estimates must be reweighted by the

inverse publication probability (Irsova et al., 2023).

The baseline AK selection model specifies parametric models for both the distribution

of true effects as well as the publication probability, and is fit by maximum likelihood.

Moreover, AK develop a GMM estimator that only assumes a functional form for the

publication probability but is nonparametric in the distribution of true effects.18 Applying

both approaches to my meta-dataset strongly rejects the hypothesis of no selectivity (i.e.,

H0 : βp,i = 1). The results are shown in Tables 4 and 5. The baseline AK model suggests

that negative estimates that are statistically significant at the 5% level are almost 20 times

less likely to be published than significantly positive estimates. Likewise, insignificant

estimates are less likely to be published: insignificant estimates with negative sign are

15 times less likely to be published and insignificant estimates with positive sign are

almost six times less likely to be published, relative to significantly positive estimates. θ̄

suggests that the average latent study finds a small positive effect but is not significantly

different from zero. These findings are largely corroborated when the GMM version is

17This is without loss of generality, since p(t) is allowed to be larger than 1 for the other value areas

(Andrews and Kasy, 2019).
18I implement the baseline AK model using the provided replication code in MATLAB and the GMM

version using the replication package provided for R.
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used, although the average true effect across latent studies becomes ten times larger and

the publication probability of significantly negative estimates is three times larger when

the distribution of true effects is not parameterized.

Figure 3: Distribution of t-values

Notes: N = 1837, from 85 studies. The dashed line indicates a t-value of -1.96, the solid line a

t-value of 1.96. For the sake of visibility the range of t-statistics shown is limited to the interval

(-6, 15).

Table 4: AK model results

θ̄ τ̃ ν̃ βp,1 βp,2 βp,3

0.001 0.014 0.922 0.051 0.065 0.169

(0.003) (0.006) (0.112) (0.010) (0.019) (0.037)

Notes: N = 1837. Standard errors clustered at the study level

are in parentheses. θ̄ and τ̃ are location and scale parameters

of a t-distribution with degrees of freedom ν̃. βp,i measures

the publication probability relative to a result that is statisti-

cally significant at the 5% level.

5.2.2 Funnel-based techniques

The presence of publication bias can be visually inspected by a so-called funnel plot in

Figure 5: a scatterplot of the effect sizes against their precision. Without publication bias

(and between-study heterogeneity), the primary estimates should be distributed symmet-

rically around the overall effect size (FE2 in Figure 5) as the sampling error is random.

The typical funnel shape emerges from the measure of precision on the y-axis. Imprecise

estimates at the bottom of the graph are widely dispersed because they have larger stan-

dard errors. More precise estimates with lower standard errors, shown in the upper part

of the illustration, by contrast, are more compactly distributed. The funnel plot shown in
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(a) Rounding issue tackled according to Kranz and Pütz (2022)

Notes: N = 1003, from 68 studies. The two-sided test for the significance of the

discontinuity at 1.96 returns a p-value of 0.0404.

(b) De-rounding approach according to Brodeur et al. (2016)

Notes: N = 1596, from 81 studies. The two-sided test for the significance of

the discontinuity at 1.96 returns a p-value of 0.0039. The result is very similar

when the t-statistics remain unadjusted for rounding (p-value = 0.0028; results

are available upon request).

Figure 4: Discontinuity test of the density of the t-statistic at 1.96

Notes: The solid lines represent the estimated local polynomial density of the

t-statistics (Cattaneo et al., 2018, 2020). The order of the local polynomial is

2 (quadratic). The kernel function used to construct the local polynomial esti-

mator is epanechnikov. The areas around the lines indicate the bias-corrected

confidence intervals at 95%. Standard errors are based on the jackknife estima-

tor. In line with Picchio and Ubaldi (2024), I exclude primary estimations with

quadratic and interaction terms from my meta-dataset to perform the disconti-

nuity test.
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Table 5: GMM AK model results

Θ Σ βp,1 βp,2 βp,3

0.011 0.075 0.158 0.054 0.104

(0.018) (0.019) (0.209) (0.050) (0.075)

Notes: N = 1837. Standard errors clustered at the

study level are in parentheses. Θ and Σ correspond to

the estimation of the mean and standard error of the

true effect across latent studies. βp,i measures the pub-

lication probability relative to a result that is statisti-

cally significant at the 5% level.

Figure 5: Funnel plot of PCCs

Notes: N = 1837, from 85 studies. The dashed line labeled FE2 indicates the value of the FE2 estimator

from Table 3.

Figure 5 is quite asymmetric with more imprecisely estimated PCCs to the right of the

overall effect. The most precise estimates show a very small positive effect, in line with

the estimators FE1 and FE2 in Table 3. This may point to a positive publication bias.

In case of publication bias, the reported effect size is correlated with its standard error.

To formally test for publication bias, I perform the so-called funnel-asymmetry test (FAT)

by estimating the following regression (also called Egger’s regression (Egger et al., 1997;

Stanley and Doucouliagos, 2012, pp. 60 ff.):

PCCis = β0 + β1SEPCCis
+ ϵis (9)

where PCC and SEPCC are the effect size and its associated standard error of estimate i
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in study s as previously defined, and ϵis is the error term. The coefficient β0 measures the

”true” empirical effect corrected for potential publication bias, and testing for its statis-

tical significance is referred to as precision-effect test (PET). Coefficient β1 estimates the

direction and magnitude of publication bias (FAT). Equation (9) exhibits heteroskedas-

ticity by construction because the independent variable is the standard deviation of the

dependent variable. Therefore, it must be estimated by UWLS using the weights given

in Equations (5) and (7).

Table 6 presents the FAT-PET results. I find strong evidence of publication selection

with a ”severe” magnitude of selectivity (β1 > 2) according to the practical guidance of

Doucouliagos and Stanley (2013). A way to control for between-study heterogeneity is

running the precision-weighted FAT-PET model with study fixed effects. Thereby, only

within-study variation is considered, and again a significant and severe magnitude of se-

lectivity is found. The evidence of publication bias is also robust to the ”Meta-Analysis

Instrumental Variable Estimator” (MAIVE) as suggested by Irsova et al. (2024). MAIVE

instruments the reported variance (SE2
PCC) by the inverse of sample size in a 2SLS esti-

mation to treat potential endogeneity coming from spurious precision due to p-hacking in

primary estimations. This reflects that the authors of primary studies may not only ex-

aggerate effect sizes (e.g., by changing control variables) to achieve statistical significance

but also select for smaller standard errors, for instance, by choosing different clustering

or bootstrapping approaches (Irsova et al., 2024).

The precision effect corrected for publication bias shows statistical significance for the

FE2 estimator. However, the effect beyond bias lacks economic significance (PET), as it

is well below the threshold of 0.07. This suggests that industrial robotization has, so far,

had only a marginal effect on productivity.

The FAT-PET approach assumes that publication bias is a linear function of the standard

error, which was criticized by Stanley and Doucouliagos (2014). To relax this assump-

tion, I also implement alternative techniques. My findings are confirmed by non-linear

techniques correcting for publication bias in Table 7.19 Using the squared standard error

of PCC in Equation (9) instead of a linear term is called ”precision effect estimate with

standard error” (PEESE) (Stanley and Doucouliagos, 2014). MAIVE-PEESE refers to

the PEESE version where SE2
PCC is instrumented by the inverse of the sample size (Irsova

et al., 2024). Both estimators suggest a statistically significant ”true” effect that, however,

lacks economic significance. WAAP means ”weighted average of the adequately powered”.

This estimator employs a UWLS weighted average using FE1 weights that is calculated

only on the adequately powered estimates (Ioannidis et al., 2017). Adequate power in

19I also employed the ”endogenous kink” model of Bom and Rachinger (2019). This model, however,

reduces to UWLS FE1, i.e., column (2) of Table 6.
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Table 6: FAT-PET

(1) (2) (3) (4)

UWLS FE1 UWLS FE2 Study-FE MAIVE

Publication bias (β1) 2.9595*** 2.1417*** 3.104*** 2.2371***

(.6803) (.3929) (.3738) (.5369)

Precision effect (β0) .0036 .0072*** .002 .0049

(.0024) (.0026) (.0043) (.0192)

Notes: N = 1837, from 85 studies. Standard errors clustered at the study level

are in parentheses. The specification with study fixed effects and MAIVE are

based on precision weighting (i.e., FE1 weights). ∗∗∗p < .01,∗∗p < .05, ∗p < .1

Table 7: Non-linear techniques correcting for publication bias

(1) (2) (3) (4)

PEESE MAIVE-PEESE WAAP Top 10%

SE2
PCC 15.0104* 8.7937

(8.6603) (5.408)

Precision effect (β0) .01*** .0442** .0063*** .0063***

(.0029) (.0174) (.0017) (.0021)

Observations 1837 1837 164 184

No. of studies 85 85 15 19

Notes: Standard errors clustered at the study level are in parentheses.
∗∗∗p < .01,∗∗p < .05, ∗p < .1

social science research has been conventionally set at 80% or larger. It corresponds to a

probability of a Type II error that is not larger than four times the probability of the Type

I error. As explained by Ioannidis et al. (2017), this implies the following relationship

between the estimate of the ”true” effect (β0) and its standard error (SEPCC):

SEPCCis
≤ |β0|/2.8 (10)

”Top 10%” is the unweighted average among the estimates in the top decile of precision.

Both WAAP and ”Top 10%” point to a statistically significant but very small effect of

robotization on productivity.

5.2.3 Subset analysis

A disadvantage of all approaches to test and correct for publication presented above is

that they do not explain the heterogeneity between primary estimates. A first step toward

analyzing heterogeneity is to apply the FAT-PET approach to subsets of my meta-dataset

(Irsova et al., 2023). This allows to summarize primary research for different empirical

contexts with respect to different measures of productivity, the level of analysis, the

empirical methodology, and the quality of articles. Brodeur et al. (2020), for example,
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Table 8: FAT-PET for subsets

(1) (2) (3) (4) (5) (6) (7) (8) (9)

MSMS IV LP TFP GTFP Top SJR Firm level Aggr. level Elasticity

Publication bias 2.8499*** 2.6173*** 2.0651*** 2.378*** 3.2825** 2.7809*** 1.8629*** 2.2111*** 3.2065***

(.4193) (.5425) (.6267) (.4913) (1.2979) (.391) (.4811) (.687) (1.1459)

Precision effect .0038 .0068** .0028** .0083*** -.0167 .0021 .0075*** .0115 .0031***

(.0023) (.0027) (.0012) (.0027) (.0328) (.0023) (.0027) (.0189) (.0005)

Observations 673 256 1196 506 135 350 423 1414 977

No. of studies 60 35 42 44 12 18 43 42 31

Notes: Standard errors clustered at the study level are in parentheses. MSMS represents the subset of estimates that achieve a score of

3 or 4 on the MSMS. IV refers to the subset of IV estimates (MSMS score of 4). LP represents only estimates for labor productivity,

TFP for total factor productivity, and GTFP for green TFP. Top SJR uses the subset of estimates from journals in the top quartile of

the SJR index in my meta-dataset. Firm level refers to firm-level estimates and ”Aggr. level” to estimates at the level of industries or

geographical units. Elasticity represents the subset of double-log estimations. ∗∗∗p < .01,∗∗p < .05, ∗p < .1

showed that tests based on DID or IV approaches are more likely to suffer from publication

bias. Moreover, one could argue that IV estimates are generally less precise than OLS

estimates, such that IV estimates are penalized by precision weighting in the full meta-

dataset. Similarly, firm-level estimates are typically based on higher sample sizes than

more aggregated estimates and, thus, obtain more weight by precision weighting.

The evidence of publication bias and a very small effect beyond publication bias is robust

across several subsets of primary estimates (Table 8). It holds among estimates that treat

endogeneity, i.e., estimates that achieve a score of 3 or 4 on the MSMS, as well as only

among IV estimates (MSMS score of 4).20 The pattern of publication bias is also evident

for all productivity measures employed in the primary literature. It remains consistent

when focusing solely on estimates in published articles that fall in the top quartile of the

SJR index in my meta-dataset (i.e., SJR ≥ 2.063) as well as for estimates at the firm level

or more aggregated levels.

Focusing on the subset of primary estimates with a log-log specification allows the use of

elasticities instead of PCCs as effect size. This means that the reported coefficient and

its associated standard error can be directly used in the FAT-PET model (Stanley and

Doucouliagos, 2012, pp. 26). Using elasticities as an alternative effect size measure still

provides evidence of a positive publication bias and only a marginally positive effect of

robots on productivity beyond publication bias.

20IV estimates that suffer from a weak instrument are excluded. Moreover, IV estimates using the

”reaching & handling” instrument proposed by Graetz and Michaels (2018) are excluded due to a

violation of the monotonicity assumption as shown by Bekhtiar et al. (2024).

31



6 Drivers of heterogeneity in the primary literature

6.1 Multivariate MRA-model

Equation 9 may result in biased estimates since potential drivers of systematic hetero-

geneity are ignored. For example, a specific method chosen by the authors of primary

studies may affect both the standard error and the effect size. In such cases, the stan-

dard error as explanatory variable will be correlated with the error term, resulting in a

biased estimate of β1 (Havránek, 2015). Hence, I add a matrix of moderator variables, as

described in Section 3.2, to Eq. (9) and estimate the following multivariate MRA model

to identify the drivers of heterogeneity in the primary literature:

PCCis = β0 + β1SEPCCis
+
∑

βkZkis + ϵis (11)

for estimate i in study s, where k represents the number of moderator variables, βk is

the coefficient of the corresponding moderator variable, and ϵis denotes the error term.

My moderator matrix Z is composed of 34 variables to account for as many research

characteristics as possible (see Table 1). In MRA, the main drivers of heterogeneity are

usually identified by means of a variable selection or model averaging procedure to treat

potential multicollinearity and model uncertainty (Stanley and Doucouliagos, 2012, p.

91). The next subsection will present the drivers of heterogeneity identified by these

procedures, focusing on the most robust findings.

6.2 Results

6.2.1 General-to-specific procedure

First, I follow the approaches of Stanley et al. (2018) and Guarascio et al. (2025) and em-

ploy a general-to-specific (GTS) procedure that sequentially removes the variables with

the largest p-value from the moderator matrix until all p-values are below or equal to

0.1.21 Table 9 shows the results of my multivariate MRA. Employing the GTS approach

for the WLS regression with FE2 weights results in a selection of 13 moderator variables

that are drivers of heterogeneity.22

Several estimated coefficients of these moderators point to diminishing productivity re-

turns to robotization. First, the coefficient of period 2007 suggests that primary estimates

with a data midpoint before year 2008 are somewhat higher than estimates for more re-

21The STATA command stepwise is used with standard errors clustered at the study level.
22The variance inflation factors of all moderator variables in the full model used as starting point in the

GTS procedure are below 10 and mostly below 5.
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cent periods. Robot adoption and the technological progress involved in robotic systems,

however, have continued or even accelerated since 2008 (IFR, 2023, pp. 54). The grow-

ing number of industrial robots, therefore, had a decreasing impact on productivity over

time. Second, estimates focusing on the secondary sector (secondary sec) exhibit smaller

productivity effects from robotization, although industrial robots are primarily used in

manufacturing industries (IFR, 2023, pp. 74; Fernández-Maćıas et al., 2021). Third,

and in the same vein as the second point, estimations that exclude observational units

with the highest exposure to robots are somewhat higher (excl high exposure). Moreover,

developing and emerging countries tend to benefit more from robot adoption relative to

advanced economies. This may be attributed to a higher scope for productivity improve-

ments inherent to their catch-up process compared to advanced economies. It could also

be interpreted as a further indicator of diminishing returns to robot adoption, as advanced

economies are the front-runners in robotization (IFR, 2023, pp. 74).

In addition to diminishing returns, there is also evidence of adjustment costs at lower pro-

ductivity levels. The coefficients of the moderator variables p quartile 1 and p quartile 2

point to smaller productivity effects from robot adoption for users with an initial pro-

ductivity below the median, while this effect is more pronounced in the bottom quartile

of productivity. This suggests that automating less efficient processes is no panacea to

boost productivity.

Among the different levels of analysis, the GTS procedure points to lower effects at the

industry level relative to firm-level estimations. This could be attributed to an intra-

industry reallocation of market shares from non-adopting firms to firms with robots,

netting out the productivity effects at the industry level (Koch et al., 2021). It could also

be explained by a concentration of productivity effects among few firms such that the

aggregate effect at the industry level is more blurry. Stiebale et al. (2024) refer to this

phenomenon as the rise of ”superstar” firms.

Regarding econometric specifications, the GTS procedure shows that primary estimates

based on a quantile regression (quant reg) are associated with more positive findings on

average. In contrast, estimations with interaction or quadratic terms for the robot variable

result in smaller effects. These specifications require the calculation of marginal effects

according to Equations 2 and 3. To rule out a distorting influence of specifications with

interaction/quadratic terms, I exclude them from my estimation in column (4) of Table

9. This leaves my findings qualitatively unchanged.

With regard to control variables, I find some evidence that primary estimations omitting

a control variable for labor costs (lc omit) tend to slightly overestimate the productivity

effects from robotization. This omitted variable bias is in line with a positive relationship

between labor costs and robot adoption (Fan et al., 2021; Jung and Lim, 2020). If labor
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costs and productivity are also positively correlated, this results in a positive omitted

variable bias. Likewise, estimations that do not control for the economic structure tend

to result in more positive effects. A positive omitted variable bias from structure omit

can be explained through a positive correlation between the manufacturing share and

productivity as well as robot adoption, since industrial robots are primarily used in the

manufacturing sector (Fernández-Maćıas et al., 2021). Moreover, estimations that fail

to control for general capital input are associated with smaller effects. Assuming that

capital input is positively correlated with productivity, this would suggest a substitutive

relationship between robot usage and other forms of capital input.

Furthermore, I find some evidence of data dependence: estimates that are not based on

IFR data tend to result in somewhat smaller productivity effects. This may be attributed

to less clear-cut definitions of industrial robots in firm-level surveys and trade data. More-

over, authors applying data on robot adoption from firm-level surveys are typically reliant

on a binary indicator for robot usage in surveyed firms (Alguacil et al., 2022; Cathles et

al., 2020; Jäger et al., 2016, 2015; Koch et al., 2021).

As a robustness check, I drop all primary estimates with GTFP as dependent variable in

column (3) of Table 9. GTFP may be viewed as conceptually different compared to labor

productivity and TFP as traditional productivity measures. Nevertheless, this leaves the

sign and significance of the moderator variables unchanged.

Apart from the drivers of heterogeneity, it is important to mention, that the evidence of

a ”severe” positive publication selection bias remains strong in the multivariate MRA,

as visible in the coefficient of SEPCC (Doucouliagos and Stanley, 2013). The constant

( cons) of my multivariate MRA reflects the mean effect when all moderator variables

and SEPCC are equal to zero and thus corresponds to the mean effect for the reference

categories beyond publication bias. Using the estimates from the selected and preferred

specification in column (2) of Table 9, results in an estimated mean effect of 0.0164 that

is statistically significant. Other moderator variables that may be deemed important for

quantifying a ”best practice estimate”, i.e., a treatment of endogeneity (msms) or using

clustered standard errors (secl), are neither statistically significant in the full model of

column (1) nor selected by the GTS procedure in column (2) of Table 9. Thus, they are

assumed to have no relevant influence on the estimated mean effect. Primary estimations

that address endogeneity do not seem to provide results that are different to estimates

without any adjustment for endogeneity. This suggests either that endogeneity issues are

of minor relevance in the primary literature or that the econometric methods used to

treat endogeneity are insufficient. To further illustrate the influence of the drivers of het-

erogeneity, Figure 6 shows the estimated mean effects and the associated 95% confidence

intervals for several subgroups of primary estimates. These effects are computed from the
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Figure 6: Heterogeneous meta effects

Notes: Effects are computed from the estimates in column (2) of Table 9. Dots indicate point estimates

and capped bars represent 95% confidence intervals.

following formula:

Meta effect = β0 + βSEPCC
· 0 + βk (12)

where βk is the coefficient of the relevant moderator variable in column (2) of Table 9 for

the respective subgroup. Figure 6 shows that the meta-effects for developing/emerging

countries and for primary estimates with a data midpoint before year 2008 show a statis-

tically significant effect with a positive sign. The magnitude is, however, well below the

threshold of economic significance. Only the meta-effect for quantile regressions passes

the threshold of a small effect, with a point estimate of 0.082. The meta-effects for the

secondary sector, industry-level estimates, and for estimates based on non-IFR data are

statistically insignificant.23

6.2.2 Bayesian Model Averaging

The sequential t-testing involved in the stepwise GTS procedure implemented in subsec-

tion 6.2.1 risks excluding an important variable at some step because it does not take into

account the conditionality of the results on the previous t-tests (Zigraiova et al., 2021).

23All the heterogeneous meta-effects, except for ”Data midpoint before year 2008”, are valid for data

midpoints after 2007. For earlier time periods, i.e., if period 2007 is additionally assumed to be equal

to 1, they would be slightly higher.
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Table 9: Multivariate MRA

(1) (2) (3) (4)

Full model GTS No GTFP No marginal effects

SEPCC 2.5297*** 2.3789*** 2.4619*** 2.53***

(.4254) (.4368) (.4891) (.467)

ind lev -.0411** -.0302*** -.0268** -.033***

(.0182) (.0111) (.0127) (.0114)

period 2007 .0166*** .0159*** .0158*** .0161***

(.0035) (.004) (.0041) (.0039)

non ifr -.0177*** -.0171*** -.017*** -.0172***

(.0051) (.003) (.003) (.003)

quant reg .0875** .0654*** .042** .0858***

(.0336) (.022) (.0193) (.0271)

iq spec -.0205** -.0157** -.0133**

(.0094) (.0068) (.0065)

dev country .005 .0037*** .004*** .0037***

(.0037) (.0013) (.0013) (.0013)

p quartile 1 -.0235* -.0147** -.0107*** -.0143**

(.0131) (.0066) (.0033) (.006)

p quartile 2 -.0128 -.0069** -.006* -.0069**

(.0082) (.0034) (.0033) (.0034)

secondary sec -.031 -.0184*** -.0198*** -.018***

(.0264) (.0065) (.0071) (.0065)

excl high exposure .0124 .0122** .0103** .0038

(.0093) (.0052) (.0051) (.0047)

capital omit -.0087* -.0067** -.0065* -.0067**

(.0052) (.0033) (.0033) (.0034)

lc omit .0097 .0075** .0077** .0076**

(.0064) (.0031) (.003) (.0031)

structure omit .0047 .0042** .0044** .0043**

(.0041) (.0017) (.0017) (.0018)

cons .0447 .0164** .0169** .0155*

(.0335) (.0078) (.0082) (.0079)

Observations 1849 1849 1714 1608

No. of studies 85 85 74 81

R-squared .4523 .4134 .4237 .4408

Notes: The UWLS FE2 estimator is employed. Standard errors clustered at the

study level are in parentheses. GTS refers to the moderator variables selected in the

general-to-specific procedure. Column (3) excludes primary estimates with GTFP as

dependent variable. Column (4) excludes primary estimations where marginal effects

had to be computed, i.e., specifications with interaction/quadratic terms. Only those

moderator variables are shown that were selected in the GTS procedure. Results of

the full model in column (1) with all variables are available upon request. ∗∗∗p <

.01,∗∗p < .05, ∗p < .1
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To address model uncertainty and multicollinearity among the 34 moderator variables as

potential drivers of heterogeneity, I follow several recent meta-analyses, as well as the

guidelines from Irsova et al. (2023), and employ Bayesian model averaging (BMA) as al-

ternative approach (Havranek et al., 2017; Havranek et al., 2018b; Havranek et al., 2018a;

Cazachevici et al., 2020; Duan et al., 2020; Zigraiova et al., 2021; Iwasaki and Kočenda,

2024; Malovaná et al., 2024). BMA does not select a specific model but estimates many

regressions using different subsets from the list of moderator variables. Then, a weighted

average of all the estimated regression coefficients and the associated standard errors is

computed, with weights equal to the posterior model probability (PMP) according to

Bayes’ theorem. The PMP indicates how well the respective model fits the data. As I

consider 34 moderator variables in addition to SEPCC , the model space is represented

by 235 possible models. Since it is not feasible to estimate all possible models, BMA

samples model specifications from the model space through Monte Carlo Markov Chain

(MCMC) sampling, which only considers models with a relatively high PMP (Zeugner

and Feldkircher, 2015).24 BMA further computes a posterior inclusion probability (PIP)

for each moderator variable, which is equal to the sum of the PMPs of all the models that

include the respective moderator variable. Thus, the PIP measures the probability that

a moderator variable belongs to the ”true” model (Cazachevici et al., 2020). I implement

the BMA approach using the BMS package in R (Zeugner and Feldkircher, 2015). BMA

requires specifying priors regarding model size (model prior) and regression coefficients

(Zellner’s g-prior). In the baseline setting, I opt for the dilution model prior proposed by

George (2010) and recommended by Irsova et al. (2023). The dilution model prior pe-

nalizes models with highly collinear regressors (Zeugner and Feldkircher, 2015). The unit

information prior (UIP) on Zellner’s g is used to represent my lack of prior knowledge,

thereby complying with the recommendation of Eicher et al. (2011). The UIP sets g = N

for all possible models, i.e., it attributes the same information to the prior as is contained

in one primary estimate. For a detailed review of model averaging and its applications in

economics, the reader is referred to Steel (2020).

A drawback of BMA is that it does not allow the clustering of standard errors. BMA,

thus, entails a less conservative statistical inference, since it does not address the potential

dependence of primary estimates from the same study. Figure 7 illustrates the inclusion

of moderator variables in the BMA framework. The moderator variables are listed on the

vertical axis, sorted by their PIPs in descending order. Blue color indicates a positive

coefficient, red signals a negative coefficient, and white corresponds to non-inclusion. On

the x-axis the 5,000 best models are shown, scaled by their PMPs. I will focus only on

the moderator variables with a PIP of above 0.5, following the classification described

24I use 2 million iterations with 1 million burn-ins to achieve convergence.
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in Malovaná et al. (2024), based on Jeffreys (1961) and Kass and Raftery (1995): the

evidence of an effect is deemed weak if the PIP is between 0.5 and 0.75, substantial if the

PIP is between 0.75 and 0.95, strong if the PIP is between 0.95 and 0.99, and decisive

for a PIP above 0.99. 16 moderator variables are found to pass the threshold of a PIP

of at least 0.5. Ten of these variables align with the drivers of heterogeneity identified

by the GTS approach in subsection 6.2.1. The variables p quartile 1, p quartile 2, and

excl high exposure, however, are not found to be important variables in the BMA ap-

proach. Instead, the BMA indicates that non msms, non clse, growth, green tfp, sjr, and

openness omit are relevant variables, which were not included in the GTS selection in

Section 6.2.

As a frequentist check, I run a UWLS-FE2 regression with clustered standard errors that

includes all moderator variables with a PIP above 0.5 in BMA. This reveals that, except

for green tfp and growth, only those moderator variables attain statistical significance,

which have already been identified as drivers of heterogeneity by the GTS approach in

subsection 6.2.1. The negative coefficient for green tfp suggests that the impact of robot

use on GTFP is lower compared to labor productivity and TFP. This means that addi-

tionally accounting for environmental outcomes, such as emissions and waste, can reduce

the estimated productivity effect. That is in line with a rebound effect associated with

robot adoption: despite potentially reduced scrap rates and improved energy efficiency

through high precision robots, an expansion of production might weaken or even outweigh

any beneficial sustainability effects (Luan et al., 2022; Zhang et al., 2022). The coefficient

of growth indicates that specifications in terms of growth rates or changes in productiv-

ity can result in slightly higher estimates. Although the BMA approach suggests that

treating endogeneity improves the identification of productivity effects from robot usage,

this variables does not retain statistical significance in the frequentist check. Likewise,

the BMA results indicate a potential overestimation of productivity effects when primary

inference is not based on clustered standard errors. However, this variable loses its sig-

nificance in the frequentist check as well.

Table 10 shows the BMA results in more detail. In addition to the PIP, the posterior

mean (Post Mean) displays the variable’s estimated coefficients averaged over all models,

including the models wherein the respective variable was not contained. Analogously, the

posterior standard deviation (Post SD) reports the weighted average of that variable’s es-

timated standard errors. Additionally, ”Cond. Pos. Sign” indicates the ”sign certainty”

of the variable’s coefficient by displaying the “posterior probability of a positive coefficient

expected value conditional on inclusion” (Zeugner and Feldkircher, 2015, p. 5). A value

of 1 suggests that the variable’s coefficient always has a positive sign. The BMA findings

corroborate the evidence of diminishing returns to robot adoption: period 2007 has a PIP
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Figure 7: Inclusion of moderator variables in BMA

Notes: This figure presents the BMA results using UIP and Dilution as priors (George, 2010).

Columns represent individual models, and the moderator variables are listed on the y-axis,

sorted by their PIPs in descending order. The x-axis shows cumulative PMPs for the 5,000

best models.

of 1 and always exhibits a positive coefficient; secondary sec and has a PIP above 0.99 and

always shows a negative coefficient. dev country is also assigned a PIP above 0.99 and

always has a positive sign. Likewise, the importance of capital input, economic structure,

and labor costs as control variables is confirmed. The relevance and sign of the variables

non ifr, ind lev, quant reg, iq spec, are also reinforced. As before, the magnitude of the

moderator variables’ estimated coefficients is quite small, with posterior means that are

mostly close to zero. Last but not least, the BMA approach reinforces the evidence of a

severe positive publication bias.

Another drawback of BMA is the required selection of prior distributions. To rule out

a sensitivity of the BMA results to the choice of priors, Figure 8 shows the moderators’

PIPs, based on alternative model and g-priors. The PIP of the variables with the highest

PIPs in the baseline setting is very robust to alternative priors. The hyper g-prior gener-

ally results in larger PIPs for variables with lower PIPs in the baseline setting and assigns

some additional variables a PIP above 0.5, including p quartile 1 and excl high exposure

which were also selected in the GTS procedure.
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Table 10: BMA results

BMA Frequentist check

PIP Post Mean Post SD Cond.Pos.Sign Coef SE

SEPCC 1 2.8883 0.1735 1 2.4973*** 0.4832

period 2007 1 0.0167 0.0008 1 0.0167*** 0.0035

capital omit 1 -0.0065 0.0014 0 -0.0067** 0.0029

structure omit 1 0.0086 0.0016 1 0.0067** 0.0033

non ifr 1 -0.0143 0.0012 0 -0.0151*** 0.0034

quant reg 1 0.0881 0.0131 1 0.0643** 0.0265

non msms 1 -0.0042 0.0009 0 -0.0045 0.0037

non clse 0.9999 0.0058 0.0012 1 0.0051 0.0034

growth 0.9996 0.0112 0.0021 1 0.0089* 0.005

dev country 0.9993 0.0064 0.0010 1 0.0060*** 0.0013

secondary sec 0.9992 -0.0158 0.0042 0 -0.0207** 0.0082

ind lev 0.9981 -0.0309 0.0073 0 -0.0326*** 0.0117

green tfp 0.9953 -0.0275 0.0066 0 -0.0285* 0.016

lc omit 0.9882 0.0079 0.0023 1 0.0080* 0.0045

sjr 0.9619 -0.0035 0.0012 0 -0.0036 0.0022

iq spec 0.9457 -0.0136 0.0052 0 -0.0141** 0.0065

openness omit 0.5605 0.0017 0.0017 1 0.0022 0.0033

demograph omit 0.4302 0.0026 0.0034 1

p quartile 1 0.4207 -0.0058 0.0077 0

ict omit 0.2812 0.0019 0.0034 1

excl high exposure 0.2302 0.0033 0.0068 1

geo lev 0.1541 -0.0019 0.0052 0

prod omit 0.0984 -0.0003 0.0009 0.0035

sme 0.0928 -0.0014 0.0052 0

log log 0.0911 -0.0001 0.0005 0

p quartile 2 0.0754 -0.0005 0.0022 0

rd omit 0.0750 0.0003 0.0013 0.9997

p quartile 3 0.0321 -0.0001 0.0011 0.0907

time span 0.0316 0.0000 0.0002 0.0437

tfp 0.0305 0.0000 0.0003 0.9979

hc omit 0.0294 0.0000 0.0006 0.8544

r above 0.0290 -0.0001 0.0016 0.2777

p quartile 4 0.0263 0.0001 0.0010 0.8531

labor omit 0.0261 0.0000 0.0003 0.2801

lag rob 0.0247 0.0000 0.0003 0.2684

(Intercept) 1 -0.0929 NA NA 0.0121 0.0096

Observations 1849 1849

Notes: The frequentist check is a UWLS estimation with FE2 weights and includes variables that

have a PIP greater than 0.5, according to BMA. PIPs above 0.5 are highlighted in bold. Standard

errors (SE) in the frequentist check are clustered at the study level. ∗∗∗p < .01,∗∗p < .05, ∗p < .1
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Figure 8: Sensitivity of PIPs to alternative priors

Notes: UIP and Dilution is the baseline setting, proposed by George (2010). The dilution model

prior penalizes models with highly collinear regressors (Zeugner and Feldkircher, 2015). UIP and

Uniform are the priors recommended by Eicher et al. (2011). The uniform model prior implies a

prior expected model size of k/2. BRIC and Random: ”BRIC” sets g = max(N, k2) according

to Fernández et al. (2001) and ”random” implements the binomial-beta model prior according to

Ley and Steel (2009). Hyper sets a hyper g-prior (Liang et al., 2008; Feldkircher and Zeugner,

2009), with a prior expected shrinkage factor either equal to the UIP prior or to the BRIC prior

(Feldkircher and Zeugner, 2012).

7 Robustness checks

7.1 Alternative estimators

For the sake of robustness, I implement further meta-analytic estimators. First, Stanley

et al. (2024) discuss that meta-analyses of PCCs may be biased, especially if primary

studies rely on small samples (n < 200). To reduce this potential bias, they propose

an adjustment to the degrees of freedom in the calculation of PCCs by adding 3 and

employing UWLS, i.e.:

PCCadjis =
tis√

t2is + dfis + 3
(13)

This meta-analytic estimator is called UWLS+3. Stanley et al. (2024) admit that this

adjustment may be not a ”notable factor” in economic meta-analyses where primary

studies are econometric studies which typically involve at least hundreds of observations.

Thus, I expect that the results from UWLS+3 will be in line with the previously presented

findings.
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Second, Hong and Reed (2024) suggest a ”smooth estimator” which may perform better

than the previously used UWLS estimators based on Equations (1) and (4). They adjust

the formula for the standard error of PCC by using the meta-analytic sample mean of

PCCs instead of the specific PCC of estimate i in study s, thereby also affecting the

weighting scheme:

SEPCCis
=

√
1− PCCis

2

dfis
(14)

Third, I follow van Aert (2023) and Xue et al. (2024) and apply a Fisher’s z transformation

to PCCs. A criticism of meta-analyzing PCCs is that the assumptions of known sampling

variances and normality are violated by definition (van Aert, 2023): The distribution of

PCCs is not normal when its value is close to −1 and +1 (Stanley and Doucouliagos,

2012, p. 25) and the sampling variance (and standard error) of the PCC is a function

of the PCC itself (van Aert, 2023). These issues can be overcome by implementing the

following Fisher’s z transformation:

zis =
1

2
× log

(
1 + PCCis

1− PCCis

)
(15)

The sampling variance of the Fisher’s z-transformed PCC is equal to:

se(zis) =
1√

(dfis − 3)
(16)

Fourth, I follow many recent meta-analyses and apply a winsorization of the effect size

variables (PCC and SEPCC) at the 1st and 99th percentiles of their distributions; i.e.,

values below the 1st percentile and above the 99th percentile are replaced with the values

of the 1st and 99th percentiles, respectively. This robustness check controls for an undue

influence of extreme values in the effect size variables and precision weights (Guarascio

et al., 2025; Knaisch and Pöschel, 2024; Opatrny et al., 2025).

7.2 Publication bias

Table 11 shows that my FAT-PET findings reported in Section 5 are robust to the alter-

native meta-analytic estimators presented in Section 7.1. There is still clear evidence of

a severe publication selection bias in favor of positive results. Beyond publication bias,

only a very small effect of robots on productivity remains.
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Table 11: FAT-PET with alternative estimators

(1) (2) (3) (4)

UWLS+3 Smooth estimator Fisher’s z Winsorization

Publication bias (β1) 2.1412*** 2.0257*** 2.0812*** 2.3166***

(.393) (.3644) (.372) (.4097)

Precision effect (β0) .0072*** .0074*** .0073*** .0058**

(.0026) (.0026) (.0026) (.0028)

Notes: N = 1837. Standard errors clustered at study level are in parentheses. FE2

weights are used. The respective estimator is indicated in the column header. ∗∗∗p <

.01,∗∗p < .05, ∗p < .1

Figure 9: Sensitivity of PIPs to alternative estimators

Notes: UIP and Dilution are used as priors in the BMA procedure (George, 2010).

7.3 Drivers of heterogeneity

I also implement the GTS and BMA procedure for the alternative meta-analytic estima-

tors. Table 12 shows the results of these robustness checks for the GTS procedure. A pos-

itive publication bias with a severe magnitude is still evident. Likewise, the main drivers

of heterogeneity identified in Section 6.2 are very robust to the alternative meta-analytic

estimators. Only p quartile 2 and structure omit are not selected across all alternative

implementations. As before, the magnitude of the estimated regression coefficients and

the constant term is rather small in terms of PCCs (Doucouliagos, 2011).

Figure 9 illustrates the sensitivity of PIPs in the baseline BMA procedure when the al-

ternative specifications are used. The main drivers of heterogeneity presented in Section

6.2 are robust to this robustness check.

43



Table 12: General-to-specific with alternative estimators

(1) (2) (3) (4)

UWLS+3 Smooth Fisher’s z Winsorization

SEPCC 2.3789*** 2.2428*** 2.2843*** 2.3723***

(.4373) (.392) (.4128) (.4175)

ind lev -.0303*** -.0268** -.03*** -.0268**

(.0111) (.0103) (.0109) (.0114)

period 2007 .0159*** .0158*** .0164*** .0122**

(.004) (.0041) (.0037) (.0047)

non ifr -.0171*** -.0169*** -.018*** -.0151***

(.003) (.0033) (.0031) (.0035)

quant reg .0653*** .0508*** .0615*** .0652***

(.022) (.0146) (.0172) (.0224)

iq spec -.0157** -.0148** -.0158** -.0169**

(.0069) (.0064) (.0068) (.0066)

dev country .0037*** .0034** .004*** .0043***

(.0013) (.0013) (.0014) (.0016)

p quartile 1 -.0146** -.0137** -.0179*** -.0155**

(.0066) (.0056) (.0062) (.0075)

p quartile 2 -.0069** -.0065** -.0082***

(.0034) (.0032) (.0027)

secondary sec -.0184*** -.0166*** -.0156** -.0159**

(.0065) (.0061) (.0063) (.0067)

excl high exposure .0123** .0122** .0114** .0123**

(.0052) (.0051) (.0054) (.0051)

capital omit -.0067** -.0065** -.0072** -.0055*

(.0033) (.0033) (.0032) (.0029)

lc omit .0075** .0071** .0089*** .007**

(.0031) (.003) (.0028) (.0028)

structure omit .0042** .0046**

(.0017) (.0019)

prod omit -.006*

(.0032)

p quartile 3 -.0056**

(.0028)

sjr -.0033*

(.002)

cons .0164** .0192*** .0242*** .0138*

(.0078) (.0067) (.0071) (.008)

Observations 1849 1849 1849 1849

R-squared .4134 .447 .4431 .3743

Notes: All columns are estimated using unrestricted WLS with FE2 weights.

Standard errors clustered at the study level are in parentheses. ∗∗∗p <

.01,∗∗p < .05, ∗p < .1
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8 Discussion

The very small meta-analytic effect of industrial robot deployment on productivity points

to a potential continuation of the Solow paradox and may be referred to as a ”modern

productivity paradox” (Brynjolfsson et al., 2019; Capello et al., 2022). There are cer-

tainly tasks at which robots are better and cheaper than human labor, such as lifting

heavy objects repeatedly and quickly. This raises the question of what are the reasons for

the absence of a stronger productivity boost at the meta-analytic level. In the existing

literature on the productivity paradox and technology adoption, several arguments and

mechanisms have been put forward that can also be applied in the context of robotization.

These aspects can be grouped into eight overarching categories:

(1) Compensation mechanisms : If robot adoption increases (or decreases) value added

and employment in the same proportion, this will leave labor productivity unchanged

(Capello et al., 2022). The compensating effects originate from two channels through

which robot adoption can influence labor productivity. On the one hand, it is frequently

assumed that robots displace workers, thereby reducing labor input (Acemoglu and Re-

strepo, 2018c; Acemoglu and Restrepo, 2020). On the other hand, it is typically expected

that robotization enables the expansion of output and higher market shares by increasing

competitiveness compared to competitors without robot deployment, i.e., a market size

effect (Koch et al., 2021; Graetz and Michaels, 2018). Taken together, these two effects

would reinforce each other and boost labor productivity, which is why Capello et al.

(2022) dismiss compensation mechanisms as an explanation for a productivity paradox of

automation. However, the economic literature is far from reaching consensus on the labor

market effects of robots. The meta-analyses of Jurkat et al. (2023) and Guarascio et al.

(2025) find negligible effects of robot adoption on wages and employment. Moreover, the

labor market effects are likely very heterogeneous across different occupational and demo-

graphic groups of workers as well as economic sectors (Albinowski and Lewandowski, 2024;

Dauth et al., 2021; Adachi, 2024). If the productivity or scale effects of robots were strong

enough to dominate the displacement effect, employment could rise as a consequence of

robot adoption (Acemoglu and Restrepo, 2018c; Acemoglu and Restrepo, 2018b). This

aligns with Koch et al. (2021), who report a net job creation for robot-adopting firms.

Thus, it cannot be ruled out a priori that a simultaneity between growing labor demand

and output gains dampens measured productivity.

Another compensatory mechanism may be that robotic capital is merely a continuation

of former mechanization and automation technologies (Fernández-Maćıas et al., 2021).

In the context of information technology (IT), Dewan and Min (1997) found that IT

capital is a net substitute for other forms of capital, such that an increase in IT capital

per employee is accompanied by a reduction in non-IT capital per employee, leading to
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an offsetting effect (Schweikl and Obermaier, 2020). Analogously, one could argue that,

while robotic capital has been more frequently used, other forms of capital may have been

withdrawn.

(2) Reallocation effect : Automation may be accompanied by significant reallocation effects

across sectors. Dauth et al. (2021) show that negative employment effects of robot adop-

tion in the manufacturing sector are compensated by positive employment effects in the

service sector. Similarly, Dottori (2021) finds that labor is reallocated toward less robot-

intensive industries. In the ICT context, Autor and Dorn (2013) observe a reallocation

of low-skill labor into service occupations. Capello et al. (2022) argue that a reallocation

of workers from more productive, robot-adopting manufacturing industries towards less

productive sectors is the main reason for a productivity paradox of robotization.

(3) Concentrated robot adoption and productivity gains : If productivity gains are concen-

trated in a few highly innovative and productive firms or sectors with a limited share of

the overall economy, they will have little influence on the aggregate productivity dynam-

ics (Capello et al., 2022). Recent research points to increasing productivity differences

between firms at the frontier and average firms in the same industry (Andrews et al.,

2016; Furman and Orszag, 2018), while a small number of superstar firms are expanding

their market share (Autor et al., 2017; Autor et al., 2020). Stiebale et al. (2024) provide

evidence of the superstar phenomenon in the context of robot adoption. It is to some

extant also reflected in my meta-analysis, since the moderator variable for the bottom

productivity quartile points to lower productivity gains from robot adoption among enti-

ties with lower initial productivity.

Apart from a potentially concentrated distribution of productivity gains, the distribu-

tion of robot adoption must also be taken into account. Fernández-Maćıas et al. (2021)

and Deng et al. (2024) show that robot adoption is highly concentrated in certain in-

dustries (especially automotive) and applications (particularly handling operations and

machine tending), as well as among a small share of firms that are typically larger and

more productive. Based on Hulten’s theorem, one can argue that the effect of robots

on TFP growth hinges on the GDP share of tasks impacted by robots (Acemoglu, 2024;

Hulten, 1978). However, this share is limited due to the concentrated distribution of

robot usage across industries, applications, and firms. Moreover, a concentrated adoption

of robots limits the disruptiveness of robotization what concerns network and spillover

effects. Deng et al. (2024) report that only 1.55% of plants in Germany used robots in

2018 (even the manufacturing sector had a share of only 8.22%), despite Germany being

one of the countries with the highest robot density in the world (IFR, 2023, p. 74). Such

a small share of robot users is naturally far from unleashing the full potential of net-

work effects through harmonized production systems along or across value chains (Katz
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and Shapiro, 1994; Birke, 2009). It further clarifies that potential knowledge spillovers

in implementing robotized productions systems cannot have yet materialized to a great

extant (Agarwal et al., 2010; Schweikl and Obermaier, 2020). This leads over to another

important explanatory factor for the productivity paradox, namely implementation lags

and adjustment costs.

(4) Adjustment delays : The economic history has already brought forth several industrial

revolutions enabled by general purpose technologies such as the steam engine, electrifica-

tion, or ICT (Bresnahan and Trajtenberg, 1995; Schwab, 2016; Skilton and Hovsepian,

2018). It is well-documented that it took many decades for these technologies to diffuse

and for their benefits to fully unfold (Crafts, 2021). For instance, Crafts (2004) shows

that it took roughly 100 years after the invention of the steam engine for its contribution

to economic growth to peak. This can be attributed to comprehensive adjustment pro-

cesses, co-inventions, and the complementary investments required to fully leverage the

productivity-boosting potential of a new breakthrough technology (Brynjolfsson et al.,

2019; Capello et al., 2022; Hoebert et al., 2023). The adjustment delay may be illus-

trated as a ”productivity J-curve” (Brynjolfsson et al., 2021). This pattern emerges from

investments in intangible assets such as organizational capital (e.g., business strategies,

corporate culture, decision processes, branding), R&D and intellectual property, as well

as human capital (e.g., training, learning processes, experience), all of which are required

to make productive use of the new technology. As these intangible assets remain largely

unmeasured in economic statistics, the adaptation phase of introducing a new technology

can be described as a situation where measurable capital and labor input produce a sig-

nificant share of unmeasured or poorly measured intangibles (Brynjolfsson et al., 2020;

Brynjolfsson et al., 2021). Since input factors are employed without producing anything

of measurable value, this will result in a drop in productivity growth. Later, when the

intangible investments begin to pay off, the situation is reversed: unmeasured intangible

assets generate measured output, and productivity growth may be overestimated (Bryn-

jolfsson et al., 2021). The lower productivity effects found for the bottom quartile of

productivity (p quartile 1 ) in my multivariate MRA may be an example of more pro-

nounced adjustment processes and, thus, higher adjustment costs of robot adoption in

less productive entities. Such adjustment costs can also take the form of consultancy

services from robot integrators to redesign the production system (Hoebert et al., 2023;

Leigh and Kraft, 2018).

Moreover, the reinstatement effect of automation technologies is assumed to create new

tasks or completely new occupations in which workers have a comparative advantage over

robots (Acemoglu and Restrepo, 2018c; Hötte et al., 2023). Workers who are reinstated

in new tasks and jobs enter learning processes, need to gain experience, and may possibly
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acquire entirely new skills. Here, also institutional aspects like the efficiency of labor

markets and educational systems come to play. A mismatch between the skills of labor

force and the requirements associated with robotic production systems will hamper pro-

ductivity growth (Schweikl and Obermaier, 2020). Furthermore, Acemoglu (2024) argues

that AI may also create new ”bad tasks” like cyber attacks. In the context of AI-based

robotics (or cyber-physical production systems in general), adopting firms may be com-

pelled to invest more in cyber-security to avoid malicious attacks or industrial espionage.

Such protective measures will likely not improve the efficiency of the production process

but limit any cost savings achievable from automation.

(5) Diminishing returns to robot adoption: As described in Section 6.2, my multivari-

ate MRA points to decreasing productivity returns from robotization. Following up on

the task-based modeling of automation, diminishing returns to robot adoption can be

attributed to an increasing level of difficulty and effort required to automate further

tasks. Acemoglu (2024) differentiates between ”easy-to-learn tasks” and ”hard tasks”

for AI applications. Likewise, one can argue that repetitive manual, routine tasks can

easily be taken over by robots, whereas more complex tasks are much more challenging

to implement in robotic production systems and do not provide significant productivity

gains compared to human labor (Vries et al., 2020). Similarly, Acemoglu and Restrepo

(2018b) and Acemoglu and Restrepo (2019) worry about ”so-so technologies” that are

just good enough to replace human workers without significantly boosting productivity.

Fully unleashing network externalities and spillover effects of intelligent automation may

help overcome the diminishing returns to robot adoption in the future (Wu et al., 2024).

(6) Measurement issues : In the context of the Solow paradox, many researchers viewed

measurement problems as one explanatory factor (Baily et al., 1988; Brynjolfsson, 1993;

Triplett, 1999). An exact measurement of productivity requires that both the output

quantity and quality are adequately measured. Concerning the output measurement,

there is a well-known challenge of adjusting prices for inflation and quality changes in

order to obtain comparable real values that enter the numerator of labor productivity

(growth) at constant prices (Schweikl and Obermaier, 2020; Capello et al., 2022). On

the one hand, robot adoption may lead to product differentiation or improved product

quality, allowing for price increases (e.g., customized products) (Capello et al., 2022;

DeStefano and Timmis, 2024). On the other hand, robots may be used as a cost-cutting

technology that allows for price decreases (Acemoglu and Restrepo, 2018c; Graetz and

Michaels, 2018; Hötte et al., 2024). Even more challenging may be estimating the value

of completely new goods and services that emerge from the deployment of modern tech-

nologies like robots, if they have no comparable predecessors (Brynjolfsson, 1993). If the

mismeasurement of the ”new economy” becomes worse over time, this would contribute
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to a slowdown in measured productivity growth (Brynjolfsson et al., 2020). Recent arti-

cles, however, suggest that this source of mismeasurement is likely insufficient to explain

a modern productivity paradox because mismeasurement has always been an issue that

also affected past innovations (Brynjolfsson et al., 2020; Byrne et al., 2016; Syverson,

2017). Another measurement issue has already been described above in the context of

intangible investments.

In addition to difficulties in properly measuring productivity, there might also be mea-

surement problems involved in robot capital. Jurkat et al. (2022) discuss the limitations

of the IFR dataset, the most frequently used source for robot data. In particular, the

IFR’s construction of the operational stock of robots is not adjusted for quality changes

due to technological progress. Thus, a robot installed today is assumed to have the same

quality as a robot installed in 1993, as both are simply counted as one unit installed in the

respective year. Assuming that technological progress improves the quality of robots over

time, a quality-adjusted measure of the robot stock would, ceteris paribus, grow faster

than the number of units reported by the IFR. This would imply that the true value of

robots as an input factor is underestimated in more recent time periods and overestimated

in earlier periods (Kromann et al., 2020), thereby potentially contributing to an overes-

timation of TFP in recent years. Thus, the diminishing returns to robotization found in

my multivariate MRA cannot be attributed to ill-measured robot capital but would have

been even stronger with a quality-adjusted measure of robots.

(7) Exaggerated expectations : Industrial robots may simply be not as productivity enhanc-

ing as expected. One could argue that earlier breakthrough innovations, such as steam

power, internal combustion engines, electricity, or computers, have had a much more far-

reaching impact than industrial robots, and productivity growth is simply returning to

its more modest long-term trend after previous industrial revolutions (Brynjolfsson et al.,

2019, pp. 40-41; Brynjolfsson et al., 2020; Schweikl and Obermaier, 2020). In this vein,

Fernández-Maćıas et al. (2021, p. 79) soberly view industrial robots as the ”latest itera-

tion of the long-term process of industrial mechanisation and automation rather than a

radical departure.”

(8) Mismanagement : A last argument put forward by Schweikl and Obermaier (2020) is

that managers have not succeeded in effectively implementing and utilizing modern tech-

nologies. If managers primarily focus on cost-cutting and neglect required investments in

intangible assets, robots will likely not be used efficiently, and the company may even lose

innovative power (Antonioli et al., 2024). Moreover, exaggerated expectations (a ”robot

hype”), overconfidence, pressure from shareholders (Lim et al., 2013), or tax incentives

(Acemoglu et al., 2020b) may tempt managers to excessively invest in automation. A

famous example is the production of Tesla Model 3, which was characterized by too many

49



robots in the assembly line (Acemoglu and Restrepo, 2019; Büchel and Floreano, 2018).

This caused Elon Musk (2018) to admit: ”Yes, excessive automation at Tesla was a mis-

take. To be precise, my mistake. Humans are underrated.” This is especially true in

complex environments that require flexible adaptability to unforeseen situations (Büchel

and Floreano, 2018).

9 Conclusion

I meta-analyze for the first time the relationship between the adoption of industrial robots

and productivity. Through a systematic literature review, I identify 85 relevant primary

studies with more than 1800 estimates of the productivity effect of robots. I find strong

evidence that this empirical literature suffers from positive publication bias. This finding

is observed across all measures of productivity used in the primary literature and is robust

to several modern, meta-analytic estimators, as well as subsets of the primary literature

(firm-level estimates, estimates that treat endogeneity, elasticity estimates, and estimates

from higher-quality journals). Beyond publication bias, there is evidence of a statistically

significant but very small positive effect of robots on productivity. So far, robotization

seems to have exerted only a marginal boost to productivity.

My multivariate MRA of the drivers of heterogeneity in the primary literature points to

diminishing returns of robotization. This is indicated by (i) smaller, more recent estimates

despite accelerated robot adoption, (ii) smaller productivity effects in the secondary sec-

tor, although industrial robots are primarily used in manufacturing, and (iii) evidence

that developing/emerging countries tend to benefit more from robot adoption relative

to advanced economies. With regard to econometric methodology, I find evidence that

quantile regression is associated with stronger productivity effects, while including an

interaction or quadratic term of the robot variable lowers the estimated effects. Capital

input, economic structure, and labor costs are identified as important control variables

to isolate the effect of robot adoption on productivity. Estimations at the industry level

can result in lower effects relative to firm-level analyses. Moreover, I find some evidence

that productivity measures adjusted for the emission of pollutants are smaller compared

to traditional productivity measures, possibly pointing to a rebound effect in energy and

resource consumption after robot adoption. Further, I obtain evidence of data depen-

dence, as estimates relying on data sources other than the IFR are somewhat smaller.

However, all the heterogeneous meta-effects that can be computed from my multivariate

MRA framework are rather small in magnitude. My findings are robust across alternative

selection procedures to identify the most important drivers of heterogeneity.

Eight explanatory factors for the emergence of a productivity paradox in the context of

50



robotics are discussed, namely: (1) compensation mechanisms from an increase in labor

input or the crowding out of other forms of capital, (2) an adverse reallocation effect of

labor to less productive industries, (3) a concentrated distribution of robot adoption and

productivity gains, (4) adjustment delays and costs from complementary investments, (5)

diminishing returns to robot adoption, (6) measurement issues related to productivity

and robot capital, (7) exaggerated expectations, and (8) mismanagement.

My meta-study provides some directions for future avenues of research. More research

is required on the potential reoccurrence of the Solow paradox in the context of mod-

ern automation technologies, such as industrial robots. Especially, empirical research on

adjustment costs associated with robot adoption and intangible investments required for

the efficient use of robots is a largely untouched field. Ploughing this field of research

might provide answers regarding what kinds of adjustment costs exist, how large they

are, and how long they persist. In addition to more empirical evidence on intangible

investments that complement robot adoption, this would also contribute to the question

of whether robotics can meet the criteria for a general-purpose technology. Another focus

could be placed on the causes of diminishing productivity returns to robot installation.

More research is also required with regard to the relationship between robot adoption

and environmental outcomes. The global challenge of reconciling economic growth and

environmental sustainability would benefit from studies that investigate the prerequisites

such that technology adoption can contribute to both goals.

Ideally, all research on the productivity effects of robots would complement the IFR data

with other data sources. And optimally, the data on robot adoption would include some

quality-adjustment to differentiate the current trend to AI-based robotics from earlier

waves of industrial robots. Referring to Hulten’s theorem, AI may significantly increase

the share of tasks that can be taken over by robots, thereby potentially scaling up the

impact of robots on productivity in the future (Acemoglu, 2024; Hulten, 1978).

Appendix
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