Peng, Guanglei and Cao, Yang (2024): Renovations in the Energy Sector: Energy Innovations in Human Utilities. Published in: Environmental Science and Climate Research , Vol. 1, No. 3 (24 January 2025): pp. 1-4.
Preview |
PDF
MPRA_paper_124960.pdf Download (346kB) | Preview |
Abstract
The confusion of concepts has been present in the emerging propositions of the energy sector. In the research, we sort through the concepts of new energy, green energy, clean energy, recyclable energy, recycled energy, and renewable energy in order to clarify the concepts in terms of the basic scientific understandings in the context of primary energy (PE) production. We further categorize the emerging PE trends by their basic properties, i.e., sources from phosphates, geo-oscillation, and biosynthesis, so as to evaluate the strengths and weaknesses in PE production.
Item Type: | MPRA Paper |
---|---|
Original Title: | Renovations in the Energy Sector: Energy Innovations in Human Utilities |
Language: | English |
Keywords: | bioenergy; energy strategy; new energy; phosphorylation; oscillation. |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q0 - General > Q01 - Sustainable Development Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q2 - Renewable Resources and Conservation > Q20 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q3 - Nonrenewable Resources and Conservation > Q30 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q40 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q50 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q55 - Technological Innovation |
Item ID: | 124960 |
Depositing User: | Dr. Yang Pachankis |
Date Deposited: | 24 Jul 2025 12:04 |
Last Modified: | 24 Jul 2025 12:04 |
References: | 1.World Energy & Climate Statistics — Yearbook 2023. 2023, Enerdata. 2.Foster, R. & Kaplan, S., Creative Destruction: Why Companies That Are Built to Last Underperform the Market -- And How to Successfully Transform Them. 2001: Crown Currency. ISBN: 978-0385501347. 3.Kaldor, M., War and Economic Crisis, in The Deepening Crisis, Calhoun, C. & Derluguian, G., Editors. 2011, New York University Press Social Science Research Council: New York. p. 109-134. DOI: 10.18574/nyu/9780814772805.003.0006. 4.Newman, E. & Toth, K.S., Nuclear Reactions Induced by the Nitrogen Bombardment of Boron-11, Fluorine, Aluminum, Silicon, Phosphorus, and Chlorine. Physical Review, 1963. 129(2): p. 802-807. DOI: 10.1103/PhysRev.129.802. 5.Oelkers, E.H. & Montel, J.M., Phosphates and Nuclear Waste Storage. Elements, 2008. 4(2): p. 113-116. DOI: 10.2113/gselements.4.2.113. 6.Singh, V.P., Badiger, N.M., Tekin, H.O., Kara, U., Vega C, H.R., and Fernandes Z, M.A. Photon absorption of calcium phosphate-based dental biomaterials. in ISSSD 2017: 17 international symposium on solid state dosimetry. 2017. Mexico: Sociedad Mexicana de Irradiacion y Dosimetria. http://inis.iaea.org/search/search.aspx?orig_q=RN:49049070. 7.Bamberger, C.E., Preparation of Metal Phosphates by Metathesis Reaction with BPO4. Journal of the American Ceramic Society, 1982. 65(7): p. c107-c108. DOI: 10.1111/j.1151-2916.1982.tb10477.x. 8.Ewing, R. & Wang, L., Phosphates as Nuclear Waste Forms. Reviews in Mineralogy & Geochemistry - REV MINERAL GEOCHEM, 2002. 48: p. 673-699. DOI: 10.2138/rmg.2002.48.18. 9.Ragettli, R.A., Hebeda, E.H., Signer, P., and Wieler, R., Uranium-xenon chronology: precise determination of λsƒ ∗136Ysƒ for spontaneous fission of 238U. Earth and Planetary Science Letters, 1994. 128(3-4): p. 653-670. DOI: 10.1016/0012-821x(94)90177-5. 10.Wieler, R. & Eikenberg, J., An upper limit on the spontaneous fission decay constant of 232Th derived from xenon in monazites with extremely high Th/U ratios. Geophysical Research Letters, 1999. 26(1): p. 107-110. DOI: 10.1029/1998gl900262. 11.Stoughton, R.W., Ketelle, B.H., O'Kelley, G.D., and Halperin, J., Search for superheavy elements in monazites. Journal of Inorganic and Nuclear Chemistry, 1979. 41(12): p. 1655-1660. DOI: 10.1016/0022-1902(79)80101-3. 12.Stakemann, R., Heimann, R., Herrmann, G., Tittel, G., and Trautmann, N., Search for superheavy elements in monazites using chemical enrichment. Nature, 1982. 297(5862): p. 136-138. DOI: 10.1038/297136a0. 13.Grand'Homme, A., Hydrothermal monazite : the unavoidable accessory Etude de la monazite comme chronomètre et traceur géochimique des minéralisations hydrothermales : Approche expérimentale et analyses de monazites de veines alpines. 2016, Université Grenoble Alpes. 14.Zissler, R., During the energy crisis renewable energy grows, fossils and nuclear energy decrease. Renewable Energy Law and Policy Review, 2022. 11(1): p. 28-31. DOI: 10.4337/relp.2022.01.05. 15.Bolufawi, O., Renewable Energy Integration with Energy Storage Systems and Safety, in Special Topics in Renewable Energy Systems. 2018. DOI: 10.5772/intechopen.78351. 16.Spedding, C.R.W., Alternative energy: the biological option. Nature, 1981. 289(5794): p. 209-209. DOI: 10.1038/289209a0. 17.Lieberman, M.A. & Sleight, R.G., Energy Production and Metabolism, in Cell Physiology Source Book. 2001. p. 119-138. DOI: 10.1016/b978-012656976-6/50099-8. 18.Sevda, S., Garlapati, V.K., Sharma, S., and Sreekrishnan, T.R., Potential of high energy compounds: Biohythane production, in Delivering Low-Carbon Biofuels with Bioproduct Recovery. 2021. p. 165-176. DOI: 10.1016/b978-0-12-821841-9.00007-4. 19.Keenan, J.D., Fuels via bioconversion. Energy Conversion, 1977. 16(3): p. 95-103. DOI: 10.1016/0013-7480(77)90033-x. 20.Ollis, D.L., Liu, J.-W., and Stevenson, B.J., Engineering Enzymes for Energy Production. Australian Journal of Chemistry, 2012. 65(6): p. 652-655. DOI: https://doi.org/10.1071/CH11452. 21.Wardhan, R. & Mudgal, P., Bioenergetics and Energy Transduction, in Textbook of Membrane Biology. 2017. p. 223-292. DOI: 10.1007/978-981-10-7101-0_8. 22.Ramos, J.L. & Duque, E., Twenty-first-century chemical odyssey: fuels versus commodities and cell factories versus chemical plants. Microbial Biotechnology, 2019. 12(2): p. 200-209. DOI: https://doi.org/10.1111/1751-7915.13379. 23.Akira, I., Shuji, O., Koichiro, O., Shizuka, S., Hajime, Y., Tamejiro, H., and Hitosi, N., Stereochemical Studies on the Nucleophilic Substitution in the Reaction of Allylic Phosphates with Organoaluminum Reagents. Bulletin of the Chemical Society of Japan, 1980. 53(8): p. 2357-2362. DOI: 10.1246/bcsj.53.2357. 24.Douglas, L. Focus: Giant pipeline in U.S. Midwest tests future of carbon capture. Reuters, 2021. Available from: https://www.reuters.com/markets/commodities/giant-pipeline-us-midwest-tests-future-carbon-capture-2021-11-23/. 25.IAEA World Fusion Outlook 2023. 2023, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY. https://www.iaea.org/publications/15524/iaea-world-fusion-outlook-2023. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/124960 |