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Abstract 

The objective of the present review is to synthesize recent state-of-the-art advances in the field 

of energy economics. The present review aims to elucidate the interconnections among various 

applicable and practical methodologies that may facilitate a sustainable energy transition and 

therefore the novelty lies in the cross-cutting, methodological integration and forward-looking 

perspective that informs both academic research and practical policy development in the context 

of sustainable energy transitions. The contribution of this review is fourfold. First, it 

systematically compiles the core empirical advancements within different sectors of the energy 

domain, providing a structured assessment of contemporary research efforts. Second, it 

critically examines the challenges associated with data availability and reviews methodological 

innovations designed to address these limitations. Third, it consolidates developments in 

spatiotemporal econometric techniques, highlighting their significance in capturing dynamic 

spatial and temporal dimensions of energy systems. Fourth, it presents emerging machine 

learning-based approaches for forecasting, underscoring their potential to enhance predictive 

capabilities and inform policy and investment decisions. By integrating insights across these 

domains, the review offers a comprehensive framework for understanding the methodological 

evolution in energy economics and identifies pathways for future research that support the 

global pursuit of a sustainable energy future. 

 

Keywords:  energy economics; energy policy; energy transition; energy modelling and 

forecasting 

 

 

  



2 
 

1. Introduction 

 

During the past decades, an extensive array of energy and environmental studies, focusing 

on determining the best practices for alleviating environmental pressure, predominantly 

referred to global or multiple country analyses [1–9]. Nevertheless, acknowledging the 

complexity of the interrelationship between economic and ecological systems, a growing 

number of scholars turned to scrutinization of a single or a certain group of emission sources of 

interest stemming from anthropogenic activity. For instance, Ma et al. [10] underline that air 

quality within a given region heavily depends on production based GHG’s, natural emissions, 

climatic factors, and atmospheric circulation. This development engendered a dynamic trend 

constantly gaining ground in academia, according to which a comprehensive understanding of 

the interaction of pollution mechanisms with associated resource and energy consumption 

mandates conducting small-scale regional analysis. Furthermore, the real direct and indirect 

impact and magnitude of socioeconomic drivers of environmental burden can vary markedly 

across geographical zones. 

 

Considering the multiple dimensions of these crucial parameters of environmental 

modeling, a series of sophisticated theoretical and empirical methods was published in 

academia, aiming to effectively capture the spatiotemporal patterns of emitted GHGs resulting 

from fossil fuel and natural resource consumption. Initially, the vast majority of pertinent 

scientific papers emphasize on identifying the actual geographical disbursement of air 

pollutants through time, most commonly including PM2.5, PM10, SO₂, NOₓ, CO, NH₃, and VOC, 

locating specific hot points characterized by elevated concentrations. Subsequently, through the 

implementation of suitable econometric modeling techniques, the analyses are directed towards 

filling the void concerning the successful forecasting of the future course of environmental 

degradation while elucidating the exact contribution of specific socioeconomic factors to this 

phenomenon. Likewise, another set of relevant studies seeks to ascertain the optimal 

combination of resource/energy use and acceptable levels of environmental pressure for a 

prespecified level of economic or other anthropogenic activities (e.g., urban living, 

transportation, etc.). 

 

As presented in this introduction, in recent decades, energy and environmental research 

has moved from broad global analyses toward localized studies, recognizing that regional air 

quality is shaped by both human-induced emissions and natural environmental factors, 

highlighting the need for more detailed, small-scale investigations. Leading to this paper’s 

motivation to cover a significant gap in spatiotemporal energy economics literature as well as 

methodological pitfalls in data gathering and distribution issues.  

 

Hence, the aim of the present review is to collect state-of-the-art advances in energy 

economics research. The objective is to find the interlinkages between different applicable and 

practical methodologies that can pave the way for sustainable energy transition. The novelty of 

the review is four-fold as it (i) amasses the core empirical progress in energy sectors, (ii) finds 

the challenges related to data availability that are solved through different techniques, (iii), 

assembles spatiotemporal econometric methods, and (iv) presents interesting machine learning-

based approaches for forecasting.  
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The structure of the paper is based on the contributions as presented previously; therefore, 

Section 2 refers to the materials and methods, Section 3 encompasses the significant 

methodological advances, Section 4 presents the challenges in data availability as well as 

different spatial distribution techniques, Section 5 monitors specifically the spatiotemporal 

econometric modelling, and additionally, Section 6 demonstrates the advances in 

spatiotemporal forecasting through machine learning approaches. Lastly, Section 7 concludes 

the paper and discusses future insights into the energy economics research. 

 

2. Materials and Methods 

 

This study adopts a literature review methodology to examine and synthesize recent 

methodological advancements in energy-related environmental modeling, with a particular 

emphasis on GHG emissions, spatiotemporal econometrics, and spatial interpolation 

techniques. A total of 71 peer-reviewed articles published between 2001 and 2024 were selected 

based on their relevance to four thematic axes: (i) multi-objective optimization algorithms in 

energy modeling, (ii) spatial decomposition and environmental impact assessment techniques, 

(iii) geospatial data interpolation and autocorrelation analysis, and (iv) advanced econometric 

and machine learning approaches for spatiotemporal forecasting. Figure 1 presents the 

methodology structure of the paper. 

 

Figure 1: Methodology flow 
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Articles were identified through academic databases such as Scopus, Web of Science, and 

Google Scholar using combinations of keywords including “GHG emissions,” “spatiotemporal 

modeling,” “MOEA,” “GTWR,” “LMDI,” “kriging,” and “spatial Durbin model.” Studies were 

selected if they proposed, applied, or improved upon quantitative methods for estimating, 

forecasting, or decomposing environmental and socioeconomic drivers of pollution. Each study 

was classified based on methodological approach and application domain. The present review 

focuses on methodological innovations and applications in energy sectors, additionally, the 

paper aims to (i) assess the effectiveness of existing approaches, (ii) highlight best practices 

and trade-offs, and (iii) identify methodological gaps for future research in energy economics 

in order to achieve sustainable development. 

 

Figure 2: Chronological flow of the studies based on their interconnectedness. Source: 

Author’s creation through the litmaps.com application. 

Moreover, Figure 2 graph illustrates the connectedness between the studied publications, 

highlighting how newer research tends to form densely interconnected clusters. These 

publications often reference one another and build upon shared topics or methodologies, 

indicating active areas of ongoing study in energy economics. In essence, the central nodes in 

the graph represent influential papers with high citation counts, while peripheral nodes show 

emerging works that are beginning to integrate into the broader scholarly network. Overall, the 

graph reflects a dynamic and evolving research landscape in energy sectors where recent 

publications are increasingly interconnected. 

 

3.  Important Methodological Advancements in Energy Sectors 

 

This chapter contributes to the existing literature through the categorization of 

methodological innovations in modeling and optimizing energy-related GHG emissions, 

particularly through the application of multi-objective evolutionary algorithms, hybrid 

decision-making frameworks like TOPSIS, and decomposition techniques. It expands the 
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analytical scope of environmental and energy studies by integrating high-dimensional, 

spatiotemporal, and multi-criteria optimization strategies that balance economic and 

environmental objectives. 

 

This chapter reveals pivotal methodological advancements in energy sectors, as 

summarized in Table 1. Espinoza et al. [11], differentiating from all aforementioned academic 

articles, introduced an innovative GHG modelling approach relying on the multi-objective 

evolutionary algorithms (MOEA) of Deb [12]. Following the suggestion of Ehrgott [13], the 

study exploits MOEA to simultaneously minimize the RMSE and MAE loss functions of 

multiple linear regressions (LR) representing models forming a set of Pareto optimal solutions 

based on data from 3 of NO2 watch points in southeastern Spain. It is important to focus on 

how to dealing with a 3-factor optimization objective, the analysis tested the performance of 3 

main MOEA algorithms, including NSGA-II of Deb et al. [14], MOEA/D of Zhang and Li [15], 

and SPEA2 of Zitzler et al. [16], concluding to the superiority of the latter in providing the 

optimal econometric solutions to the group of investigated LR models. In addition, Espinoza et 

al. [11] compared the outcomes of their proposed spatiotemporal methodology with IDW 

interpolation, verifying the dominance of the MOEA approach, yet at high computational cost. 

 

Given the vital role of electricity generation in environmental quality, Dai et al. [17] 

developed a high-dimensional multi-objective optimal production strategy, which manages to 

simultaneously minimize both electricity generation costs and the volume of emitted air 

pollutants. Due to the large number of optimization objectives, including the spatiotemporal 

characteristics of GHG distribution and the self-purifying atmospheric and environmental 

ability, the proposed methodology utilizes three sophisticated MOEA algorithms. All NSGA-

III, grid- and indicator-based evolutionary (IBEA) algorithms of Gupta and Nanda [18], Yang 

et al. [19], and Liu et al. [20], respectively, as well as the novel multi-objective evolutionary 

decomposition algorithm (MOEA) of Gao et al. [21], are capable of coping with more than 

three optimization tasks at the same time.  

 

Next, in order to harmonize power plant dispatch planning with total volume and 

concentration optimization goals for GHG emissions, the study incorporates the TOPSIS multi-

objective decision-making method developed by Wang et al. [22]. The model, allowing for 

specialized options corresponding to the air pollutant characteristics of each region, estimates 

the optimal solution for the input objectives by proceeding to a thorough evaluation of all 

decision options. Eventually, every potential solution to the system is determined and then 

ranked based on its distance from the best and poorest solutions. In the final stage, the model 

generates a compromised solution that is as close as possible to the optimal solution and furthest 

from the inferior one. 

 

Having effectively approximated the distribution of air pollutants during a prespecified 

time horizon within the entire geographical area of interest, it is vital for environmental 

scientists to elucidate the drivers of air pollutants’ concentration levels. Wu et al. [23] praised 

the merits of the STIRPAT framework, particularly emphasizing its adaptability to the special 

features inherent in each environmental analysis. Two interesting examples were made by Xu 

et al. [24] and Xu et al. [25], these publications implemented STIRPAT decomposition modeling 

to identify the coupling mechanism and spatial effect between certain socioeconomic 

parameters and GHG. 
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Table 1: Advancements in Energy Sectors 

Advancement Reason Impact on: Ref. 

Use of (MOEAs) in 

GHG Modeling 

 

To optimize GHG prediction 

models, minimizing RMSE and 

MAE simultaneously. 

This approach created Pareto optimal 

solutions for multiple linear 

regressions and was compared 

favorably against traditional 

interpolation methods like IDW, albeit 

at a higher computational cost. 

[11] 

High-Dimensional 

Multi-Objective 

Optimization in 

Energy Systems: 

Simultaneous minimization of 

electricity generation costs and 

pollutant emissions 

A sophisticated MOEAs capable of 

handling more than three optimization 

objectives. 

[17,21] 

Decision-Making 

Framework Using 

TOPSIS 

The TOPSIS method was 

employed to select optimal power 

plant dispatch strategies, 

evaluating solutions based on 

proximity to ideal (and distance 

from worst) outcomes.  

To deal with regional pollutant 

characteristics. 

[22] 

Decomposition of 

Socioeconomic 

Drivers of Air 

Pollution 

The STIRPAT framework was 

highlighted for its flexibility in 

environmental analyses to uncover 

links between socioeconomic 

factors and GHG emissions. 

Finding the spatial effects and 

coupling mechanisms of the driving 

forces on GHGs. 

[23–

25] 

Structural and 

Index 

Decomposition 

Analysis (SDA and 

IDA) 

IDA, particularly the logarithmic 

mean Divisia index (LMDI), is 

favored for its low data needs and 

ability to avoid residuals and 

multicollinearity. 

• Analyze water reserves 

consumption. 

• Uncover internal 

environmental pollution 

dynamics. 

• Show the changing 

relationship between GDP 

growth and GHG emissions 

across regions and sectors in 

China. 

[26–

31] 

 

Nonetheless, the majority of studies trying to decompose the effect of certain influencing 

factors on air quality utilize decomposition methodologies such as the structural (SDA) and 

index (IDA) based analysis. The latter is favored in environmental research due to its lower 

required volume of data and its efficacy in detecting the implications of potential structural 

changes in both environmental pollutants and the economy. Furthermore, the most popular 

variation of IDA is the logarithmic mean Divisia index (LMDI), a method with multiple 

econometric advantages, which, according to Ang et al. [26] and Shan et al. [27], avoids 

generation of residuals during the decomposition procedure while concurrently minimizing 

potential multicollinearity and endogeneity effects. Moreover, Long et al. [28], through LMDI 

modeling, determined the driving forces of water reserves consumption from a plethora of 

industrial and other sectors in specific Chinese provinces, while Zhang et al. [29,30] unveiled 
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the internal dynamics of environmental pollution and particularly the role of energy 

consumption and technological pollution effects.  

 

Similarly, Duman et al. [31] employed LMDI analysis to highlight the progressively 

diminishing effect of GDP growth on GHG emissions in China, specifying heterogenic 

production bases, energy intensities, and efficiencies as the latent causes of asymmetrical 

spatiotemporal patterns of environmental pollution. Interestingly, Duman et al. [31] relied on 

the same decomposition approach to designate the level of influence exerted by distinct 

socioeconomic indicators on the carbon emissions inventories of 287 Chinese cities as a result 

of the operational activity of 47 economic sectors consuming 17 primary fossil fuels. 

 

4.  Challenges in Data Availability and Spatial Distribution Techniques 

 

One of the most crucial factors in energy economics modelling is the data-related 

challenges; moreover it is important to monitor spatial distributions techniques as presented in 

Table 2. A fundamental preliminary step prior to proceeding in such type of environmental 

modeling entails spatial autocorrelation analysis of the scrutinized GHGs, concerning the 

assessment of the extent of interdependency between air pollutants, as well as its potential 

spillover and diffusion ramifications in adjacent regions of a designated geographic space. 

Wang et al. [32] claim that spatial relevance characteristics of atmospheric activity tend to 

induce analogous regional concentrations of GHGs.  

 

Global spatial correlation is typically statistically estimated by the Geary's and Moran's I 

indices, yet Dong et al. [33] observed that the latter is less susceptible to deviations from the 

normal distribution. Additionally, Global Moran’s index utilizing geographic data can expose 

spatial dependence and spatial heterogeneity and ranges from -1 to 1, with values exceeding 0 

indicating positive correlation and spatial agglomeration of the regional pollution control 

performance. On the contrary, for values lower than 0, negative correlation is verified, while 

values approaching -1 signify similar performance across all examined geographical areas 

under consideration. Moreover, Xu and Deng [34] assert that close to 0 values of global Moran’s 

index indicate random distribution of pollutants or nonexistent spatial autocorrelation. 

 

Hence, most environmental researchers, including Wang et al. [35], Mi et al. [36], Su and 

Yu [37], and Yan et al. [38], advance their research by analyzing regional environmental quality 

and especially air pollution in urban spatial agglomerations. Tang et al. [39] suggest the 

implementation of local indicators of spatial association (LISA) to discern the regional units 

contributing more to global spatial autocorrelation, as well as to evaluate whether spatial 

autocorrelation imbeds local instability. To exemplify, LISA is approximated via the local 

Moran’s index initially proposed by Moran [40] and later adjusted by Geary [41]. Local 

Moran’s index is predominantly employed to check for spatial heterogeneity and non-stationary 

characteristics, with Tepanosyan et al. [42] and Ren et al. [43] recommending the incorporation 

of the Getis-Ord statistic into the index so as to account for possible spatial clustering of the 

attributed variables across the entire geographical area of interest. 
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Table 2: Techniques for Spatial Distribution Techniques 

Technique(s) Prerequisites and Tools Ref. 

Spatial 

Autocorrelation in 

Environmental 

Modeling 

• Before modeling GHGs, researchers must assess spatial 

autocorrelation, the degree to which air pollutants are 

interdependent across neighboring regions. 

• Global measures like Moran's I (preferred for normality-

robustness) and Geary's C are used to detect overall spatial 

dependence. 

Interpretation of Moran's I: 

• Positive Moran’s I (>0): pollution clustering. 

• Negative Moran’s I (<0): spatial dispersion. 

• Near-zero Moran’s I (~0): random spatial distribution or no 

autocorrelation. 

[32–34] 

Local Indicators of 

Spatial Association 

(LISA) 

• Used to detect local clusters and instabilities within broader 

spatial autocorrelation. 

• Local Moran’s I and Getis-Ord statistics help identify hotspots 

or coldspots of pollution. 

[39,42,43] 

Spatial Statistical 

Techniques for 

Missing Data 

• Standard Deviation Ellipse (SDE): tracks pollution 

concentration centers and dispersion patterns over time. 

• SDE reveals expansion trends and movement dynamics of 

pollutants. 

[31,44,45] 

Spatial Interpolation 

Methods 
• Ordinary Kriging (OKM): the preferred method for its 

precision and consistency in filling data gaps. 

• Inverse Distance Weighting (IDW): widely used for 

simplicity, assigning more weight to closer data points. 

• Spline interpolation: suggested for smoothing environmental 

data. 

 

[46–51] 

Key Factors Influencing Spatial Interpolation Accuracy: 

• Data quality and variable correlation are crucial for effective 

interpolation. 

• Observation density is less important compared to data 

reliability. 

• Randomly distributed data points yield better interpolation 

than evenly distributed ones. 

[50,52,53] 

 

A major challenge concerning spatiotemporal analysis lies in the requirement for 

extensive data availability for each discrete part of the examined geographical zone. The 

absence of weather and air pollution check stations in every region, along with the lack of 

observations for certain socioeconomic parameters, frequently makes the task of obtaining the 

necessary continuous data at every spatial location complicated, if not unfeasible. In this case, 

environmental scientists employ the spatial statistical distribution techniques of geographical 

elements to approximate any missing data. To give an example, Ma et al [44], Wang et al., [45] 

and Duman et al [31] and many other environmental analyses rely on the standard deviation 

ellipse (SDE) method to approximate the concentration centers, as well as the geographical 
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disbursement and changing trajectories of the scrutinized air pollutant elements in space. The 

SDE of geographic elements reveals expansion trends whenever these outside the ellipse grow 

faster than those inside and vice versa. 

 

In contrast, Wang et al. [32] utilize the spatial interpolation methodology for estimating 

unspecified concentrations of air pollutants and meteorological factors, social and economic 

factors in the Beijing-Tianjin-Hebei urban agglomeration. However, Jiang et al. [54] advocate 

this type of mathematical modeling for getting a rough estimate of unknown GHG values based 

on existing neighboring data. The most widely implemented spatial interpolation approaches 

for regional-scale analysis encompass ordinary Kriging (OKM) and inverse distance weighted 

(IDW), as well as several variations of the two methods, with Li and Heap [46] alternatively 

recommending the use of the SPLINE method, especially when concerning environmental 

datasets.  

 

Interestingly, Zhang et al. [47] argue in favor of OKM as the most precise and consistent 

interpolation methodology in simulating air quality levels in locations with discontinuous or 

nonexistent monitoring, since it facilitates the approximation of a relative value for a certain 

point in a region through the weighted averages of available data from adjacent areas. 

Consequently, Liang and Wang [48] opted for OKM to capture the spatial appearance and 

progress of GHGs through time. Whereas, Li and Heap [49], based on an extensive review of 

53 comparative environmental studies, verified that kriging methodology systematically 

outperformed traditional non-geostatistical methods, further emphasizing that most scholars 

qualify kriging with an external drift (KED) as the most fitting interpolation methodology. 

 

Nonetheless, a wide range of environmental studies adopted the IDW approach as 

originally formulated by Li [50] and modified by Van Brummelen [51]. Allocating more weight 

on forecasts to the most proximate geographical spot to be interpolated, Espinoza et al. [11] 

capitalized on the merits of this econometric technique to predict 7-day NO₂ concentrations in 

Spain. Likewise, Wei et al. [55] and Wei et al. [56] utilize IDW methodology to approximate 

meteorological data and observations for PM2.5, SO2, NO2, PM10, CO, and O3 emissions, 

thereby facilitating subsequent spatiotemporal analysis in certain agglomerations where 

weather stations and local air pollution monitoring are not available. Notably, Long et al. [28], 

in effort to determine the underlying forces of water resource exhaustion in Chinese provinces, 

they estimate through IDW interpolation the average disposable income of inhabitants in 

specific local urban and rural areas of interest. 

 

Regardless of the selected method, certain fundamental factors influence the 

predictability of spatial interpolation. According to Hengl [52], these predominantly involve the 

quality of data sampling and the statistical significance of variable correlation, while 

observation density appears to be inconsequential. In alignment with this assertion, Minasny 

and McBratney [53] posit that putting more emphasis on implementing the most sophisticated 

statistical approaches frequently fails to enhance the interpolation outcomes to such a degree as 

collecting meaningful and trustworthy data. What is more, Li and Heap [50] assert that 

processing regional datasets coming from randomly distributed stations boosts spatial 

interpolation precision in contrast to datasets from normally distributed spots. 
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5.  Advances in Spatiotemporal Econometric Modeling 

 

The present chapter contributes to the existing literature by critically evaluating and 

contrasting the capabilities of various spatiotemporal econometric models in capturing the 

spatial heterogeneity and dynamic evolution of air pollution and its drivers. Moreover, it is 

going to highlight how recent advancements have enhanced the precision and contextual 

relevance of environmental impact assessments.  

 

Table 3: Techniques, applications, and characteristics in spatiotemporal econometric 

modelling. 

Technique Applications Advantages/Disadvantages Ref. 

SDM • Studies using SDM show 

strong spillover effects in 

pollution across urban areas. 

• Key determinants of pollution 

include urbanization, 

economic growth, industrial 

structure, and government 

expenditure on technology. 

• SDM accounts for spatial and 

temporal correlations 

simultaneously. 

• It captures spillover effects and is 

not limited by assumptions about 

the scale of these effects. 

• SDM is seen as more robust and 

reliable than SLM and SEM. 

[25,57] 

GTWR • GTWR effectively models 

various environmental drivers: 

industrial structure, energy 

use, urban green coverage, 

population density, and 

weather conditions. 

• It helps understand regional 

discrepancies in how these 

factors influence pollution. 

• New versions of GTWR (e.g., 

GTWR with spatiotemporal 

kernels, GWR-TSF) offer more 

precise modeling of complex 

spatiotemporal relationships. 

• Model selection still depends 

heavily on the dataset and research 

goals. 

• GTWR better captures 

spatiotemporal heterogeneity by 

factoring in both spatial and 

temporal dynamics. 

• GTWR’s advantages in handling 

non-stationary, localized pollution 

impacts across different regions 

and timeframes. 

[55,56,58–

65] 

GeoDetector 

Model  
• GeoDetector analyzes spatial 

heterogeneity and identifies 

interactions between different 

environmental factors. 

• Modified versions of 

GeoDetector have been used 

to pinpoint factors like 

urbanization rates and energy 

structures as key pollution 

drivers. 

• Decomposition approaches (e.g., 

LMDI, SDA) are criticized for 

their inability to perform 

quantitative causal analysis. 

• They are seen as less robust than 

spatial panel models in explaining 

the true influence of 

environmental drivers. 

 

[26–

32,66,67] 
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The discussion underscores the importance of selecting appropriate modeling techniques 

based on data characteristics and policy objectives, thereby enriching the methodological 

toolkit for spatial econometric analysis and informing more effective, localized policy 

interventions. 

 

Spatiotemporal econometric modeling is crucial in the energy sector because it captures 

how energy production, consumption, and pollution vary across different regions and evolve 

over time; hence it enables more accurate policy-making as some insights are presented in Table 

3. Nevertheless, the SDM model demonstrated that discrepancies concerning geographical 

characteristics, as well as the level and structure of socio-economic development, significantly 

alter both the magnitude and actual effect of air quality drivers. In a similar panel SDM study, 

Xu et al. [25] highlighted the impact of trade openness, volume of urban population, energy 

intensity, GDP, and level of technological development as the principal causal factors of GHG 

pollution in 26 rapidly growing metropolitan areas in the Yellow River Delta region. The study 

further designated signs of spatial autocorrelation, reflecting some type of synergistic 

management between groups of neighboring cities, yet an evident disparity was present in the 

spillover effects of air pollution and its main contributors. 

 

Nonetheless, Zhu et al. [57] scrutinizing the impact of renewable energy technology 

innovation on air pollution stemming from industrial production, allege that spatial panel 

econometric models failed to capture the provincial characteristics of the interrelationship 

between the examined parameters and could only provide statistically significant results for the 

whole of the region of interest. On the contrary, the study managed to fill this gap and explore 

spatial heterogeneity of industrial pollution by incorporating the Geographically Temporally 

Weighted Regression (GTWR) model of Huang et al [58] and Yu [59]. In harmony with the 

previous conclusion, Wei et al [55] verified the superiority of GTWR over spatial panel models 

in capturing the spatiotemporal impact of several causal factors of PM2.5 pollution. Similarly, 

Rodrigues et al. [60] claim that GTWR is more suitable for such type of analysis since 

accounting for time uncertainty allows GTWR to successfully process cross-sectional datasets 

with temporal non-stationarity. In essence, the spatiotemporal distance function of GTWR 

allows it to accurately approximate the decay in the effect of the explanatory parameters of 

environmental pollution or economic variables. 

 

Cheng et al. [61] was one of the first studies that utilized GTWR methodology to analyze 

provincial spatiotemporal heterogeneity of the emitted GHG attributed to industrial activity. 

The econometric outcomes derived from GTWR revealed that the proportion of public 

enterprises, total industrial output, number of heavy industries, and emission taxation crucially 

affected air quality across the 31 Chinese provinces under examination. However, the model 

highlighted notable discrepancies concerning the direction and magnitude of these parameters 

from one geographical zone to another. 

 

Benefiting from its econometric virtues and wide range of options for environmental 

analyses, Shi et al. [62] and Zhou et al. [63] applied the GTWR method to investigate the 

spatiotemporal ramifications of a plethora of contributory factors on most hazardous air 

pollutants. Therefore, the studies conducted using GTWR effectively delineate the impact of a 

range of factors on all major particulate matter and gaseous atmospheric pollutants. These 

factors include the roles of secondary and tertiary industry, such as (i) the large number of 
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industrial enterprises, (ii) domestic and industrial solid waste management, industrial electricity 

consumption, (iii) GDP per unit of electricity use, (iv) percentage green coverage rate of 

metropolitan areas, (v) population density, (vi) retail sales, and (vii) weather conditions on all 

principal particulate matter and gaseous atmospheric pollutants. Notably, Jiang et al. [64] 

employed the GTWR model to highlight the spatial discrepancy concerning the influence of the 

causal factors of CO₂-PM₂.₅ synergistic degree, which pertains to the potential simultaneous 

mitigation of carbon emissions alongside other particulate matter pollutants.  

 

GTWR’s adaptability and wide acceptance within academia have incited a series of 

proposed alterations aimed at further enhancing its robustness as well as rendering it more 

suitable for specialized environmental and energy analyses. For example, Fotheringham et al. 

[65] introduced a GTWR model with distinct spatial and temporal estimates, which are 

subsequently integrated via spatiotemporal kernel functions. This modification allows for more 

reliable representation of the spatiotemporal relationships among observations. Furthermore, 

Wei et al. [56], through a comparative analysis of the statistical performance of 12 GTWR-type 

models, concluded that the GWR-TSF model constituted a secondary process of model 

residuals statistically meaningful in the interpolation process of regional PM2.5 concentrations, 

thereby conferring a noteworthy enhancement in the precision of the model's outcomes. 

Nevertheless, Artelaris [68] alleges that the selection of the most suitable model is 

predominantly dependent upon the characteristics of the underlying dataset and research 

objectives. 

 

As an alternative to decomposition approaches, Wang et al. [32] discerned the causal 

factors of ozone pollution in urban locations via the GeoDetector model of Wang et al. [66]. 

The study exploited the model’s capability to harness spatial heterogeneity to process 

qualitative data and statistically assess the interrelations of two examined objects, 

encompassing the intensity, direction, and linearity of their interaction. The analysis revealed a 

reciprocal relationship of ozone inventories with NO₂, CO, PM10, PM2.5, and SO₂ pollutants, 

meteorological conditions, and GHG emissions from the secondary industry.  

 

Furthermore, applying Liu and Hao's [67] modified version of GeoDetector, Huang et al. 

[69] identified the rate of land urbanization and structure of energy consumption as the main 

threats for PM2.5 atmospheric pollution in urban agglomerations, while Wei et al. [56] validated 

the crucial contribution of weather phenomena and zenith tropospheric delay on the spatial 

distribution of this hazardous air pollutant. 

 

Nevertheless, Duman et al. [31] postulate that an essential shortcoming of decomposition 

and other similar methodologies lies in their incapacity to facilitate quantitative causal analysis 

and draw more robust conclusions. In contrast, spatial panel models can account for air 

pollutants unbalanced spatiotemporal distributions, providing econometric outcomes with 

better representation of the actual effect of key drivers of air quality in specific spatial 

agglomerations. These models combine simultaneous spatial and temporal analysis of the 

characteristics investigated environmental and socioeconomic variables, capturing any 

potential heterogeneity embedded within the generated statistical relationships. Spatial 

econometric analysis primarily encompasses the spatial lag model (SLM), the spatial error 

model (SEM), and the spatial Durbin model (SDM). The latter basically comprises a 

generalized combination of the first two models, which, under certain parameter conditions, 
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can turn into an SLM or SEM model, respectively. The SDM model integrates spatial 

autoregressive processing of all dependent and explanatory variables at the same time, 

rendering it more suitable for capturing potential spatial spillovers. Another important 

econometric advantage of the SDM model is that its final outcomes are not subject to prior 

constraints relative to the scale of spillover effect. Mu et al. [70], exploring the spatiotemporal 

features of water reserves exploitation in megalopolises, verified the statistical merits of the 

SDM model, which enable it to generate more robust outcomes compared to SLM or SEM 

models, constituting it superior. 

 

Fan et al. [71] conducted quantitative panel analysis via the SDM approach to assess the 

potential asymmetric and nonlinear influence of the accelerated enlargement of urban 

population and economic agglomeration on the level of haze pollution inventories across 342 

Chinese cities. The econometric outcomes of the SDM model, accounting for spatial 

heterogeneities of geographical parameters, provided evidence of a strong spillover effect in 

terms of haze pollution contamination between adjacent urban areas, underscoring the adverse 

impact of elevated levels of economic agglomeration and industrial structure. Correspondingly, 

Jiang et al. [54], through SDM panel modelling, corroborated the presence of an air pollution 

spillover effect between 103 cities within the Yellow River economic belt zone, identifying 

government technical expenditure, GDP growth, urbanization, and meteorological conditions 

as pivotal determinants of Air Quality Index.  

 

6.  Machine Learning Approaches for Spatiotemporal Forecasting 

 

This chapter will reveal the advances on machine learning techniques into econometrics 

and spatiotemporal environmental forecasting; for instance, there is emphasis on novel 

techniques’ potential to complement traditional models by addressing complex, high-

dimensional decision-making problems under uncertainty, especially in predicting 

anthropogenic pollution (e.g., air pollutant concentrations). The discussion also underscores the 

importance of methodological adaptations, such as model tuning for inference and hybrid 

frameworks for enhanced spatial-temporal accuracy, marking a shift toward more data-driven, 

flexible approaches in environmental and economic analysis. 

 

The introduction of algorithmic-based (e.g., machine learning) has been utilized as an 

alternative way to deal with novel challenges, along with the traditional statistic models (i.e., 

stochastic data models) [72]. In essence, machine learning presents a potential family of 

methods and algorithms that can greatly increase the range of problems that can be analyzed in 

structural econometrics, with machine learning to be a “practically oriented” with three pivotal 

categories, i.e., supervised, unsupervised, and reinforced learning; whereas structural 

econometrics be “academically oriented” that work in parallel to achieve societal goals and are 

similar to the “supervised learning” from the machine-learning categories [73]. 

 

Furthermore, the machine learning models have lately been incorporated in economics 

and econometrics, especially when dealing with decision-making issues under uncertainty. 

Nevertheless, it is imperative that the machine learning models undergo “tuning and adaptation” 

in order to obtain statistical inference; for example, Athey and Imbens [74], based on the 

literature, proposed adaptation techniques such as causality, endogeneity, monotonicity, sample 

splitting, and orthogonality. Additionally, dynamic programming has been proved essential in 
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dealing with the “curse of dimensionality” [75], especially when machine learning methods 

might alleviate (but not entirely solve) the above issue by using neural networks that may 

approximate specific kinds of multivariate functions with vector parameters that do not grow 

exponentially [73].  

 

A growing trend in spatiotemporal forecasting of GHGs is the use of advanced models 

like long short-term memory LSTM-based graph attention mechanisms, which simulate 

pollutant concentrations using data from nearby, well-monitored locations. Hybrid approaches, 

combining convolutional neural network (CNN) for spatial prediction and LSTM for temporal 

forecasting, sometimes enhanced with IDW interpolation, are also being successfully applied 

to predict air pollution levels in heavily affected regions. 

 

Alternatively, to traditional spatial interpolation, a growing number of up-to-date models 

rely on the LSTM algorithm to develop specialized models, which in turn will be employed for 

spatiotemporal forecasting of GHGs. More specifically, Seng et al. [76], Huang et al. [69], Zhou 

et al. [57], and Zhang et al. [47,77] proposed individual LSTM-based graph attention 

mechanisms to simulate concentrations of PM2.5, SO2, NO2, O3, and CO using as inputs 

observations from proximate locations with reliable long-term monitoring.  

 

Interestingly, Zhao et al. [78] developed a hybrid methodological framework wherein the 

spatial component of air pollution compounds in certain agglomerations in the Beijing and 

Tianjin regions is prognosticated through the CNN model, while the temporal component is 

prognosticated through LSTM. Following a similar philosophy, Chae et al. [79] and Samal et 

al. [80] combine hybrid CNN-LSTM modelling with the IDW interpolation technique to predict 

concentrations of inhalable microparticles in hot zones in South Korea and India, respectively. 

 

7.  Conclusions and Discussion  

 

To recapitulate, the present paper reviews the advances in energy economics research, 

aiming to compile the latest developments in energy economics research. Its goal is to uncover 

the connections between various practical and applicable methodologies that can support a 

sustainable energy transition. The review offers four key contributions: (i) it gathers major 

empirical advancements in the energy sector, (ii) highlights challenges in data availability and 

the techniques used to address them, (iii) brings together spatiotemporal econometric 

approaches, and (iv) showcases innovative machine learning methods for forecasting. 

 

In essence, the global energy sector today faces a multitude of challenges that 

significantly impact the progress toward a sustainable future. Traditional reliance on fossil fuels 

continues to contribute heavily to greenhouse gas emissions, driving climate change and 

environmental degradation. Energy security, fluctuating prices, aging infrastructure, and 

unequal access to modern energy services further complicate the sector’s ability to meet 

growing demand sustainably. As a result, energy systems are under immense pressure to evolve, 

but the path to transition is fraught with technological, financial, and policy-related obstacles. 

These issues not only hinder the adoption of cleaner technologies but also slow the 

decarbonization of industries critical to economic development.  
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The strengths and limitations in combining traditional econometrics and novel machine 

learning applications show that there is a wide room for improvement in the energy economics 

literature. The strengths refer to the ability of machine learning algorithms to analyze 

complexity in energy and economics as well as their broad applicability (as mentioned in the 

supervised, unsupervised, and reinforcement learning) in comparison to the traditional 

econometrics. Moreover, the handling of the curse of dimensionality is a strong advantage of 

machine learning applications, even though they cannot fully deal with it but offers a helping 

hand to economists to apply such model in order to deal with uncertainty by providing 

alternative solutions in energy sectors decision making. Nevertheless, economists should be 

aware of the disadvantages of machine learning models, as they focus mainly on the predictive 

power, rather than on inference issues that traditional econometric models have widely focused; 

for example, machine learning models should focus on adaptation techniques to address issues 

regarding the causality, endogeneity, and sampling splitting. In essence, the economic research 

in energy sectors should observe with consciousness the complementary role between 

algorithmic modeling and stochastic data modelling as ways to deal with energy-related 

challenges in an ever-changing world. 

 

The ongoing energy transition, aimed at shifting toward renewable sources and improving 

energy efficiency, is deeply intertwined with achieving the United Nations SDGs, particularly 

SDG 7 (Affordable and Clean Energy) and SDG 13 (Climate Action). However, the challenges 

within the energy sector threaten delay or derail progress. High initial investment costs, 

regulatory uncertainties, and the need for large-scale grid modernization are barriers to scaling 

renewable energy solutions. Moreover, without a just transition strategy that ensures fair 

opportunities and protections for workers and vulnerable communities, the shift risks 

exacerbating social inequalities. Overcoming these challenges is crucial to align the energy 

transition with sustainable development pathways, ensuring that economic growth, 

environmental stewardship, and social inclusion move forward hand-in-hand. 
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