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ABSTRACT

Pretesting for exogeneity has become a routine in many empirical applications involving instrumental variables (IVs)

to decide whether the ordinary least squares or IV-based method is appropriate. Guggenberger (2010a) shows that

the second-stage test – based on the outcome of a Durbin-Wu-Hausman type pretest for exogeneity in the first stage

– has extreme size distortion with asymptotic size equal to 1 when the standard asymptotic critical values are used,

even under strong identification and conditional homoskedasticity. In this paper, we make the following contributions.

First, we show that both conditional and unconditional on the data, standard wild bootstrap procedures are invalid for

the two-stage testing and therefore are not viable solutions to such size-distortion problem. Second, we propose an

identification-robust two-stage test statistic that switches between the OLS-based and the weak-IV-robust statistics.

Third, we develop a size-adjusted wild bootstrap approach for our two-stage test that integrates specific wild bootstrap

critical values with an appropriate size-adjustment method. We establish uniform validity of this procedure under

conditional heteroskedasticity or clustering in the sense that the resulting tests achieve correct asymptotic size no

matter the identification is strong or weak.

Key words: DWH Pretest; Shrinkage; Instrumental Variable; Asymptotic Size; Wild Bootstrap; Bonferroni-based

Size-correction; Clustering.

JEL classification: C12; C13; C26.
∗ School of Economics, The University of Adelaide. 10 Pulteney Street, Adelaide SA 5005, AUSTRALIA.

Tel:+618 8313 1174, Fax:+618 8223 1460; e-mail: firmin.dokotchatoka@adelaide.edu.au
†Division of Economics, School of Social Sciences, Nanyang Technological University. HSS-04-65, 14 Nanyang

Drive, 637332, SINGAPORE. e-mail: wang.wj@ntu.edu.sg



1. Introduction

Inference after data-driven model selection is widely studied in both statistical and econometric

literature.1 It is now well known that widely used model-selection practices such as pretesting

may have large impact on the size properties of two-stage procedures and thus invalidate inference

on parameter of interest in the second stage. For the classical linear regression model with exoge-

nous covariates, Kabaila (1995) and Leeb and Pötscher (2005) show that confidence intervals (CIs)

based on consistent model selection have serious problem of under-coverage, while Andrews and

Guggenberger (2009b) show that such CIs have asymptotic confidence size equal to 0. Further-

more, Andrews and Guggenberger (2009a) find extreme size distortion for the two-stage test after

“conservative" model selection and propose various least favourable critical values (CVs).

In comparison, the literature on models that contain endogenous covariates, such as widely

used instrumental variable (IV) regression models, remains relatively sparse. The uniform valid-

ity of post-selection inference for structural parameters in linear IV models with homoskedastic

errors was studied by Guggenberger (2010a), who advised not to use Hausman-type pretesting

to select between ordinary least squares (OLS) and two-stage least squares (2SLS)-based t-tests

because such two-stage procedure can be extremely over-sized with asymptotic CVs.2 Instead,

Guggenberger (2010a) recommended to use the standard 2SLS-based t-test. However, the 2SLS-

based t-test itself may have undesirable size properties when IVs are relatively weak. As such, in

the quest for statistical power, many empirical practitioners still use pretesting in IV applications

despite the important concern raised by Guggenberger (2010a).3

Recent surveys by Andrews, Stock and Sun (2019) and Lee, McCrary, Moreira and Porter

1E.g., see Hansen (2005), Leeb and Pötscher (2005), who provide an overview of the importance and difficulty of
conducting valid inference after model selection.

2Similar concerns were also raised by Guggenberger and Kumar (2012) about pretesting the instrument exogeneity
using a test of overidentifying restrictions, and by Guggenberger (2010b) about pretesting for the presence of random
effects before inference on the parameters of interest in panel data models.

3Their motivation of implementing the pretesting procedure also lies in the fact that valid IVs (i.e., exogenous IVs)
found in practice are often rather uninformative, while strong IVs are typically more or less invalid and such deviation
from IV exogeneity may also lead to serious size distortion in the 2SLS-based t-test; e.g., see Conley, Hansen and
Rossi (2012), Guggenberger (2012), Andrews, Gentzkow and Shapiro (2017).
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(2022) find that a considerable number of IV regressions in the American Economic Review (AER)

report first-stage F-statistics below 10. Young (2022) analyzes a sample of 1359 empirical appli-

cations involving IV regressions in 31 papers published in the American Economic Association

(AEA).4 He also highlights that IVs often appear to be weak in these papers, so that inferences

based-on standard normal CVs can be unreliable, especially with heteroskedastic or clustered er-

rors. Instead, Young (2022) advocates for the usage of bootstrap methods based on their good

performance in Monte Carlo simulations (but without theoretical justification). Furthermore, he

argues that in these papers IV confidence intervals almost always include OLS point estimates and

there is little statistical evidence of endogeneity and evidence that OLS is seriously biased, based

on the low rejection rates of Hausman-type tests in his data.5 Similarly, Keane and Neal (2024)

argue that a rather strong IV is necessary to give high confidence that 2SLS will outperform OLS

(e.g., with a first-stage F higher than 50, which is well above the industry standard of 10).

However, Young (2022)’s finding from the AEA data that OLS estimates seem to be not very

different from 2SLS estimates may be attributed to the fact that the used IVs are weak so that

2SLS may be biased towards OLS, and Hausman-type tests also have low power in this case [e.g.,

see Doko Tchatoka and Dufour (2018, 2024)]. In particular, as shown by Guggenberger (2010a),

the Hausman test is not able to reject the null hypothesis of exogeneity when there is only a small

degree of endogeneity, i.e., local endogeneity. Then, OLS-based inference is selected in the second

stage with high probability. However, the OLS-based t-statistic often takes on very large values

even under such local endogeneity, causing extreme size distortions. Such issue with pretesting for

exogeneity is highly relevant to empirical practice as endogeneity is mild in many IV applications.

For example, Hansen, Hausman and Newey (2008) report that the median, 75th quantile, and

90th quantile of estimated endogeneity parameters are only 0.279, 0.466, and 0.555, respectively,

in their investigated AER, JPE, and QJE papers. Angrist and Kolesár (2023) investigate three

416 in AER, 6 in AEJ: A.Econ, 4 in AEJ: E.Policy, and 5 in AEJ: Macro.
5In his simulations based upon the published regressions (Table 14), the rejection frequencies can be as low as

0.232 and 0.382 for 1% and 5% significance levels, respectively, for asymptotic Hausman tests, and even as low as
0.098 and 0.200, respectively, for bootstrap Hausman tests.
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influential just-identified IV applicaitions: Angrist and Krueger (1991), Angrist and Evans (1998),

Angrist and Lavy (1999), and find that the estimated endogeneity is no more than 0.175, 0.075,

and 0.460 for different specifications and samples in these papers, respectively.6

Motivated by these issues, we study in this paper the possibility of proposing uniformly valid

method for the two-stage testing procedure and a closely related Stein-type shrinkage proce-

dure proposed by Hansen (2017), and we consider an asymptotic framework under conditional

heteroskedasticity or clustering, as allowing for non-homoskedastic errors is paramount for the

methodology to be useful in practice. Given Young (2022)’s recommendation of using bootstrap,

we first study the theoretical validity of bootstrapping the two procedures by obtaining the null

limiting distributions of the bootstrap statistics and their associated asymptotic null rejection prob-

abilities. Such (unconditional) asymptotic null rejection results are useful because even if the boot-

strap cannot consistently estimate the distribution of interest conditional on the data (i.e., bootstrap

invalidity in the usual sense), it may still be possible that the bootstrap test controls the asymptotic

size and thus is valid unconditionally; e.g., see Cavaliere and Georgiev (2020) and the references

therein. Here, we find that the standard wild bootstrap procedures are invalid both conditionally

and unconditionally for the two-stage and shrinkage procedures even under strong IVs.7 Further-

more, the usual intuition for bootstrapping Durbin-Wu-Hausman (DWH) tests is that one should

restrict the bootstrap data generating process (DGP) under exogeneity of the regressors. However,

we find that such bootstrap DGP can result in extreme size distortion with asymptotic null rejection

probabilities close to 1 in some settings, while the bootstrap DGP without such restriction typically

has much smaller asymptotic size distortions.8

Second, to address the bootstrap failure under local endogeneity and provide a uniformly valid

6See Section 3.1 and Table 1 in Angrist and Kolesár (2023).
7For the case with weak IVs in the sense of Staiger and Stock (1997), it is well documented in the literature that

resampling methods such as bootstrap and subsampling can be inconsistent (i.e., invalid conditional on the data); see,
e.g., Andrews and Guggenberger (2010b), Andrews et al. (2019), Wang and Doko Tchatoka (2018) and Wang (2020).

8These results are in contrast to the case of bootstrapping the DWH tests only (without the second-stage t-test),
which achieves higher-order refinement under strong IVs and remains first-order valid even under weak IVs; e.g., see
Doko Tchatoka (2015).
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inference, we propose a size-adjusted wild bootstrap procedure, which combines certain stan-

dard wild bootstrap CVs with an appropriate Bonferroni-based size-correction method, follow-

ing the lead of McCloskey (2017). In addition, to accommodate weak identification, we pro-

pose a novel two-stage test statistic that adaptively switches between the OLS-based Wald statistic

and the Anderson-Rubin (AR) weak-IV-robust statistic. The switching mechanism is based on a

Hausman-type statistic for testing exogeneity, constructed under the null hypothesis that the struc-

tural parameter equals its unknown true value. This restriction ensures the validity of this exogene-

ity statistic even under weak identification. The resulting CVs are shown to be uniformly valid

with heteroskedastic errors in the sense that they yield two-stage and shrinkage tests with correct

asymptotic size. In particular, since standard wild bootstrap procedures cannot mimic well the key

localized endogeneity parameter, particular attention is taken on this parameter when designing the

bootstrap DGP, and a Bonferroni-based size-correction technique is implemented to deal with the

presence of this localization parameter in the limiting distributions of interest. Different from the

conventional Bonferroni bound, which may lead to conservative test with asymptotic size strictly

less than the nominal level, the size-correction procedure always leads to desirable asymptotic size.

Finally, we extend the uniform validity result to clustered samples, in which case the rate of con-

vergence of the estimators depends on the regressor, the instruments, the relative cluster size and

the intra-cluster correlation structure in a complicated way.

In terms of practical usage of our method, following the aforementioned studies by Hansen

et al. (2008), Young (2022), and Angrist and Kolesár (2023), we are particularly interested in the

IV applications where the values of endogeneity parameters are relatively small. These are the

cases where the pretest would not reject exogeneity and the naive two-stage procedure would lead

to extreme size distortion. On the other hand, as the problem of size distortion is circumvented

by our method, we can take advantage of the power superiority of the OLS-based test over its IV

counterparts. Such a power advantage may be especially remarkable when IVs are weak so that

weak-IV-robust methods control size but may suffer from a relatively low power. Monte Carlo
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experiments confirm that our procedure achieves reliable size adjustment and remarkable power

gains. We also note that the size-adjusted bootstrap Hansen-type shrinkage procedure has superior

finite-sample power performance than its Hausman-type counterpart. This may be mainly due to

the relatively smooth transition between the OLS and IV-based methods generated by the shrinkage

approach.

The motivation of using bootstrap in the current testing problem originates from a growing

literature illustrating that when applied to IV models, well designed bootstrap procedures typically

provide superior inference than asymptotic approximations, including the cases where IVs may

be weak.9 Furthermore, we are motivated by the literature showing the excellent performance of

wild bootstrap methods with heteroskedastic or clustered errors.10 Our size-correction procedure

follows closely the seminal study by McCloskey (2017), who proposed Bonferroni-based size-

correction procedures for general nonstandard testing problems, and McCloskey (2020) applied

this method to inference in linear regression model after consistent model selection.11

The remainder of this paper is organized as follows. Section 2 presents the setting, test statis-

tics, and parameter space of interest. Section 3 presents the main results of both standard and

size-adjusted wild bootstrap methods. Section 4 investigates the finite sample power performance

of our methods using simulations. Conclusions are drawn in Section 5. The proofs and further

simulation results are provided in the Appendix and Supplementary Material.

Throughout the paper, for any positive integers n and m, In and 0n×m stand for the n× n

identity matrix and n×m zero matrix, respectively. For any full-column rank n×m matrix

A, PA = A(A′A)−1A′ is the projection matrix on the space spanned by the columns of A, and

MA = In−PA. λ min(A) denote the minimum eigenvalue of a square matrix A. ‖U‖ denotes the

9See, e.g., Davidson and MacKinnon (2008, 2010), Moreira, Porter and Suarez (2009), Wang and Liu (2015),Wang
and Kaffo (2016), Kaffo and Wang (2017), Finlay and Magnusson (2019), Young (2022), MacKinnon (2023), Wang
and Zhang (2024), Lim, Wang and Zhang (2024b), and Wang and Zhang (2025).

10See, e.g., Davidson and Flachaire (2008),Cameron, Gelbach and Miller (2008), MacKinnon and Webb (2017),
Djogbenou, MacKinnon and Nielsen (2019), and Mackinnon, Nielsen and Webb (2021, 2023).

11Other applications of this size-correction approach include Han and McCloskey (2019) and Wang and Doko Tcha-
toka (2018).
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usual Euclidean or Frobenius norm for a matrix U. The usual orders of magnitude are denoted

by OP(.) and oP(.), →P stands for convergence in probability, while →d stands for convergence

in distribution. We write P∗ to denote the probability measure induced by a bootstrap procedure

conditional on data, and E∗ and Var∗ to denote the expected value and variance with respect to P∗.

Following Gonçalves and White (2004), for any bootstrap statistic T ∗, we write (1) T ∗→P∗ 0 in

probability P if for any δ > 0, ε > 0, limn→∞P[P∗(|T ∗|> δ )> ε] = 0, i.e., P∗(|T ∗|> δ ) = oP(1);

(2) T ∗ = OP∗(nϕ) in probability P if and only if for any δ > 0 there exists a Mδ < ∞ such

that limn→∞P[P∗(|n−ϕT ∗| > Mδ ) > δ ] = 0, i.e., for any δ > 0 there exists a Mδ < ∞ such that

P∗(|n−ϕT ∗| > Mδ ) = oP(1); (3) T ∗ →d∗ T in probability P if, conditional on data, T ∗ weakly

converges to T under P∗, for all samples contained in a set with probability approaching one.

2. Framework

2.1. Model and test statistics

We consider the following linear IV model

y = Xθ +u, X = Zπ + v, (2.1)

where y ∈ Rn and X ∈ Rn are vectors of dependent and endogenous variables, respectively, Z ∈

Rn×k is a matrix of instruments (k ≥ 1), (θ ,π ′)′ ∈ Rk+1 are unknown parameters, and n is the

sample size. Denote by ui, vi, yi, Xi, and Zi the i-th rows of u, v, y, X , and Z respectively, written as

column vectors or scalars. For notational simplicity, we assume that the other exogenous variables

have already been partialled out from the model.

The object of inferential interest is the structural parameter θ and we consider the problem of

testing the null hypothesis H0 : θ = θ 0. We study the two-stage testing procedure for assessing H0,

where an exogeneity test is undertaken in the first stage to decide whether a t-test based on the OLS
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or 2SLS estimator is appropriate for testing H0 in the second stage. Assume that the instruments

Z are exogenous, i.e., EF [uiZi] = 0, where EF denotes expectation under the distribution F. Under

this orthogonality condition of the instruments, X is endogenous in (2.1) if and only if v and u are

correlated. Consider the following linear projection of u on v:

u = va+ e, a = (EF [v2
i ])
−1EF [viui], (2.2)

where e is uncorrelated with v. Notice that the exogeneity of X in (2.1) can be assessed by testing

the null hypothesis Ha : a = 0 in (2.2). Substituting (2.2) into (2.1), we obtain

y = Xθ + va+ e, (2.3)

where X and v are uncorrelated with e. Therefore, the null hypothesis of exogeneity Ha : a = 0 can

be assessed using a standard Wald statistic in the extended regression (2.3) [e.g., see Doko Tcha-

toka and Dufour (2014)]. To account for possible conditional heteroskedasticity, we consider the

following control function-based Wald statistic:12

Hn = â2/V̂a, (2.4)

where â = (ṽ′ṽ)−1ṽ′y, V̂a = (n−1ṽ′ṽ)−1 (n−2
∑

n
i=1 ṽ2

i ê2
i
)
(n−1ṽ′ṽ)−1 is the Eicker-White

heteroskedasticity-robust estimator of the variance of â, ṽ = MX v̂, v̂ = MZX , and ê = M[X :v̂]y. Note

that ê is the residual vector from the OLS regression of y on X and v̂. If θ is strongly identified (Z

12In the case of conditional homoskedasticity, our Wald statistic for Ha : a = 0 using a homoskedastic variance esti-
mator (say, Hn,homo) will be numerically equivalent to the Hausman statistic for testing the exogeneity of the regressor
X : Hn,hausman = (θ̂ 2sls− θ̂ ols)

2/(V̂2sls,ho−V̂ols,ho), which compares the difference between 2SLS and OLS, with V̂2sls,ho
and V̂ols,ho denoting the homoskedastic variance estimators of 2SLS and OLS, respectively. We also note that under
heteroskedasticity, the asymptotic variance in difference between 2SLS and OLS is no longer equal to the difference
in the asymptotic variance of 2SLS and OLS. On the other hand, it is relatively easy to allow heteroskedasticity (or
clustering) by using the Wald-type statistic for testing Ha : a = 0.

Alternative formulations of the (homoskedastic) Durbin-Wu-Hausman test statistics are given in Hahn, Ham and
Moon (2010), Doko Tchatoka and Dufour (2018, 2024) but the Wald version considered in (2.9) easily accommodates
conditional heteroskedasticity or clustering, so we shall use this formulation.
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being strong instruments) and X is exogenous, Hn follows a χ2
1 distribution asymptotically. The

pretest rejects the null hypothesis that X is exogenous in (2.1) if Hn > χ2
1,1−β

, where χ2
1,1−β

is the

(1−β )-th quantile of χ2
1-distributed random variable for some β ∈ (0,1).

Let θ̂ 2sls = (X
′
PZX)−1X

′
PZy, and θ̂ ols = (X

′
X)−1X

′
y be the 2SLS and OLS estimators of θ in

(2.1), respectively. Also, define their corresponding variance estimators as

V̂2sls =
(

n−1X
′
PZX

)−1
π̂
′

(
n−2

n

∑
i=1

ZiZ′i û
2
i (θ̂ 2sls)

)
π̂

(
n−1X

′
PZX

)−1
,

V̂ols =
(

n−1X
′
X
)−1

(
n−2

n

∑
i=1

XiX ′i û2
i (θ̂ ols)

)(
n−1X

′
X
)−1

, (2.5)

where ûi(θ̂ 2sls) = yi−Xiθ̂ 2sls, ûi(θ̂ ols) = yi−Xiθ̂ ols, and π̂ = (Z′Z)−1Z′X . Then, the two-stage

test statistic associated with the Hn-based pretest of exogeneity in the first stage is given by

T S
1,n(θ 0) = Tols(θ 0)1(Hn ≤ χ

2
1,1−β

)+T2sls(θ 0)1(Hn > χ
2
1,1−β

), (2.6)

where Tols(θ) and T2sls(θ) are the Wald statistics with 2SLS and OLS estimates, respectively, i.e.,

T2sls(θ) = (θ̂ 2sls−θ)2/V̂2sls, and Tols(θ) = (θ̂ ols−θ)2/V̂ols. (2.7)

Related to the two-stage procedure, Hansen (2017) proposed a Stein-like shrinkage approach in the

context of IV regressions. His estimator follows Maasoumi (1978) in taking a weighted average

of the 2SLS and OLS estimators, with the weight depending inversely on the test statistic for

exogeneity, and the proposed shrinkage estimator is found to have substantially reduced finite-

sample median squared error relative to the 2SLS estimator. Following Hansen (2017)’s approach,

we define the Stein-like shrinkage test statistic as follows:

T S
2,n(θ 0) = Tols(θ 0)w(Hn)+T2sls(θ 0)(1−w(Hn)), (2.8)
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where the weight function takes the form w(Hn) =


τ/Hn if Hn ≥ τ

1 if Hn < τ

, and τ is a shrinkage

parameter chosen by the researcher. The shrinkage statistic has a relatively smooth transition be-

tween the OLS and 2SLS test statistics. In Section 4, we evaluate the performance of the shrinkage

procedure with different choices of τ .

In addition, we define the weak-identification-robust version of the two-stage/shrinkage test

statistics T S
1,n(θ 0) and T S

2,n(θ 0). Specifically, we first propose the following weak-identification-

robust version of Hn by imposing H0 : θ = θ 0:

Hn(θ 0) = â2(θ 0)/V̂a(θ 0), (2.9)

where â(θ 0) = (v̂′v̂)−1v̂′ỹ(θ 0), V̂a(θ 0) = (n−1v̂′v̂)−1 (n−2
∑

n
i=1 v̂2

i ẽ2
i (θ 0)

)
(n−1v̂′v̂)−1 is the (null-

imposed) Eicker-White heteroskedasticity-robust estimator of the variance of â(θ 0), ỹ(θ 0) =

y−Xθ 0, v̂ = MZX , and ẽ(θ 0) = Mv̂ỹ(θ 0). Note that ẽ(θ 0) is the residual vector from the OLS

regression of ỹ(θ 0) on v̂. When H0 is true and X is exogenous (i.e., a = 0), Hn(θ 0) follows a χ2
1

distribution asymptotically, no matter the IVs are strong or weak.

Now, let us define the heteroskedasticity-robust AR statistic as:

Tar(θ 0) =
(

n−1/2ỹ(θ 0)
′Z
)(

V̂ar(θ 0)
)−1
(

n−1/2Z′ỹ(θ 0)
)
, (2.10)

where V̂ar(θ 0) = n−1
∑

n
i=1 ZiZ′i ỹ

2
i (θ 0). Then, the weak-IV-robust two-stage/shrinkage test statistics

associated with the Hn(θ 0) pretest statistic are given by

TW
1,n(θ 0) = Tols(θ 0)1(Hn(θ 0)≤ χ

2
1,1−β

)+Tar(θ 0)1(Hn(θ 0)> χ
2
1,1−β

), and

TW
2,n(θ 0) = Tols(θ 0)w(Hn(θ 0))+Tar(θ 0)(1−w(Hn(θ 0))). (2.11)

9



2.2. Parameter space and asymptotic size

Assume that {(ui,vi,Zi) : i ≤ n} in (2.1) are i.i.d. with distribution F . To characterize the asymp-

totic size of the two-stage and shrinkage tests, we define the parameter space Γ of the nuisance

parameter vector γ following the seminal studies by Andrews and Guggenberger (2009, 2010a,

2010b), Guggenberger (2012), and Guggenberger and Kumar (2012). For the current testing prob-

lem, define the vector of nuisance parameters γ = (γ1,γ2,γ3) by

γ1 = a, γ2 = (γ21,γ22,γ23,γ24,γ25), γ3 = F, (2.12)

where a is defined in (2.2), γ21 = π, γ22 = EFe2
i ZiZ′i , γ23 = EFe2

i v2
i , γ24 = EFZiZ′i , and γ25 = EFv2

i .

Here, γ1 measures the degree of endogeneity of X and is the key parameter in the current testing

problem as it determines the point of discontinuity of the null limiting distributions of the two-stage

and shrinkage test statistics. For the parameter space, let

Γ1 = R, Γ2 =
{
(γ21,γ22,γ23,γ24,γ25) : γ21 = π ∈ Rk,γ22 = EFe2

i ZiZ′i ∈ Rk×k,

γ23 = EFe2
i v2

i ∈ R,γ24 = EFZiZ′i ∈ Rk×k,γ25 = EFv2
i ∈ R,

s.t. ‖γ21‖ ≥ 0,λ min(γ22)≥ κ,γ23 > 0,λ min(γ24)≥ κ, and γ25 > 0
}
, (2.13)

for some κ > 0 that does not depend on n. We note that as ‖γ21‖≥ 0, the current framework allows

for weak identification. In addition, Γ3(γ1,γ2) is defined as follows:

Γ3(γ1,γ2) =
{

F : EFeivi = EFeiZi = EFviZi = 0, EFe2
i viZi = EFeiv2

i Zi = EFeiviZiZ′i = 0,

EFv2
i ZiZ′i ∈ Rk×k with λ min(EFv2

i ZiZ′i)≥M−1, (2.14)∥∥∥∥EF

(
||Ziei||2+ξ , ||Zivi||2+ξ , |viei|2+ξ , ||ZiZ′i ||2+ξ , |Xi|2(2+ξ )

)′∥∥∥∥≤M
}
,

10



for some constant ξ > 0 and M < ∞. We then define the whole nuisance parameter space Γ of γ as

Γ = {γ = (γ1,γ2,γ3) : γ1 ∈ Γ1,γ2 ∈ Γ2,γ3 ∈ Γ3(γ1,γ2)}, (2.15)

where Γj, j = 1,2,3 are given in (2.13) and (2.14). This nuisance parameter space extends the

one defined in Guggenberger (2010a) to allows for conditional heteroskedasticity and is similar to

those defined in Guggenberger (2012) and Guggenberger and Kumar (2012), which also allow for

heteroskedastic errors. In Section 3.3, we further extend analysis to the case with clustered data

and show that our size-adjusted wild bootstrap is also uniformly valid in that case. The condi-

tion that EFe2
i viZi = EFeiv2

i Zi = EFeiviZiZ′i = 0 in (2.14) is similar to that imposed for Γ3(γ1,γ2)

in Guggenberger (2010a).13 This condition simplifies the limiting distributions and its sufficient

condition is, for example, independence between (vi,ei) and Zi.

Now we define the asymptotic size. Let Tn(θ 0) denote a generic test statistic. Let cn de-

note a (possibly data-dependent) CV being used for the two-stage testing or shrinkage procedure.

Then, the finite sample null rejection probability (NRP) of Tn(θ 0) evaluated at γ ∈ Γ is given by

Pθ 0,γ [Tn(θ 0)> cn], where Pθ 0,γ [En] denotes the probability of event En when θ 0 and γ are the true

values of the parameters. Then, the asymptotic NRP of the test evaluated at γ ∈ Γ is given by

limsup
n→∞

Pθ 0,γ [Tn(θ 0)> cn], while the asymptotic size is given by

AsySz[cn] = limsup
n→∞

sup
γ∈Γ

Pθ 0,γ [Tn(θ 0)> cn] . (2.16)

In general, asymptotic NRP evaluated at a given γ ∈ Γ is not equal to the asymptotic size of the

test. To control the asymptotic size, one needs to control the null limiting behaviour of Tn(θ 0)

under drifting parameter sequences {γn : n≥ 1} indexed by the sample size; e.g., see Andrews and

Guggenberger (2009, 2010a, 2010b), Guggenberger (2012), and Guggenberger and Kumar (2012).

Following the arguments used in these papers, to derive AsySz[cn] we can study the asymptotic

13See (A.2) in the Appendix of his paper for related discussions.
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NRP along certain parameter sequences of the type {γn,h} (defined below) for some h ∈H , as the

highest asymptotic NRP is materialized under such sequence, where

H =

{
h = (h1,h′21,vec(h22)

′,h23,vec(h24)
′,h25)

′ ∈ R2k2+k+3
∞ : ∃{γn = (γn,1,γn,2,γn,3) ∈ Γ : n≥ 1}

s.t. n1/2
γn,1→ h1 ∈ R∞, γn,2→ h2 = (h21,h22,h23,h24,h25), ‖h21‖ ≥ 0, λ min(A)≥ κ

for A ∈ {h22,h24}, h23 > 0, h25 > 0

}
≡H1×H21×H22×H23×H24×H25, (2.17)

for some κ > 0 and R∞ = R∪ {±∞}. Then, for h ∈ H , the relevant sequence of parameters

{γn,h} ⊂ Γ is defined following Guggenberger (2010a) as γn,h = (γn,h,1,γn,h,2,γn,h,3) where

γn,h,1 = (EFn[v
2
i ])
−1EFn[viui], γn,h,2 = (γn,h,21,γn,h,22,γn,h,23,γn,h,24,γn,h,25), (2.18)

with γn,h,21 = πn, γn,h,22 = EFne2
i ZiZ′i , γn,h,23 = EFne2

i v2
i , γn,h,24 = EFnZiZ′i , γn,h,25 = EFnv2

i , s.t.

n1/2
γn,h,1→ h1, γn,h,2→ h2, and γn,h,3 = Fn ∈ Γ3(γn,h,1,γn,h,2). (2.19)

More specifically, under {γn,h} satisfying (2.19) with |h1| = ∞ (i.e., strong endogeneity),

Hn→P ∞, and the two-stage and shrinkage test statistics are asymptotically equivalent to the 2SLS-

based t-statistic. On the other hand, under {γn,h} satisfying (2.19) with |h1|< ∞ (i.e., local endo-

geneity), the following joint convergence results hold for the two-stage and shrinkage statistics

T S
l,n(θ 0) for l ∈ {1,2} under strong IVs:

T S
1,n(θ 0)

T S
2,n(θ 0)

 →d

T̃ S
1,h

T̃ S
2,h

 , (2.20)

where T̃ S
1,h = ηS

2,h1(η
S
3,h ≤ χ2

1,1−β
) + ηS

1,h1(η
S
3,h > χ2

1,1−β
), T̃ S

2,h = ηS
2,hw(ηS

3,h) + ηS
1,h(1 −

w(ηS
3,h)), ηS

1,h ∼ χ2
1, ηS

2,h ∼ χ2
1

(
(h′21h22h21 + h23)

−1h2
25h2

1

)
, and ηS

3,h ∼ χ2
1

(( h′21h22h21
(h′21h24h21)2 +

12



h23h−2
25

)−1h2
1

)
. Furthermore, the following joint convergence results hold for TW

l,n(θ 0) for l ∈{1,2}

under local endogeneity, no matter the IVs are strong or weak (as both Hn(θ 0) and Tar(θ 0) are

weak-identification-robust):

TW
1,n(θ 0)

TW
2,n(θ 0)

 →d

T̃W
1,h

T̃W
2,h

 , (2.21)

where T̃W
1,h = ηW

2,h1(η
W
3,h ≤ χ2

1,1−β
) + ηW

1,h1(η
W
3,h > χ2

1,1−β
), T̃W

2,h = ηW
2,hw(ηW

3,h) + ηW
1,h(1 −

w(ηW
3,h)), ηW

1,h ∼ χ2
k , ηW

2,h = ηS
2,h, and ηW

3,h ∼ χ2
1

(
h−1

23 h2
25h2

1

)
.

Note that under conditional homoskedasticity and strong identification, the formula of the lim-

iting distribution of T S
1,n(θ 0) in (2.20) simplifies and the resulting test is asymptotically equivalent

to the two-stage test considered in Guggenberger (2010a), whose asymptotic size is equal to 1 with

standard normal CVs. Therefore, in the general heteroskedastic case, the asymptotic size of the

T S
1,n(θ 0)-based two-stage test with c∞(1−α) is also equal to 1 (even under strong identification).

Similar results can be shown for the T S
2,n(θ 0)-based shrinkage test. In the next section, we will

study the asymptotic behaviours of the two-stage and shrinkage tests under alternative bootstrap-

based CVs.

3. Main Results

3.1. Standard wild bootstrap

In this section, we study the asymptotic behaviour of the standard wild bootstrap for the two-stage

testing and shrinkage procedures.

Wild Bootstrap Algorithm:

1. Compute the (null-restricted) residuals from the first-stage and structural equations: v̂ =

X−Zπ̂ , û(θ 0) = y−Xθ 0, where π̂ = (Z′Z)−1Z′X denotes the least squares estimator of π .

13



2. Generate the bootstrap pseudo-data following X∗ = Zπ̂ + v∗, y∗ = X∗θ 0 + u∗, where there

are two options to generate the bootstrap disturbances:

(a) v∗ and u∗ are generated independently from each other. Specifically, in the cur-

rent case with heteroskedastic data, we set for each observation i: v∗i = v̂iω
∗
1i, and

u∗i = ûi(θ 0)ω
∗
2i, where ω∗1i and ω∗2i are two random variables with mean 0 and vari-

ance 1, i.e., E∗
[
ω∗1i
]
= E∗

[
ω∗2i
]
= 0 and Var∗

[
ω∗1i
]
= Var∗

[
ω∗2i
]
= 1, and they are

independent from the data and independent from each other.

(b) v∗ and u∗ are drawn dependently from each other. We set for each observation i: v∗i =

v̂iω
∗
1i, and u∗i = ûi(θ 0)ω

∗
1i.

Following Young (2022), we refer to (a) as independent transformation of disturbances and

(b) as dependent transformation of disturbances.14

3. Compute the bootstrap analogues of the two-stage and shrinkage test statistics:

T S∗
1,n(θ 0) = T ∗ols(θ 0)1(H∗n ≤ χ

2
1,1−β

)+T ∗2sls(θ 0)1(H∗n > χ
2
1,1−β

),

T S∗
2,n(θ 0) = T ∗ols(θ 0)w(H∗n )+T ∗2sls(θ 0)(1−w(H∗n )),

TW∗
1,n (θ 0) = T ∗ols(θ 0)1(H∗n (θ 0)≤ χ

2
1,1−β

)+T ∗ar(θ 0)1(H∗n (θ 0)> χ
2
1,1−β

),

TW∗
2,n (θ 0) = T ∗ols(θ 0)w(H∗n (θ 0))+T ∗ar(θ 0)(1−w(H∗n (θ 0)), (3.1)

where T ∗ols(θ 0), T ∗2sls(θ 0), T ∗ar(θ 0), H∗n , and H∗n (θ 0) are the bootstrap analogues of Tols(θ 0),

T2sls(θ 0), Tar(θ 0), Hn, and Hn(θ 0), respectively, which are obtained from the bootstrap sam-

ples generated in Step 2.

4. For l ∈ {1,2} and s ∈ {S,W}, repeat Steps 2-3 B times and obtain {T s∗(b)
l,n (θ 0),b = 1, ...,B}.

14For the purpose of better size control, it is often recommended that for bootstrap exogeneity tests, (u∗,v∗) should
be generated using the independent transformation scheme, so that the bootstrap samples are obtained under the null
hypothesis of exogeneity. However, as we will see below, this is not necessarily the case for the bootstrap two-stage
or shrinkage test statistic.
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The bootstrap test with the test statistic T s
l,n(θ 0) rejects H0 if the corresponding bootstrap

p-value 1
B ∑

B
b=11

[
T s∗(b)

l,n (θ 0)> T s
l,n(θ 0)

]
is less than the nominal level α.

Following the standard arguments for bootstrap validity, to check whether (conditional on the

data) the bootstrap is able to consistently estimate the distribution of the two-stage or shrinkage test

statistic, one needs to check whether under H0 and both cases of strong endogeneity (|h1|= ∞) and

local endogeneity (|h1| < ∞), supx∈R

∣∣∣P∗(T s∗
l,n(θ 0)≤ x

)
−P

(
T s

l,n(θ 0)≤ x
)∣∣∣→P 0, for l ∈ {1,2}

and s ∈ {S,W}. However, we notice below that neither bootstrap procedure is able to consistently

estimate the distribution of interest under local endogeneity, even with strong IVs (i.e., even when

||γ21||> 0).

More specifically, it holds for the bootstrap statistics with dependent or independent transfor-

mation (for the dependent transformation, we further require E∗
[
ω∗31i

]
= 0 and E∗

[
ω∗41i
]
= 1; see

Lemma S.4 in the Supplementary Appendix for details) that

n−1/2

 Z
′
u∗(

u∗
′
v∗−E∗[u∗

′
v∗]
)
→d∗

ψ∗Ze

ψ∗ve

 , (3.2)

in probability P (i.e., with probability approaching one according to P), where the boot-

strap (conditional) weak limit (ψ∗
′

Ze,ψ
∗
ve)
′ is the same as (ψ ′Ze,ψve)

′, i.e., the weak limit of

n−1/2 ((Z′u)′,(u′v−EF [u′v]))
′. Therefore, the bootstrap procedures do replicate well the random-

ness in the original sample.

By contrast, under local endogeneity the standard wild bootstraps are not able to mimic well the

key localization parameter h1, thus resulting in the discrepancy between the original and bootstrap

samples. In particular, let hb
1 denote the localization parameter of endogeneity in the bootstrap

world, then we have:

1. hb
1 = 0 for the bootstrap with independent transformation. This is because the random

weights ω∗1i and ω∗2i under this transformation are independent from each other. As a con-
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sequence, the bootstrap disturbances u∗i and v∗i are independent from each other (conditional

on data), which implies that E∗[u∗i v∗i ] = E∗[ûi(θ 0)ω
∗
1iv̂iω

∗
2i] = ûi(θ 0)v̂iE∗[ω∗1i]E

∗[ω∗2i] = 0.

2. hb
1 = h1+h−1

25 ψve for the one with dependent transformation, where ψve ∼ N(0,h23). This is

due to the fact that the same random weight ω∗1i is used to generate the bootstrap disturbances

u∗i and v∗i , so that E∗[u∗i v∗i ] = E∗[ûi(θ 0)ω
∗
1iv̂iω

∗
1i] = ûi(θ 0)v̂iE∗[ω∗21i ] = ûi(θ 0)v̂i. Intuitively,

while the bootstrap with dependent transformation is able to mimic the situation of local

endogeneity in the original sample (hb
1 is finite with probability approaching one when h1 is

finite), the approximation is imprecise and results in an extra error term h−1
25 ψve, whose value

depends on the actual realization of the sample (e.g., see Theorem S.6 in the Supplementary

Appendix for details).

However, even if the bootstrap is inconsistent conditional on the data, it may still be valid in

the unconditional sense; e.g., see Cavaliere and Georgiev (2020) and the references therein. More

precisely, the bootstrap might still be able to provide a valid test in the current context if its asymp-

totic NRP does not exceed the nominal level α under any parameter sequence {γn,h} in (2.19).

To further shed light on the behaviour of the bootstrap statistics with dependent transformation,

we apply the results in (2.20) and Theorem S.6 to plot the quantiles of the null limiting distribu-

tions of the original and bootstrap test statistics for the case of strong identification and conditional

homoskedasticity studied in Guggenberger (2010a). The limiting distributions of both two-stage

and shrinkage test statistics are substantially simplified in this case and only depend on two scalar

parameters, say, h1,ho and h2,ho. h1,ho captures the degree of local endogeneity and h2,ho captures

the IV strength, respectively.15

Figure 1 reports the 95% quantiles of T̃ S
l,h defined in (2.20) and its bootstrap counterpart T̃ S∗

l,h for

l ∈ {1,2}, as a function of h1,ho with h2,ho ∈ {.5,1,2}, β = .05 for the two-stage test statistic, and

τ = 0.5 for the shrinkage test statistic. The results are based on 1,000,000 simulation replications.

15See (9) in Section 2.3 and (12) in Section 2.4 of Guggenberger (2010a) for detailed definition; we note that in
Guggenberger (2010a), the parameters h1,ho and h2,ho are denoted as h1 and h2, respectively.
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We highlight some findings below. First, we observe that the quantiles of T̃ S∗
l,h for the dependent

bootstrap turn out to be rather close to those of T̃ S
l,h across various values of h1,ho and h2,ho. How-

ever, the figure suggests that this bootstrap procedure can have over-rejection when the quantiles of

T̃ S
l,h are relatively high (e.g., when h2,ho = .5 and h1,ho is between 5 and 6). In addition, we note that

the quantiles of T̃ S∗
l,h for the dependent bootstrap converge in each sub-figure to the standard normal

CV when the value of h1,ho increases: when |h1,ho| is large, the Hausman pretest rejects with high

probability and the weight w(Hn) shrinks toward zero, so that both two-stage and shrinkage tests

become the 2SLS-based test, and the dependent bootstrap does mimic well such behaviour.

Furthermore, the quantiles corresponding to the shrinkage test statistics and their bootstrap

analogues (i.e., T̃ S
2,h and T̃ S∗

2,h) have smoother shapes than their two-stage counterparts (i.e., T̃ S
1,h

and T̃ S∗
1,h), and this may be due to the fact that the two-stage test statistic uses an abrupt transition

between the OLS and 2SLS-based statistics (especially when the IV strength is relatively low, e.g.,

when h2,ho = 0.5). In addition, Figure 2 shows the 95% quantiles of T̃W
l,h and T̃W∗

l,h for l ∈ {1,2} as

a function of h1,ho (from 0 to 20) with h2,ho ∈ {.5,1,2}. We also observe a smoother shape of the

quantiles of the shrinkage statistics compared with those of the two-stage statistics. This suggests

that the shrinkage statistics may lead to power improvement compared with the Hausman-type

two-stage statistics when appropriate critical values are used.

Moreover, we note that similar to Figure 1, the two quantiles intersect at certain values of h1,ho,

suggesting that the bootstrap tests with TW
1,n(θ 0) or TW

2,n(θ 0) do not have valid size control in gen-

eral. In sum, Figures 1 and 2 suggest that the standard wild bootstrap-based two-stage or shrinkage

tests are invalid in the unconditional sense, even under strong identification and conditional ho-

moskedasticity.

3.2. Size-adjusted wild bootstrap

As illustrated in the previous section, the standard wild bootstrap procedures are not able to pro-

vide uniform size control, even under strong identification and conditional homoskedasticity. To
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Figure 1. 95% quantiles of T̃ S
l,h and T̃ S∗

l,h under strong identification and homoskedasticity

Note: “Hausman" and “Hansen" denote the Hausman-type two-stage statistic T S
1,n(θ 0) with β = 0.05 and Hansen

(2017)’s shrinkage statistic T S
2,n(θ 0) with τ = 0.5, respectively. “BS-Hausman" and “BS-Hansen" denote their wild

bootstrap analogues T S∗
1,n(θ 0) and T S∗

2,n(θ 0) with the dependent transformation. The results are based on 1,000,000
simulation replications.

Figure 2. 95% quantiles of T̃W
l,h and T̃W∗

l,h under strong identification and homoskedasticity

Note: “Hausman" and “Hansen" denote the weak-identification-robust Hausman-type two-stage statistic TW
1,n(θ 0)

with β = 0.05 and Hansen (2017)’s shrinkage statistic TW
2,n(θ 0) with τ = 0.5, respectively. “BS-Hausman" and

“BS-Hansen" denote their wild bootstrap analogues TW∗
1,n (θ 0) and TW∗

2,n (θ 0) with the dependent transformation. The
results are based on 1,000,000 simulation replications.
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achieve uniform validity, including the scenarios with weak identification and heteroskedasticity,

we propose, in this section, Bonferroni-based size-correction methods for the bootstrap tests based

on TW
1,n(θ 0) and TW

2,n(θ 0), the identification-robust two-stage and shrinkage statistics. As explained

in McCloskey (2017), the idea behind such size-correction is to construct CVs that use the data

to determine how far the key nuisance parameter (i.e., the endogeneity parameter in the current

testing problem) is from the point that causes the discontinuity in the limiting distributions of the

test statistics. Although the key nuisance parameter cannot be consistently estimated under the

drifting sequences in (2.19), it is still possible to construct an asymptotically valid confidence set

for it and then construct adaptive CVs that control the asymptotic size.

First, we will construct a size-adjusted wild bootstrap CV by using the wild bootstrap CVs

with the independent transformation in Section 3.1 and Bonferroni bounds. Note that although the

localization parameter h1 cannot be consistently estimated, we may still construct an asymptoti-

cally valid confidence set for h1 by defining ĥn,1(θ 0) = n1/2â(θ 0), where â(θ 0) = (v̂′v̂)−1 v̂′ỹ(θ 0).

A confidence set of h1 can be constructed by using the fact that under the drifting parameter se-

quences and H0 : θ = θ 0,

ĥn,1(θ 0)→d h̃1 ∼ N
(

h1,h−2
25 h23

)
. (3.3)

Then, uniformly valid size-adjusted bootstrap CVs for testing H0 : θ = θ 0 under TW
1,n(θ 0)

or TW
2,n(θ 0) can be constructed by using Bonferroni bounds: we may construct a 1 −

(α − δ ) level first-stage confidence set for h1, and then take the maximal (1 − δ )-th

quantile of appropriately generated bootstrap statistics over the first-stage confidence set.

Specifically, let ĥn,2 =
(

ĥ′n,21,vec(ĥn,22)
′, ĥn,23,vec(ĥn,24)

′, ĥn,25

)′
be the estimators of h2 =

(h′21,vec(h22)
′,h23,vec(h24)

′,h25)
′, and define the 1− (α−δ ) level confidence set of h1 for some

0 < δ ≤ α < 1 as

CI
α−δ

(ĥn,1(θ 0)) =
[
ĥn,1(θ 0)− z1−(α−δ )/2 ·

(
nV̂a(θ 0)

)1/2
, ĥn,1(θ 0)+ z1−(α−δ )/2 ·

(
nV̂a(θ 0)

)1/2
]
,
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where V̂a(θ 0) is defined in (2.9). The wild bootstrap-based simple Bonferroni critical value

(SBCV) is defined as

cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2) = sup

h1∈CI
α−δ

(ĥn,1(θ 0))

c∗l,(h1,ĥn,2)
(1−δ ), (3.4)

for l ∈ {1,2}, where c∗
l,(h1,ĥ2)

(1−δ ) is the (1−δ )-th quantile of the distribution of TW∗
l,n,(h1,ĥn,2)

(θ 0),

i.e., the distribution of the bootstrap analogue of TW
l,n(θ 0) generated under the specific value of

localization parameter equal to h1.

As we have seen in the previous section, the standard wild bootstrap procedures cannot mimic

well the localization parameter h1, no matter with independent or dependent transformation. There-

fore, for a given value of the localization parameter h1, we propose to generate the bootstrap two-

stage test statistic TW∗
1,n,(h1,ĥn,2)

(θ 0) as follows:

T ∗ols,(h1,ĥn,2)
(θ 0)1

(
H∗n,(h1,ĥn,2)

(θ 0)≤ χ
2
1,1−β

)
+T ∗ar(θ 0)1

(
H∗n,(h1,ĥn,2)

(θ 0)> χ
2
1,1−β

)
, (3.5)

where T ∗
ols,(h1,ĥn,2)

(θ 0) and H∗
n,(h1,ĥn,2)

(θ 0) are the bootstrap analogues of Tols(θ 0) and Hn(θ 0), re-

spectively, evaluated at the specific value of localization parameter equal to h1. More precisely,

to obtain these bootstrap analogues, we first generate the bootstrap counterparts of the OLS and

regression endogeneity parameter estimators under h1:

θ̂
∗
ols,(h1,ĥn,2)

= θ̂
∗
ols +

(
ĥ′n,21ĥn,24ĥn,21 + ĥn,25

)−1ĥn,25

(
n−1/2h1

)
,

â∗
(h1,ĥn,2)

(θ 0) = â∗(θ 0)+n−1/2h1, (3.6)

where θ̂
∗
ols and â∗(θ 0) are generated by the standard wild bootstrap procedure in Section 3.1 with

independent transformation of disturbances, so that θ̂
∗
ols and â∗(θ 0) have localization parameter

equal to zero in the bootstrap world. By doing so,
√

n
(

θ̂
∗
ols,(h1,ĥn,2)

−θ 0

)
and
√

nâ∗
(h1,ĥn,2)

(θ 0)
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have appropriate null limiting distribution conditional on the data. Then, we obtain

T ∗ols,(h1,ĥn,2)
(θ 0) = (θ̂

∗
ols,(h1,ĥn,2)

−θ 0)
2/V̂ ∗ols, H∗n,(h1,ĥn,2)

(θ 0) = â∗
2

(h1,ĥn,2)
(θ 0)/V̂ ∗a (θ 0). (3.7)

TW∗
2,n,(h1,ĥn,2)

(θ 0), the bootstrap analogue of the shrinkage statistic, is generated in a similar fashion.

Furthermore, we can show that the following (conditional) convergence in distribution holds:

T ∗
ols,(h1,ĥn,2)

(θ 0)

H∗
n,(h1,ĥn,2)

(θ 0)

→d∗

(h′21h22h21 +h23)
−1 (h′21ψ∗Ze +ψ∗ve +h25h1)

2

h−1
23 (ψ∗ve +h25h1)

2

 ,

in probability P, where ψ∗Ze and ψ∗ve are the bootstrap analogues of ψZe and ψve, respectively. This

implies that conditional on data, TW∗
1,n,(h1,ĥn,2)

(θ 0) and TW∗
2,n,(h1,ĥn,2)

(θ 0), the bootstrap counterparts of

the two-stage and shrinkage test statistics, have the desired null limiting distributions evaluated at

the value of localization parameter equal to h1.

As seen from (3.4), the bootstrap SBCV equals the maximal quantile c∗
l,(h1,ĥn,2)

(1−δ ) over the

values of the localization parameter h1 in the set CI
α−δ

(ĥn,1(θ 0)). We can now state the following

asymptotic size result for cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2), where l ∈ {1,2}.

Theorem 3.1 Suppose that H0 holds, then we have for any 0 < δ ≤ α < 1 and for l ∈ {1,2},

AsySz
[
cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]
≤ α.

Theorem 3.1 states that tests based on cB−S
l (α,α − δ , ĥn,1(θ 0), ĥn,2) control the asymptotic

size. In practice, cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2) can be obtained by using the following algorithm.

Wild Bootstrap Algorithm for cccB-S
lll (((α,,,α−−−δ ,,, ĥhhn,1(((θ 000))),,, ĥhhn,2))):

1. Generate the bootstrap statistics
{

θ̂
∗(b)
ols , â∗(b)(θ 0),V̂

∗(b)
ols ,V̂ ∗(b)a (θ 0),T

∗(b)
ar (θ 0)

}
,b = 1, ...,B,

using the standard wild bootstrap procedure with independent transformation of distur-

bances.
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2. Choose α , δ , and compute CI
α−δ

(ĥn,1(θ 0)). Create a fine grid for CI
α−δ

(ĥn,1(θ 0)) and call

it C grid
α−δ

.

3. For l ∈ {1,2} and for h1 ∈ C grid
α−δ

, generate TW∗(b)
l,n,(h1,ĥn,2)

(θ 0), b = 1, ...,B, using the bootstrap

statistics generated in Step 1. The same set of bootstrap statistics can be used repeatedly for

each h1.

4. Compute c∗
l,(h1,ĥn,2)

(1−δ ), the (1−δ )-th quantile of the distribution of TW∗
l,n,(h1,ĥ2)

(θ 0) from

these B draws of bootstrap samples.

5. Find cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2) = sup

h1∈C grid
α−δ

c∗
l,(h1,ĥn,2)

(1−δ ).

6. Reject H0 : θ = θ 0 if TW
l,n(θ 0)> cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2).

Note that as shown in Theorem 3.1, although controlling the asymptotic size, the bootstrap

SBCV defined above may yield a conservative test whose asymptotic size does not reach its nom-

inal level. For further refinement on the Bonferroni bounds, we propose a size-adjustment method

to adjust the bootstrap SBCV so that the resulting test is not conservative with asymptotic size

exactly equal to α . Specifically, for l ∈ {1,2}, the size-adjustment factor for the bootstrap SBCV

is defined as:

η̂ l,n = inf

{
η : sup

h1∈H1

P∗
[
TW∗

l,n,(h1,ĥn,2)
(θ 0)> cB−S

l (α,α−δ , ĥ∗n,1(θ 0,h1), ĥn,2)+η

]
≤ α

}
, (3.8)

where ĥ∗n,1(θ 0,h1) denotes the bootstrap analogue of ĥn,1(θ 0) with localization parameter equal to

h1 and is generated by the same bootstrap samples as those for TW∗
n,(h1,ĥn,2)

(θ 0). More precisely, we

define

ĥ∗n,1(θ 0,h1) = ĥ∗n,1(θ 0)+h1, (3.9)

where ĥ∗n,1(θ 0) = n1/2â∗(θ 0) =
(
v̂∗′v̂∗

)−1v̂∗′u∗, v̂∗ = MZX∗, is generated by the standard wild
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bootstrap procedure with independent transformation so that the localization parameter equals zero

in the bootstrap world. Notice that we have the following convergence in distribution (jointly with

the other bootstrap statistics): ĥ∗n,1(θ 0,h1)→d∗ N
(

h1,h−2
25 h23

)
, in probability P, i.e., the same

limiting distribution as that of ĥn,1(θ 0) in (3.3), under the specific value of h1.

The goal of the size-adjustment method is to decrease the bootstrap SBCV as much as possible

by using the factor η while not violating the inequality in (3.8), so that the asymptotic size of the

resulting tests can be controlled. Then, the bootstrap size-adjusted CV (BACV) can be defined as

cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2)

= cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2)+ η̂ l,n for l ∈ {1,2}, (3.10)

and one can expect that relatively small η̂ l,n results in relatively less conservative (and more power-

ful) test. Furthermore, we notice that the bootstrap-based size-adjustment method in (3.10), which

employs a size-adjustment factor, is in the same spirit as the adjusted Bonferroni CV proposed in

McCloskey (2017, Section 3.2), which is based on adjusting the quantile level of the underlying

localized quantile in the simple Bonferroni CV.

Below we state the theorem on the uniform size control of the wild bootstrap CVs based on

the size-adjustment method, and we assume a continuity condition on the NRP function, follow-

ing similar continuity assumptions in Andrews and Cheng [2012, p.2195, Assumption Rob2(i)]

and Han and McCloskey [2019, p.1052, Assumption DF2(ii)]. Define cB−S
l (α,α − δ , h̃1,h2) =

suph1∈CIα−δ (h̃1)
cl,h(1−δ ), where cl,h(1−δ ) is the (1−δ )-th quantile of T̃W

l,h , and T̃W
l,h is the weak

limit of TW
l,n(θ 0) under the sequence {γn,h} ⊂ Γ satisfying (2.19) for l ∈ {1,2}.

Assumption 3.2 P
[
T̃W

l,h = cB−S
l (α,α−δ , h̃1,h2)+η

]
= 0, ∀h1 ∈ H1 and η ∈ [−cB−S

l (α,α −

δ , h̃1,h2),0], where l ∈ {1,2}.

Theorem 3.3 Suppose that H0 and Assumption 3.2 hold, then we have for any 0 < δ ≤ α < 1,

and for l ∈ {1,2}: AsySz
[
cB−A

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]
= α.
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Furthermore, let CSl,n(1−α) denote the nominal level 1−α confidence set for θ constructed

by collecting all the values of θ that cannot be rejected by the corresponding size-adjusted two-

stage or shrinkage test at nominal level α .

Corollary 3.4 Suppose that Assumption 3.2 holds, then we have for any 0 < δ ≤ α < 1 and for

l ∈ {1,2}: liminfn→∞ infγ ∈ Γ P
θ ,γ

[
θ ∈CSl,n(1−α)

]
= 1−α.

Theorem 3.3 shows that cB−A
l (α,α − δ , ĥn,1(θ 0), ĥn,2) yield two-stage and shrinkage boot-

strap tests with the correct asymptotic size, irrespective of identification strength, and Corollary

3.4 states that the confidence sets constructed from inverting these tests have correct asymp-

totic coverage probability.16 To implement such size-adjusted tests in practice, we must compute

cB−S
l (α,α − δ , ĥn,1(θ 0), ĥn,2) and η̂ l,n. These values can be computed sequentially starting with

cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2). Then the size-adjustment factor η̂ l,n can be computed by evaluating

(3.8) over a fine grid of H1 as follows.

Wild Bootstrap Algorithm for cccB-A
lll (((α,,,α−−−δ ,,, ĥhhn,1(((θ 000))),,, ĥhhn,2))):

1. Generate the bootstrap statistics
{

θ̂
∗(b)
ols , â∗(b)(θ 0),V̂

∗(b)
ols ,V̂ ∗(b)a (θ 0),T

∗(b)
ar (θ 0)

}
,b = 1, ...,B,

using the standard wild bootstrap procedure with independent transformation.

2. For l ∈ {1,2}, let cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2) be the obtained SBCV.

3. Create a fine grid of the set H1 in (3.8) and call it H grid
1 . For l ∈ {1,2} and for each

h1 ∈H grid
1 , obtain TW∗(b)

l,n,(h1,ĥn,2)
(θ 0) and cB−S

l (α,α−δ , ĥ∗(b)n,1 (θ 0,h1), ĥn,2), b = 1, ...,B, using

the bootstrap statistics generated in Step 1. Note that the same set of bootstrap statistics can

be used for each h1.

4. Create a fine grid of [−cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2), 0] and call it S

grid
.

16Also see, e.g., Section 6 in Davidson and MacKinnon (2010) and Section 3.5 in Roodman, Nielsen, MacKinnon
and Webb (2019) for detailed guidance on constructing confidence set from inverting a wild bootstrap test.
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5. Find all η ∈ Sgrid
s.t. sup

h1∈H grid
1

1
B ∑

B
b=11

[
TW∗(b)

l,n,(h1,ĥn,2)
(θ 0)> cB−S

l (α,α−δ , ĥ∗(b)n,1 (θ 0,h1), ĥn,2)+η

]
≤

α, and set η̂ l,n equal to the smallest η .

6. The BACV is given by cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2) = cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)+ η̂ l,n.

7. Reject H0 : θ = θ 0 if TW
l,n(θ 0)> cB−A

l (α,α−δ , ĥn,1(θ 0), ĥn,2).

Several remarks are in order. First, we emphasize that ĥ∗n,1(θ 0,h1) needs to be generated

simultaneously with TW∗
l,n,(h1,ĥn,2)

(θ 0) using the same bootstrap samples, so that the dependence

structure between the statistics TW
l,n(θ 0) and ĥn,1(θ 0) is well mimicked by the bootstrap statis-

tics. This is important for the size-adjustment procedure to correct the conservativeness of the

Bonferroni bound. Similarly, for the implementation of the size-adjustment, one cannot replace

cB−S
l (α,α−δ , ĥ∗n,1(θ 0,h1), ĥn,2) in (3.8) with cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2), as it also breaks down

the dependence structure.

Second, when |h1|= ∞, Hn(θ 0) diverges to infinity, so that TW
1,n(θ 0) and TW

2,n(θ 0) will be equal

to Tar(θ 0) with probability approaching 1. Furthermore, when |h1| = ∞, ĥn,1(θ 0) and, thus, the

confidence interval CIα−δ (ĥn,1(θ 0)) will also diverge to infinity. We note that the bootstrap SBCV

is equal to suph1∈CIα−δ (ĥn,1(θ 0))
c∗

l,(h1,ĥn,2)
(1−δ ), where l ∈ {1,2}, and c∗

l,(h1,ĥn,2)
(1−δ ) denotes the

(1− δ )-th quantile of the bootstrap version of the two-stage/shrinkage statistic under the specific

value of h1. Therefore, when |h1| = ∞, the SBCV will be equal to the corresponding quantile of

T ∗ar(θ 0) (i.e., the bootstrap version of Tar(θ 0)) with probability approach 1. As a result, the limiting

null rejection probability of our proposed bootstrap tests is controlled in this case as well. Further-

more, our size-adjustment factor η̂ l,n in the BACV will decrease the SBCV as much as possible to

achieve the correct asymptotic size. Additionally, we note that in finite samples, as the transition

between the OLS and IV-based methods can be relatively abrupt for the two-stage statistic com-

pared with the shrinkage statistic, the finite-sample behaviour of the size-adjusted bootstrap tests

with TW
1,n(θ 0) may be closer to that of Tar(θ 0) (this is also observed in our simulations).
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3.3. Extension to Clustered Data

Many applications in economics involve error terms that are correlated within clusters (e.g., see

Cameron and Miller (2015) and the references therein), and various studies in the literature on

cluster-robust inference recommend to use wild cluster bootstrap as a way to obtain more accurate

inference, including Cameron et al. (2008), MacKinnon and Webb (2017), Djogbenou et al. (2019),

and MacKinnon, Nielsen and Webb (2023), among others. However, by using similar arguments

as those for the IV model with heteroskedastic errors, we can show that the standard wild cluster

bootstrap is invalid in the current context for the two-stage testing and shrinkage procedures. In this

section, we extend the (weak-identification-robust) size-adjusted bootstrap procedure proposed in

Section 3.2 to the case with clustered samples.

To proceed, consider the following linear IV model with clustered data:

yg = Xgθ +ug, Xg = Zgπ + vg, (3.11)

where yg = (yg1, ...,ygng)
′, Xg = (Xg1, ...,Xgng)

′, and Zg = (Zg1, ...,Zgng)
′ denote an ng× 1 vector

of dependent variables, an ng×1 vector of endogenous regressors, and an ng× k matrix of instru-

ments for the g-th cluster. Let G denote the number of clusters and n denote the total number of

observations. Similar to the case with heteroskedastic data, we can define the extended regression

yg = Xgθ + vgac + eg, (3.12)

where ac =
(

n−1
∑

G
g=1 EF [v′gvg]

)−1(
n−1

∑
G
g=1 EF [v′gug]

)
, and the weak identification and cluster-

robust test statistic for the null of exogeneity Hc
a : ac = 0 takes the form

Hc
n(θ 0) = (âc(θ 0))

2/V̂ c
a (θ 0), (3.13)

where V̂ c
a (θ 0) = (n−1v̂′v̂)−1

(
n−2

∑
G
g=1 v̂′gêg(θ 0)ê(θ 0)

′v̂g

)
(n−1v̂′v̂)−1, âc(θ 0) = (v̂′v̂)−1v̂′ỹ(θ 0),
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v̂′v̂=∑
G
g=1 v̂′gv̂g, and v̂′ỹ(θ 0)=∑

G
g=1 v̂′gỹg(θ 0). In the same fashion, we define T c

ols(θ 0) and T c
ar(θ 0),

the cluster-robust OLS-based Wald and AR statistics, following those in the heteroskedastic case.

Then, the weak identification and cluster-robust two-stage test statistic TWc
1,n (θ 0) and shrinkage test

statistic TWc
2,n (θ 0) can be defined according to the definitions in Section 2.1, i.e.,

TWc
1,n (θ 0) = T c

ols(θ 0)1(Hc
n(θ 0)≤ χ

2
1,1−β

)+T c
ar(θ 0)1(Hc

n(θ 0)> χ
2
1,1−β

), and

TWc
2,n (θ 0) = T c

ols(θ 0)w(Hc
n(θ 0))+T c

ar(θ 0)(1−w(Hc
n(θ 0))). (3.14)

For clustered data, we define the vector of nuisance parameters γc = (γc
1,γ

c
2,γ

c
3) by

γ
c
1 = ac, γ

c
2 = (γc

21,γ
c
22,γ

c
23,γ

c
24,γ

c
25), γ

c
3 = F, (3.15)

and the corresponding parameter space by Γ c = {γc = (γc
1,γ

c
2,γ

c
3) : γc

1 ∈ Γ c
1 ,γ

c
2 ∈ Γ c

2 ,γ
c
3 ∈

Γ c
3 (γ

c
1,γ

c
2)}, where

Γ
c

1 = R, Γ
c

2 =
{
(γc

21,γ
c
22,γ

c
23,γ

c
24,γ

c
25) : γ

c
21 = π ∈ Rk,γc

22 = µn

(
n−2

G

∑
g=1

EFZ′gege′gZg

)
∈ Rk×k,

γ
c
23 = µn

(
n−2

G

∑
g=1

EFv′gege′gvg

)
∈ R,γc

24 = n−1
G

∑
g=1

EFZ′gZg ∈ Rk×k,γc
25 = n−1

G

∑
g=1

EFv′gvg ∈ R,

s.t. ‖γc
21‖ ≥ 0,λ min(γ

c
22)≥ κ,γc

23 > 0,λ min(γ
c
24)≥ κ, and γ

c
25 > 0

}
, (3.16)

for some κ > 0 that does not depend on n, and {µn} is a non-random sequence, which plays

the similar role as that used in Djogbenou et al. (2019) and is needed because different from

the model with heteroskedastic errors, the rate of convergence of the estimators θ̂
c
ols and âc(θ 0)

under clustering depends on various factors such as the regressor, the relative cluster size, and the

intra-cluster correlation [also see Hansen and Lee (2019, Section 4) for related discussions]. As

pointed out by Djogbenou et al. (2019), the sequence {µn} can be interpreted as the rate at which

information accumulates, and because of the studentization of the test statistics, {µn} needs not to
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be known in practice, but only needs to exist. We also allow for the case with weak identification

under clustering.

In addition, Γ c
3 (γ

c
1,γ

c
2) is defined as follows:

Γ
c

3 (γ
c
1,γ

c
2) =

{
F : EFe′gvg = EFZ′geg = EFZ′gvg = 0, EFZ′gege′gvg = EFZ′gvge′gvg = EFZ′gegv′gZg = 0,

µn

(
n−2

G

∑
g=1

EFZ′gvgv′gZg

)
∈ Rk×k with λ min

(
µnn−2

G

∑
g=1

EFZ′gvgv′gZg

)
≥ κ,∥∥∥∥∥sup

g,i
EF

(
||Zgiegi||2+ξ , ||Zgivgi||2+ξ , |vgiegi|2+ξ , ||ZgiZ′gi||2+ξ , |Xgi|2(2+ξ )

)′∥∥∥∥∥≤M
}
, (3.17)

for some constant κ > 0, ξ > 0, M < ∞, and {µn} is the non-random sequence defined above. We

then define the whole nuisance parameter space Γ c of γc as Γ c = {γc = (γc
1,γ

c
2,γ

c
3) : γc

1 ∈ Γ c
1 ,γ

c
2 ∈

Γ c
2 ,γ

c
3 ∈ Γ c

3 (γ
c
1,γ

c
2)}.

Now, let us define

H c =

{
hc = (hc

1,h
c′
21,vec(hc

22)
′,hc

23,vec(hc
24)
′,hc

25)
′ ∈ R2k2+k+3

∞ : ∃{γc
n = (γc

n,1,γ
c
n,2,γ

c
n,3) ∈ Γ

c : n≥ 1}

s.t. µ
1/2
n γ

c
n,1→ hc

1 ∈ R∞, γ
c
n,2→ hc

2 = (hc
21,h

c
22,h

c
23,h

c
24,h

c
25), ‖hc

21‖ ≥ 0, λ min(A)≥ κ

for A ∈ {hc
22,h

c
24}, hc

23 > 0, hc
25 > 0

}
(3.18)

for some κ > 0 and R∞ = R∪{±∞}. Similar to the heteroskedastic case, to derive the asymptotic

size, it suffices to study the asymptotic NRP along certain sequence {γc
n,h} for some hc ∈H c,

γc
n,h = (γc

n,h,1,γ
c
n,h,2,γ

c
n,h,3) satisfies:

µ
1/2
n γ

c
n,h,1→ hc

1, γ
c
n,h,2→ hc

2, and γ
c
n,h,3 = Fn ∈ Γ

c
3 (γ

c
n,h,1,γ

c
n,h,2). (3.19)

Now we present the algorithm of the wild cluster bootstrap procedure with the independent

transformation that will be used to construct the uniformly valid bootstrap CVs under clustering.

Wild Cluster Bootstrap Algorithm:
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1. Given H0 : θ = θ 0, compute the residuals from the first-stage and structural equations: v̂g =

Xg−Zgπ̂, ûg(θ 0) = yg−Xgθ 0, where π̂ = (Z′Z)−1Z′X =
(

∑
G
g=1 Z′gZg

)−1
∑

G
g=1 Z′gXg.

2. Generate the cluster-level bootstrap pseudo-data following X∗g = Zgπ̂ + v∗g, y∗g = X∗g θ 0 +

u∗g, where v∗g = v̂gω∗1g, and u∗g = ûg(θ 0)ω
∗
2g, for each g = 1, ...,G, where ω∗1g and ω∗2g are

two random variables that has mean 0 and variance 1, are independent from the data and

independent from each other.

3. Compute
{

θ̂
c∗
ols(θ 0), âc∗(θ 0),V̂ c∗

ols,V̂
c∗
a (θ 0),T c∗

ar (θ 0)
}

by the bootstrap samples generated in

Step 2.

Then, for a given value of ḣc
1, we generate the bootstrap test statistics as follows:

T c∗
ols,(ḣc

1,ĥ
c
n,2)

(θ 0) =

((
θ̂

c∗
ols−θ 0

)
/V̂ c∗1/2

ols +
(

ĥc′
n,21ĥc

n,24ĥc
21 + ĥc

n,25

)−1
ĥc

n,25
(
V̂ c∗

a (θ 0)/V̂ c∗
ols
)1/2 ḣc

1

)2

,

Hc∗
n,(ḣc

1,ĥ
c
n,2)

(θ 0) =
(

âc∗(θ 0)/V̂ c∗1/2
a (θ 0)+ ḣc

1

)2
, (3.20)

where ĥc
n,21 =

(
∑

G
g=1 Z′gZg

)−1
∑

G
g=1 Z′gXg, ĥc

n,24 = n−1
∑

G
g=1 Z′gZg, and ĥc

n,25 = n−1
∑

G
g=1 v̂′gv̂g.

The bootstrap analogues of the two-stage and shrinkage test statistics evaluated at ḣc
1,

TWc∗
l,n,(ḣc

1,ĥ
c
n,2)

(θ 0), can be obtained subsequently. Notice that because of the appropriate studenti-

zation, {µn} is also not needed in the procedure described by (3.20).

Now, let CI
α−δ

( ˆ̇hc
n,1) denote the 1−(α−δ ) level confidence set for ḣc

1 for some 0 < δ ≤α < 1,

where ˆ̇hc
n,1 = âc(θ 0)/(V̂ c

a (θ 0))
1/2. The SBCV for clustered data is then defined as

cB−S
l (α,α−δ , ˆ̇hc

n,1, ĥ
c
n,2) = sup

ḣc
1∈CI

α−δ
( ˆ̇hc

n,1)

c∗l,(ḣc
1,ĥ

c
n,2)

(1−δ ) for l ∈ {1,2}, (3.21)

where c∗
l,(ḣc

1,ĥ
c
n,2)

(1−δ ) is the (1−δ )-th quantile of the distribution of TWc∗
l,n,(ḣc

1,ĥ
c
n,2)

(θ 0), which is the

bootstrap analogue of TWc
l,n (θ 0) generated under the value of localization parameter equal to ḣc

1.

The specific size-adjusted bootstrap algorithm for the SBCV follows closely that for heteroskedas-

tic data in Section 3.2 and is thus omitted for conciseness.

29



For further refinement on the Bonferroni bound, we define the size-adjustment factor η̂
c
l,n fol-

lowing (3.8). Then, the BACV for the case with clustered data can be defined as

cB−A
l (α,α−δ , ˆ̇hc

n,1(θ 0), ĥc
n,2) = cB−S

l (α,α−δ , ˆ̇hc
n,1(θ 0), ĥc

n,2)+ η̂
c
l,n. (3.22)

Similarly, its algorithm follows closely that described in Section 3.2.

For the conciseness of the paper, we present the asymptotic validity results for the our size-

adjusted bootstrap tests under clustering in Section S.4 of the Supplementary Material.

4. Finite sample power performance

In this section, we study the finite-sample power performance of the size-adjusted wild bootstrap

procedure by conducting simulations for the linear IV model under conditional heteroskedastic-

ity or clustering. For all simulations, the number of Monte Carlo replications is set at 5,000,

and the number of bootstrap replications is set at B = 399. We compare the performance of the

(heteroskedasticity or cluster-robust) AR test with asymptotic critical value (without pretest or

shrinkage), the two-stage test based on the size-adjusted wild bootstrap CVs, and the test based on

Hansen (2017)’s shrinkage apporach and its corresponding size-adjusted wild bootstrap CVs. We

set α = .05 for the CVs of the three tests. Here, we use the AR test instead of the IV-based t-test

as the IV-based t-test cannot control size under weak identification and high level of endogeneity

[e.g., it will have size distortions when |ρ| > 0.565 in the case with one IV, according to Angrist

and Kolesár (2023)]. In addition, we set β = .05 for the nominal level of the pretest. In Section

S.5 of the Supplementary Material, we provide further Monte Carlo simulation results with other

choices of β and δ , with negative values of the endogeneity parameter, and for the overidentified

case. All of them show similar patterns as the results reported here. The shrinkage parameter τ

in Hansen (2017)’s procedure is set to equal 1, 0.5, or 0.25. The random weights for the wild

bootstrap are generated from the standard normal distribution throughout the simulations.

30



First, we study the case with heteroskedastic errors. The simulation model follows the IV

model in (2.1), and the DGP is specified as

(ũi, ε̃ i)
′ ∼ i.i.d. N(0, I2), Zi ∼ i.i.d. N(0,1), and is independent from (ũi, ε̃ i)

′,

ṽi = ρ ũi +(1−ρ
2)1/2

ε̃ i, ui = f (Zi)ũi, and vi = f (Zi)ṽi, (4.23)

where i = 1, ...,n and f (x) = |x|. The sample size is set at n = 200 for the heteroskedastic case.

The value of the null hypothesis θ 0 is fixed at zero throughout the simulations. Following the IV

literature, we capture the instrument strength by the concentration parameter φ = π2 ·Z′Z and let

φ ∈ {1,5,10,20}. We allow the IV to be very weak as all the tests considered in the simulation

are weak-IV-robust. In addition, the true values of the endogeneity parameter ρ are set at ρ ∈

{0.1,0.3,0.5,0.7,0.9,0.99}. Here, we focus on the case with one IV as it is the leading case in

empirical applications [e.g., 101 out of 230 specifications in Andrews et al. (2019)’s sample, 1,087

out of 1,359 in Young (2022)’s sample, and 1,311 in Lee et el. (2022)’s sample]. We further report

simulation results for the overidentified case in the Supplementary Material.

Figure 3(a) and (b) show the finite-sample power curves of the tests under heteroskedasticity

with φ = 1 and 5, respectively. Figure 4(a) and (b) show the results for φ = 10 and 20, respectively.

β and δ are set equal to 0.05 and 0.025, respectively, for Figures 3 and 4. In addition, Figures 5

and 6 report the results for β = 0.05 and δ = 0.01.

We highlight some findings below. First, our size-adjusted bootstrap tests have null rejection

probabilities bounded by the nominal size across different settings. Second, it is clear that our size-

adjusted bootstrap tests have remarkable power gain over the asymptotic AR-test, especially when

φ is equal to 1, 5, or 10. Such power gain originates from the inclusion of the OLS-based Wald-test

in the two-stage and shrinkage test statistics. Third, we notice that the shrinkage bootstrap tests

(in red and blue) typically have power advantage over the two-stage bootstrap test (in green). This

may be mainly due to the relatively smooth transition between test statistics under the shrinkage
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approach compared with the two-stage approach. Fourth, the shrinkage bootstrap test with τ = 0.5

typically has the best power performance among the size-adjusted bootstrap tests. Fourth, the

patterns of the power curves with δ = 0.01 in Figures 5 and 6 are very similar to those with

τ = 0.025 in Figures 3 and 4.

In addition, Figures S.1 and S.2 in the Supplementary Material report the results with β = 0.1

and δ = 0.01 and the overall patterns of the power curves remain very similar. Figures S.3 and S.4

in the Supplementary Material further report the results with β = 0.05 and δ = 0.025 and negative

values of the endogeneity parameter ρ . In this case, the power curves are reversed compare with

those under positive values of ρ , but the overall patterns still remain very similar. Furthermore,

we have conducted simulations for the overidentified case. Figures S.5 and S.6 report the power

results with 3 IVs, and Figures S.5 and S.6 report those with 5 IVs, respectively. Our bootstrap

tests also have remarkable power gain in these simulations.

Then, we study the finite-sample power performance of the tests under clustering. The model

for the clustering case follows (3.11), and the disturbances (ugi,vgi)
′ consist of idiosyncratic errors

(ũgi, ṽgi)
′ and cluster effects (d̃u,g, d̃v,g)

′, which are specified as

(ũgi, ε̃gi)
′ ∼ i.i.d. N(0, I2), (d̃u,g, d̃ε,g)

′ ∼ i.i.d. N(0, I2), Zgi ∼ i.i.d. N(0,1),

(ũgi, ε̃gi)
′,(d̃u,g, d̃ε,g)

′, and Zgi are independent from each other,

ṽgi = ρ ũgi +(1−ρ
2)1/2

ε̃gi, d̃v,g = ρ d̃u,g +(1−ρ
2)1/2d̃ε,g,

ugi = f (Zgi)(ũgi + d̃u,g), and vgi = f (Zgi)(ṽgi + d̃v,g), (4.24)

where i = 1, ...,ng, g = 1, ...,G, and f (x) = |x|. The settings for θ , π , φ , and ρ are the same as

those for the case with heteroskedastic errors. We consider the following design with heterogenous

cluster sizes. Specifically, we let n1 = 20 with G1 = 20 (i.e., 20 clusters with cluster-level sample

size equal to 20), n2 = 15 with G2 = 20, n3 = 10 with G3 = 20, and n4 = 5 with G4 = 20, so that

the total number of clusters is G = 80 and the total number of observations is n = 1,000.
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Figures 7-8 show the finite-sample power curves of the tests under clustering. First, we find

that all tests have relatively lowe power compared with the case with heteroskedasticity, due to

the presence of within-cluster error dependence. Second, in the clustering case, the size-adjusted

wild bootstrap tests also exhibit remarkable power gain over the standard AR test. Overall, the

simulation results show very similar patterns under both heteroskedasticity and clustering, and

suggest that our method could be particularly attractive in the cases where the IV-based inference

method could suffer from relatively low power but naively using two-stage procedure to select

between the OLS and IV-based methods may result in extreme size distortions.

5. Conclusions

We study how to conduct uniformly valid tests for the two-stage and shrinkage procedures in the

IV model with heteroskedastic or clustered data. To guard against weak IVs, we propose a weak-

identification-robust test of exogeneity. We first show that standard wild bootstrap procedures are

invalid both conditionally and unconditionally under local endogeneity, although the one with de-

pendent transformation typically has much smaller asymptotic size distortions than the one with

independent transformation. Then, we propose a size-adjusted wild bootstrap approach, which

makes use of the standard wild bootstrap with independent transformation and a Bonferroni-based

size-correction method. The size-adjustment provides refinement over the Bonferroni bounds so

that the resulting tests achieve correct asymptotic size. We show that the size-adjusted wild boot-

strap is uniformly valid under both heteroskedasticity and clustering. Monte Carlo simulations

confirm that our method is able to achieve remarkable power gains over the AR test. Finally, there

are a growing number of studies on weak-IV-robust inference under many instruments and het-

eroskedasticity.17 It may be interesting to consider extending our approach to the case with many

(weak) instruments. We leave this line of investigation for future research.

17See, e.g., Crudu, Mellace and Sándor (2021), Mikusheva and Sun (2022), Matsushita and Otsu (2024), Lim, Wang
and Zhang (2024a), among others.
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Figure 3(a): Power of tests under heteroskedasticity with φ = 1, n = 200, β = 0.05, and δ = 0.025

Figure 3(b): Power of tests under heteroskedasticity with φ = 5, n = 200, β = 0.05, and δ = 0.025

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure 4(a): Power of tests under heteroskedasticity with φ = 10, n = 200, β = 0.05, and δ = 0.025

Figure 4(b): Power of tests under heteroskedasticity with φ = 20, n = 200, β = 0.05, and δ = 0.025

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure 5(a): Power of tests under heteroskedasticity with φ = 1, n = 200, β = 0.05, and δ = 0.01

Figure 5(b): Power of tests under heteroskedasticity with φ = 5, n = 200, β = 0.05, and δ = 0.01

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure 6(a): Power of tests under heteroskedasticity with φ = 10, n = 200, β = 0.05, and δ = 0.01

Figure 6(b): Power of tests under heteroskedasticity with φ = 20, n = 200, β = 0.05, and δ = 0.01

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure 7(a): Power of tests under clustering with φ = 1, n = 1000, β = 0.05, and δ = 0.025

Figure 7(b): Power of tests under clustering with φ = 5, n = 1000, β = 0.05, and δ = 0.025

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure 8(a): Power of tests under clustering with φ = 10, n = 1000, β = 0.05, and δ = 0.025

Figure 8(b): Power of tests under clustering with φ = 20, n = 1000, β = 0.05, and δ = 0.025

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.

39



References

Andrews, D. W. , Guggenberger, P. , 2009a. Hybrid and size-corrected subsampling methods.

Econometrica 77(3), 721–762.

Andrews, D. W., Guggenberger, P., 2009b. Incorrect asymptotic size of subsampling procedures

based on post-consistent model selection estimators. Journal of Econometrics 152(1), 19–27.

Andrews, D. W. , Guggenberger, P. , 2010a. Applications of subsampling, hybrid, and size-

correction methods. Journal of Econometrics 158(2), 285–305.

Andrews, D. W., Guggenberger, P., 2010b. Asymptotic size and a problem with subsampling and

with the m out of n bootstrap. Econometric Theory 26(2), 426–468.

Andrews, I., Gentzkow, M., Shapiro, J. M., 2017. Measuring the sensitivity of parameter estimates

to estimation moments. The Quarterly Journal of Economics 132(4), 1553–1592.

Andrews, I., Stock, J. H., Sun, L., 2019. Weak instruments in instrumental variables regression:

Theory and practice. Annual Review of Economics 11, 727–753.

Angrist, J. D., Evans, W. N., 1998. Children and their parents’ labor supply: evidence from exoge-

nous variation in family size. The American Economic Review 88(3), 450–477.

Angrist, J. D. , Krueger, A. B. , 1991. Does compulsory school attendance affect schooling and

earning?. Quarterly Journal of Economics 106(4), 979–1014.

Angrist, J. D. , Lavy, V. , 1999. Using maimonides’ rule to estimate the effect of class size on

scholastic achievement. The Quarterly journal of economics 114(2), 533–575.

Angrist, J., Kolesár, M., 2023. One instrument to rule them all: The bias and coverage of just-id iv.

Journal of Econometrics forthcoming.

Cameron, A. C., Gelbach, J. B., Miller, D. L., 2008. Bootstrap-based improvements for inference

with clustered errors. The Review of Economics and Statistics 90(3), 414–427.

Cameron, A. C., Miller, D. L., 2015. A practitioner’s guide to cluster-robust inference. Journal of

human resources 50(2), 317–372.

40



Cavaliere, G., Georgiev, I., 2020. Inference under random limit bootstrap measures. Econometrica

88(6), 2547–2574.

Conley, T. G., Hansen, C. B., Rossi, P. E., 2012. Plausibly exogenous. Review of Economics and

Statistics 94(1), 260–272.

Crudu, F., Mellace, G. , Sándor, Z. , 2021. Inference in instrumental variable models with het-

eroskedasticity and many instruments. Econometric Theory 37(2), 281–310.

Davidson, R. , Flachaire, E. , 2008. The wild bootstrap, tamed at last. Journal of Econometrics

146(1), 162–169.

Davidson, R. , MacKinnon, J. G. , 2008. Bootstrap inference in a linear equation estimated by

instrumental variables. The Econometrics Journal 11(3), 443–477.

Davidson, R., MacKinnon, J. G., 2010. Wild bootstrap tests for iv regression. Journal of Business

& Economic Statistics 28(1), 128–144.

Djogbenou, A. A., MacKinnon, J. G., Nielsen, M. Ø., 2019. Asymptotic theory and wild bootstrap

inference with clustered errors. Journal of Econometrics 212(2), 393–412.

Doko Tchatoka, F., 2015. On bootstrap validity for specification tests with weak instruments. The

Econometrics Journal 18(1), 137–146.

Doko Tchatoka, F., Dufour, J.-M., 2008. Instrument endogeneity and identification-robust tests:

some analytical results. Journal of Statistical Planning and Inference 138(9), 2649–2661.

Doko Tchatoka, F., Dufour, J.-M., 2014. Identification-robust inference for endogeneity parameters

in linear structural models. The Econometrics Journal 17(1), 165–187.

Doko Tchatoka, F., Dufour, J.-M., 2018. Instrument endogeneity and identification-robust tests:

some analytical results. Journal of Econometrics Forthcoming.

Doko Tchatoka, F., Dufour, J.-M., 2024. Exogeneity tests and weak identification in iv regressions:

Asymptotic theory and point estimation. Journal of Econometrics, p. 105821.

Finlay, K. , Magnusson, L. M. , 2019. Two applications of wild bootstrap methods to improve

inference in cluster-iv models. Journal of Applied Econometrics 34(6), 911–933.

41



Gonçalves, S. , White, H. , 2004. Maximum likelihood and the bootstrap for nonlinear dynamic

models. Journal of Econometrics 119(1), 199–219.

Guggenberger, P., 2010a. The impact of a hausman pretest on the asymptotic size of a hypothesis

test. Econometric Theory 26(2), 369–382.

Guggenberger, P., 2010b. The impact of a hausman pretest on the size of a hypothesis test: The

panel data case. Journal of Econometrics 156(2), 337–343.

Guggenberger, P., 2012. On the asymptotic size distortion of tests when instruments locally violate

the exogeneity assumption. Econometric Theory 28, 387–421.

Guggenberger, P., Kumar, G., 2012. On the size distortion of tests after an overidentifying restric-

tions pretest. Journal of Applied Econometrics 27(7), 1138–1160.

Hahn, J., Ham, J., Moon, H. R., 2010. The Hausman test and weak instruments. Journal of Econo-

metrics 160, 289–299.

Han, S., McCloskey, A., 2019. Estimation and inference with a (nearly) singular Jacobian. Quan-

titative Economics 10(3), 1019–1068.

Hansen, B. E., 2005. Challenges for econometric model selection. Econometric Theory 21(1), 60–

68.

Hansen, B. E., 2017. Stein-like 2sls estimator. Econometric Reviews 36(6-9), 840–852.

Hansen, B. E., Lee, S., 2019. Asymptotic theory for clustered samples. Journal of econometrics

210(2), 268–290.

Hansen, C., Hausman, J., Newey, W., 2008. Estimation with many instrumental variables. Journal

of Business and Economic Statistics 26(4), 398–422.

Kabaila, P. , 1995. The effect of model selection on confidence regions and prediction regions.

Econometric Theory 11(3), 537–549.

Kaffo, M., Wang, W., 2017. On bootstrap validity for specification testing with many weak instru-

ments. Economics Letters 157, 107–111.

42



Keane, M., Neal, T. et al., 2021. A practical guide to weak instruments. Technical report, University

of New South Wales.

Keane, M. P., Neal, T., 2024. A practical guide to weak instruments. Annual Review of Economics

16, 185–212.

Lee, D. S., McCrary, J., Moreira, M. J., Porter, J., 2022. Valid t-ratio inference for iv. American

Economic Review 112(10), 3260–3290.

Leeb, H., Pötscher, B. M., 2005. Model selection and inference: Facts and fiction. Econometric

Theory 21(1), 21–59.

Lim, D., Wang, W. , Zhang, Y. , 2024a. A conditional linear combination test with many weak

instruments. Journal of Econometrics 238(2), 105602.

Lim, D., Wang, W. , Zhang, Y. , 2024b. A dimension-agnostic bootstrap anderson-rubin test for

instrumental variable regressions. arXiv preprint arXiv:2412.01603 .

Maasoumi, E., 1978. A modified stein-like estimator for the reduced form coefficients of simulta-

neous equations. Econometrica, pp. 695–703.

MacKinnon, J. G., 2023. Fast cluster bootstrap methods for linear regression models. Econometrics

and Statistics 26, 52–71.

MacKinnon, J. G., Nielsen, M. Ø., Webb, M. D., 2021. Wild bootstrap and asymptotic inference

with multiway clustering. Journal of Business & Economic Statistics 39(2), 505–519.

MacKinnon, J. G., Nielsen, M. Ø. , Webb, M. D. , 2023. Cluster-robust inference: A guide to

empirical practice. Journal of Econometrics 232(2), 272–299.

MacKinnon, J. G., Webb, M. D., 2017. Wild bootstrap inference for wildly different cluster sizes.

Journal of Applied Econometrics 32(2), 233–254.

Matsushita, Y., Otsu, T., 2024. A jackknife lagrange multiplier test with many weak instruments.

Econometric Theory 40(2), 447–470.

McCloskey, A., 2017. Bonferroni-based size-correction for nonstandard testing problems. Journal

of Econometrics 200(1), 17–35.

43



McCloskey, A., 2020. Asymptotically uniform tests after consistent model selection in the linear

regression model. Journal of Business & Economic Statistics 38(4), 810–825.

Mikusheva, A., Sun, L., 2022. Inference with many weak instruments. The Review of Economic

Studies 89(5), 2663–2686.

Moreira, M. J., Porter, J., Suarez, G., 2009. Bootstrap validity for the score test when instruments

may be weak. Journal of Econometrics 149(1), 52–64.

Roodman, D., Nielsen, M. Ø., MacKinnon, J. G., Webb, M. D., 2019. Fast and wild: Bootstrap

inference in stata using boottest. The Stata Journal 19(1), 4–60.

Staiger, D., Stock, J. H., 1997. Instrumental variables regression with weak instruments. Econo-

metrica 65(3), 557–586.

Wang, W., 2020. On the inconsistency of nonparametric bootstraps for the subvector anderson–

rubin test. Economics Letters 191, 109157.

Wang, W. , Doko Tchatoka, F. , 2018. On bootstrap inconsistency and bonferroni-based size-

correction for the subset anderson–rubin test under conditional homoskedasticity. Journal

of Econometrics 207(1), 188–211.

Wang, W., Kaffo, M., 2016. Bootstrap inference for instrumental variable models with many weak

instruments. Journal of Econometrics 192(1), 231–268.

Wang, W., Liu, Q., 2015. Bootstrap-based selection for instrumental variables model. Economics

Bulletin 35(3), 1886–1896.

Wang, W., Zhang, Y., 2024. Wild bootstrap inference for instrumental variables regressions with

weak and few clusters. Journal of Econometrics 241(1), 105727.

Wang, W., Zhang, Y., 2025. Gradient wild bootstrap for instrumental variable quantile regressions

with weak and few clusters. arXiv preprint arXiv:2408.10686 .

Young, A., 2022. Consistency without inference: Instrumental variables in practical application.

European Economic Review 147, 104112.

44



Supplementary Appendix for

“Identification-Robust Two-Stage Bootstrap Tests after Pretesting for Exogeneity ”

Firmin Doko Tchatokaa and Wenjie Wangb

aSchool of Economics, The University of Adelaide

bDivision of Economics, School of Social Sciences, Nanyang Technological University

In this Supplementary Appendix, Section S.1 contains several technical lemmas. Section S.2

contains the proofs of the theorems in the main text. Section S.3 presents the details of the bootstrap

inconsistency under local endogeneity. In addition, Section S.4 presents the asymptotic results for

the clustering cases while Section S.5 report further simulation evidences.

S.1. Technical Lemmas

The following lemma shows that the limiting distribution of n1/2(â− γn,h,1) is the same as that

of
(
n−1v̂′MX v̂

)−1
(

n−1/2v̂′MX e
)

under the parameter sequence n1/2γn,h,1 → h1 ∈ R with strong

identification (i.e., ||h21|| ≥ κ , where κ > 0), which implies that the asymptotic variance of

n1/2(â− γn,h,1) under local endogeneity is the same as that under exogeneity (a = 0).

Lemma S.1 Under the drift sequences of parameters {γn,h} in (2.19) with |h1|<∞ and ||h21|| ≥ κ ,

where κ > 0, we have:

n1/2(â− γn,h,1) =
(
n−1v̂′MX v̂

)−1
(

n−1/2v̂′MX e
)
+oP(1).

PROOF OF LEMMA S.1 Note first that we can write n1/2(â− γn,h,1) as:

n1/2(â− γn,h,1) = n1/2 ((v̂′MX v̂)−1v̂′MX
(
(v− v̂+ v̂)γn,h,1 + e

)
− γn,h,1

)
(S.1)

=
(
n−1v̂′MX v̂

)−1
(

n−1/2v̂′MX(v− v̂)
)

γn,h,1 +
(
n−1v̂′MX v̂

)−1
(

n−1/2v̂′MX e
)
.
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Therefore, to show the result of the lemma, it suffices to show that the first term in (S.1) is oP(1).

Note that

n−1/2v̂′MX(v− v̂) = n−1/2v̂′MX Z(Z′Z)−1Z′v = (n−1v̂′MX Z)(n−1Z′Z)−1(n−1/2Z′v)

= OP(1)OP(1)OP(1) = OP(1), (S.2)

which follows from the fact that

n−1v̂′MX Z = n−1v̂′Z−n−1v̂′PX Z, (S.3)

n−1v̂′Z = n−1(v+(v̂− v))′Z = n−1v′Z +n−1(v̂− v)′Z (S.4)

= n−1v′Z +(γn,h,21− π̂)′(n−1Z′Z) = OP(n−1/2)+OP(n−1/2)OP(1) = OP(n−1/2),

n−1v̂′PX Z = n−1v′PX Z +n−1(v̂− v)′PX Z = (n−1v′Zγn,h,21 +n−1v′v)(n−1X ′X)−1(n−1X ′Z)+

n−1(v̂− v)′PX Z =
h′21h24h25

(h′21h24h21 +h25)
+OP(n−1/2), (S.5)

which follows from n−1Z′v→P 0, n−1Z′Z →P h24, n−1v′v→P h25, and n−1X ′X →P h′21h24h21 +

h25, respectively. The OP(n−1/2) term in the last equality of (S.5) is justified by the fact that

n−1(v̂− v)′PX Z = (γn,h,21− π̂)′(n−1Z′X)(n−1X ′X)−1(n−1X ′Z) = OP(n−1/2). (S.6)

Therefore, given that n−1/2v̂′MX(v− v̂) = OP(1) and n1/2γn,h,1→ h1 ∈ R, we have

(
n−1v̂′MX v̂

)−1
(

n−1/2v̂′MX(v− v̂)
)

γn,h,1 = oP(1), (S.7)

so that n1/2(â− γn,h,1) =
(
n−1v̂′MX v̂

)−1
(

n−1/2v̂′MX e
)
+oP(1), as stated.

The following lemma gives the limiting distributions of the estimators (â, θ̂ ols, θ̂ 2sls) and test
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statistics (T2sls(θ 0),Tols(θ 0),Hn, T S
1,n(θ 0), and T S

2,n(θ 0)) under the sequences of drifting endogene-

ity parameter n1/2γn,h,1→ h1 ∈ R with strong identification.

Lemma S.2 Under the drift sequences of parameters {γn,h} in (2.19) with |h1|<∞ and ||h21|| ≥ κ ,

where κ > 0, the following results hold:

(a) Asymptotic distributions of the estimators:


n1/2â

n1/2(θ̂ ols−θ)

n1/2(θ̂ 2sls−θ)

→d


ψa

ψols

ψ2sls

=


−(h′21h24h21)

−1 h′21ψZe +h−1
25 ψve +h1

(h′21h24h21 +h25)
−1 (h′21ψZe +ψve +h25h1)

(h′21h24h21)
−1 h′21ψZe



where ψa ∼ N
(

h1,
(
h′21h24h21

)−2h′21h22h21 + h−2
25 h23

)
, ψols ∼ N

(
h25h1/

(
h′21h24h21 +

h25
)
,(h′21h22h21 +h23)/

(
h′21h24h21 +h25

)2
)

, and ψ2sls ∼ N
(

0,
(
h′21h24h21

)−2h′21h22h21

)
.

(b) Asymptotic distributions of the test statistics:


T2sls(θ 0)

Tols(θ 0)

Hn

 →d η
S
h =


ηS

1,h

ηS
2,h

ηS
3,h



=


(h′21h22h21)

−1 (h′21ψZe)
2

(h′21h22h21 +h23)
−1 (h′21ψZe +ψve +h25h1)

2(
h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1 (
−(h′21h24h21)

−1h′21ψZe +h−1
25 ψve +h1

)2


T S

1,n(θ 0) →d T̃ S
1,h = η

S
2,h1(η

S
3,h ≤ χ

2
1,1−β

)+η
S
1,h1(η

S
3,h > χ

2
1,1−β

),

T S
2,n(θ 0) →d T̃ S

2,h = η
S
2,hw(ηS

3,h)+η
S
1,h(1−w(ηS

3,h)),

where ηS
1,h ∼ χ2

1, ηS
2,h ∼ χ2

1

(
(h′21h22h21 + h23)

−1h2
25h2

1

)
, and ηS

3,h ∼ χ2
1

(( h′21h22h21
(h′21h24h21)2 +

h23h−2
25

)−1h2
1

)
.

PROOF OF LEMMA S.2 (a) It is sufficient to characterize the asymptotic distributions of estima-

tors separately: (a1) n1/2â, (a2) n1/2(θ̂ ols−θ), and (a3) n1/2(θ̂ 2sls−θ).

3



(a1) Asymptotic distribution of n1/2â. We know from Lemma S.1 that n1/2(â−γn,h,1) is asymp-

totically equivalent to
(
n−1v̂′MX v̂

)−1
(

n−1/2v̂′MX e
)

, so we focus on characterizing the asymptotic

distribution of the latter. First, note that for the denominator,

n−1v̂′MX v̂ = n−1X̂ ′MX X̂ = n−1X̂ ′X̂−n−1X̂ ′PZX̂

→P h′21h24h21−
(h′21h24h21)

2

(h′21h24h21 +h25)
=

h′21h24h21h25

(h′21h24h21 +h25)
, (S.8)

where X̂ = PZX , the first equality follows from v̂= X−PZX and the convergence in probability fol-

lows from n−1X̂ ′X̂ = n−1X ′PZX →P h′21h24h21, n−1X̂ ′PX X̂ = (n−1X̂ ′X)(n−1X ′X)−1(n−1X ′X̂)→P

(h′21h24h21)
2

(h′21h24h21+h25)
. Second, note that for the numerator,

n−1/2v̂′MX e =−n−1/2X̂ ′MX e =−n−1/2X̂ ′e+n−1/2X̂ ′PX e. (S.9)

By applying Lyapunov Central Limit Theorem (CLT), we find for the first term in (S.9),

−n−1/2X̂ ′e = −
(
n−1X ′Z

)(
n−1Z′Z

)−1
(

n−1/2Z′e
)
→d −h′21ψZe, (S.10)

and the second term is such that

n−1/2X̂ ′PX e =
(
n−1X ′PZX

)(
n−1X ′X

)−1
(

n−1/2X ′e
)

→d (h′21h24h21 +h25)
−1h′21h24h21

(
h′21ψZe +ψve

)
, (S.11)

where ψZe and ψve are uncorrelated, ψZe ∼ N(0,h22) and ψve ∼ N(0,h23). Therefore,

−n−1/2X̂ ′MX e →d −h′21ψZe +(h′21h24h21 +h25)
−1h′21h24h21

(
h′21ψZe +ψve

)
= − h25

(h′21h24h21 +h25)
h′21ψZe +

h′21h24h21

(h′21h24h21 +h25)
ψve. (S.12)
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By combining (S.30) and (S.12), we obtain

n1/2(â− γn,h,1) →d −
(
h′21h24h21

)−1 h′21ψZe +h−1
25 ψve

∼ N
(
0,(h′21h24h21)

−2h′21h22h21 +h−2
25 h23

)
. (S.13)

Since n1/2â = n1/2(â− γn,h,1)+n1/2γn,h,1, it follows that

n1/2â →d ψa =−
(
h′21h24h21

)−1 h′21ψZe +h−1
25 ψve +h1

∼ N
(

h1,(h′21h24h21)
−2h′21h22h21 +h−2

25 h23

)
. (S.14)

(a2) Asymptotic distribution of n1/2(θ̂ ols−θ). First, we have

n1/2(θ̂ ols−θ) =
(
n−1X ′X

)−1(n−1/2X ′u
)
, (S.15)

where n−1X ′X →P h′21h24h21 +h25, and

n−1/2X ′u = n−1/2(γ ′n,h,21Z′+ v′)(vγn,h,1 + e)

= γ
′
n,h,21

(
n−1/2Z′e

)
+ γ
′
n,h,21

(
n−1/2Z′v

)
γn,h,1 +n−1/2v′e+

(
n−1v′v

)
n1/2

γn,h,1

→d h′21ψZe +ψve +h25h1, (S.16)

since γ ′n,h,21(n
−1/2Z′v)γn,h,1 = oP(1), n−1(v′v) = h25 +oP(1), and n1/2γn,h,1→ h1 as n→ ∞.

Therefore, we obtain

n1/2(θ̂ ols−θ) →d ψols = (h′21h24h21 +h25)
−1(h′21ψZe +ψve +h25h1) (S.17)

∼ N
( h25h1

h′21h24h21 +h25
,

h′21h22h21 +h23

(h′21h24h21 +h25)2

)
.

(a3) Asymptotic distribution of n1/2(θ̂ 2sls − θ). First, note that n1/2(θ̂ 2sls − θ) =
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(
n−1X ′PZX

)−1(n−1/2X ′PZu
)

and it follows from the proofs above that n−1X ′PZX →P h′21h24h21

and n−1/2X ′PZu→d h′21ψZe. Therefore, we have

n1/2(θ̂ 2sls−θ)→d
ψ2sls = (h′21h24h21)

−1h′21ψZe ∼ N
(

0,(h′21h24h21)
−2h′21h22h21

)
. (S.18)

(b) It also suffices to characterize the asymptotic distributions of each statistic separately. Be-

low we first show that nV̂ols→P h′21h22h21+h23

(h′21h24h21+h25)
2 , and nV̂2sls→P h′21h22h21

(h′21h24h21)2 .

For V̂ols we use the decomposition

V̂ols

Vols
−1 =V−1

ols

(
V̂ols−Vols

)
=V−1

ols

(
Aols,1−2Aols,2 +Aols,3

)
+oP(1), (S.19)

where Vols = n−2Q−1
ols ∑

n
i=1 EF [X2

i u2
i ]Q
−1
ols , Aols,1 = n−2Q−1

ols ∑
n
i=1 X2

i u2
i Q−1

ols −

n−2Q−1
ols ∑

n
i=1 EF [X2

i u2
i ]Q
−1
ols , Aols,2 = n−2Q−1

ols ∑
n
i=1 X3

i ui(θ̂ ols − θ)Q−1
ols , Aols,3 =

n−2Q−1
ols ∑

n
i=1 X4

i (θ̂ ols − θ)2Q−1
ols , and Qols = plimn→∞n−1X ′X . Thus, we need to show that

V−1
ols Aols,m = oP(1), for m = 1,2,3.

For m = 1, we let ri = n−1V−1/2
ols Q−1

olsXiui, and we have EF
[
∑

n
i=1 r2

i −1
]
= EF

[
V−1

ols Aols,1
]
= 0.

Also define the truncated variable qi = ri1(|ri| ≤ ε) such that r2
i = q2

i + r2
i 1(|ri|> ε). Then,

EF

∣∣∣∣∣ n

∑
i=1

r2
i −1

∣∣∣∣∣≤ EF

∣∣∣∣∣ n

∑
i=1

(
q2

i −EF [q2
i ]
)∣∣∣∣∣+EF

∣∣∣∣∣ n

∑
i=1

(
r2

i 1(|ri|> ε)−EF [r2
i 1(|ri|> ε)]

)∣∣∣∣∣ . (S.20)

by the triangle inequality. The first term is o(1) because

VarF

[
n

∑
i=1

q2
i

]
=

n

∑
i=1

VarF
[
q2

i
]
≤ ε

2
n

∑
i=1

VarF [|qi|]≤ ε
2

n

∑
i=1

EF
[
q2

i
]
≤ ε

2
n

∑
i=1

EF
[
r2

i
]
= ε

2, (S.21)

where ε is arbitrary. For the second term, we have

EF

∣∣∣∣∣ n

∑
i=1

(
r2

i 1(|ri|> ε)−EF(r2
i 1(|ri|> ε)

)∣∣∣∣∣≤ 2
n

∑
i=1

EF

[
|ri|2+ξ |ri|−ξ1(|ri|> ε)

]

6



≤ 2ε
−ξ

n

∑
i=1

EF |ri|2+ξ → 0, (S.22)

where the result of convergence to zero holds by the moment restriction on EF [||Ziei||2+ξ ],

EF [|viei|2+ξ ], EF [||ZiZ′i ||2+ξ ] and EF [|Xi|2(2+ξ )], and by Vols = O(n−1). For m = 3, we have

|nAols,3|= n−1Q−2
ols(θ̂ ols−θ)2

n

∑
i=1

X4
i = oP(1), (S.23)

where the second equality follows from the moment restriction on EF [|Xi|2(2+ξ )]. Therefore, we

obtain that V−1
ols Aols,3 = oP(1). For m = 2, by the Cauchy-Schwarz inequality,

∣∣V−1
ols Aols,2

∣∣ ≤ (
V−1

ols n−2Q−1
ols

n

∑
i=1

X2
i u2

i Q−1
ols

)1/2 (
V−1

ols Aols,3
)1/2

=
(
1+V−1

ols Aols,1
)1/2 (

V−1
ols Aols,3

)1/2
= oP(1), (S.24)

so that the results follows from those for m = 1 and m = 3.

Similarly, for V̂2sls we use the decomposition

V̂2sls

V2sls
−1 =V−1

2sls

(
A2sls,1−2A2sls,2 +A2sls,3

)
+oP(1), (S.25)

where V2sls = n−2Q−1
2sls ∑

n
i=1 EF

[
ZiZ′iu

2
i
]

Q−1
2sls, A2sls,1 = n−2Q−1

2sls ∑
n
i=1
(
ZiZ′iu

2
i −EF

[
ZiZ′iu

2
i
])

Q−1
2sls,

A2sls,2 = n−2Q−1
2sls ∑

n
i=1 ZiZ′iXiui(θ̂ 2sls − θ)Q−1

2sls, A2sls,3 = n−2Q−1
2sls ∑

n
i=1 ZiZ′iX

2
i (θ̂ 2sls − θ)2Q−1

2sls,

and Q2sls = plimn→∞

(
n−1X ′PZX

)−1
(n−1X ′Z)(n−1Z′Z)−1. The result follows by using the same

arguments as for V̂ols.

Then, it suffices to verify that nVols →P h′21h22h21+h23

(h′21h24h21+h25)
2 , and nV2sls →P h′21h22h21

(h′21h24h21)2 , and the

results of Tols(θ) and T2sls(θ) follow immediately from part (a) of the lemma.

Finally, for V̂a we use the decomposition

V̂a

Va
−1 =V−1

a (Aa,1−2Aa,2 +Aa,3 +Aa,4)+oP(1), (S.26)
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where Va = n−2Q−1
a ∑

n
i=1 EF [`′SiS′i`]Q

−1
a , Aa,1 = n−2Q−1

a ∑
n
i=1 (`

′SiS′i`−EF [`′SiS′i`])Q−1
a , Aa,2 =

n−2Q−1
a ∑

n
i=1 ṽ3

i ei(â− a)Q−1
a , Aa,3 = n−2Q−1

a ∑
n
i=1 ṽ4

i (â− a)2Q−1
a , Aa,4 = n−2Q−1

a ∑
n
i=1(

ˆ̀′ŜiŜ′i ˆ̀−

`′SiS′i`)Q
−1
a , `= (1,−πv)

′, ˆ̀= (1,−π̂v)
′, π̂v = (X ′X)−1X ′v̂, Si = (viei,Xiei)

′, Ŝi = (v̂iei,Xiei)
′, and

πv = plimn→∞π̂v = h25(h′21h24h21 +h25)
−1,

Qa = plimn→∞n−1ṽ′ṽ = h25h′21h24h21/(h′21h24h21 +h25). (S.27)

Then, the arguments for Aa,1,Aa,2, and Aa,3 follows those for OLS and 2SLS, and we have

V−1
a Aa,4 = oP(1) by standard arguments. Therefore, V̂a/Va−1 = oP(1) and now it suffice to find

the probability limit of nVa to establish the limiting distribution for Hn. Notice that

EF
[
`′SiS′i`

]
= EF

[
v2

i e2
i
]
−2πvEF

[
Xie2

i vi
]
+π

2
vEF

[
X2

i e2
i
]
, (S.28)

where EF
[
v2

i e2
i
]
→ h23, EF

[
Xie2

i vi
]
→ h23, and EF

[
X2

i e2
i
]
→ h′21h22h21 + h23. Then, we obtain

from the expression of Va, (S.27), and (S.28) that

nVa = Q−1
a n−1

n

∑
i=1

EF
[
`′SiS′i`

]
Q−1

a → (h′21h24h21)
−2h′21h22h21 +h−2

25 h23, (S.29)

so that Hn→d
(

h′21h22h21
(h′21h24h21)2 +h−2

25 h23

)−1(
− (h′21h24h21)

−1h′21ψZe +h−1
25 ψve +h1

)2

.

The following lemma gives the limiting distributions of â(θ 0), θ̂ ols, Tar(θ 0), Tols(θ 0), Hn(θ 0),

TW
1,n(θ 0), and TW

2,n(θ 0) under H0 : θ = θ 0 and the sequences of drifting endogeneity parameter

n1/2γn,h,1→ h1 ∈ R, no matter the identification is strong or weak.

Lemma S.3 Under H0 and the drift sequences of parameters {γn,h} in (2.19) with |h1| < ∞, the

following results hold:
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(a) Asymptotic distributions of the estimators:

 n1/2â(θ 0)

n1/2(θ̂ ols−θ 0)

→d

 ψa

ψols

=

 h−1
25 ψve +h1

(h′21h24h21 +h25)
−1 (h′21ψZe +ψve +h25h1)

 ,

where ψa ∼N
(

h1,h−2
25 h23

)
, and ψols ∼N

(
h25h1/

(
h′21h24h21+h25

)
,(h′21h22h21+h23)/

(
h′21h24h21+

h25
)2
)

.

(b) Asymptotic distributions of the test statistics:


Tar(θ 0)

Tols(θ 0)

Hn(θ 0)

 →d η
W
h =


ηW

1,h

ηW
2,h

ηW
3,h



=


ψ ′Zeh22ψZe

(h′21h22h21 +h23)
−1 (h′21ψZe +ψve +h25h1)

2

h−1
23 (ψve +h25h1)

2


TW

1,n(θ 0) →d T̃W
1,h = η

W
2,h1(η

W
3,h ≤ χ

2
1,1−β

)+η
W
1,h1(η

W
3,h > χ

2
1,1−β

),

TW
2,n(θ 0) →d T̃W

2,h = η
W
2,hw(ηW

3,h)+η
W
1,h(1−w(ηW

3,h)),

where ηW
1,h ∼ χ2

k , ηW
2,h ∼ χ2

1

(
(h′21h22h21 +h23)

−1h2
25h2

1

)
, and ηW

3,h ∼ χ2
1

(
h−1

23 h2
25h2

1

)
.

PROOF OF LEMMA S.3 (a) It is sufficient to characterize the asymptotic distributions of estima-

tors separately: (a1) n1/2â(θ 0), and (a2) n1/2(θ̂ ols−θ).

(a1) Asymptotic distribution of n1/2â(θ 0). First, note that for the denominator,

n−1v̂′v̂ = n−1X ′MZX →P h25. (S.30)

Second, for the numerator, we have

n−1/2v̂′e = n−1/2v′MZe = n−1/2v′e−n−1/2v′PZe = n−1/2v′e+oP(1)→d
ψve, (S.31)
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by applying Lyapunov Central Limit Theorem (CLT), where ψve∼N(0,h23). Therefore, we obtain

n1/2(â(θ 0)− γn,h,1) →d h−1
25 ψve ∼ N

(
0,h−2

25 h23
)
. (S.32)

Since n1/2â(θ 0) = n1/2(â(θ 0)− γn,h,1)+n1/2γn,h,1, it follows that

n1/2â(θ 0) →d ψa = h−1
25 ψve +h1 ∼ N

(
h1,h−2

25 h23

)
. (S.33)

(a2) Asymptotic distribution of n1/2(θ̂ OLS−θ 0). First, we have

n1/2(θ̂ ols−θ 0) =
(
n−1X ′X

)−1(n−1/2X ′u
)
, (S.34)

where n−1X ′X →P h′21h24h21 +h25, and

n−1/2X ′u = n−1/2(γ ′n,h,21Z′+ v′)(vγn,h,1 + e)

= γ
′
n,h,21

(
n−1/2Z′e

)
+ γ
′
n,h,21

(
n−1/2Z′v

)
γn,h,1 +n−1/2v′e+

(
n−1v′v

)
n1/2

γn,h,1

→d h′21ψZe +ψve +h25h1, (S.35)

since γ ′n,h,21(n
−1/2Z′v)γn,h,1 = oP(1), n−1(v′v) = h25 +oP(1), and n1/2γn,h,1→ h1 as n→ ∞.

Therefore, we obtain

n1/2(θ̂ ols−θ 0) →d ψols = (h′21h24h21 +h25)
−1(h′21ψZe +ψve +h25h1) (S.36)

∼ N
( h25h1

h′21h24h21 +h25
,

h′21h22h21 +h23

(h′21h24h21 +h25)2

)
.

(b) The proofs are similar to those for part (b) in Lemma S.2 and thus omitted.
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Lemmas S.4-S.5 are needed for the arguments with regard to the limiting distributions of the

bootstrap analogues of the estimators and test statistics.

Lemma S.4 For the independent bootstrap, suppose that E∗
[
|ω∗1i|2+ξ

]
≤C and E∗

[
|ω∗2i|2+ξ

]
≤

C; for the dependent bootstrap, suppose that E∗
[
|ω∗1i|2(2+ξ )

]
≤ C, for some ξ > 0 and some

large enough constant C. If further EF
[
w2+ξ

i
]
< ∞ for all wi ∈

{
||Ziui||, ||Zivi||, ||ZiZ′i ||, |uivi|

}
and some ξ > 0, then under H0, n−1

∑
n
i=1 E∗

[
||Ziu∗i ||2+ξ

]
, n−1

∑
n
i=1 E∗

[
||Ziv∗i ||2+ξ

]
and

n−1
∑

n
i=1 E∗

[
|u∗i v∗i |2+ξ

]
are bounded in probability.

PROOF OF LEMMA S.4

The proof is straightforward for n−1
∑

n
i=1 E∗

[
||Ziu∗i ||2+ξ

]
. Indeed, we have

n−1
n

∑
i=1

E∗
[
||Ziu∗i ||2+ξ

]
= n−1

n

∑
i=1

E∗
[
||Ziui(θ 0)ω

∗
1i||2+ξ

]
= n−1

n

∑
i=1

E∗
[
||Ziui(θ 0)||2+ξ |ω∗1i|2+ξ

]
= n−1

n

∑
i=1
||Ziui(θ 0)||2+ξ E∗

[
|ω∗1i|2+ξ

]
≤Cn−1

n

∑
i=1
||Ziui(θ 0)||2+ξ = OP(1), (S.37)

where the last equality follows from θ = θ 0 under the null hypothesis, EF [||Ziui||2+ξ ] < ∞,

and n−1
∑

n
i=1 ||Ziui||2+ξ −EF [||Ziui||2+ξ ]→P 0 by Law of Large Numbers (LLN). Now, consider

n−1
∑

n
i=1 E∗

[
||Ziv∗i ||2+ξ

]
. As in (S.37) we have for j = 1 or 2,

n−1
n

∑
i=1

E∗
[
||Ziv∗i ||2+ξ

]
= n−1

n

∑
i=1
||Ziv̂i||2+ξ E∗

[
|ω∗ji|2+ξ

]
≤Cn−1

n

∑
i=1
||Ziv̂i||2+ξ . (S.38)

By using Minkowski and Cauchy-Schwartz inequalities, along with v̂i = vi−Z′i(π̂−π), we obtain

n−1
n

∑
i=1
||Ziv̂i||2+ξ = n−1

n

∑
i=1
||Zivi−ZiZ′i(π̂−π)||2+ξ

≤C1

{
n−1

n

∑
i=1
||Zivi||2+ξ + ||π̂−π||2+ξ n−1

n

∑
i=1
||ZiZ′i ||2+ξ

}
= OP(1), (S.39)

where C1 denotes some large enough constant, and (S.39) holds because π̂ − π →P 0,

EF
[
||Zivi||2+ξ

]
< ∞, EF

[
||ZiZ′i ||2+ξ

]
< ∞, n−1

∑
n
i=1 ||Zivi||2+ξ − EF

[
||Zivi||2+ξ

]
→P 0 and

11



n−1
∑

n
i=1 ||ZiZ′i ||2+ξ − EF

[
||ZiZ′i ||2+ξ

]
→P 0 by LLN. Therefore, n−1

∑
n
i=1 E∗

[
||Ziv∗i ||2+ξ

]
is

bounded in probability from (S.38)-(S.39).

We now show that n−1
∑

n
i=1 E∗

[
|u∗i v∗i |2+ξ

]
is bounded in probability. For j = 1 or 2, we have

n−1
n

∑
i=1

E∗
[
|u∗i v∗i |2+ξ

]
= n−1

n

∑
i=1

E∗
[
|ui(θ 0)v̂i|2+ξ |ω∗1iω

∗
ji|2+ξ

]
= n−1

n

∑
i=1
|ui(θ 0)v̂i|2+ξ E∗

[
|ω∗1iω

∗
ji|2+ξ

]
. (S.40)

Note that j = 2 for the wild bootstrap scheme with independent transformation, so that

E∗
[
|ω∗1iω

∗
ji|2+ξ

]
= E∗

[
|ω∗1iω

∗
2i|2+ξ

]
= E∗

[
|ω∗1i|2+ξ

]
E∗
[
|ω∗2i|2+ξ

]
≤ C2 for some large enough

constant C2. For the wild bootstrap scheme with dependent transformation, j = 1, and we have

E∗
[
|ω∗1iω

∗
ji|2+ξ

]
= E∗

[
|ω∗1i|2(2+ξ )

]
≤ C. Combining both cases into (S.40) along with the fact

that ui(θ 0)v̂i = ui(θ 0)vi−ui(θ 0)Z′i(π̂−π), θ = θ 0 under the null hypothesis, EF ||Ziui||2+ξ < ∞,

EF |uivi|2+ξ < ∞, and by using the arguments with Minkowski and Cauchy-Schwartz inequalities,

we have

n−1
n

∑
i=1

E∗
[
|u∗i v∗i |2+ξ

]
≤ C3

{
n−1

n

∑
i=1
|ui(θ 0)vi|2+ξ + ||π̂−π||2+ξ n−1

n

∑
i=1
||Ziui(θ 0)||2+ξ

}
= OP(1),

for some large enough constants C3.

Lemma S.5 Suppose that H0 holds, the conditions of Lemma S.3 are satisfied, E∗[ω∗1i] =

E∗[ω∗2i] = 0, and Var∗[ω∗1i] = Var∗[ω∗2i] = 1. For the dependent bootstrap, further suppose that

E∗[ω∗31i ] = 0 and E∗[ω∗41i ] = 1. Then, under the sequence {γn,h} defined in (2.19) with |h1|< ∞ we

have:

 n−1/2Z
′
u∗

n−1/2
(

u∗
′
v∗−E∗

[
u∗
′
v∗
])
→d∗

ψ∗ze

ψ∗ve

∼ N

0,

h22 0

0′ h23


 , (S.41)
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in probability P.

PROOF OF LEMMA S.5

Let c1 denote k-dimensional nonzero vectors, and c2 denote a nonzero scalar. Define

U∗n,i =
{

c′1u∗i Zi + c2 (u∗i v∗i −E∗[u∗i v∗i ])
}
/
√

n

=
{

c′1ω
∗
1iûi(θ 0)Zi + c2

(
ûi(θ 0)v̂iω

∗
1iω
∗
ji−E∗[ûi(θ 0)v̂iω

∗
1iω
∗
ji]
)}

/
√

n, (S.42)

where j = 1 for the dependent bootstrap scheme and j = 2 for the independent bootstrap scheme.

It suffices to verify that the conditions of the Liapounov CLT hold for U∗n,i. For brevity, we shall

focus on the proof for the case with independent transformation (i.e., j = 2). Note that the proof

for the case with dependent transformation ( j = 1) follows similar steps.

(a) We have E∗[U∗n,i] = 0 as E
∗
[ω∗1iûi(θ 0)Zi] = ûi(θ 0)ZiE

∗
[ω∗1i] = 0, and E

∗
[ûi(θ 0)v̂iω

∗
1iω
∗
2i−

E∗[ûi(θ 0)v̂iω
∗
1iω
∗
2i]] = ûi(θ 0)v̂iE

∗
[ω∗1iω

∗
2i]− ûi(θ 0)v̂iE∗[ω∗1iω

∗
2i] = 0.

(b) Note that

E
∗
[u∗

2

i ZiZ′i ] = E
∗
[û2

i (θ 0)ω
∗2

1i ZiZ′i ] = û2
i (θ 0)ZiZ′iE

∗
[ω∗

2

1i ] = û2
i (θ 0)ZiZ′i ,

E
∗
[u∗

2

i v∗
2

i ] = E
∗
[û2

i (θ 0)v̂2
i ω
∗2

1i ω
∗2

2i ] = û2
i (θ 0)v̂2

i E
∗
[ω∗

2

1i ω
∗2

2i ] = û2
i (θ 0)v̂2

i E
∗
[ω∗

2

1i ]E
∗[ω∗

2

2i ] = û2
i (θ 0)v̂2

i ,

E
∗
[u∗

2

i v∗i Zi] = E
∗
[û2

i (θ 0)v̂iZiω
∗2

1i ω
∗
2i] = û2

i (θ 0)v̂iZiE
∗
[ω∗

2

1i ω
∗
2i] = û2

i (θ 0)v̂iZiE
∗
[ω∗

2

1i ]E
∗[ω∗2i] = 0,

which implies that under H0,

n

∑
i=1

E∗[U∗
2

n,i] = c′1

(
n−1

n

∑
i=1

û2
i (θ 0)ZiZ′i

)
c1 + c2

2

(
n−1

n

∑
i=1

û2
i (θ 0)v̂2

i

)
= c′1h22c1 + c2

2h23 +oP(1) = OP(1).

(S.43)
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(c) We note that by Minkowski inequality, for some ξ > 0 and some large enough constant C4,

n

∑
i=1

E∗[
∣∣U∗n,i∣∣2+ξ

]≤C4n−
ξ

2 n−1
n

∑
i=1

E∗
[∣∣c′1Z∗i u∗i

∣∣2+ξ
+ |c2u∗i v∗i |

2+ξ
]
→P 0, (S.44)

where the convergence in probability is obtained by using Lemma S.3.

From (a)-(c) above, U∗n,i satisfies the Lyapunov CLT conditions, and the result of Lemma S.4

follows for the independent bootstrap. For the dependent bootstrap, notice that for (b),

E
∗
[u∗

2

i v∗
2

i ] = û2
i (θ 0)v̂2

i E
∗
[ω∗

4

1i ] = û2
i (θ 0)v̂2

i , and E
∗
[u∗

2

i v∗i Zi] = û2
i (θ 0)v̂iZiE

∗
[ω∗

3

1i ] = 0, (S.45)

and the desired result follows.

S.2. Proofs of Theorems in the Main Text

PROOF OF THEOREM 3.1

First, note that by following similar arguments as those in the proofs of Theorem S.6, we obtain

that the (conditional) null limiting distribution of TW∗
l,n,(h1,ĥn,2)

(θ 0) is the same as the null limiting

distribution of TW
l,n(θ 0) with the value of localization parameter equal to h1, and this implies that

c∗l,(h1,ĥn,2)
(1−δ )→P cl,(h1,h2)(1−δ ), (S.46)

where cl,(h1,h2)(1−δ ) denotes the (1−δ )-th quantile of T̃W
l,h with h = (h1,h2).

Then, the arguments for the proof is similar to those in McCloskey (2017). We note that there

exists a “worst case sequence” γn ∈ Γ such that AsySz
[
cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]

equals:

limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[
TW

l,n(θ 0)> cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2)

]

14



= limsup
n→∞

P
θ0,γn

[
TW

l,n(θ 0)> cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2)

]
= lim

n→∞
P

θ0,γmn

[
TW

l,mn
(θ 0)> cB−S

l (α,α−δ , ĥmn,1
(θ 0), ĥmn,2

)
]

(S.47)

where {mn : n≥ 1} is a subsequence of {n : n≥ 1} and such a subsequence always exists. Further-

more, there exists a subsequence {ωn : n≥ 1} of {mn : n≥ 1} such that:

lim
n→∞

P
θ0,γmn

[
TW

l,mn
(θ 0)> cB−S

l (α,α−δ , ĥmn,1
(θ 0), ĥmn,2

)
]

= lim
n→∞

P
θ0,γωn,h

[
TW

l,ωn
(θ 0)> cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)
]

(S.48)

for some h ∈H . But, for any h ∈H , any subsequence {ωn : n ≥ 1} of {n : n ≥ 1}, and any

sequence {γωn,h : n≥ 1}, we have

(
TW

l,ωn
(θ 0), ĥωn,1

(θ 0)
)
→d (T̃W

l,h , h̃1
)

(S.49)

jointly. In addition, cB−S
l (α,α − δ , ĥ

ωn,1
(θ 0), ĥωn,2

) is continuous in ĥ
ωn,1

by the definition of the

SBCV and Maximum Theorem. Hence, the following convergence holds jointly by the Continuous

Mapping Theorem:

(
TW

l,ωn
(θ 0),cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)
)
→d

(
T̃W

l,h ,c
B−S
l (α,α−δ , h̃1 ,h2)

)
(S.50)

where cB−S
l (α,α−δ , h̃1 ,h2) = sup

h1∈CI
α−δ

(h̃1)

cl,(h1,h2)(1−δ ). Then, (S.47)-(S.93) imply that

AsySz
[
cB−S

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]

= lim
n→∞

P
θ0,γωn,h

[
TW

l,ωn
(θ 0)> cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)
]

= sup
h∈H

P
[
T̃W

l,h > cB−S
l (α,α−δ , h̃1 ,h2)

]
. (S.51)

15



Now, for any h ∈H , we have:

P
[
T̃W

l,h ≥ cB−S
l (α,α−δ , h̃1,h2)

]
= P

[
T̃W

l,h ≥ cB−S
l (α,α−δ , h̃1,h2)≥ cl,h(1−δ )

]
+ P

[
T̃W

l,h ≥ cl,h(1−δ )≥ cB−S
l (α,α−δ , h̃1,h2)

]
+ P

[
cl,h(1−δ )≥ T̃W

l,h ≥ cB−S
l (α,α−δ , h̃1,h2)

]
≤ P

[
T̃W

l,h ≥ cl,h(1−δ )
]
+P

[
cl,h(1−δ )≥ cB−S

l (α,α−δ , h̃1,h2)
]

= P
[
T̃W

l,h ≥ cl,h(1−δ )
]
+P

[
h1 /∈CIα−δ (h̃1)

]
= δ +(α−δ ) = α, (S.52)

where the inequality and the second equality follow from the form of cB−S
l (α,α − δ , h̃1,h2), and

the third equality follows from the definition of CIα−δ (h̃1). As (S.52) holds for any h ∈H , it is

clear from (S.51) that AsySz[cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2)]≤ α, as stated.

PROOF OF THEOREM 3.3

As in Theorem 3.1, we can show that there exists a sequence γn ∈ Γ , a subsequence

{mn : n≥ 1} of {n : n≥ 1}, and a subsubsequnce {ωn : n≥ 1} of {mn : n≥ 1} such that the

following result holds for l ∈ {1,2}:

AsySz
[
cB−A

l (α,α−δ , ĥn,1(θ 0), ĥn,2)
]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[
TW

l,n(θ 0)> cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2)+ η̂ l,n

]
= limsup

n→∞

P
θ0,γn

[
TW

l,n(θ 0)> cB−S
l (α,α−δ , ĥn,1(θ 0), ĥn,2)+ η̂ l,n

]
= lim

n→∞
P

θ0,γmn

[
TW

l,mn
(θ 0)> cB−S

l (α,α−δ , ĥmn,1
(θ 0), ĥmn,2

)+ η̂ l,mn

]
= lim

n→∞
P

θ0,γωn,h

[
TW

l,ωn
(θ 0)> cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)+ η̂ l,ωn

]
(S.53)

for some h ∈H . Furthermore, as in the proof of Theorem 3.1, for any h ∈Hh, any subsequence
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{ωn : n≥ 1} of {n : n≥ 1}, and any sequence {γωn,h : n≥ 1}, we have
(
TW

l,ωn
(θ 0), ĥωn,1

(θ 0)
)
→d(

T̃W
l,h , h̃1

)
jointly. Hence,

lim
n→∞

P
θ0,γωn ,h

[
TW

l,ωn
(θ 0)> cB−S

l (α,α−δ , ĥ
ωn,1

(θ 0), ĥωn,2
)+ η̂ l,ωn

]
= sup

h∈H
P
[
T̃W

l,h > cB−S
l (α,α−δ , h̃1,h2)+ η̄ l

]
(S.54)

≡ sup
h∈H

P
[
T̃W

l,h > cB−A
l (α,α−δ , h̃1 ,h2)

]
, (S.55)

where η̄ l = inf

{
η : sup

h1∈H1

P
[
T̃W

l,h > cB−S
l (α,α−δ , h̃1 ,h2)+η

]
≤ α

}
. For the simplicity of expo-

sition, define the following asymptotic rejection probability:

NRPl[h,η ] ≡ P[T̃W
l,h > cB−S

l (α,α−δ , h̃1,h2)+η ]. (S.56)

It is clear from (S.53)-(S.56) that AsySz[cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2)] = sup

h∈H
NRPl[h, η̄ l]. Hence,

it suffices to show that sup
h∈H

NRPl[h, η̄ l] = α to establish Theorem 3.3.

First, from the result of Theorem 3.1 and the definition of the size-correction criterion, it is clear

that sup
h∈H

NRPl[h, η̄ l] ≤ α . We proceed to show that sup
h∈H

NRPl[h, η̄ l] < α leads to contradiction.

Assume that sup
h∈H

NRPl[h, η̄ l]< α and define the function Kl(·) : R− → [−α, 1−α] such that

Kl(x) = sup
h∈H

NRPl[h,x]−α. (S.57)

Notice that given Assumption 3.2, NRPl[h, ·] is continuous on R−. Therefore, the Maximum The-

orem entails that Kl(·) is also continuous on R−. Moreover, we have

Kl

(
−cB−S

l (α,α−δ , h̃1,h2)
)
= sup

h∈H
NRPl[h,−cB−S

l (α,α−δ , h̃1,h2)]−α = 1−α > 0

and Kl (η̄ l) = sup
h∈H

NRPl[h, η̄ l]−α < 0 (by assumption).
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Then, we note that by the Intermediate Value Theorem, there exists η̇ l such that

i) − cB−S
l (α,α−δ , h̃1,h2)< η̇ l < η̄ l almost surely,

ii) Kl (η̇ l) = 0; i.e., sup
h∈H

NRPl[h, η̇ l] = α.

However, this contradicts the size-correction procedure where

η̄ l = inf

{
η : sup

h1∈H1

P
[
T̃W

l,h > cB−S
l (α,α−δ , h̃1 ,h2)+η

]
≤ α

}
.

It follows that sup
h∈H

NRPl[h, η̄ l] = α; i.e., AsySz[cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2)] = α .

PROOF OF COROLLARY 3.4 We notice that for l ∈ {1,2},

liminf
n→∞

inf
γ ∈ Γ

P
θ ,γ

[
θ ∈CSl,n(1−α)

]
= liminf

n→∞
inf

γ ∈ Γ
P

θ ,γ

[
TW

l,n(θ)≤ cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2)

]
, (S.58)

where cB−A
l (α,α−δ , ĥn,1(θ 0), ĥn,2) denotes the BACV corresponding to TW

l,n(θ). Then, the result

follows by Theorem 3.3 and by exploiting the duality between confidence set and inverting the test

of each of the individual null hypothesis H0 : θ = θ 0.

S.3. Asymptotic Results for the Bootstrap Inconsistency

This section contains the details of the bootstrap inconsistency under local endogeneity. In the

following theorem, we give the results of bootstrap inconsistency for the two-stage and shrinkage

tests under local endogeneity. For this purpose, we notice that there are two sources of randomness
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in the bootstrap: the randomness from the original data and the randomness from the bootstrap

procedure (i.e., the random weights of the wild bootstrap). Specifically, take the original sample

as from the probability space (Ω ,F ,P). In addition, suppose the randomness from the bootstrap

is defined on a probability space (Λ ,G ,P∗), which is independent of (Ω ,F ,P). Then, in the

following theorem we view the bootstrap statistics as being defined on the product probability

space (Ω ,F ,P)×(Λ ,G ,P∗) = (Ω×Λ ,F ×G ,P), where P= P×P∗. Theorem S.6 gives the null

limiting distributions of the bootstrap statistics under P. In particular, this framework is needed to

characterize the asymptotic behaviour of the bootstrap statistics generated under the dependent

transformation of disturbances.

Theorem S.6 Suppose that H0 and the conditions of Lemmas S.4 and S.5 hold. Then, under the

sequence {γn,h} defined in (2.19) with ||h21|| ≤ κ , where κ > 0, and |h1|< ∞:


T ∗2sls(θ 0)

T ∗ols(θ 0)

H∗n

  η
S∗
h ≡


ηS∗

1,h

ηS∗
2,h

ηS∗
3,h

=


(h′21h22h21)

−1 (h′21ψ∗Ze)
2

(h′21h22h21 +h23)
−1 (h′21ψ∗Ze +ψ∗ve +h25hb

1

)2(
h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1 (
−(h′21h24h21)

−1h′21ψ∗Ze +ψ∗ve +hb
1

)2

 ,

T S∗
1,n(θ 0)  T̃ S∗

1,h = η
S∗
2,h1(η

S∗
3,h ≤ χ

2
1,1−β

)+η
S∗
1,h1(η

S∗
3,h > χ

2
1,1−β

),

T S∗
2,n(θ 0)  T̃ S∗

2,h = η
S∗
2,hw(ηS∗

3,h)+η
S∗
1,h(1−w(ηS∗

3,h)),

where hb
1 = 0 for the bootstrap based on independent transformation of disturbances, and hb

1 = h1+h−1
25 ψve

with ψve ∼ N(0,h23), for the bootstrap based on dependent transformation of disturbances, and signifies

the weak convergence under P.

PROOF OF THEOREM S.6

First, we note that

n−1X∗
′
PZX∗ = n−1 (Zπ̂ + v∗)′PZ (Zπ̂ + v∗) = n−1

π̂
′Z
′
Zπ̂ +n−1

π̂
′Z
′
v∗+n−1v∗

′
Zπ̂ +n−1v∗

′
PZv∗

= n−1
π̂
′Z
′
Zπ̂ +oP∗(1)→P∗ h

′
21h24h21, in probability P, (S.59)
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which follows from π̂−h21→P 0, n−1Z′Z−h24→P 0, and n−1Z′v∗→P∗ 0 in probability P. Using

similar arguments, we obtain

n−1X∗
′
X∗→P∗ h

′
21h24h21 +h25, (S.60)

in probability P. Furthermore, using similar arguments as those for V̂a, V̂ols and V̂2sls in the proof

of Lemma S.2, we obtain

nV̂ ∗a →P∗ (h
′
21h24h21)

−2h
′
21h22h21 +h−2

25 h23, nV̂ ∗ols→P∗ (h
′
21h24h21 +h25)

−2(h′21h22h21 +h23
)
,

nV̂ ∗2sls→P∗ (h′21h24h21
)−2h

′
21h22h21, (S.61)

in probability P.

Second, we note that

n−1/2X∗
′
PZu∗ = n−1/2 (Zπ̂ + v∗)′PZu∗ = n−1/2

π̂
′Z
′
u∗+

(
n−1v∗

′
Z
)(

n−1Z
′
Z
)−1(

n−1/2Z
′
u∗
)

= n−1/2
π̂
′Z
′
u∗+oP∗(1)→d∗ h′21ψ

∗
Ze, (S.62)

in probability P, where the last equality follows from: (a) by Lemma S.4, n−1/2Z
′
u∗ = OP∗(1) in

probability P; (b) n−1Z′v∗→P∗ 0 in probability P as E∗[n−1Z′v∗] = 0; (c) n−1Z
′
Z→P h24, which

is positive definite, and therefore
(

n−1Z
′
Z
)−1
→P h−1

24 . Then, the (conditional) convergence in

distribution in (S.59) follows from Lemma S.4, along with the fact that π̂−h21→P 0.

Third, following the same arguments as above, we have n−1/2X∗
′
u∗ = n−1/2π̂

′Z
′
u∗ +

n−1/2(v∗′u∗−E∗[v∗
′
u∗]
)
+n−1/2E∗[v∗

′
u∗], where

n−1/2
π̂
′Z
′
u∗+n−1/2(v∗′u∗−E∗[v∗

′
u∗]
)
→d∗ h′21ψ

∗
Ze +ψ

∗
ve, (S.63)

in probability P. Then, for n−1/2E∗[v∗
′
u∗], we notice that it is equal to zero under the inde-

20



pendent transformation of disturbances. Under the dependent transformation, n−1/2E∗[v∗
′
u∗] =

n1/2 (n−1
∑

n
i=1 v̂iûi(θ 0)

)
, where

n1/2

(
n−1

n

∑
i=1

v̂iûi(θ 0)

)
= n1/2

(
n−1

n

∑
i=1

(viui(θ 0)−EF [viui(θ 0)])

)
+n1/2EF [viui(θ 0)]+oP(1)

→d ψve +h25h1. (S.64)

Finally, notice that the results in probability P in (S.59)-(S.63) are invariant to the original data,

so they hold under P as well. Then, by (S.64) and the Continuous Mapping Theorem, we obtain

that under H0,


n1/2â∗

n1/2(θ̂
∗
ols−θ 0)

n1/2(θ̂
∗
2sls−θ 0)

  


−(h′21h24h21)

−1h
′
21ψ∗Ze +h−1

25 ψ∗ve +hb
1

(h
′
21h24h21 +h25)

−1(h
′
21ψ∗Ze +ψ∗ve +h25hb

1)

(h
′
21h24h21)

−1h
′
21ψ∗Ze

 , (S.65)

and the results in the statement of Theorem S.6 follow.

Theorem S.7 Suppose that H0 and the conditions of Lemmas S.4 and S.5 hold. Then, under the

sequence {γn,h} defined in (2.19) with |h1|< ∞:


T ∗ar(θ 0)

T ∗ols(θ 0)

H∗n (θ 0)

  η
W∗
h ≡


ηW∗

1,h

ηW∗
2,h

ηW∗
3,h

=


ψ∗

′
Zeh22ψ∗Ze

(h′21h22h21 +h23)
−1 (h′21ψ∗Ze +ψ∗ve +h25hb

1

)2

h−1
23

(
ψ∗ve +hb

1

)2

 ,

TW∗
1,n (θ 0)  T̃W∗

1,h = η
W∗
2,h1(η

W∗
3,h ≤ χ

2
1,1−β

)+η
W∗
1,h1(η

W∗
3,h > χ

2
1,1−β

),

TW∗
2,n (θ 0)  T̃W∗

2,h = η
W∗
2,h w(ηW∗

3,h )+η
W∗
1,h (1−w(ηW∗

3,h )),

where hb
1 = 0 for the bootstrap based on independent transformation of disturbances, and hb

1 = h1+h−1
25 ψve

with ψve ∼ N(0,h23), for the bootstrap based on dependent transformation of disturbances, and signifies

the weak convergence under P.
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PROOF OF THEOREM S.7

The proofs for the theorem follow similar arguments as those for Theorem S.7 and thus are

omitted.

S.4. Asymptotic Results for the Clustering Case

Following Djogbenou et al. (2019, Assumption 3), we impose a condition on the number of clusters

and the extent of heterogeneity of cluster size ng (see p.396 of their paper for detailed discussions

on this condition).

Assumption S.8 For {µn} defined in (3.16) and ξ defined in (3.17), G→∞ and µ

2+ξ

2+2ξ

n supg
ng
n → 0.

The asymptotic size result for the SBCV is stated below.

Theorem S.9 Suppose that H0 and Assumption S.8 hold, then we have for any 0 < δ ≤ α < 1 and

for l ∈ {1,2}, AsySz
[
cB−S

l (α,α−δ , ĥc
n,1(θ 0), ĥc

n,2)
]
≤ α.

Furthermore, let T̃Wc
l,h denote the weak limit of TWc

l,n (θ 0) under the sequence {γc
n,h} ⊂ Γ c sat-

isfying (3.19) and define cB−S
l (α,α − δ , ˜̇hc

1,h2) = supḣc
1∈CIα−δ (

˜̇hc
1)

cl,hc(1− δ ), where cl,hc(1− δ )

is the (1− δ )-th quantile of T̃Wc
l,h for l ∈ {1,2}. We assume the following continuity condition,

similar to that assumed in the heteroskedastic case, and Theorem S.11 shows that the size-adjusted

bootstrap CV (BACV) achieves correct asymptotic size with clustered samples.

Assumption S.10 P
[
T̃Wc

l,h = cB−S
l (α,α−δ , ˜̇hc

1,h2)+η

]
= 0, ∀hc

1 ∈ Hc
1 and η ∈ [−cB−S

l (α,α −

δ , ˜̇hc
1,h2),0].

Theorem S.11 Suppose that H0, Assumptions S.8 and S.10 hold, then we have for any 0 < δ ≤

α < 1 and for l ∈ {1,2}, AsySz
[
cB−A

l (α,α−δ , ˆ̇hc
n,1(θ 0), ĥc

n,2)
]
= α.
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In addition, let CSc
l,n(1−α) denote the 1−α confidence set constructed by collecting all the

value of θ that cannot be rejected by the corresponding test at nominal level α under clustering.

Corollary S.12 Suppose that Assumptions S.8 and S.10 hold, then we have for any 0 < δ ≤α < 1

and for l ∈ {1,2}: liminfn→∞ infγc ∈ Γ c P
θ ,γc

[
θ ∈CSc

l,n(1−α)
]
= 1−α.

PROOF OF THEOREM S.9

The proofs are similar to those for the heteroskedastic case, so we will keep the exposition

concise. First, similar to Lemma S.2, we have under the drift sequences of parameters {γc
n,h} in

(3.19) with |hc
1|< ∞, the joint asymptotic distribution of the test statistics are as follows:


T c

ar(θ 0)

T c
ols(θ 0)

Hc
n(θ 0)

 →d η
c
h =


ηc

1,h

ηc
2,h

ηc
3,h



=


ψc′

Zehc
22ψc

Ze

(hc′
21hc

22hc
21 +hc

23)
−1
(

hc′
21ψc

Ze +ψc
ve +hc

25hc
1

)2

hc−1
23
(
ψc

ve +hc
25hc

1
)2


where

ψc
Ze

ψc
ve

∼ N

0,

hc
22 0

0′ hc
23


 . (S.66)

This also implies that

T c
1,n(θ 0)

T c
2,n(θ 0)

→d

T̃ c
1,h

T̃ c
2,h

 ,

where T̃ c
1,h = ηc

2,h1(η
c
3,h ≤ χ2

1,1−β
) + ηc

1,h1(η
c
3,h > χ2

1,1−β
, and T̃ c
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w(ηc
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In particular, we let Un,g = µ
1/2
n n−1{c′1Z′geg + c2v′geg

}
, where c1 denotes a k-dimensional vec-

tor and c2 denotes a nonzero scalar, and check that the conditions of the Lyapunov CLT hold for

Un,g:

(a) EF [Un,g] = 0, (S.67)

(b)
g

∑
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EF
[
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n,g
]
= c′1
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)
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2
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G
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)
→ c′1hc

22c1 + c2
2hc

23, (S.68)

(c) For some ξ > 0 and some large enough constant C,

G

∑
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EF

[
|Un,g|2+ξ

]
=
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µ
1/2
n n−1

)2+ξ G
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µ
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]
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g
n1+ξ

g

)
, (S.69)

where (S.69) follows from Minkowski Inequality and

G

∑
g=1
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[
|c′1Z′geg|2+ξ

]
= O

(
G

∑
g=1

n2+ξ
g

)
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(
nsup

g
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g

)
,

G

∑
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]
= O

(
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∑
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g

)
= O

(
nsup

g
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g

)
, (S.70)

as we can show that supg EF

[
|c′1Z′geg|2+ξ

]
= O

(
n2+ξ

g

)
and supg EF

[
|c2v′geg|2+ξ

]
= O

(
n2+ξ

g

)
,

by using the arguments similar to those in the proof of Lemma A.2 of Djogbenou et al. (2019) and

by using the moment restriction on supg,i EF

[
||Zgiegi||2+ξ

]
and supg,i EF

[
|vgiegi|2+ξ

]
. Then, by

Assumption S.8, we obtain that ∑
G
g=1 EF

[
|Un,g|2+ξ

]
= o(1).

Furthermore, we show the consistency of the cluster-robust variance estimators as follows. For
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V̂ c
ols, we use the decomposition

V̂ c
ols

V c
ols
−1 =V c−1
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(
V̂ c

ols−V c
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)
=V c−1

ols

(
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ols,1−Ac
ols,2−Ac′

ols,2 +Ac
ols,3

)
+oP(1), (S.71)

where V c
ols = n−2Q−1

ols ∑
G
g=1 EF [X ′gugu′gXg]Q−1

ols ,

Ac
ols,1 = n−2Q−1
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G

∑
g=1
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G

∑
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X ′gXg(θ̂
c
ols−θ)2X ′gXgQ−1

ols , (S.72)

and Qols = plimn→∞n−1X ′X . Thus, we need to show that V c−1
ols Ac

ols,m = oP(1), for m = 1,2,3.

For m= 1, we let rg = n−1V c−1/2
ols Q−1

olsX ′gug, and we have EF

[
∑

G
g=1 r2

g−1
]
=EF

[
V c−1

ols Ac
ols,1

]
=

0. Also define the truncated variable qg = rg1(|rg| ≤ ε) such that r2
g = q2

g + r2
g1(|rg| > ε). Then,

by the triangle inequality,
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The first term is oP(1) because

VarF
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q2
g

)
=
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2
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2, (S.74)

where ε is arbitrary. For the second term, we have

EF
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≤ 2ε
−ξ

G

∑
g=1

EF |rg|2+ξ ≤Cµ
1+ξ/2
n n−1−ξ sup

g
n1+ξ

g → 0, (S.75)

where C is some large enough constant, the convergence to zero follows from Assumption S.8, and

the last inequality follows from the fact that V c
ols = O

(
µ−1

n
)

and

G

∑
g=1

E|X ′gug|2+ξ = O
(

nsup
g

n1+ξ
g

)
, (S.76)

since supg EF

[
|X ′gug|2+ξ

]
= O

(
n2+ξ

g

)
, by similar arguments as those in the proof of Lemma

A.2 of Djogbenou et al. (2019) and the moment restriction on supg,i EF

[
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]
,
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]
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.

For m = 3, we have
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ols,3|= µnn−2Q−2

ols(θ̂
c
ols−θ)2

G

∑
g=1

(X ′gXg)
2 = OP

(
µnn−2 sup

g
n2

g

)
= oP(1), (S.77)

where the second equality follows from the moment restriction on supg,i EF

[
|Xg,i|2(2+ξ )

]
, which

implies that supg EF
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= O
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and by using |θ̂ c
ols−θ |= OP

(
V c1/2

ols

)
= OP

(
n−1/2 supg n1/2

g

)
. For m = 2, by the Cauchy-Schwarz

inequality,
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so that the results follows from those for m = 1 and m = 3. The consistency results for V̂ c
ar(θ 0) and
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V̂ c
a (θ 0) follows by using similar arguments.

Now, to show the results for the bootstrap analogues of the test statistics, we first show that

under H0 and the drift sequences of parameters {γc
n,h} in (3.19) with |hc

1|< ∞,

 µ
1/2
n n−1Z′u∗

µ
1/2
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(
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′
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[
u∗
′
v∗
])
→d∗
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0′ hc
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 , (S.80)

in probability P.

Let c1 denote a k-dimensional nonzero vector and c2 a nonzero scalar. Define
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(S.81)

and it suffices to verify that the conditions of the Lyapunov CLT hold for U∗n,g:
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]
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=
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(c) For some ξ > 0 and some large enough constant C1, we note that by Minkowski Inequality,

G
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]
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Furthermore, notice that for some large enough constant C2,
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where the inequality follows from the moment restriction on E∗
[
|ω∗1g|2+ξ

]
. By similar argument,
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. (S.85)

Therefore, we have

G

∑
g=1

E∗
[∣∣U∗n,g∣∣2+ξ

]
= OP

(
µ

1+ξ/2
n n−1−ξ sup

g
n1+ξ

g

)
= oP(1), (S.86)

where the first equality follows from (S.83)-(S.85) and the second equality follows from Assump-

tion S.8.

Then, following similar steps as in the derivation for the bootstrap test statistics in the het-

eroskedastic case, we find that

µ
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(
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in probability P, where the last (conditional) convergence in distribution follows from

µ
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independent bootstrap scheme. Additionally, we find that

n−1X∗
′
X∗→P∗ hc′

21hc
24hc

21 +hc
25, (S.88)

in probability P.

Furthermore, by using similar arguments as those for the consistency of the cluster-robust

variance estimator V̂ c
ols, we can show the consistency of their bootstrap counterparts, i.e.,

V̂ c∗
ols

V c∗
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−1→P∗ 0, (S.89)

in probability P, where V c∗
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Combining these arguments together, we obtain for T c∗
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in probability P, where the (conditional) convergence in distribution follows from (S.87)-(S.89) and

µnV c∗
ols→

P (hc′
21hc

24hc
21 +hc

25)
−2(hc′

21hc
22hc

21 +hc
23). The (conditional) convergence in distribution of

T c∗
ar (θ 0) and Hc∗

n (θ 0) follows similar arguments. The result of the theorem then follows by using

the same arguments as those in the proof of Theorem 3.1.

PROOF OF THEOREM S.11

Recall that

H c =

{
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s.t. µ
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}
(S.91)

for some κ > 0 and R∞ = R∪{±∞}.

The proof of the thoerem follows the same arguments as those in the proof of Thoerem 3.3,

and is thus omitted. In particular, we note that for any hc ∈H c, any subsequence {ωn : n≥ 1} of

{n : n≥ 1}, and any sequence {γωn,h : n≥ 1}, we have
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jointly. In addition, cB−S
l (α,α − δ , ˆ̇hc
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where cB−S
l (α,α−δ , ˜̇hc

1
,hc
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where ḣc
1 = (hc−2

25 hc
23)
−1/2hc

1 and ˜̇hc
1 = (hc−2

25 hc
23)
−1/2h̃c

1 .

PROOF OF COROLLARY S.12 The proof of the corollary follows the same arguments as those

in the proof of Corollary 3.4, and is thus omitted.
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S.5. Further Simulation Results

In this section, we report further simulation results for the finite-sample power performance. Fig-

ures S.1 and S.2 report the results with β = 0.1 and δ = 0.01. Figures S.3 and S.4 report the

results with β = 0.05 and δ = 0.025 and negative values of the endogeneity parameter ρ . In ad-

dition, Figures S.5 and S.6 report the power results with 3 IVs, and Figures S.5 and S.6 report the

power results with 5 IVs, respectively. The overall pattern is very similar to that in the main text.
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Figure S.1(a): Power of tests under heteroskedasticity with φ = 1, n = 200, β = 0.1, and δ = 0.01

Figure S.1(b): Power of tests under heteroskedasticity with φ = 5, n = 200, β = 0.1, and δ = 0.01

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure S.2(a): Power of tests under heteroskedasticity with φ = 10, n = 200, β = 0.1, and δ = 0.01

Figure S.2(b): Power of tests under heteroskedasticity with φ = 20, n = 200, β = 0.1, and δ = 0.01

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure S.3(a): Power of tests under heteroskedasticity with φ = 1, n = 200, β = 0.05, δ = 0.025, and
negative ρ

Figure S.3(b): Power of tests under heteroskedasticity with φ = 5, n = 200, β = 0.05, δ = 0.025, and
negative ρ

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure S.4(a): Power of tests under heteroskedasticity with φ = 10, n = 200, β = 0.05, δ = 0.025, and
negative ρ

Figure S.4(b): Power of tests under heteroskedasticity with φ = 20, n = 200, β = 0.05, δ = 0.025, and
negative ρ

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure S.5(a): Power of tests under heteroskedasticity with φ = 1, n = 200, β = 0.05, δ = 0.025, and 3 IVs

Figure S.5(b): Power of tests under heteroskedasticity with φ = 5, n = 200, β = 0.05, δ = 0.025, and 3 IVs

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure S.6(a): Power of tests under heteroskedasticity with φ = 10, n = 200, β = 0.05, δ = 0.025, and 3
IVs

Figure S.6(b): Power of tests under heteroskedasticity with φ = 20, n = 200, β = 0.05, δ = 0.025, and 3
IVs

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure S.7(a): Power of tests under heteroskedasticity with φ = 1, n = 200, β = 0.05, δ = 0.025, and 5 IVs

Figure S.7(b): Power of tests under heteroskedasticity with φ = 5, n = 200, β = 0.05, δ = 0.025, and 5 IVs

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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Figure S.8(a): Power of tests under heteroskedasticity with φ = 10, n = 200, β = 0.05, δ = 0.025, and 5
IVs

Figure S.8(b): Power of tests under heteroskedasticity with φ = 20, n = 200, β = 0.05, δ = 0.025, and 5
IVs

Notes: The power curves for the AR test, the two-stage test with BACVs, and the shrinkage test with BACVs with
τ = 0.5,0.25 are illustrated by the curves in pink, green, red, and blue, respectively.
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