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Granularity Shock: A Small Perturbation 
Two-Factor Model 
Maksim Osadchiy1 
 
This paper proposes a small perturbation two-factor model designed to capture granularity risk, 
extending the classical Vasicek Asymptotic Single Risk Factor (ASRF) portfolio loss model. By 
applying the Lyapunov Central Limit Theorem, we demonstrate that, for small Herfindahl-
Hirschman Index (HHI) values, granularity risk – conditional on market risk – is approximately 
proportional to a standard normal random variable. Instead of analyzing heterogeneous portfolios 
directly, we focus on a homogeneous portfolio subject to a small perturbation induced by 
granularity risk. We propose the Vasicek-Herfindahl portfolio loss distribution, which extends 
the Vasicek portfolio loss distribution to account for portfolio concentration. Utilizing this 
distribution, we derive closed-form granularity adjustments for the probability density function 
(PDF) and cumulative distribution function (CDF) of portfolio loss, as well as for Value at Risk 
(VaR) and Expected Shortfall (ES). We compare our primary results with existing findings and 
validate them through Monte Carlo simulations. 
 
Keywords 
Credit portfolio model; Granularity adjustment; Value at Risk; Expected Shortfall 
 

1 Introduction 
 
The Vasicek (1987) model, founded on the Law of Large Numbers (LLN), assumes perfect 
granularity by considering a homogeneous portfolio with equal weights for all exposures. Under 
this assumption, the portfolio loss converges almost surely to its conditional expectation given 
the systematic risk factor. However, this framework is inadequate for heterogeneous portfolios 
with varying loan sizes, where a residual “granularity risk” persists due to deviations from 
perfect diversification. 
 
Gordy (2003) demonstrated that, under mild regularity conditions, the portfolio loss in a large 
heterogeneous portfolio converges almost surely to its conditional expectation given the market 
factor. He also highlighted the importance of the Herfindahl-Hirschman Index (HHI) as a key 
measure of granularity adjustment (GA). 
 
The foundation for further study of GA to VaR was provided by Gouriéroux et al (2000), who 
calculated the first and second derivatives of VaR. 
 
Emmer & Tasche (2005) obtained GA to VaR for both the general case of loss distribution and 
for the case of the Vasicek model. The formula of GA to VaR for the case of the Vasicek model 
was refined by Gordy & Lutkebohmert (2013). 
 
Voropaev (2011) then moved on to studying the behavior of the portfolio loss PDF and 
granularity adjustments to VaR and ES, using a moment-based method. 
 
Since the Vasicek model, based on the LLN, is not suitable for capturing granularity effects, it is 
advisable to adapt it for such cases using Lyapunov's Central Limit Theorem (CLT). This 
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approach allows to account for variations in loan seizes within the portfolio and provides a 
modeling of loss distribution under granular conditions. 
 
Currently, there is a “granularity gap” in the regulation of credit risk. On one hand, a primitive 
archaic approach is used that considers the sizes of loans within the portfolio but ignores the 
correlations between these assets. On the other hand, the more advanced Internal Ratings-Based 
(IRB) approach accounts for correlations but neglects the varying sizes of loans in the portfolio. 
This paper aims to fill this gap concerning small values of HHI. The Vasicek-Herfindahl 
portfolio loss distribution introduced in our paper can be used to regulate a bank’s economic 
capital. 
 
This paper is organized as follows: 
 
• Section 2 introduces the main focus of our study and provides essential background on the 
Vasicek model. 
 
• Section 3 examines the behavior of the portfolio loss random variable as the Herfindahl-
Hirschman Index (HHI) approaches zero. We also derive the Vasicek-Herfindahl portfolio loss 
distribution and analyze its key properties. Furthermore, we compute Value at Risk (VaR) and 
the corresponding adjustment (GA to VaR) using our methodology, comparing these results with 
those presented by Emmer & Tasche (2005). 
 
• Section 4 extends this analysis to calculate Expected Shortfall (ES) and its adjustment (GA to 
ES) within our framework. 
 
• Section 5 explores the impact of adding a new loan to an existing heterogeneous portfolio, 
demonstrating how our model adapts to such changes. 
 
• Section 6 provides a review of the approach proposed by Emmer & Tasche (2005). 
 
• Section 7 discusses the moment-based approach of Voropaev (2011). 
 
• Section 8 examines Vasicek’s (2002) attempt to incorporate granularity effects into credit risk 
modeling. 
 
• Section 9 concludes the paper with a summary of key findings and implications. 
 

2 Model Framework 
 
Consider a portfolio with 𝑛 loans, where the weight of the 𝑘-th loan is 𝑤𝑘, satisfying: 
 

∑𝑤𝑘

𝑛

𝑘=1

= 1 

(2.1) 

with the constraint 𝑤𝑘 ≥ 0 for each 𝑘. 
 
The degree of concentration within the portfolio is measured by the Herfindahl-Hirschman Index 
(HHI), defined as: 
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ℎ𝑛 = ∑𝑤𝑘2
𝑛

𝑘=1

 

(2.2) 

This metric plays a central role in analyzing how portfolio concentration influences risk 
exposure. 
 
The portfolio loss is defined as: 

𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1𝑛 , 𝑌) = ∑𝑤𝑘

𝑛

𝑘=1

𝑙(𝑋𝑘, 𝑌) 

(2.3) 

where: 
 
• 𝑌 is a standard normal random variable representing systematic (market) risk, 
 
• Each 𝑋𝑘 is a standard normal random variable capturing individual (idiosyncratic) risk, 
 
• The set {𝑋𝑘}𝑘=1𝑛  and 𝑌 are assumed to be independent and identically distributed (i.i.d.), 
 
• The indicator variable 𝑙(𝑋𝑘, 𝑌) equals 1 if loan 𝑘 defaults and 0 otherwise. 
 
The expected value of the default indicator for each loan is: 
 

𝔼[𝑙(𝑋𝑘, 𝑌)] = 𝑃𝐷 
(2.4) 

and its variance is: 
𝑣𝑎𝑟[𝑙(𝑋𝑘, 𝑌)] = 𝑃𝐷(1 − 𝑃𝐷) 

(2.5) 

where 𝑃𝐷 is the probability of default. 
 
Assume that 𝑙(𝑋𝑘, 𝑦) is equal to 1 with probability 𝑝(𝑦) (the default) and 0 otherwise, where 𝑦 is 
a realization of the market shock 𝑌. The random variable 𝑙(𝑋𝑘, 𝑌), conditional on the market 
shock 𝑌, follows a Bernoulli distribution: 
 

𝑙|𝑌~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝(𝑌)) 
(2.6) 

The conditional mean of the default indicator is: 
 

𝔼[𝑙|𝑌] = 𝑝(𝑌) 
(2.7) 

and its conditional variance is: 
 

𝜎2(𝑝(𝑌)) = 𝑝(𝑌)(1 − 𝑝(𝑌)) 
(2.8) 

Following Vasicek (2002), the conditional probability of default for each loan is specified as: 
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𝑝(𝑌) = Φ(
Φ−1(𝑃𝐷) − √𝜌𝑌

√1 − 𝜌
) 

(2.9) 

where 
 
• 𝜌 ∈ [0,1] is the asset correlation, 
 
• Φ is the standard normal cumulative distribution function (CDF), 
 
• Φ−1 is the inverse of Φ. 
 
The conditional expected loss of the portfolio given 𝑌 is expressed as: 
 

𝑝(𝑌) = 𝔼[𝐿𝑜𝑠𝑠|𝑌] 
(2.10) 

The Vasicek CDF is given by: 
 

𝐹𝑉(𝑥; 𝑃𝐷, 𝜌) = Φ(−𝑝−1(𝑥)) = Φ(
√1 − 𝜌Φ−1(𝑥) − Φ−1(𝑃𝐷)

√𝜌
) 

(2.11) 

If all weights 𝑤𝑖  are equal, then, by the Law of Large Numbers (LLN), the random value 𝐿𝑜𝑠𝑠|𝑌 
converges in probability to its conditional mean 𝑝(𝑌): 
 

𝐿𝑜𝑠𝑠|𝑌
𝑃
→𝑝(𝑌) 

(2.12) 

(as established in Vasicek (2002)). 
 

3 Asymptotic Loss 
 
Due to the Lyapunov CLT, the portfolio loss converges in distribution to an asymptotic loss 𝐿: 
 

𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1𝑛 , 𝑌)
𝑑
→𝐿(𝑍, 𝑉) = 𝑉 + √ℎ𝜎(𝑉)𝑍 

(3.1) 

where: 
 
• 𝑍~𝒩(0,1): a standard normal random variable, independent of 𝑉. It generates granularity 
risk. 
 
• 𝑉 = 𝑝(𝑌)~𝑉𝑎𝑠𝑖𝑐𝑒𝑘(𝑃𝐷, 𝜌), where 𝑉𝑎𝑠𝑖𝑐𝑒𝑘(𝑃𝐷, 𝜌) represents the Vasicek loan loss 
distribution. 
 
• 𝜎(𝑉) = √𝑉(1 − 𝑉). 
 
• ℎ = lim

𝑛→∞
ℎ𝑛. 
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Proof details are provided in the Appendix 1. 
 
The heterogeneous portfolio loss risk encompasses not only market risk but also the granularity 
risk, which is represented by the term √ℎ𝜎(𝑉)𝑍. It is important to note that granularity risk is 
influenced by market risk. 
 
If ℎ = 0 (perfect granularity), then 𝐿(𝑍, 𝑉) = 𝑉. Conversely, the case where ℎ = 1 indicates full 
concentration, occurring when the weight of one of the loans is 1 and the weights of all the 
others are 0. 
 
The range of the function 𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1𝑛 , 𝑌) is the unit interval [0,1], while the range of the 
function 𝐿(𝑍, 𝑉) is ℝ. However, when ℎ = 0, the range of the function 𝐿(𝑍, 𝑉) is narrowed to 
the unit interval [0,1]. 
 
The asymptotic portfolio loss risk 𝐿 is the sum of the “classical” Vasicek portfolio loss risk 𝑉 
and the granularity risk 𝐻 = √ℎ𝜎(𝑉)𝑍: 

𝐿 = 𝑉 + 𝐻 
(3.2) 

Conditional mean of the loss given 𝑉: 
 

𝔼[𝐿|𝑉] = 𝑉 
(3.3) 

Conditional variance: 
 

𝑣𝑎𝑟[𝐿|𝑉] = ℎ𝜎2(𝑉) 
(3.4) 

Equations (3.2) –  (3.4) illustrates that interpreting 𝔼[𝐿|𝑉] as exclusively representing systematic 
risk and 𝐿 − 𝔼[𝐿|𝑉] as purely capturing idiosyncratic risk can be misleading. This is because the 
residual term 𝑍𝜎(𝑉)√ℎ = 𝐿 − 𝔼[𝐿|𝑉] is influenced by the market risk 𝑌. 
 
When ℎ ≪ 1, then the granularity risk 𝐻 is considered a small perturbation to the portfolio loss 
risk: 
 

𝐺𝐴𝐿 = √ℎ𝜎(𝑉)𝑍 
(3.5) 

The random variable 𝐿~𝑉𝐻(𝑃𝐷, 𝜌, ℎ), where 𝑉𝐻(𝑃𝐷, 𝜌, ℎ) represents the Vasicek-Herfindahl 
loan loss distribution. 
 
The Vasicek-Herfindahl CDF is given by: 
 

𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ℙ[𝐿(ℎ) < 𝑥] = ∫Φ(
𝑥 − 𝑣
√ℎ𝜎(𝑣)

)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)
1

0

 

(3.6) 

Proof details are provided in the Appendix 2. 
 
The Value at Risk 𝑉𝑎𝑅𝛼(𝐿(ℎ)) = 𝑥(𝛼, ℎ) is the root of the integral equation: 
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1 − 𝛼 = 𝐹𝑉𝐻(𝑥(𝛼, ℎ); 𝑃𝐷, 𝜌, ℎ) = ∫Φ(
𝑥(𝛼, ℎ) − 𝑣
√ℎ𝜎(𝑣)

)
1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) 

(3.7) 

where 𝛼 is the confidence level. For brevity, when writing 𝑥(𝛼, ℎ), we omit including the 
parameters 𝑃𝐷 and 𝜌. The numerical value of this root can be easily determined using known 
parameters 𝑃𝐷, 𝜌, ℎ, and 𝛼.  

Since a closed-form solution for 𝑥(𝛼, ℎ) = 𝐹𝑉𝐻−1(1 − 𝛼; ℎ) to the integral equation (12.1) is 
generally unavailable, we approximate 𝑥(𝛼, ℎ) via a first order Taylor expansion around ℎ = 0: 
 

𝑉𝑎𝑅𝛼(𝐿(ℎ)) = 𝑥(𝛼, ℎ) = 𝑥(𝛼) + ℎ
𝜕𝑥(𝛼, 𝜒)
𝜕𝜒 |

𝜒=0
+ 𝑜(ℎ)

= 𝑥(𝛼) −
ℎ
2

𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

+ 𝑜(ℎ) 

(3.8) 

where 
 

𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

= 1 − 2𝑥(𝛼) +
𝑥(𝛼)(1 − 𝑥(𝛼))

𝜑 (Φ−1(𝑥(𝛼)))
(Φ−1(𝑥(𝛼)) + √

1 − 𝜌
𝜌 Φ−1(𝛼)) 

(3.9) 

and 

𝑥(𝛼) = 𝑥(𝛼, ℎ = 0) = Φ(
Φ−1(𝑃𝐷) − √𝜌Φ−1(𝛼)

√1− 𝜌
) 

(3.10) 

is the root of the equation 
1 − 𝛼 = 𝐹𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 

(3.11) 

Proof details are provided in the Appendix 3. 
 
Based on the approach outlined by Gouriéroux et al (2000), Emmer & Tasche (2005, Remark 
2.3) with a correction from Gordy & Marrone (2012) (reversing the sign before Φ−1(𝑥(𝛼)) in 
(3.9)) derived the same formula (3.8) with precision up to notation (𝑞1−𝛼(𝑋) = Φ−1(𝛼), 

Φ(𝑐−√𝜌𝑞1−𝛼(𝑋)
√1−𝜌

) = 𝑥(𝛼), 𝑐 = Φ−1(𝑃𝐷), 𝑋 = 𝑌, where the left indicates the notation from 

Emmer & Tasche (2005), and the right — ours). 
 
Figure 1 (ℎ ∈ [0,0.01]) and Figure 2 (ℎ ∈ [0,1]) illustrate the accuracy of the VaR 
approximations across different levels of HHI. The exceptional accuracy of the formula 
𝑥(𝛼, ℎ) = 𝐹𝑉𝐻−1(1 − 𝛼; ℎ) in the case of small HHI values ℎ is expected, as it is grounded in the 
Lyapunov Central Limit Theorem. However, what is particularly noteworthy is that the first-
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order Taylor series approximation of 𝑉𝑎𝑅𝛼(𝐿(ℎ)) around ℎ = 0 demonstrates a high level of 
accuracy for ℎ values up to approximately 0.2 and continues to provide reasonable estimates 
even up to 0.3. This highlights the robustness of the approximation beyond its initial range of 
applicability. 
 
The model’s applicability is reinforced by empirical data such as Skridulytė & Freitakas (2012), 
who report maximum HHI levels around 0.24 in the Lithuanian banking sector. 
 
The downward outliers observed in Figure 2 of the simulated data are a consequence of the 
decreasing accuracy of the Monte Carlo method as granularity increases. To mitigate this effect, 
it is necessary to increase the number of simulations. 
 

 
Figure 1. Dependence of Value at Risk (VaR) on HHI ℎ ∈ [0,0.01]. Comparison of the simulated VaR at level 𝛼, 
𝑉𝑎𝑅𝛼(𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1𝑛 , 𝑌)) (red circles), with the theoretical 𝑉𝑎𝑅𝛼(𝐿(ℎ)) = 𝐹𝑉𝐻−1(1 − 𝛼; ℎ) (blue dashed line), and the first-order 
Taylor series approximation of 𝑉𝑎𝑅𝛼(𝐿(ℎ)) around ℎ = 0 (green solid line). The Monte Carlo simulation involved 20 000 runs. 
Parameters used: default probability 𝑃𝐷 = 0.01, number of loans 𝑛 = 20 000, confidence level 𝛼 = 0.01. 
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Figure 2. Dependence of Value at Risk (VaR) on HHI ℎ ∈ [0,1]. 

 
3.1 Symmetry Properties 
 
The Vasicek distribution 𝐹𝑉(𝑥; 𝑃𝐷, 𝜌) exhibits notable symmetry characteristics: 
 

𝐹𝑉(1/2 − 𝑥; 1/2 − 𝑝, 𝜌) − 1/2 = 1/2 − 𝐹𝑉(1/2 + 𝑥; 1/2 + 𝑝, 𝜌) 
 
for each 𝜌. This property follows directly from the equation presented by Vasicek (2002, p.4): 
 

𝐹𝑉(𝑥; 𝑃𝐷, 𝜌) = 1 − 𝐹𝑉(1 − 𝑥; 1 − 𝑃𝐷, 𝜌) 
 
From this property, it immediately follows that: 
 

𝐹𝑉(1/2;1/2, 𝜌) = 1/2 
 

𝑉𝑎𝑅𝛼=1/2(𝐿(ℎ = 0)) = 𝑥𝛼=1/2(𝑃𝐷 = 1/2, 𝜌) = 1/2 
 
It is also straightforward to see that the density function satisfies: 
 

𝑓𝑉(1/2 − 𝑥; 1/2 − 𝑝, 𝜌) = 𝑓𝑉(1/2 + 𝑥; 1/2 + 𝑝, 𝜌) 
and 

𝑓𝑉(1/2; 1/2,𝜌) = 1 
 
The Vasicek-Herfindahl distribution also exhibits a similar symmetry: 
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𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 1 − 𝐹𝑉𝐻(1 − 𝑥; 1 − 𝑃𝐷, 𝜌, ℎ) 

(3.12) 

for each 𝜌 and ℎ. See proof in Appendix 4. From this, it follows that: 
 

𝐹𝑉𝐻(1/2; 1/2, 𝜌, ℎ) = 1/2 
and consequently: 
 

𝑉𝑎𝑅𝛼=1/2(𝐿(ℎ)) = 𝑥𝛼=1/2(𝑃𝐷 = 1/2, 𝜌, ℎ) = 1/2 
 
for each 𝜌 and ℎ. These symmetry properties are useful for validating the accuracy of software 
used to compute VaR. 
 

4 Expected Shortfall 
 
The Expected Shortfall at level 𝛼 is defined as: 
 

𝐸𝑆𝛼(𝐿) = 𝔼[𝐿|𝐿 > 𝑉𝑎𝑅𝛼(𝐿)] =
1
𝛼 ∫ 𝑉𝑎𝑅𝛾

𝛼

0
(𝐿)𝑑𝛾 

(4.1) 

The Taylor expansion of ES around ℎ = 0 becomes: 
 

𝐸𝑆𝛼(𝐿(ℎ)) = 𝐸𝑆𝛼(𝐿(0)) +
ℎ
2𝛼 𝜎

2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) + 𝑜(ℎ) 
(4.2) 

(see proof in Appendix 5), where 
 

𝐸𝑆𝛼(𝐿(0)) =
1
𝛼 ∫ 𝑉𝑎𝑅𝛾

𝛼

0
(𝐿(ℎ = 0))𝑑𝛾 =

1
𝛼∫ Φ(

√𝜌Φ−1(1 − 𝛾) + Φ−1(𝑃𝐷)

√1− 𝜌
)

𝛼

0
𝑑𝛾

=
1
𝛼Φ2 (Φ

−1(1 − 𝛼),
Φ−1(𝑃𝐷)

√1 − 𝜌
;√𝜌) 

(4.3) 

where Φ2(. , . ; 𝜌) is the bivariate standard normal CDF with correlation 𝜌. 
 

5 Incorporating an Additional Loan into a Portfolio 
 
The approach presented in this paper enables the derivation of analytical formulas for risk 
metrics also in more complex scenarios. 
 
Let us extend our model by adding a new loan to an existing portfolio with HHI ℎ. This new loan 
has characteristics identical to the other credits and carries a weight 𝑤 ∈ [0,1]. The HHI of a 
new portfolio is 
 

ℎ̅ = (1 − 𝑤)2ℎ + 𝑤2 = ℎ + 𝑤2 + 𝑜(‖ℎ,𝑤2‖) 
(5.1) 
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The Value-at-Risk (VaR) of asymptotical loss of the new portfolio at confidence level 𝛼 is: 
 

𝑉𝑎𝑅𝛼(𝐿(ℎ̅)) = 𝑥(𝛼, ℎ̅) = 𝑥(𝛼) −
ℎ + 𝑤2

2

𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

+ 𝑜(‖ℎ,𝑤2‖) 

(5.2) 

The change in VaR resulting from adding this new loan is: 
 

𝑉𝑎𝑅𝛼(𝐿(ℎ̅)) − 𝑉𝑎𝑅𝛼(𝐿(ℎ)) = −
𝑤2

2

𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

+ 𝑜(‖ℎ,𝑤2‖) 

(5.3) 

This result extends naturally to multiple added loans: 
 

𝑉𝑎𝑅𝛼(𝐿(ℎ̅)) − 𝑉𝑎𝑅𝛼(𝐿(ℎ)) = −
∑ 𝑤𝑘2𝑁
𝑘=1

2

𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

+ 𝑜(‖ℎ, {𝑤𝑘2}𝑘=1𝑁 ‖) 

(5.4) 

6 Approach of Emmer & Tasche (2005) 
 
The approach used by Emmer & Tasche (2005) to find GA to VaR is based on the 
transformation: 
 

Λ(ℎ, 𝑐) = 𝑐𝐿(ℎ) + (1 − 𝑐)𝔼(𝐿(ℎ)|𝑉) 
(6.1) 

The key idea is to decompose this transformed loss variable into two parts: 
 
• A component 𝔼(𝐿(ℎ)|𝑉), which, by the LLN, does not depend on the heterogeneity parameter 
ℎ, 
 
• A small perturbation term 𝑐(𝐿(ℎ) − 𝔼(𝐿(ℎ)|𝑉)), where the residual 𝐿(ℎ) − 𝔼(𝐿(ℎ)|𝑉) 
encapsulates the influence of ℎ. 
 
Thus, 
 

Λ(ℎ, 𝑐) = 𝔼(𝐿(ℎ)|𝑉) + 𝑐(𝐿(ℎ) − 𝔼(𝐿(ℎ)|𝑉)) 
(6.2) 

This approach utilizes the method developed by Gouriéroux et al (2000) to compute the 
derivatives of 𝑉𝑎𝑅𝛼(𝑋 + 𝑐𝑌) with respect to the parameter 𝑐. This enables us to expand 
𝑉𝑎𝑅𝛼(Λ(ℎ, 𝑐)) = 𝑥(𝛼, ℎ, 𝑐) into a Taylor series around 𝑐 = 0. By evaluating this series at 𝑐 = 1, 
we can approximate 𝑉𝑎𝑅𝛼(𝐿(ℎ)) = 𝑥(𝛼, ℎ), since Λ(ℎ, 𝑐 = 1) = 𝐿(ℎ). However, a significant 
limitation of this method is the absence of a rigorous proof guaranteeing the convergence of the 
Taylor series at 𝑐 = 1. This raises questions about the accuracy and reliability of the 
approximation in practice. 
 
Emmer and Tasche (2005) derived the first and second derivatives of VaR with respect to 𝑐: 
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𝜕𝑥(𝛼, ℎ, 𝑐)
𝜕𝑐 |

𝑐=0
= 0 

(6.3) 

𝜕2𝑥(𝛼, ℎ, 𝑐)
𝜕𝑐2 |

𝑐=0
= −

𝜕
𝜕𝑣 (𝑣𝑎𝑟[𝐿(ℎ)|𝑉 = 𝑣]𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))

𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)
|

𝑣=𝑥(𝛼)

 

(6.4) 

Using these derivatives, they obtained a second-order Taylor expansion of VaR: 
 

𝑥(𝛼, ℎ) = 𝑥(𝛼, ℎ, 𝑐 = 1) = 𝑥(𝛼) −
1
2

𝜕
𝜕𝑣 (𝑣𝑎𝑟[𝐿(ℎ)|𝑉 = 𝑣]𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))

𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)
|

𝑣=𝑥(𝛼)

+ 𝑜(𝑐2 = 1? ) 

(6.5) 

Next, we demonstrate that our approach – combining the application of the Lyapunov Central 
Limit Theorem (CLT) to derive the asymptotic loss distribution of a heterogeneous portfolio 
with a first-order Taylor series expansion of VaR with respect to the Herfindahl-Hirschman 
Index (HHI) – yields consistent and equivalent results. Moreover, we establish that the 
convergence challenges typically associated with the series expansion are effectively mitigated 
within our framework, ensuring reliable and robust approximations. 
 
Since asymptotic loss 

𝐿(ℎ) = 𝑉 + √ℎ𝜎(𝑉)𝑍 
it follows that 

𝔼(𝐿(ℎ)|𝑉) = 𝑉 
and 

Λ(ℎ, 𝑐) = 𝑉 + 𝑐√ℎ𝜎(𝑉)𝑍 
(6.6) 

Thus, this transformation just replaces the Herfindahl-Hirschman Index ℎ with 𝑐2ℎ: 
 

Λ(ℎ, 𝑐) = 𝐿(𝑐2ℎ) 
(6.7) 

The right-hand side of the equation 
 

𝜕𝑥(𝛼, ℎ, 𝑐 = 1)
𝜕ℎ |

ℎ=0
=
𝜕𝑥(𝛼, ℎ)
𝜕ℎ |

ℎ=0

= −
𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
2𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

= −
𝜕
𝜕𝑣 (ℎ𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
2ℎ𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

= −
𝜕
𝜕𝑣 (𝑣𝑎𝑟[𝐿(ℎ)|𝑉 = 𝑣]𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))

2ℎ𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)
|

𝑣=𝑥(𝛼)

 

(6.8) 

coincides, up to a factor of (2ℎ)−1, with the right-hand side of equation (7) from Emmer & 
Tasche (2005): 
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𝜕2𝑥(𝛼, ℎ, 𝑐)
𝜕𝑐2 |

𝑐=0
= −

𝜕
𝜕𝑣 (𝑣𝑎𝑟[𝐿(ℎ)|𝑉 = 𝑣]𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))

𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)
|

𝑣=𝑥(𝛼)

 

(6.9) 

Note that Emmer & Tasche (2005) denote the density of random variable 𝑉 = 𝔼(𝐿(ℎ)|𝑉) as 𝛾𝐿 
instead of our notation 𝑓𝑉(𝑣; 𝑃𝐷, 𝜌). 
 
Hence 

𝜕𝑥(𝛼, ℎ, 1)
𝜕ℎ |

ℎ=0
=
1
2ℎ
𝜕2𝑥(𝛼, ℎ, 𝑐)

𝜕𝑐2 |
𝑐=0

 

(6.10) 

Let us prove that this equality holds true. 
 
Based on the Taylor series expansion of the Value at Risk: 
 

𝑉𝑎𝑅𝛼(Λ(ℎ, 𝑐)) = 𝑥(𝛼, ℎ, 𝑐) = 𝑉𝑎𝑅𝛼(𝐿(𝑐2ℎ)) = 𝑥(𝛼, 𝑐2ℎ)

= 𝑥(𝛼) + 𝑐2ℎ
𝜕𝑥(𝛼, 𝜒)
𝜕𝜒 |

𝜒=0
+ 𝑜(𝑐2ℎ) 

(6.11) 

we have: 
𝜕𝑥(𝛼, ℎ, 𝑐)

𝜕𝑐 |
𝑐=0

= 0 

(6.12) 

𝜕2𝑥(𝛼, ℎ, 𝑐)
𝜕𝑐2

|
𝑐=0

= 2ℎ
𝜕𝑥(𝛼, 𝜒)
𝜕𝜒

|
𝜒=0

 

(6.13) 

Q.E.D. 
 

7 Approach of Voropaev (2011) 
 
Based on the information obtained in our paper about the behavior of the portfolio loss 
distribution near zero of the HHI, let us consider the approach of Voropaev (2011). 
 
Transformation of variables 𝑣 = 𝑥 − 𝑢 allows us to write the Vasicek-Herfindahl function PDF 
(11.10) in the form of formula (3.1) of Voropaev (2011): 
 

𝑓∗(𝑥) = ∫ 𝑔(𝑢|𝑥 − 𝑢)𝑓(𝑥 − 𝑢)
∞

−∞

𝑑𝑢 

(7.1) 

where 
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𝑔(𝑢|𝑥) =
𝜑( 𝑢
√ℎ𝜎(𝑥)

)

√ℎ𝜎(𝑥)
𝜃(𝑥)𝜃(1 − 𝑥) 

(7.2) 

𝑓∗(𝑥) = 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) 
 

𝑓(𝑥) = 𝑓𝑉(𝑥; 𝑃𝐷, 𝜌) 
(7.3) 

By expanding the integrand into a Taylor series around 𝑢 = 𝑥, we obtain 
 

𝑔(𝑢|𝑥 − 𝑢)𝑓(𝑥 − 𝑢) =∑ (−1)𝑘
𝑢𝑘

𝑘!

∞

𝑘=0

𝜕𝑘

𝜕𝑥𝑘 (𝑔(𝑢|𝑥)𝑓
(𝑥)) 

(7.4) 

and 

𝑓∗(𝑥) =∑ (−1)𝑘
1
𝑘!

∞

𝑘=0

𝑑𝑘

𝑑𝑥𝑘 (𝑓
(𝑥)𝑚𝑘(𝑥)) 

(7.5) 

where 𝑚𝑘(𝑥) is the 𝑘𝑡ℎ conditional moment of the distribution 𝐻 given 𝑉 = 𝑥: 
 

𝑚𝑘(𝑥) = ∫ 𝑢𝑘𝑔(𝑢|𝑥)
∞

−∞

𝑑𝑢 

(7.6) 

Note that the function 𝑔(𝑢|𝑥) was not specified by Voropaev. We will proceed further to 
demonstrate that his approach ultimately leads to the same results as our method. 
 
It follows from equations (7.2) and (7.6) that 

𝑚𝑘(𝑥) = 𝜃(𝑥)𝜃(1 − 𝑥) ∫ 𝑢𝑘
𝜑 ( 𝑢
√ℎ𝜎(𝑥)

)

√ℎ𝜎(𝑥)

∞

−∞

𝑑𝑢 

(7.7) 

Since 
𝜑( 𝑢
√ℎ𝜎(𝑥)

)

√ℎ𝜎(𝑥)
 is the even function of 𝑢, odd moments are equal to zero. Hence, 

 

𝑓∗(𝑥) =∑
1

(2𝑘)!

∞

𝑘=0

𝑑2𝑘

𝑑𝑥2𝑘
(𝑓(𝑥)𝑚2𝑘(𝑥)) 

(7.8) 

Since 

∫ 𝑢2𝑘𝑒𝑥𝑝(−𝑎𝑢2)
∞

−∞

𝑑𝑢 = √
𝜋
𝑎
(2𝑘 − 1)‼
(2𝑎)𝑘  

(7.9) 

then 
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𝑚2𝑘(𝑥) = 𝜃(𝑥)𝜃(1 − 𝑥) ∫ 𝑢2𝑘
𝜑 ( 𝑢
√ℎ𝜎(𝑥)

)

√ℎ𝜎(𝑥)

∞

−∞

𝑑𝑢 = 𝜃(𝑥)𝜃(1 − 𝑥)(ℎ𝜎2(𝑥))𝑘(2𝑘 − 1)‼ 

(7.10) 

Hence, by employing Voropaev’s approach, we derive the equation: 
 

𝑓∗(𝑥) =∑
(2𝑘 − 1)‼
(2𝑘)! ℎ𝑘

∞

𝑘=0

𝜕2𝑘

𝜕𝑥2𝑘 (𝜎
2𝑘(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) 

(7.11) 

In contrast, our approach leads to the formula (11.34). Since 
 

(2𝑘 − 1)‼
(2𝑘)!

=
1
𝑘!
(
1
2
)
𝑘

 
(7.12) 

both equalities coincide, leading to the result: 
 

𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 𝑓∗(𝑥) 
(7.13) 

8 Vasicek's Attempt 
 
From formula (10) in Vasicek (2002, p. 8), after obvious transformations, the formula 
 

𝑣𝑎𝑟[𝐿] = ℎΦ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 1) + (1 − ℎ)Φ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) − 𝑃𝐷2 
(8.1) 

follows for the unconditional variance, taking into account: 
 

𝑎 = 1 
𝑏 = Φ−1(𝑃𝐷) 
𝐻 = 𝑇 

Φ2(𝑥, 𝑥; 1) = Φ(𝑥) 
 
However, the following formula from Vasicek (2002) is erroneous: 
 

𝑣𝑎𝑟[𝐿] ≈ (𝜌 + (1 − 𝜌)ℎ)𝜑2(Φ−1(𝑃𝐷)) 
(8.2) 

Let’s demonstrate how this error occurred. 
 
Vasicek used the tetrachoric expansion of the bivariate normal CDF: 
 

Φ2(𝑥, 𝑥; 𝜌) ≈ Φ2(𝑥) + 𝜌𝜑2(𝑥) 
(8.3) 

Φ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) ≈ 𝑃𝐷2 + 𝜌𝜑2(Φ−1(𝑃𝐷)) 
(8.4) 

Applying this expansion to the case 𝜌 = 1 yields the incorrect result: 
 

Φ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 1) ≈ 𝑃𝐷2 + 𝜑2(Φ−1(𝑃𝐷)) 
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(8.5) 

whereas, in fact, 
Φ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) 𝜌→1−→   𝑃𝐷 

(8.6) 

As a result, Vasicek arrived at the incorrect approximation: 
 

𝑣𝑎𝑟[𝐿] ≈ ℎ (𝑃𝐷2 + 𝜑2(Φ−1(𝑃𝐷))) + (1 − ℎ) (𝑃𝐷2 + 𝜌𝜑2(Φ−1(𝑃𝐷))) − 𝑃𝐷2

= (𝜌 + (1 − 𝜌)ℎ)𝜑2(Φ−1(𝑃𝐷)) 
(8.7) 

instead of the correct approximation: 
 

𝑣𝑎𝑟[𝐿] ≈ ℎ𝑃𝐷 + (1 − ℎ)(𝑃𝐷2 + 𝜌𝜑2(Φ−1(𝑃𝐷))) − 𝑃𝐷2

= ℎ𝑃𝐷(1 − 𝑃𝐷) + (1 − ℎ)𝜌𝜑2(Φ−1(𝑃𝐷)) 
(8.8) 

Furthermore, on page 8, Vasicek presented equation (12): 
 

ℙ[𝐿 ≤ 𝑥] = 𝐹𝑉(𝑥; 𝑝, 𝜌 + ℎ(1 − 𝜌)) 
(8.9) 

without proper justification. The fallacy of this formula is demonstrated in Figure 3, where the 
function 

𝑑𝐹𝑉(𝑥) =
𝐹𝑉(𝑥; 𝑝, 𝜌 + ℎ(1 − 𝜌)) − 𝐹𝑉(𝑥; 𝑝, 𝜌)

ℎ  
(8.10) 

is compared to the corresponding simulated function 
 

𝑑𝐹𝑠(𝑥) =
𝑓𝑠(𝑥; 𝑝, 𝜌, ℎ) − 𝑓𝑠(𝑥; 𝑝, 𝜌, 0)

ℎ  
(8.11) 

as well as the function 
 

𝑑𝐹𝑉𝐻(𝑥) =
𝐹𝑉𝐻(𝑥; 𝑝, 𝜌, ℎ) − 𝐹𝑉𝐻(𝑥; 𝑝, 𝜌, 0)

ℎ =
𝐹𝑉𝐻(𝑥; 𝑝, 𝜌, ℎ) − 𝐹𝑉(𝑥; 𝑝, 𝜌)

ℎ  
(8.12) 
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Figure 3. Comparison of 𝑑𝐹𝑉(𝑥) (red line) with the corresponding simulated function (green line) and with 𝑑𝐹𝑉𝐻(𝑥) (blue line). 
Number of Monte Carlo simulations: 20 000. The parameters used: 𝑃𝐷 = 0.1, 𝜌 = 0.1, 𝑛 = 20 000, ℎ = 0.01. 

 
The poor quality of Vasicek's attempt to assess the granularity effect is evident in Figure 3. 
 

9 Conclusion 
 
We propose a novel methodology for evaluating granularity risk, providing an alternative to:  
 
• The approach of Emmer & Tasche (2005), which is grounded in the framework established by 
Gouriéroux et al. (2000), 
 
• The moment-based methodology of Voropaev (2011). 
 
Our approach employs the Lyapunov Central Limit Theorem (CLT) to derive the asymptotic loss 
distribution of a heterogeneous portfolio. Additionally, we utilize this framework to perform a 
Taylor series expansion of the Value at Risk (VaR) around the Herfindahl-Hirschman Index 
(HHI) at ℎ = 0. 
 
We demonstrate that, for small values of the Herfindahl-Hirschman Index (HHI), granularity 
risk, conditional on market risk, is proportional to a standard normal random variable. Instead of 
studying the behavior of a heterogeneous portfolio, we examine the behavior of a homogeneous 
portfolio subjected to a small perturbation induced by granularity risk. 
 
An intriguing observation has emerged: although the function 𝑉𝑎𝑅𝛼(𝐿(ℎ)) = 𝐹𝑉𝐻−1(1 − 𝛼; ℎ) 
provides a good approximation of the simulated function 𝑉𝑎𝑅𝛼(𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1𝑛 , 𝑌)) only for 
small HHI values, the first-order Taylor series expansion of 𝑉𝑎𝑅𝛼(𝐿(ℎ)) around ℎ = 0 exhibits 
high accuracy for ℎ values up to approximately 0.2. Moreover, the approximation continues to 
provide reasonable estimates even for ℎ approaching 0.3 (see model parameters in the caption of 
Figure 1). 
 
It was also unexpected that the second-order Taylor expansion of 𝐿𝑜𝑠𝑠 around 𝑐 = 0, as 
presented in Emmer and Tasche (2005) (see Chapter 6), coincided with the first-order Taylor 
expansion around ℎ = 0. The reason for this coincidence was elucidated in our study. 



 17 

10 Appendix 1 
10.1 Lyapunov CLT 
 
Suppose {𝜉𝑖} is a sequence of independent random variables, each with finite mean 𝜇𝑖 and 
variance 𝜎𝑖2. Define: 

𝑠𝑛2 =∑𝜎𝑖2
𝑛

𝑖=1

 

(10.1) 

Lyapunov’s condition states that if, for some 𝛿 > 0, 
 

𝑙𝑖𝑚
𝑛→∞

1
𝑠𝑛2+𝛿

∑𝔼
𝑛

𝑖=1

(|𝜉𝑖 − 𝜇𝑖|2+𝛿) = 0 

(10.2) 

then the normalized sum converges in distribution to a standard normal: 
 

1
𝑠𝑛
∑(𝜉𝑖 − 𝜇𝑖)
𝑛

𝑖=1

𝑑
→𝒩(0,1) 

(10.3) 

Let us apply the Lyapunov CLT to our problem. We have: 
 

𝜉𝑖 = 𝑤𝑖𝑙(𝑋𝑖, 𝑦) 
 

𝜇𝑖 = 𝑤𝑖𝑝(𝑦) 
 

𝑠𝑛 = √ℎ𝑛𝜎(𝑝(𝑦)) 
where 

ℎ𝑛 = ∑𝑤𝑘2
𝑛

𝑘=1

 

 
is the Herfindahl-Hirschman Index. In the new variables, formula (10.3) is transformed into the 
following form: 
 

∑ 𝑤𝑖𝑛
𝑖=1 (𝑙(𝑋𝑖, 𝑦) − 𝑝(𝑦))

√ℎ𝑛𝜎(𝑝(𝑦))
𝑑
→𝒩(0,1) 

(10.4) 

Taking into account equation (2.3), this formula can be expressed as: 
 

𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1𝑛 , 𝑦) − 𝑝(𝑦)
√ℎ𝑛𝜎(𝑝(𝑦))

𝑑
→𝒩(0,1) 

(10.5) 

Thus, the portfolio loss converges in distribution to the asymptotic loss 𝐿: 
 

𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1𝑛 , 𝑌)
𝑑
→𝐿(𝑍, 𝑌) = 𝑝(𝑌) + √ℎ𝜎(𝑝(𝑌))𝑍 

(10.6) 
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where 𝑌, 𝑍~𝒩(0,1) are independent, and 
 

ℎ = lim
𝑛→∞

ℎ𝑛 
 
This heterogeneous portfolio loss risk encompasses not only market risk but also granularity risk, 
which is represented by the term √ℎ𝜎(𝑝(𝑌))𝑍. It is important to note that granularity risk is 
influenced by market risk. 
 
If ℎ = 0 (perfect granularity), then 𝐿(𝑍, 𝑌) = 𝑝(𝑌). Conversely, the case where ℎ = 1 indicates 
full concentration, occurring when the weight of one of the loans is 1 and the weights of all the 
others are 0. 
 
The range of the function 𝐿𝑜𝑠𝑠({𝑋𝑘}𝑘=1𝑛 , 𝑌) is the unit interval [0,1], while the range of the 
function 𝐿(𝑍, 𝑌) is ℝ. However, when ℎ = 0, the range of the function 𝐿(𝑍, 𝑌) is narrowed to 
the unit interval [0,1]. 
 
10.2 Applicability of the Lyapunov CLT 
 
The applicability of our approach is constrained by the limits of the Lyapunov CLT. Let 𝛿 = 1. 
We need to verify: 
 

𝑙𝑖𝑚
𝑛→∞

1
𝑠𝑛3
∑𝔼[|𝜉𝑖 − 𝜇𝑖|3]
𝑛

𝑖=1

=0 

(10.7) 

which is equivalent to: 

𝑙𝑖𝑚
𝑛→∞

∑ 𝑤𝑖3𝑛
𝑖=1

(∑ 𝑤𝑗2𝑛
𝑗=1 )3/2

= 0 

(10.8) 

Proof. 
 
We start with the expression: 
 

𝔼[|𝜉𝑖 − 𝜇𝑖|3] = 𝑤𝑖3𝔼[|𝑙(𝑋𝑘, 𝑦) − 𝑝(𝑦)|3] = 𝑤𝑖3𝑝(𝑦)(1 − 𝑝(𝑦))((1 − 𝑝(𝑦))2 + 𝑝2(𝑦)) 
(10.9) 

Thus, we have: 

𝑙𝑖𝑚
𝑛→∞

1
𝑠𝑛3
∑𝔼
𝑛

𝑖=1

[|𝜉𝑖 − 𝜇𝑖|3] =
𝔼[|𝑙(𝑋𝑘, 𝑦) − 𝑝(𝑦)|3]

𝜎3(𝑝(𝑦)) 𝑙𝑖𝑚
𝑛→∞

∑ 𝑤𝑖3𝑛
𝑖=1

(∑ 𝑤𝑖2𝑛
𝑖=1 )3/2

=
(1 − 𝑝(𝑦))2 + 𝑝2(𝑦)

√𝑝(𝑦)(1 − 𝑝(𝑦))
𝑙𝑖𝑚
𝑛→∞

∑ 𝑤𝑖3𝑛
𝑖=1

(∑ 𝑤𝑗2𝑛
𝑗=1 )3/2

 

(10.10) 

Q.E.D. 
 
To simulate the random variable 𝐿𝑜𝑠𝑠, it is necessary to use a set 𝑤𝑘 ≥ 0, 𝑘 = 1,… , 𝑛, such that: 
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∑𝑤𝑘

𝑛

𝑘=1

= 1 

∑𝑤𝑘2
𝑛

𝑘=1

≪ 1 

∑ 𝑤𝑘3𝑛
𝑘=1

(∑ 𝑤𝑗2𝑛
𝑗=1 )3/2

≪ 1 

(10.11) 

We use the geometric progression defined as follows: 
 

𝑤𝑘 = (1 − 𝑠)𝑠𝑘−1 
(10.12) 

where 0 < 𝑠 < 1. Let 

ℎ =∑𝑤𝑘2
∞

𝑘=1

=
1 − 𝑠
1 + 𝑠

⇒ 𝑠 =
1 − ℎ
1 + ℎ

 

(10.13) 

Now we can evaluate: 
 

∑ 𝑤𝑘3∞
𝑘=1

(∑ 𝑤𝑗2∞
𝑗=1 )

3/2 =
∑ 𝑠3𝑘∞
𝑘=1

(∑ 𝑠2𝑗∞
𝑗=1 )

3/2 =
(1 − 𝑠2)3/2

1 − 𝑠3
 

(10.14) 

If 𝑠 is chosen in the left neighborhood of 1, then this ratio is close to 0. 
 

11 Appendix 2 
11.1 Vasicek-Herfindahl Distribution 
 
Let the random variable 𝑉 = 𝑝(𝑌) such that 𝑉~𝑉𝑎𝑠𝑖𝑐𝑒𝑘(𝑃𝐷, 𝜌), where 𝑉𝑎𝑠𝑖𝑐𝑒𝑘(𝑃𝐷, 𝜌) 
represents the Vasicek loan loss distribution. 
 
Define 

𝐻 = 𝑍𝜎(𝑉)√ℎ 
(11.1) 

where 
𝜎(𝑥) = √𝑥(1 − 𝑥) 

(11.2) 

The asymptotic portfolio loss risk 𝐿 is the sum of the “classical” Vasicek portfolio loss risk 𝑉 
and the granularity risk 𝐻: 

𝐿 = 𝑉 + 𝐻 = 𝑉 + 𝑍𝜎(𝑉)√ℎ 
(11.3) 

The conditional variance of the portfolio loss given 𝑉 is 
 

𝑣𝑎𝑟[𝐿|𝑉] = ℎ𝜎2(𝑉) 
(11.4) 
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Equation (11.3) illustrates that interpreting 𝔼[𝐿|𝑉] as exclusively representing systematic risk 
and 𝐿 − 𝔼[𝐿|𝑉] as purely capturing idiosyncratic risk can be misleading. This is because the 
residual term 𝑍𝜎(𝑉)√ℎ = 𝐿 − 𝔼[𝐿|𝑉] is influenced by the market risk 𝑌. 
 
When ℎ ≪ 1, then the granularity risk 𝐻 = 𝑍𝜎(𝑉)√ℎ is considered a small perturbation to the 
portfolio loss risk: 
 

𝐺𝐴𝐿 = 𝑍𝜎(𝑉)√ℎ 
(11.5) 

The PDF of the portfolio loss 𝐿 is given by: 
 

𝑓𝐿(𝑥) = 𝑓𝑉+𝐻(𝑥) = ∫𝑓𝐻|𝑉(𝑥 − 𝑣|𝑣)𝑓𝑉(𝑣)𝑑𝑣
1

0

= ∫𝑓𝐻|𝑉(𝑥 − 𝑣|𝑣)𝑑𝐹𝑉(𝑣)
1

0

= ∫
𝜑 ( 𝑥 − 𝑣
√ℎ𝜎(𝑣)

)

√ℎ𝜎(𝑣)
𝑑𝐹𝑉(𝑣)

1

0

 

(11.6) 

where φ(𝑥) is the standard normal PDF. Similarly, the CDF of the portfolio loss 𝐿 is: 
 

𝐹𝐿(𝑥) = 𝐹𝑉+𝐻(𝑥) = ℙ[𝑉 + 𝐻 < 𝑥] = ∫ℙ[𝐻 < 𝑥 − 𝑣|𝑉 = 𝑣]𝑓𝑉(𝑣)𝑑𝑣
1

0

= ∫𝐹𝐻|𝑉(𝑥 − 𝑣|𝑣)𝑓𝑉(𝑣)𝑑𝑣
1

0

= ∫Φ(
𝑥 − 𝑣
√ℎ𝜎(𝑣)

)𝑑𝐹𝑉(𝑣)
1

0

 

(11.7) 

The PDF of the random variable H, conditional on the random variable 𝑉, is given by: 
 

𝑓𝐻|𝑉(𝑥|𝑣) =
𝜑 ( 𝑥
√ℎ𝜎(𝑣)

)

√ℎ𝜎(𝑣)
 

(11.8) 

The CDF of the random variable H, conditional on the random variable 𝑉, is given by: 
 

𝐹𝐻|𝑉(𝑥|𝑣) = Φ(
𝑥

√ℎ𝜎(𝑣)
) 

(11.9) 

Now we introduce the Vasicek-Herfindahl PDF of the portfolio loss: 
 

𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫
𝜑 ( 𝑥 − 𝑣
√ℎ𝜎(𝑣)

)

√ℎ𝜎(𝑣)
𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

1

0

 

(11.10) 

and the Vasicek-Herfindahl CDF: 
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𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫Φ(
𝑥 − 𝑣
√ℎ𝜎(𝑣)

)𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)
1

0

 

(11.11) 

Using integration by parts, the function can be transformed into the following form: 
 

𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)𝑑Φ(
𝑣 − 𝑥
√ℎ𝜎(𝑣)

)
1

0

 

(11.12) 

 
11.2 Model Validation Using Monte Carlo Simulation 
 
The simulated CDF is given by: 

𝐹𝑠(𝑥) = ∑𝐼(𝐿𝑜𝑠𝑠𝑘 ≤ 𝑥)
𝑁

𝑘=1

 

(11.13) 

where 𝐼(𝑥) is the indicator function, 𝐿𝑜𝑠𝑠𝑘 is the 𝑘𝑡ℎ Monte Carlo simulation of the random 
variable 𝐿𝑜𝑠𝑠, and 𝑁 is the total number of simulations. 
 
The simulated PDF is: 
 

𝑓𝑠(𝑥𝑗) =
1
𝑁∑𝐼(𝑥𝑗 ≤ 𝐿𝑜𝑠𝑠𝑘 < 𝑥𝑗+1)

𝑁

𝑘=1

 

(11.14) 

where 
𝑥𝑗 = 𝑥0 + 𝑗Δ𝑥 

(11.15) 

and Δ𝑥 is the bin width. 
 
The theoretical Vasicek-Herfindahl ΔCDF is given by: 
 

Δ𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) − 𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, 0) 
(11.16) 

The theoretical Vasicek-Herfindahl ΔPDF is defined as: 
 

Δ𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) − 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, 0) 
(11.17) 

The simulated ΔCDF is expressed as: 
 

Δ𝐹𝑠(𝑥; ℎ) = 𝐹𝑠(𝑥; ℎ) − 𝐹𝑠(𝑥; 0) 
(11.18) 

The simulated ΔPDF is represented by: 
 

Δ𝑓𝑠(𝑥; ℎ) = 𝑓𝑠(𝑥; ℎ) − 𝑓𝑠(𝑥; 0) 
(11.19) 
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The difference between the theoretical Vasicek-Herfindahl ΔCDF with the simulated ΔCDF is 
given by the equation: 
 

𝛥𝛥𝐹(𝑥) = 𝛥𝐹𝑉𝐻(𝑥) − 𝛥𝐹𝑠(𝑥) 
(11.20) 

Similarly, the difference between the theoretical Vasicek-Herfindahl ΔPDF and the simulated 
ΔPDF is represented as: 
 

𝛥𝛥𝑓(𝑥) = 𝛥𝑓𝑉𝐻(𝑥) − 𝛥𝑓𝑠(𝑥) 
(11.21) 

Figure 4 (with ℎ = 0.01) and Figure 5 (with ℎ = 0.1) illustrate the differences between the 
theoretical Vasicek-Herfindahl ΔCDF and ΔPDF and their corresponding simulated functions. 
Both figures demonstrate a decline in model quality as HHI values increase. Nevertheless, even 
with the relatively large value of ℎ = 0.1, the model still accurately represents the shapes of both 
the PDF and CDF. 
 

 
Figure 4. Theoretical Vasicek-Herfindahl ΔCDF and ΔPDF vs simulated functions (top row). Below the plots of the functions are 
the corresponding plots of the differences between theoretical and simulated functions. Number of Monte Carlo simulations: 20 
000. Parameters used: PD=0.1, ρ=0.1, h=0.01, n=20 000. 
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Figure 5. Theoretical Vasicek-Herfindahl ΔCDF and ΔPDF vs simulated functions (top row). Below the plots of the functions are 
the corresponding plots of the differences between theoretical and simulated functions. Number of Monte Carlo simulations: 20 
000. Parameters used: PD=0.1, ρ=0.1, h=0.1, n=20 000. 

 
11.3 Properties of the Vasicek-Herfindahl Distribution 
 
11.3.1 Normalization Property of the PDF 
 
The total area under the PDF curve is equal to 1: 
 

∫ 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ)𝑑𝑥
∞

−∞
= 1 

(11.22) 

Proof. 

∫ 𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ)𝑑𝑥
∞

−∞
= ∫

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)
√ℎ𝜎(𝑣)

∫ φ(
𝑥 − 𝑣
√ℎ𝜎(𝑣)

)
∞

−∞

1

0

𝑑𝑣 = ∫𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)
1

0
= 𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)|01 = 1 

(11.23) 

Q.E.D. 
 
11.3.2 Expected Loss 
 
The unconditional mean of the asymptotic loss 𝐿 is equal to the unconditional probability of 
default: 
 

𝔼[𝐿] = 𝑃𝐷 
(11.24) 

Proof. 
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𝔼[𝐿] = 𝔼 [𝑉 + 𝑍√𝑉(1 − 𝑉)ℎ] = 𝔼[𝑉] + √ℎ𝔼[𝑍]𝔼 [√𝑉(1 − 𝑉)] = 𝔼[𝑉] = 𝑃𝐷 
(11.25) 

Q.E.D. 
 
11.3.3 Variance 
 
The unconditional variance of the asymptotic loss 𝐿 is a linear function of ℎ: 
 

𝑣𝑎𝑟[𝐿] = 𝑃𝐷(1 − 𝑃𝐷)ℎ + (1 − ℎ)𝑣𝑎𝑟[𝑉] 
(11.26) 

where 
𝑣𝑎𝑟[𝑉] = 𝑣𝑎𝑟[𝔼[𝐿|𝑉]] = Φ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) − 𝑃𝐷2 

(11.27) 

Proof. 
 

𝔼[𝐿2] = 𝔼 [𝑉2 + 2𝑉𝑍√𝑉(1 − 𝑉)ℎ + 𝑍2𝑉(1 − 𝑉)ℎ]

= 𝔼[𝑉2] + 2√ℎ𝔼[𝑍]𝔼 [𝑉√𝑉(1 − 𝑉)] + ℎ𝔼[𝑍2]𝔼[𝑉(1 − 𝑉)]
= 𝔼[𝑉2] + ℎ𝔼[𝑉(1 − 𝑉)] = (1 − ℎ)𝔼[𝑉2] + ℎ𝔼[𝑉]
= (1 − ℎ)Φ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) + ℎ𝑃𝐷 

(11.28) 

𝑣𝑎𝑟[𝐿] = 𝔼[𝐿2] − 𝔼2[𝐿] = (1 − ℎ)Φ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) + ℎ𝑃𝐷 − 𝑃𝐷2 =
= (1 − ℎ)(Φ2(Φ−1(𝑃𝐷),Φ−1(𝑃𝐷); 𝜌) − 𝑃𝐷2) + (1 − ℎ)𝑃𝐷2 + ℎ𝑃𝐷 − 𝑃𝐷2
= (1 − ℎ)𝑣𝑎𝑟[𝑉] + 𝑃𝐷(1 − 𝑃𝐷)ℎ 

(11.29) 

Q.E.D. 
 
11.4 Taylor Series of CDF and PDF 
 
Let 𝑧 = ℎ𝜎2(𝑣). Given that 0 < 𝑧 ≪ 1, we expand Φ(𝑢/√𝑧) into a Taylor series around 𝑧 = 0: 
 

Φ(
𝑢
√𝑧
) = θ(𝑢) +∑ (𝑧/2)𝑘

δ(2𝑘−1)(𝑢)
𝑘!

∞

𝑘=1
 

(11.30) 

(see proof in Appendix 6). Hence, the Vasicek-Herfindahl CDF can be written as: 
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𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫Φ(
𝑥 − 𝑣
√ℎ𝜎(𝑣)

)
1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

= 𝐹𝑉(𝑥; 𝑃𝐷, 𝜌)

+∑
(ℎ/2)𝑘

𝑘! ∫ δ(2𝑘−1)(𝑥 − 𝑣)𝜎2𝑘(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)𝑑𝑣
1

0

∞

𝑘=1

= 𝐹𝑉(𝑥; 𝑃𝐷, 𝜌)

−∑
(ℎ/2)𝑘

𝑘! ∫ δ(2𝑘−1)(𝑣 − 𝑥)𝜎2𝑘(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)𝑑𝑣
1

0

=
∞

𝑘=1
𝐹𝑉(𝑥; 𝑃𝐷, 𝜌)

+∑
(ℎ/2)𝑘

𝑘!

∞

𝑘=1

∂2𝑘−1

∂𝑥2𝑘−1 (𝜎
2𝑘(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

= 𝐹𝑉(𝑥; 𝑃𝐷, 𝜌) +
ℎ
2
𝜕
𝜕𝑥
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) + 𝑜(ℎ) 

(11.31) 

We used the Dirac delta function properties: 
 

𝛿(𝑘)(−𝑥) = (−1)𝑘𝛿(𝑘)(𝑥) 
(11.32) 

∫ 𝛿(𝑘)(𝑥)𝑓(𝑥)𝑑𝑥
+∞

−∞
= (−1)𝑘𝑓(𝑘)(0) 

(11.33) 

The Vasicek-Herfindahl PDF is given by: 
 

𝑓𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) =
𝜕
𝜕𝑥 𝐹𝑉𝐻

(𝑥; 𝑃𝐷, 𝜌, ℎ) =∑
(ℎ/2)𝑘

𝑘!

∞

𝑘=0

∂2𝑘

∂𝑥2𝑘 (𝜎
2𝑘(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌))

= 𝑓𝑉(𝑥; 𝑃𝐷, 𝜌) +
ℎ
2
∂2

∂𝑥2 (𝜎
2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) + 𝑜(ℎ) 

(11.34) 

Hence, the GA to CDF is given by: 
 

𝐺𝐴𝐶𝐷𝐹 =
ℎ
2
𝜕
𝜕𝑥 (𝜎

2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) 
(11.35) 

and the GA to PDF is expressed as: 
 

𝐺𝐴𝑃𝐷𝐹 =
ℎ
2
∂2

∂𝑥2
(𝜎2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) 

(11.36) 

12 Appendix 3 
12.1 Value at Risk (VaR) 
 
The Value at Risk 𝑉𝑎𝑅𝛼(𝐿(ℎ)) = 𝑥(𝛼, ℎ) is the root of the integral equation: 
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1 − 𝛼 = ∫Φ(
𝑥(𝛼, ℎ) − 𝑣
√ℎ𝜎(𝑣)

)
1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌) 

(12.1) 

where 𝛼 is the confidence level. The numerical value of this root can be easily determined using 
known parameters 𝑃𝐷, 𝜌, ℎ, and 𝛼. For brevity, when writing 𝑥(𝛼, ℎ), we omit including the 
parameters 𝑃𝐷 and 𝜌. 

𝑥(𝛼, ℎ) is the 𝛼-quantile of 𝐿(ℎ): 

𝑥(𝛼, ℎ) = 𝑞𝛼(𝐿(ℎ)) 

where, for any random variable 𝑋, 

𝑞𝛼(𝑋) = 𝑖𝑛𝑓{𝑥 ∈ ℝ:ℙ[𝑋 ≤ 𝑥] ≥ 𝛼} 

Since a closed-form solution for 𝑥(𝛼, ℎ) to the integral equation (12.1) is generally unavailable, 
we consider expanding 𝑥(𝛼, ℎ) into a Taylor series around ℎ = 0. 
 
Differentiating the equality 
 

1 − 𝛼 = 𝐹𝑉𝐻(𝑥(𝛼, ℎ), ℎ) 
(12.2) 

with respect to ℎ, we obtain: 
 

𝜕
𝜕𝑣 𝐹𝑉𝐻

(𝑣, ℎ)|
𝑣=𝑥(𝛼,ℎ)

𝜕𝑥(𝛼, ℎ)
𝜕ℎ +

𝜕
𝜕ℎ𝐹𝑉𝐻

(𝑣, ℎ)|
𝑣=𝑥(𝛼,ℎ)

= 0 

(12.3) 

Note: parameters 𝑃𝐷 and 𝜌 were omitted for brevity. Using the relation 
 

𝜕
𝜕𝑣 𝐹𝑉𝐻

(𝑣, ℎ) = 𝑓𝑉𝐻(𝑣, ℎ) 
(12.4) 

we derive: 

𝜕𝑥(𝛼, ℎ)
𝜕ℎ

|
ℎ=0

= −
𝜕
𝜕ℎ𝐹𝑉𝐻(𝑣, ℎ)
𝑓𝑉𝐻(𝑣, ℎ)

|

𝑣=𝑥(𝛼),ℎ=0

 

(12.5) 

where the 𝛼-quantile of 𝐿(ℎ = 0) 
 

𝑥(𝛼) = 𝑞𝛼(𝐿(ℎ = 0)) = 𝑉𝑎𝑅𝛼(𝐿(ℎ = 0)) = Φ(
Φ−1(𝑃𝐷) − √𝜌Φ−1(𝛼)

√1− 𝜌
) 

(12.6) 

is the root of the equation 
 

1 − 𝛼 = 𝐹𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 
(12.7) 
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Since the following equalities hold: 
 

𝜕𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ)
𝜕ℎ |

ℎ=0
=
1
2
𝜕
𝜕𝑥 (𝜎

2(𝑥)𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)) 

(12.8) 

(see (11.31)) and 
𝑓𝑉𝐻(𝑥, 𝑃𝐷, 𝜌, ℎ = 0) = 𝑓𝑉(𝑥; 𝑃𝐷, 𝜌) 

(12.9) 

then 

𝜕𝑥(𝛼, ℎ)
𝜕ℎ |

ℎ=0
= −

𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
2𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

 

(12.10) 

Using the same methods applied in deriving formula (11.32), we can obtain the following 
expression for the partial derivative: 
 

𝜕𝑥(𝛼, ℎ)
𝜕ℎ = −

∑ (ℎ/2)𝑘
𝑘!

∂2𝑘+1
∂𝑣2𝑘+1 (𝜎

2(𝑘+1)(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))∞
𝑘=0

2∑ (ℎ/2)𝑘
𝑘!

∞
𝑘=0

∂2𝑘
∂𝑣2𝑘 (𝜎

2𝑘(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
|

𝑣=𝑥(𝛼,ℎ)

 

(12.11) 

Taylor series expansion at ℎ = 0: 

𝑉𝑎𝑅𝛼(𝐿(ℎ)) = 𝑥(𝛼, ℎ) = 𝑥(𝛼) + ℎ
𝜕𝑥(𝛼, 𝜒)
𝜕𝜒 |

𝜒=0
+ 𝑜(ℎ)

= 𝑥(𝛼) − ℎ
𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
2𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛼)

+ 𝑜(ℎ) 

(12.12) 

It follows from equations (12.10) and 𝜎2(𝑥) = 𝑥(1 − 𝑥) that: 
 

𝜕𝑥(𝛼, ℎ)
𝜕ℎ |

ℎ=0
= −

1
2 (1 − 2𝑣 + 𝑣

(1 − 𝑣)
𝜕
𝜕𝑣 𝑙𝑛(𝑓𝑉

(𝑣; 𝑃𝐷, 𝜌))|
𝑣=𝑥(𝛼)

 

(12.13) 

Since the Vasicek PDF is given by: 
 

𝑓𝑉(𝑥; 𝑃𝐷, 𝜌) = √
1− 𝜌
𝜌 𝑒𝑥𝑝 {−

1
2𝜌 (√1 − 𝜌Φ

−1(𝑥) − Φ−1(𝑃𝐷))
2
+
1
2 (Φ

−1(𝑥))
2
} 

(12.14) 

it follows that: 
𝜕𝑙𝑛𝑓𝑉(𝑥; 𝑃𝐷, 𝜌)

𝜕𝑥
=
(2𝜌 − 1)Φ−1(𝑥) + √1 − 𝜌Φ−1(𝑃𝐷)

𝜌𝜑(Φ−1(𝑥))
 

(12.15) 

From equations (12.6) and (12.15), we have: 
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𝜕
𝜕𝑣 𝑙𝑛(𝑓𝑉

(𝑣; 𝑃𝐷, 𝜌))|
𝑣=𝑥(𝛼)

=
Φ−1(𝑥(𝛼)) + √1 − 𝜌𝜌 Φ−1(𝛼)

𝜑 (Φ−1(𝑥(𝛼)))
 

(12.16) 

It follows from equations (12.13) and (12.16) that: 
 

𝜕𝑥(𝛼, ℎ)
𝜕ℎ |

ℎ=0
= −

1
2

(

 
 
1 − 2𝑥(𝛼) +

𝑥(𝛼)(1 − 𝑥(𝛼))

𝜑 (Φ−1(𝑥(𝛼)))
(Φ−1(𝑥(𝛼)) + √

1 − 𝜌
𝜌 Φ−1(𝛼))

)

 
 

 

(12.17) 

Hence, the GA to VaR is: 
 

𝐺𝐴𝑉𝑎𝑅 = −
ℎ
2

(

 
 
1 − 2𝑥(𝛼) +

𝑥(𝛼)(1 − 𝑥(𝛼))

𝜑 (Φ−1(𝑥(𝛼)))
(Φ−1(𝑥(𝛼)) + √

1 − 𝜌
𝜌 Φ−1(𝛼))

)

 
 

 

(12.18) 

 

 
Figure 6. Comparison of the dependence on 𝜌 of the simulated function 𝑥(𝛼,ℎ)−𝑥(𝛼)

ℎ
 (red line) and of the theoretical function 

𝜕𝑥(𝛼,ℎ)
𝜕ℎ |

ℎ=0
 (blue line). Number of Monte Carlo simulations: 20 000. The parameters used: 𝑃𝐷 = 0.1, 𝑛 = 15 000, ℎ = 0.01, 

𝛼 = 0.01. 

 

13 Appendix 4 
13.1 Symmetry Property 
 
The distribution exhibits a symmetry property: 
 

𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = 1 − 𝐹𝑉𝐻(1 − 𝑥; 1 − 𝑃𝐷, 𝜌, ℎ) 
(13.1) 
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This is similar to the symmetry property presented by Vasicek (2002, p.4): 
 

𝐹𝑉(𝑥; 𝑃𝐷, 𝜌) = 1 − 𝐹𝑉(1 − 𝑥; 1 − 𝑃𝐷, 𝜌) 
(13.2) 

Proof. 

𝐹𝑉𝐻(𝑥; 𝑃𝐷, 𝜌, ℎ) = ∫Φ(
𝑥 − 𝑣
√ℎ𝜎(𝑣)

)
1

0

𝑑𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)

= −∫Φ(
𝑥 − 𝑣

√𝑣(1 − 𝑣)ℎ
)

1

0

𝑑𝐹𝑉(1 − 𝑣; 1 − 𝑃𝐷, 𝜌)

= ∫Φ(
𝑥 − (1 − 𝑢)

√(1 − 𝑢)𝑢ℎ
)

1

0

𝑑𝐹𝑉(𝑢; 1 − 𝑃𝐷, 𝜌) =

= 1 − ∫Φ(
(1 − 𝑥) − 𝑢
√ℎ𝜎(𝑢)

)
1

0

𝑑𝐹𝑉(𝑢; 1 − 𝑃𝐷, 𝜌) = 1 − 𝐹𝑉𝐻(1 − 𝑥; 1 − 𝑃𝐷, 𝜌) 

(13.3) 

Q.E.D. 
 

14 Appendix 5 
14.1 Expected Shortfall 
 
The Expected Shortfall at level 𝛼 is defined as: 
 

𝐸𝑆𝛼(𝐿) = 𝔼[𝐿|𝐿 > 𝑉𝑎𝑅𝛼(𝐿)] =
1
𝛼
∫ 𝑉𝑎𝑅𝛾
𝛼

0
(𝐿)𝑑𝛾 

(14.1) 

We expand 𝑉𝑎𝑅𝛾(𝐿(ℎ)) into a Taylor series around ℎ = 0: 
 

𝑉𝑎𝑅𝛾(𝐿(ℎ)) = 𝑉𝑎𝑅𝛾(𝐿(ℎ = 0)) + ℎ
𝜕𝑉𝑎𝑅𝛾(𝐿(ℎ))

𝜕ℎ |
ℎ=0

+ 𝑜(ℎ) 

(14.2) 

where 𝑉𝑎𝑅𝛾(𝐿(ℎ = 0)) = 𝑥(𝛾) is the root of the equation: 
 

1 − 𝛾 = 𝐹𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌) 
(14.3) 

Differentiating equation (14.3) with respect to 𝛾, we obtain: 
 

−1 =
𝑑𝑥(𝛾)
𝑑𝛾

𝜕𝐹𝑉(𝑣; 𝑃𝐷, 𝜌)
𝜕𝑣 |

𝑣=𝑥(𝛾)
=
𝑑𝑥(𝛾)
𝑑𝛾 𝑓𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌) 

(14.4) 

which leads to: 
𝑑𝑥(𝛾)
𝑑𝛾 = −

1
𝑓𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌)

 
(14.5) 
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By the chain rule, the formula (12.10) 
 

𝜕𝑥(𝛾, ℎ)
𝜕ℎ |

ℎ=0
= −

𝜕
𝜕𝑣 (𝜎

2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌))
2𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)

|

𝑣=𝑥(𝛾)

 

(14.6) 

is transformed into the following form: 
 
𝜕𝑥(𝛾, ℎ)
𝜕ℎ

|
ℎ=0

=
1
2
𝑑𝑥(𝛾)
𝑑𝛾

(
𝜕
𝜕𝑣
(𝜎2(𝑣)𝑓𝑉(𝑣; 𝑃𝐷, 𝜌)))|

𝑣=𝑥(𝛾)

=
1
2
𝜕
𝜕𝛾
(𝜎2(𝑥(𝛾))𝑓𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌)) 

(14.7) 

Hence, 
 

∫
𝜕𝑥(𝛾, ℎ)
𝜕ℎ

|
ℎ=0

𝛼

0
𝑑𝛾 =

1
2
𝜎2(𝑥(𝛾))𝑓𝑉(𝑥(𝛾); 𝑃𝐷, 𝜌)|

𝛾=0

𝛾=𝛼

=
1
2
𝜎2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 

(14.8) 

It follows from equations (14.1) and (14.8) that 
 

𝜕𝐸𝑆𝛼(𝐿(ℎ))
𝜕ℎ |

ℎ=0
=
1
2𝛼 𝜎

2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 

(14.9) 

Therefore, the Taylor expansion of ES around ℎ = 0 becomes: 
 

𝐸𝑆𝛼(𝐿(ℎ)) = 𝐸𝑆𝛼(𝐿(0)) +
ℎ
2𝛼 𝜎

2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) + 𝑜(ℎ) 
(14.10) 

𝐸𝑆𝛼(𝐿(ℎ)) − 𝐸𝑆𝛼(𝐿(0))
ℎ ≈

1
2𝛼 𝜎

2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 
(14.11) 

The GA to ES is 
 

𝐺𝐴𝐸𝑆 =
ℎ
2𝛼 𝜎

2(𝑥(𝛼))𝑓𝑉(𝑥(𝛼); 𝑃𝐷, 𝜌) 
(14.12) 

For Monte Carlo simulations of conditional expectation, we use the formula 
 

𝐸𝑆𝛼(𝐿) = 𝔼[𝐿|𝐿 > 𝑉𝑎𝑅𝛼(𝐿)] =
∑ 𝐿𝑘𝐼(𝐿𝑘 > 𝑉𝑎𝑅𝛼(𝐿))𝑁
𝑘=1
∑ 𝐼(𝐿𝑘 > 𝑉𝑎𝑅𝛼(𝐿))𝑁
𝑘=1

 

(14.13) 
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Figure 7. Comparison of the dependence on 𝛼 of the simulated function 𝐸𝑆𝛼(𝐿

(ℎ))−𝐸𝑆𝛼(𝐿(0))
ℎ

 (green line) and of the theoretical 

function 𝜕𝐸𝑆𝛼(𝐿(ℎ))
𝜕ℎ |

ℎ=0
 (red line). Number of Monte Carlo simulations: 25 000. The parameters used: PD=0.1, 𝜌 = 0.1, n=25 

000, h=0.01. 

 

15 Appendix 6 
 
The function Φ(𝑢/√𝑧) satisfies the classical heat conduction (diffusion) equation: 
 

Φ𝑧(𝑢/√𝑧) =
1
2Φ𝑢𝑢(𝑢/√𝑧) 

(15.1) 

The generalized heat equation 
 

∂𝑘

∂𝑧𝑘 Φ(𝑢/√𝑧) = 2
−𝑘 ∂

2𝑘

∂𝑢2𝑘 Φ(𝑢/√𝑧) 
(15.2) 

can be proved by induction: 
 

∂𝑘+1

∂𝑧𝑘+1 Φ(𝑢/√𝑧) = 2
−𝑘 ∂
∂𝑧
∂2𝑘

∂𝑢2𝑘 Φ(𝑢/√𝑧) = 2
−𝑘 ∂

2𝑘

∂𝑢2𝑘
∂
∂𝑧Φ(𝑢/√𝑧)

= 2−(𝑘+1)
∂2(𝑘+1)

∂𝑢2(𝑘+1) Φ(𝑢/√𝑧) 
(15.3) 

Given the limit representation of the Heaviside step function: 
 

Φ(𝑥/ε)
𝜀→0+
→   θ(𝑥) 

(15.4) 

and relation between the Dirac delta function and the Heaviside step function: 
 

δ(𝑥) = θ′(𝑥) 
we have: 

Осадчий Максим Станиславович
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𝑙𝑖𝑚
𝑧→0+

∂𝑘

∂𝑧𝑘 Φ(𝑢/√𝑧) = 2
−𝑘 𝑙𝑖𝑚

𝑧→0+
∂2𝑘

∂𝑢2𝑘 Φ(𝑢/√𝑧) = 2
−𝑘 ∂

2𝑘

∂𝑢2𝑘 θ
(𝑢) = 2−𝑘δ(2𝑘−1)(𝑢) 

(15.5) 

Using the above, the function Φ(𝑢/√𝑧) can be expanded into a Taylor series around 𝑧 = 0: 
 

Φ(𝑢/√𝑧) = θ(𝑢) +∑
(𝑧/2)𝑘

𝑘! δ(2𝑘−1)(𝑢)
∞

𝑘=1
 

(15.6) 
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