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Abstract

This paper estimates the effect of renewable energy growth on infant
mortality by exploiting variation in renewable energy penetration driven by global
technological progress and heterogeneous regional potential for renewables. Using
data covering seven million births across 427 subnational regions in 54 developing
countries, we find that a 10-percentage-point increase in the share of renewables
in electricity generation reduces infant mortality by 1.99 deaths per 1,000 live
births. Our results imply that the growth of renewable energy in these countries
averted 1.2 million infant deaths from 1990 to 2020, corresponding to 8.23% of
the total decline in infant mortality. The mortality decline is disproportionately
concentrated among disadvantaged subpopulations and thus reduces inequality
in infant mortality. Mechanism analysis indicates that air pollution abatement
and local income growth serve as key channels.
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country
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1 Introduction

High infant mortality rates have persisted as a defining characteristic of many
developing economies, significantly constraining human capital formation in these
regions. As of 2020, annual neonatal mortality in developing countries still remained
alarmingly high at 20‰ (WHO, 2022). The advancement of renewable energy (RE)
technologies—particularly solar and wind power—presents a potentially transformative
opportunity to address this critical development challenge (Rauner et al., 2020). Owing
to favorable geographical and environmental conditions, many developing nations possess
substantial RE endowments (Shahsavari & Akbari, 2018). From 2010 to 2020, the
share of RE in total electricity generation in developing countries rose from 27.4% to
37.7%. RE growth may reduce infant mortality by mitigating exposure to harmful air
pollutants and by stimulating local economic development. However, empirical research
examining the effect of RE adoption on infant mortality in developing country contexts
remains scarce.

This study estimates the effect of RE adoption on infant mortality using data
covering seven million births across 427 subnational regions in 54 developing countries
from 1990 to 2020, which are derived from Demographic and Health Surveys (DHS).
These 54 sample countries account for 44.5% of the total population in the developing
world. We estimate the causal effect using two instrumental variables (IVs) for regional
RE share constructed from plausibly exogenous shocks to local RE share. The first IV
is constructed from the commissioning year of the first RE project (with capacity above
a threshold) in each region. The second IV is constructed from local RE potential and
global trends in RE technological improvements. The estimates derived from these two
IVs are highly comparable.

We find that a 10 percentage point increase in the RE share reduces the infant
mortality rate by 1.99 deaths per 1,000 live births. The growth of RE can explain
8.23 percent of the observed total decline in infant mortality in the developing world
from 1990 to 2020. We roughly calculate that RE growth helps avoid 1.2 million infant
deaths from 1990 to 2020 in the 54 sample developing countries. We estimate that,
when combined with the costs of RE projects, spending an extra $272,000 on renewable
energy projects helps save one infant life in these countries. We also find that the
mortality reduction effect of RE is larger for population groups and regions that have
traditionally experienced higher infant mortality, suggesting that RE adoption tends to
reduce inequality in infant mortality. Mechanism analysis indicates that air pollution
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abatement and local income growth serve as key channels through which RE adoption
reduces infant mortality.

This study contributes to the large literature that evaluates the impact of RE. Many
studies have examined the effect of RE on various issues such as carbon emissions (Wang
et al., 2023; Lei et al., 2023), economic outcomes (Fabra et al., 2024; Gilbert et al., 2024),
biodiversity (Sonter et al., 2020; Niebuhr et al., 2022), air pollution (Siler-Evans et al.,
2013; Jacobson et al., 2015), and health outcomes (Siler-Evans et al., 2013; Jacobson
et al., 2015). However, most existing studies are based on data from developed countries.
To the best of our knowledge, this study is the first to focus on the effect of RE on
infant mortality in developing countries using a large sample of micro-level data.

This study highlights RE as an important policy tool for developing countries
to address their health challenges. Developing countries are facing a persistent and
structural health crisis, with the dual burden of communicable and non-communicable
diseases (Vos et al., 2020; Vollset et al., 2024). The infant mortality rate is one of the
most important indicators of population health in developing countries (Reidpath &
Allotey, 2003). Studies have shown that the high infant mortality rate in developing
countries is mainly caused by factors such as poverty and malnutrition (Baird et al.,
2011; Benshaul-Tolonen, 2019; Kammerlander & Schulze, 2023), environmental pollution
(Gutierrez, 2015; Cesur et al., 2017; Landrigan et al., 2018), regulatory policies (Foster
et al., 2009; Tanaka, 2015), and industrial shocks (Benshaul-Tolonen, 2019). Existing
studies on reducing infant mortality in developing countries mainly focus on maternal and
child health services (Bhutta et al., 2010), health education (Gertler, 2004), subsidies to
increase preventive product use (Cohen et al., 2015), improving healthcare infrastructure
(Kruk et al., 2018), agricultural technology upgrading (Von Der Goltz et al., 2020;
Bharadwaj et al., 2020), and environmental regulation (Greenstone & Hanna, 2014).
This study finds that increasing the use of RE could be an important tool for reducing
infant mortality in developing countries.

The remainder of the study proceeds as follows. Section 2 provides the background
of this study, Section 3 describes the data and the empirical strategy, Section 4 presents
the main results, Section 5 examines the mechanisms of the effect, Section 6 discusses
the welfare effects of the RE-induced decline in infant mortality, and Section 7 concludes.
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2 Background

2.1 Renewable Energy in developing countries

Figure 1: Electricity capacity from fossil and RE in developing countries, respectively
Notes: This graph shows the electricity capacity from fossil fuel and renewable energy (RE) sources (including hydro,
wind, solar, biomass, and geothermal sources) of all developing countries. Specifically, we follow the United Nations’
classification criteria to define developing countries. The data are obtained from IRENA (2024a).

As Figure 1 shows, during the past two decades, the growth of renewable energy (RE)
in developing countries has accelerated. The annual growth rate of RE in developing
countries was 6.9% from 2000 to 2010 and 20.7% from 2010 to 2023. The RE share (i.e.,
the percentage of renewable energy capacity in the total installed capacity (renewable
+ fossil) increased from 28.4% in 2000 to 44.7% in 2023. Figure 2 shows the installed
capacity and electricity generation of five major RE sources in developing countries:
solar, wind, hydropower, biomass, and geothermal. While hydropower dominates the
RE capacity, the growth of RE over the past 15 years has been driven mainly by the
expansion of solar and wind power. The total energy capacity from other renewable
sources surpassed that from hydropower after 2020.
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Figure 2: Installed capacity and electricity generation from each type of RE in
developing countries

Notes: This figure shows the installed capacity and electricity generation for five major renewable energy (RE) sources:
hydropower, wind, solar, biomass, and geothermal. We follow the United Nations’ classification of developing countries.
The data are obtained from IRENA (2024a).

The growth of RE in developing countries has been primarily driven by exogenous
technological advancements. Amid rising concerns about climate change, energy security,
and the depletion of fossil fuel reserves, substantial investments have been made to
develop new energy technologies, with the aim of reducing the cost of RE generation
(Ashraf et al., 2024). These investments have been led primarily by developed countries
and China (IEA, 2023; World Bank, 2022). As a result of these advancements, the
global costs of solar and wind power declined by 89% and 70% from 2010 to 2020,
respectively (IRENA, 2021). Solar energy deployment has soared, propelled by falling
photovoltaic costs and its scalability for both large-scale and small-scale setups (Green
et al., 2019). Wind energy has also expanded rapidly, driven by the deployment of
onshore turbines in plains and offshore systems in coastal zones (Veers et al., 2019).

Local RE endowments and international aid are also major determinants of RE
adoption in developing countries. Given similar technology and economic conditions,
developing countries with more abundant RE resources are more likely to develop RE.
Figure 3 presents subnational-level RE potential from wind, solar, and hydropower in
Panels B–D, and the combined potential in Panel A. It shows that many developing
countries in Asia and Africa possess abundant RE endowments. As the construction
of RE projects is expensive, international aid has also played an important role in the
development of RE in poorer developing countries (IRENA, 2021; Burke et al., 2017).
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Figure 3: Sub-country level potential of major RE sources
Notes: This figure presents the power potential for wind, solar, and hydropower individually, as well as their combined
potential, at the subnational level, calculated using raster data from Solargis s.r.o. and World Bank Group (2023), Davis
et al. (2023), and Hoes (2014).

2.2 Infant mortality

Figure 4: Infant mortality rate in 2020
Notes: This figure presents the country-level average infant mortality rate in 2020, using United Nations data to classify
developing countries.

Figure 4 presents the global distribution of infant mortality rates in 2020. It shows that
infant mortality rates are generally very low in developed countries. In sharp contrast,
infant mortality rates are very high in many developing countries. Figure 5 presents
the trends in infant mortality rates for developed and developing countries separately.
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In developed countries, infant mortality rates remain consistently low and show only a
slight decline from 2000 to 2020. In contrast, a substantial declining trend is observed
in developing countries, dropping by 22.3 deaths per 1,000 live births over the two
decades. The concurrent decline in infant mortality and increase in RE share (Figure
1) in developing countries suggests a negative relationship between these two factors.
This study aims to examine whether this association reflects a causal effect of RE on
infant mortality.

Figure 5: Infant mortality rate trends
Notes: This figure presents the trends in infant mortality rates in developed and developing countries, using the data
from the United Nations to classify developing countries.
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3 Data and Empirical Strategy

3.1 Data

3.1.1 Demographic and Health Surveys

We use micro data from the Demographic and Health Surveys (DHS), renowned for their
reliability, geographic granularity, and global comparability among household surveys
in developing countries (Von Der Goltz et al., 2020). The DHS provides comprehensive
individual-level health data, focusing on women aged 15–49 and their children, including
variables on health, fertility, and education. DHS data have been widely used in
the literature to study child health and infant mortality due to its standardized and
nationally representative design (Heft-Neal et al., 2018; Bharadwaj et al., 2020; Baird
et al., 2011). As a repeated cross-sectional dataset, it captures diverse populations
without tracking individuals over time. The detailed geographic information from DHS
enables us to match the micro data with regional RE data.

Figure 6: Distribution of DHS regions and the RE projects within these regions
Notes: This figure shows the DHS sample regions and the distribution of RE projects across these regions.

This study utilizes DHS data from all countries with available surveys conducted
between 1990 and 2020. The dataset includes 427 regions across 54 developing countries,
covering regions in Africa, Asia, the Indian Ocean, South America, and Central America.
These sample countries account for 44.5% of the total population in the developing
world, although some large developing countries, such as China, are not covered by the
surveys. The sample period aligns with the RE dataset. The sample includes 7 million
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children born between 1990 and 2020. Appendix Table A1 provides a list of the 54
sample countries. Figure 6 presents the distribution of the 427 DHS sample regions at
the sub-country level. And Appendix Figure A2 shows the distribution of child birth
years in the sample.

The primary outcome variable of this study, infant mortality rate, is a binary
indicator indicating whether a child died before reaching 12 months of age, following the
definition in the literature (Von Der Goltz et al., 2020; Bharadwaj et al., 2020). It takes
the value 1 if the child died within the first 12 months of birth and 0 otherwise. To
avoid bias due to incomplete mortality records, we exclude children born in the survey
year. We also exclude individuals identified as visitors rather than usual residents.
We construct this variable based on women’s birth history data, including birth date,
survival status, and death date (if applicable). The average infant mortality rate in
our sample is 58.72‰, with a standard deviation of 235.10‰. Figure 7 presents the
subcountry-level average infant mortality rate calculated based on the DHS data. And
Appendix Figure A3 shows the infant mortality rate trend.

Figure 7: Infant mortality rate at the sub-country level
Notes: This figure presents the average infant mortality rate from 1990 to 2020 for each subnational region, calculated
using DHS data.

Our analysis incorporates a range of additional variables derived from the DHS. We
use maternal-level variables, including age at birth, educational attainment, employment
status and household wealth. At the child level, we consider birth month, gender and
birth weight. Furthermore, we utilize additional DHS-derived health variables for
women, including anemia status, heart disease, diabetes, and indicators for being
underweight or overweight. Since we mainly focuses on infant mortality, the impact
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on these aspects of women’s health can be seen in the Appendix Table A4. Summary
statistics for these variables are presented in Appendix Table A2.

3.1.2 Renewable energy

We source RE data from the Global Energy Monitor (GEM), which maintains specialized
trackers for major types of RE, including hydropower, solar, geothermal, wind, and
bioenergy. GEM also includes trackers for fossil fuel and nuclear power, which are
also used in our analysis. These trackers provide data for each type of energy at the
power-plant level worldwide, including commissioning dates, geographic coordinates, and
installed capacities. The data cover all power plants above certain capacity thresholds.1

GEM data are widely recognized for their granularity and reliability, enabling precise
spatial and temporal analysis of energy infrastructure. Appendix Figure A1shows the
distribution of the specific different RE project.

The primary explanatory variable, RE share, is defined as the share of RE (i.e., solar,
wind, hydropower, geothermal, and bioenergy) of total electricity generation capacity
in each region and year. This measure is calculated by summing the capacities of active
RE facilities in each subcountry area and dividing by the area’s total energy capacity
(including fossil and nuclear). Each energy facility is matched to a subcountry area
based on its coordinates and standard administrative boundaries. Figure 8 presents the
RE share in each of our sample areas (i.e., the DHS sample areas), calculated as the
1990–2000 average RE share for each sub-country region containing DHS data.

1For example, the thresholds are 30 MW for geothermal, 75 MW for hydropower, and 10 MW for
wind power.
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Figure 8: RE share at the sub-country level
Notes: This figure presents the average RE share from 1990 to 2000 for each subcountry area that contains DHS data.

Our analysis also uses information on the commissioning date of RE facilities, defined
as the date when the first RE facility (above the threshold) became operational in
each subcountry area. Figure 9 presents the cumulative distribution of RE project
commissioning years at the subcountry level. This variable provides plausibly exogenous
variation in RE availability. We use this exogenous variation to construct instrumental
variables (IVs) for local RE share to address concerns about endogenous RE adoption.

Figure 9: Distribution of the RE project commissioning year across regions
Notes: The figure shows the cumulative distribution of RE project commissioning years across subcountry regions. The
commissioning date is defined as the date when the first RE facility (above the threshold scale) became operational in
each subcountry region.
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3.1.3 Auxiliary data

In our robustness checks and supplementary analyses, we also incorporate data from
various additional sources. Country-level GDP and population data are obtained from
the World Bank. Nighttime light data are sourced from the DMSP-OLS (1992–2013) and
NPP-VIIRS (2012–present) datasets, which have been harmonized through cross-sensor
calibration to construct a consistent global time series from 2000 to 2018 (Chen
et al., 2021). Air pollutant data are drawn from the Emissions Database for Global
Atmospheric Research (EDGAR).2 Specifically, we use data on ozone precursor gases
(carbon monoxide and non-methane volatile organic compounds), primary particulate
matter (PM10 and PM2.5), and their carbonaceous components (organic carbon).
Summary statistics for these variables are provided in Appendix Table A2.

3.2 Empirical Strategy

We estimate the effect of RE on infant mortality by comparing mortality rates across
regions with varying RE shares based on the following regression model:

yivrct = α + β1Sharerct + µv + λt + ωs + Xitθ + εivrct (1)

where yivrct is the mortality dummy of infant i born in community v, region r, country c,
and year t. The key explanatory variable, Sharerct, is the RE share in region r, country
c, and year t. Recall that the infant mortality dummy equals 1 if death occurred within
the first 12 months of birth, and 0 otherwise. RE share refers to the subnational share
of RE capacity. RE includes hydropower, solar, wind, geothermal, and bioenergy. In
robustness checks, we also examine the effect of each RE type separately.

The model includes community-fixed effects (µv) to account for all time-invariant
community-specific factors affecting infant mortality,3 cohort-fixed effects (λt) to account
for annual shocks common to all births, and survey year fixed effects (ωs) to adjust
for differences across surveys. The baseline model also controls for child gender, birth
month, and birth order (Xit). Finally, εivrct denotes the error term. Standard errors
are clustered at the region-year level to address potential bias from spatial correlation

2We use version 8.1 of the EDGAR database, available at https://edgar.jrc.ec.europa.eu/
dataset_ap81. This database provides comprehensive global emission inventories for a range of air
pollutants and greenhouse gases, with a spatial resolution of 0.1° × 0.1°.

3In DHS surveys, the sampling clusters are usually villages in rural areas and city blocks in urban
areas. We refer to the villages and city blocks as communities for simplicity.
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and autocorrelation.

If the RE share were randomly assigned, the ordinary least squares (OLS) estimate
of β1 from model (1) would capture the causal effect of RE on infant mortality. However,
the RE share in a region is most likely endogenous. For example, a region with a more
developed economy is more likely to adopt RE, since RE project construction is costly.
The potential bias arising from endogenous RE share cannot be fully addressed by the
community and year fixed effects included in the model. This is because there may be
community-specific time-varying omitted factors that could bias the OLS estimate. The
following proposes different approaches to address the potential bias from endogenous
RE share.

3.2.1 Instrument variables

We adopt two instrumental variables (IVs) to address the potential endogeneity bias.
The first IV is constructed using plausibly exogenous variation in the commissioning
year of RE facilities (with capacity above a threshold) in each region. If regions
that adopted RE earlier did not differ in their pre-existing trends in infant mortality,
then differences in RE commissioning year represent an exogenous shock to local
RE intensity. The exclusion restriction is that the commissioning year of RE is not
affected by community-specific time-varying determinants of infant mortality; recall
that time-invariant determinants of both RE commissioning and infant mortality have
been accounted for by the community-fixed effects. See Figure 9 for the distribution of
regional RE commissioning years. Evidence from the event-study estimates presented
in Figure 10 supports the exogeneity of RE commissioning year.

The second IV is a Bartik IV constructed from local RE potential and global trends
in RE technological improvements. The local RE potential is a composite index created
by normalizing and weighting the potentials of hydropower (sourced from Hoes (2014)),
solar (sourced from Solargis s.r.o. and World Bank Group (2023)), and wind (sourced
from Davis et al. (2023)), with the global share of each RE as the weight.4 These three
major RE sources account for more than 95% of the RE capacity in the developing world
(see Figure 2). The regional potential of each RE and the composite potential index are
presented in Figure 3. We proxy the global trend of RE technological improvements by
the one-year lagged global RE capacity. Specifically, the Bartik IV is constructed as

4Specifically, the share of hydropower is 40%, wind is 35%, and solar is 25%.
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(Goldsmith-Pinkham et al., 2020; ?):

IV B
rct = Capacityt−1 × Potentialrc , (2)

where Capacityt−1 is the global RE capacity lagged by one year, and Potentialrc

is the composite potential index of RE in region r and country c. This IV is relevant
because, all else equal, regions with higher RE potential are more likely to adopt RE
when global RE development accelerates. The exogeneity of the IV sourced from the fact
that global RE trends are exogenous to local RE shares. Although local RE potential
is likely correlated with local-specific determinants of infant mortality, these factors
should be accounted for by the fixed effects included in the model.

With the IVs in hand, the first stage regression of the two-stage least squares (2SLS)
estimation is:

Sharerct = δ + β2IVrct + µv + λt + ωs + Xitθ + ηrct , (3)

where IVrct denotes the IV, δ is the constant term, ηrct is the error term, and all
other variables are as previously defined. The second stage of the 2SLS regression
corresponds to equation (1). The first-stage estimates presented in Appendix Table A3
indicate that both IVs are positively and strongly correlated with the local RE share.

3.2.2 Staggered DID estimation

As a robustness check, we also estimate the dynamic effects of local RE construction on
infant mortality based on the following event-study model:

yivrct = α +
J∑

j=2
γjLagj

rct +
K∑

k=0
βkLeadk

rct + µv + λt + ωs + Xitθ + εivrct (4)

where Lagj
rct and Leadk

rct represent the j-year lags and k-year leads relative to the
RE project commissioning year in region r and country c, and all other variables are as
previously defined. The first lag (j = 1) is used as the base year and thus excluded
from the model.

The identification assumption is that, conditional on the fixed effects, regions that
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introduced RE projects early and those that introduced them later have no preexisting
differential trends in infant mortality rates. This assumption is supported if the lag
estimates γj are all close to zero and statistically insignificant. As presented in Figure
10, the event-study estimates provide no evidence of preexisting differential trends.
This finding is not surprising since, as detailed in subsection 2.1, the timing of RE
project commissioning in developing countries is driven by exogenous technological
improvements and local RE potential, and is unlikely to be affected by infant mortality
rates. Even if there are time-invariant factors that could affect both the timing of RE
commissioning and infant mortality, these factors should have been accounted for by the
community fixed effects. Based on this identification assumption, the dynamic effects
of RE construction are captured by the estimates of βk.

To estimate the average effect of RE project construction, we also adopt the following
staggered DID model:

yivrct = α + τTreatrct + µv + λt + ωs + Xitθ + εivrct (5)

where Treatrct is a dummy variable equal to 1 for years after the commissioning of
the RE project in region r and country c, and all other variables are defined as before.
The coefficient τ captures the average effect of the RE project construction.
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4 Main Results

4.1 Baseline estimates

Table 1 presents the estimated effect of RE intensity on the infant mortality rate, based
on model (1). Recall that the infant mortality rate is a binary indicator measuring
whether a child died before reaching 12 months of age. We multiply the estimated
coefficient of the mortality dummy by 1,000 so that the coefficient can be interpreted as
the effect on deaths per 1,000 live births, in line with the conventional definition of the
infant mortality rate in macro-level studies. The RE intensity is defined as the share of
total energy capacity from renewable sources (i.e., solar, wind, hydropower, geothermal,
and bioenergy). All estimations control for birth-year fixed effects, community fixed
effects, survey-year fixed effects, and infant characteristics. Standard errors reported
in square brackets are clustered at the community level. The first stage of the 2SLS
estimations is reported in Appendix Table A3.

Table 1: Effects of RE intensity on the infant mortality rate

Independent
variable RE share

RE
capacity

per capita

RE
capacity
per GDP

OLS IV
(baseline) Bartik IV IV (baseline)

(1) (2) (3) (4) (5)

RE share -5.30*** -19.90*** -24.26*** -643.02*** -71.12***
[0.65] [1.77] [5.41] [63.51] [6.55]

Infant controls Yes Yes Yes Yes Yes
Birth year FE Yes Yes Yes Yes Yes
community FE Yes Yes Yes Yes Yes
Survey year FE Yes Yes Yes Yes Yes
Independent
variable mean 0.33 0.33 0.33 0.03 0.16

Observations 7,085,028 7,085,028 7,085,028 7,085,028 7,039,854

Notes: This table presents the effect of RE intensity on the infant mortality rate, estimated based on Model (1). The
key explanatory variable is RE share in columns 1–3, RE capacity per capita in column 4, and RE capacity per GDP in
column 5. The dependent variable, infant mortality rate, is a binary indicator measuring whether a child died before
reaching 12 months of age. We multiply the estimated effect by 1,000 so that the estimate can be interpreted as the effect
on deaths per 1,000 live births. Column 1 presents the OLS estimate, while the remaining columns present the 2SLS
estimates. Column 3 uses the Bartik IV, while the other 2SLS estimations use the baseline IV (i.e., RE commissioning
year). Standard errors reported in square brackets are clustered at the community level. Significance levels are *** p <
0.01, ** p < 0.05, and * p < 0.1.

The OLS estimate presented in Column 1 suggests that a 10 percentage point
increase in the RE share would reduce the infant mortality rate by 0.53 deaths per
1,000 live births, and this effect is statistically significant at the 1% level. However, the
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OLS estimate could be biased, given that the RE share may be correlated with omitted
community-specific time-varying determinants of the infant mortality rate. To address
this concern, Column 2 presents the 2SLS estimates using the local RE commissioning
year as the IV. The 2SLS estimate confirms that RE significantly reduces the infant
mortality rate. The 2SLS estimate is larger than the OLS estimate, suggesting that
the OLS estimate is downward biased. Column 3 presents the 2SLS estimate based on
the Bartik IV constructed in equation (2). The two IV estimates are comparable and
show no statistically significant difference. We use the RE commissioning year as our
baseline IV because we can verify its validity based on parallel trends tests in event
studies (Figure 10).

The baseline 2SLS estimate suggests that a 10 percentage point increase in the
RE share would reduce the infant mortality rate by 1.99. This effect is economically
large. Given that the mean infant mortality rate in our sample regions is 58.7, this
estimate suggests that a 10 percentage point increase in the RE share would reduce
the infant mortality rate by 3.39 percent. As presented in Figure 1, the RE share in
developing countries increased by 9.34 percentage points from 2000 to 2020. Therefore,
this estimate suggests that the increased RE adoption during this period led to a 1.86
decline in the infant mortality rate. This effect accounts for 8.23 percent of the observed
total decline in the infant mortality rate during this period in developing countries,
which is 22.6. More discussions on the welfare effects of the resulting infant mortality
decline will be presented in subsection 6.

4.2 Alternative RE intensity measures

Our baseline analysis measures RE intensity by the share of RE capacity. As robustness
checks, we adopt two alternative measures of RE intensity: RE capacity per capita
and RE capacity per unit of GDP per capita. Due to the lack of real GDP data at the
subcountry level for a significant share of our sample areas, we use nighttime light data
derived from the World Bank as a proxy for GDP. The per capita values are calculated
by dividing by the annual population in each region. As presented in columns 4 and 5
of Table 1, we still find a significantly negative effect of RE on infant mortality when
using these alternative measures of RE intensity. Note that the effect sizes are not
directly comparable to the baseline estimate when using different intensity measures
with different units.
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4.3 Dynamic effect estimates

Figure 10 examines the dynamic effects of RE projects on infant mortality, estimated
based on the event-study model (4). As presented in Panel A, all estimates before
the RE project construction are close to zero and statistically insignificant, supporting
the exogeneity of the RE commissioning year. In addition, the estimates suggest that
RE construction significantly reduces the infant mortality rate; the reduction effect
increases over time and levels off after 8 years. Panel B addresses the potential spillover
effects of RE projects by excluding DHS samples from non-RE regions connected to
regions with RE facilities. The resulting estimates are comparable. Appendix Figure
A4 addresses the potential bias from heterogeneous treatment effects by adopting the
estimation methods proposed by Sun & Abraham (2021) and Cengiz et al. (2019), and
finds comparable estimates.
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Figure 10: Dynamic effects of the RE project construction on infant mortality rate
Notes: This figure presents the dynamic effects of RE project construction on infant mortality rate, estimated based on
model (4). Panel A uses the full sample, while Panel B excludes DHS samples from non-RE regions in countries within
RE facilities. The vertical lines represent the 95% confidence intervals.

4.4 DID estimates and additional robustness checks

Table 2 presents the DID estimates based on model (5). The DID estimation uses
the commissioning of the first RE project as the treatment and thus can be seen as a
simplified form of the baseline 2SLS estimation presented in column 2 of Table 1. The
advantage of the DID model is that it facilitates robustness checks and heterogeneous
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effect analyses. As presented in column 1 of Table 2, the DID estimate suggests that
RE project construction reduces infant mortality rate by 6.15 deaths per 1,000 live
births.

We conduct a series of robustness checks based on the DID model. Column 2
addresses the potential spillover effects of RE project construction by excluding DHS
samples from non-RE regions in countries within RE facilities. Column 3 excludes
regions that experienced war during the sample period. Column 4 presents the weighted
estimate using the DHS sample weights. Column 5 excludes the infant-level control
variables. All resulting estimates are comparable to the baseline DID estimate. Appendix
Table A5 further confirms the robustness of our findings by presenting results based
on country-level data and provides additional evidence on the impact of RE on infant
mortality.

Table 2: DID estimates of the effect of RE on the infant mortality rate

(1) (2) (3) (4) (5)

Baseline
Exclude
spillover
effects

Exclude
country in

war

Adjust
sample
weight

Exclude
controls

Treatirct
-6.145*** -9.679*** -6.721*** -4.007*** -6.602***

[0.459] [0.510] [0.494] [0.616] [0.463]
Birth year FE Yes Yes Yes Yes Yes
community FE Yes Yes Yes Yes Yes
Survey year FE Yes Yes Yes Yes Yes
Infant controls Yes Yes Yes Yes No
Observations 9,087,046 7,319,305 8,378,915 8,316,914 9,087,046
R-squared 0.023 0.024 0.024 0.024 0.022

Notes: This table presents the DID estimates of the effects of the commissioning of RE projects on the infant mortality
rate, based on Model (5). Column 1 presents the baseline estimate; Column 2 excludes DHS samples from non-RE
regions in countries within RE facilities; Column 3 excludes regions that experienced war during the sample period;
Column 4 presents the weighted estimate (using DHS sample weights); and Column 5 excludes the infant-level control
variables. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

4.5 Heterogeneity

We examine the heterogeneity of the effect across infant gender, maternal education, and
local economic conditions. The heterogeneous effects are analyzed using an extension
of the DID model (5):

yivrct = α + β1Treatrct + β2Treatrct × Dummyi + µv + λt + ωs + εivrct , (6)

where Dummyi is an indicator for each moderating variable, and all other variables
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are defined as in model (5). Effect heterogeneity is inferred by comparing the estimates
of β1 and β1 + β2.

As presented in Figure 11, we find that the mortality reduction effect is larger for
male infants than for female infants and greater for children of mothers with lower
education levels. In addition, the effects are more pronounced in regions with lower
GDP per capita and lower levels of industrial development. These findings suggest that
the adoption of RE tends to reduce inequality in infant mortality. Traditionally, higher
infant mortality rates are observed among mothers with lower education and in areas
with lower levels of economic development. The larger reductions in infant mortality
among these disadvantaged groups could help reduce inequality. We will discuss this
further in Section 6, which examines the welfare implications of RE adoption.

Figure 11: Heterogeneity of the effect of RE energy on infant mortality rate
Notes: This figure presents the heterogeneity in the effect of RE on infant mortality rate, estimated based on model (6).
The 95% confidence intervals (horizontal lines) are computed using standard errors clustered at the community level.

Table 3 presents the effect of each type of energy on infant mortality. As we do
not have good IVs for each type of energy, here we only present the OLS estimates.
The estimations are still based on model (1), but the key explanatory variables are
the log of added capacity for each type of energy in each region. See Figure 2 for
the trends of each type of energy. Column 1 shows that fossil energy has a positive
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effect on infant mortality, while columns 2–5 show that each type of renewable energy
has a negative effect on infant mortality. This finding is consistent with our baseline
estimate that increasing RE share reduces infant mortality. The marginal effect of
renewable energy varies across energy types, with the largest effects found for wind
power and bioenergy. However, as these estimations do not address the potential bias
from endogenous renewable energy adoption, the marginal effects should be interpreted
with caution.

Table 3: Effects of different type of energy on infant mortality rate

Dependent variable Infant mortality rate

Independent variable Fossil
energy

Wind
power Solar power Hydropower Bioenergy

(1) (2) (3) (4) (5)
Log added energy capacity 4.699*** -7.998*** -2.555*** -2.970*** -11.279***

[0.832] [0.902] [0.922] [0.520] [3.180]
Birth year FE Yes Yes Yes Yes Yes
community FE Yes Yes Yes Yes Yes
Survey year FE Yes Yes Yes Yes Yes
Observations 2,633,252 1,809,987 642,204 2,587,869 1,038,674
R-squared 0.041 0.051 0.101 0.042 0.072

Notes: The effects are estimated based on a modified version of model (1), which uses the log of added capacity for
each type of energy as the key explanatory variable. Standard errors, reported in square brackets, are clustered at the
community level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.
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5 Mechanisms

5.1 Reducing air pollution

An intuitive channel through which RE reduces infant mortality is by reducing air
pollution. Abundant evidence suggests that higher levels of air pollution increase infant
mortality (e.g., Chay & Greenstone, 2003; Foster et al., 2009; Gutierrez, 2015; Ebenstein
et al., 2017; Heft-Neal et al., 2018). If we find that RE reduces air pollution, we can
conclude that lower air pollution is a channel through which RE reduces infant mortality.
As presented in Table 4, we estimate the effect of RE intensity on five frequently used
measures of air pollution: CO (carbon monoxide), NMVOC (non-methane volatile
organic compounds), OC (carbonaceous components of organic carbon), PM10, and
PM2.5. We find significantly negative effects of RE intensity on each of these air pollution
measures, regardless of whether we use the OLS estimation (Panel A) or the 2SLS
estimation (Panel B). Appendix Table A6 shows the effects of RE commissioning on
infant mortality with different levels of air pollution.

Table 4: Effects of RE intensity on air pollution

(1) (2) (3) (4) (5)
Ozone precursor gases Primary particulates

Dependent variable CO NMVOC OC PM10 PM2.5

Panel A. OLS results
RE sharerct -0.022** -0.047*** -0.035*** -0.026** -0.022**

[0.010] [0.011] [0.010] [0.011] [0.010]

Panel B. IV results
RE sharerct -0.053** -0.112*** -0.083*** -0.063** -0.053**

[0.024] [0.026] [0.025] [0.027] [0.025]

Birth year FE Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes
Survey year FE Yes Yes Yes Yes Yes
Observations 17,119 17,119 17,119 17,119 17,119
R-squared 0.987 0.988 0.987 0.988 0.988

Notes: This table presents the OLS (Panel A) and 2SLS (Panel B) estimates of the effect of RE intensity on different
air pollution measures: CO (carbon monoxide), NMVOC (non-methane volatile organic compounds), OC (carbonaceous
components of organic carbon), PM10, and PM2.5. The estimation is based on modified versions of model (1), using the
RE project commissioning year as the IV. Standard errors reported in square brackets are clustered at the region-year
level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.
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5.2 Income effect

The income effect of RE projects is another potential channel through which RE reduces
infant mortality. As shown in Appendix Figure A5, families with higher wealth levels
have lower infant mortality rates. Table 5 estimates the effect of RE on family wealth
level, measured by the log wealth index factor score.5 The wealth level is a categorical
variable reported in the DHS survey. Columns 1 and 2 present the OLS and 2SLS
estimates, respectively, of the effect of RE intensity on family wealth level, based
on model (1). Column 3 presents the DID estimate based on model (5). All these
estimates suggest that RE projects significantly increase family wealth. Appendix
Table A7 presents additional evidence that RE projects improve macro-level economic
performance, whether measured by GDP per capita or nighttime lighting. Appendix
Table A8 provides a robustness check using an alternative wealth index that is calculated
uniformly across urban and rural samples. Therefore, increasing income is also an
important channel through which RE reduces infant mortality.

Table 5: The effect of RE on log family wealth index factor score

Region RE share RE project
commissioning

OLS 2SLS DID
(1) (2) (3)

RE sharerct
0.264*** 0.440***
[0.050] [0.060]

Treatrct
0.228***
[0.031]

Birth year FE Yes Yes Yes
community FE Yes Yes Yes
Survey year FE Yes Yes Yes
Infant controls Yes Yes Yes
Observations 119,074 119,074 119,074
R-squared 0.397 0.001 0.397

Notes: Columns 1 and 2, respectively, present the OLS and 2SLS estimates of the effect of RE intensity on family
wealth level, based on model (1). Column 3 presents the DID estimate based on model (5). Standard errors, reported in
square brackets, are clustered at the community level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

5The wealth index factor score in the DHS is a standardized measure of household wealth calculated
using Principal Component Analysis, and it is computed separately for urban and rural areas. This
score ranges from -41.98 to 100, with higher values indicating relatively better economic status.
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6 Welfare implication

6.1 Welfare gains from the reduction of infant mortality

We calculate the total infant deaths avoided by RE adoption in our sample countries
by combining the 2SLS estimate presented in column 2 of Table 1 with annual data on
RE share and total live births in each of the 54 sample developing countries from 1990
to 2020. We roughly estimate that increased RE adoption avoided 1.18 million infant
deaths in these countries from 1990 to 2020, which accounts for 0.49‰ of the total
births in these countries during this period.6 Country-level infant deaths avoided are
presented in Figure 12. Note that we only calculate the effect for our sample countries,
as the estimates may not necessarily apply to other developing countries. Recall that
these 54 countries account for 44.5% of the developing world population. We extrapolate
the effect to the whole country that contains the DHS sample based on the fact that
DHS surveys are nationally representative.

Figure 12: Reduced infant deaths caused by RE adoption in DHS countries during
2000-2020

Notes: This figure presents the total number of infant deaths avoided by RE adoption in each of the sample countries
from 1990 to 2020. The values are calculated by combining the 2SLS estimate presented in column 2 of Table 1 with
annual data on RE share and total live births in each of the 54 sample developing countries during this period.

To provide more intuition on the welfare effects of RE through reducing infant
6We multiply the estimated marginal effect of RE share on infant mortality by both the increase in

RE share from the 1990 baseline and the total number of live births. We then aggregate these annual
effects across countries and over time to obtain the total impact of RE adoption on infant mortality.
Therefore, the calculated effect can be interpreted as the effect of RE growth.
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mortality, we also compare the deaths avoided with the cost of RE project construction
in the sample countries. Based on the RE project construction cost data and the RE
increase data in each country during our sample period, we calculate that the total
RE construction costs amounted to 320.19 billion USD in the 54 developing countries
from 1990 to 2020.7 Therefore, an additional investment of 272.1 thousand USD in
renewable energy construction is associated with the prevention of one infant death in
these developing countries.

6.2 Effects on the inequality of infant mortality

Our findings suggest that RE adoption could reduce inter-regional inequality in infant
mortality. For the DHS sample areas, Panel A of Figure 13 and Appendix Table A10
shows that regions with higher RE potential tend to have higher infant mortality rates.
Combining this fact with the findings that regions with higher RE potential adopt more
RE (column 2 of Table A3) and that RE adoption reduces infant mortality, one can
conclude that RE adoption could reduce inter-regional infant mortality inequality. This
conclusion is consistent with the converging trends between regions with high and low
RE potential also presented in the figure.

Consistently, as presented in Panel B of the figure, we find a declining trend in
the Gini index of infant mortality, calculated based on the average infant mortality
in each DHS region.8 Appendix Table A11 presents additional evidence showing that
increases in RE share reduce the cross-country Gini index of infant mortality and
that the reducing effect of RE on infant mortality increases with RE potential. These
findings are consistent with the estimates presented in the heterogeneity analysis, which
show that the mortality reduction effect of RE is larger for children of mothers with
lower education levels and in regions with lower GDP per capita and lower levels of
industrial development.

7The data on RE project construction costs (per capacity) for each of the five major RE sources are
available from 2010 to 2023 from the International Renewable Energy Agency (presented in Appendix
Table A9). Based on the average RE cost from 2010 to 2023, we calculate the weighted cost of RE
construction in each country during our sample period, using the share of each RE type in the country
as the weight.

8We only present the trends before 2010, as the number of DHS regions reduced substantially after
that, which makes inter-region comparison infeasible. This fact does not affect our main analysis, as
we can obtain a full panel of infant mortality for each DHS region based on the birth history data of
each mother.
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Figure 13: Trends of inter-region inequality in infant mortality
Notes: Panel A presents the trends in the difference in infant mortality between DHS regions with RE potential above
(red line) and below (blue dashed line) the median. Panel B calculates the Gini index of infant mortality across DHS
regions for each year. We first calculate the mean infant mortality in each region for each year, and then use these
values to calculate the Gini index annually. We exclude samples after 2010 because the number of DHS regions was
substantially reduced after that (see Footnote 8 for more details).
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7 Concluding Remarks

Elevated infant mortality rates have persisted as a defining characteristic of many
developing economies. The advancement of RE technologies presents a potentially
transformative opportunity to address this critical development challenge in developing
nations that possess substantial RE endowments. Based on data covering seven million
births across 427 subnational regions in 54 developing countries from 1990 to 2020, we
find that a 10 percentage point increase in the RE share would reduce infant mortality
rate by 1.99 deaths per 1,000 live births, and the growth of RE can explain 8.23 percent
of the observed total decline in infant mortality in the developing world from 1990 to
2020. We show that air pollution abatement and local income growth serve as key
channels. We also find that RE also tends to reduce inequality in infant mortality
across population groups and geographic. The findings of this study have important
implications for developing countries to reduce infant mortality by accelerating the
adoption of RE.

We conclude this study by highlighting two key limitations. First, due to data
constraints, this study primarily examines the effect of RE on infant mortality—only
one of many critical health indicators in developing countries. We posit that, through
similar mechanisms, RE may also influence other health outcomes for infants, children,
and adults. Second, our analysis focuses on 54 developing countries, representing just
44.5% of the developing world’s population. Notably, China—a leader in RE adoption
over the past two decades—is excluded due to the absence of DHS data. Given the
substantial heterogeneity among developing nations, our findings may not generalize
to countries outside our sample. Future research incorporating broader health metrics
and additional countries could further elucidate RE’s health impacts in developing
economies.
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A Appendix for Online Publication

A.1 Figure

Figure A1: Distribution of DHS countries in the sample and locations of RE project
Notes: The figure shows all DHS sample countries included in our analysis, along with the locations of RE projects
within these countries.
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Figure A2: Distribution of child birth years in the sample
Notes: This figure shows distribution situation of child birth years in the sample. The sample is restricted to DHS
mothers who are usual residents. The sample proportion refers to the percentage of individuals in a given group relative
to the total number of individuals in the full sample.

Figure A3: Infant mortality rate trend in the DHS countries
Notes:This figure presents the trend in infant mortality rates for rural and urban samples in the DHS countries. The
sample includes only countries with data available through 2015. This approach is taken to avoid potential changes in
the average IMR that could arise from countries exiting the sample, which may lead to trends that do not accurately
reflect the overall sample.
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Figure A4: Dynamic effects of RE project commissioning considering heterogeneous
treatment effects

Notes: This figure presents the dynamic effects of RE project commissioning on the countries’ infant mortality rate.
We compare the baseline event-study estimates with those that account for heterogeneous treatment effects, using the
methods of Sun & Abraham (2021) and Cengiz et al. (2019), respectively.

Figure A5: Infant mortality rate of different wealth level group
Notes:This figure presents the average infant mortality rate (IMR) for samples from rural and urban areas with different
wealth levels. The classification of wealth levels is based on the quantile-based division used in the DHS data.
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A.2 Table

Table A1: List of sample countries

Country Country Country Country

Angola Bangladesh Benin Bolivia
Burkina Faso Burundi Cambodia Cameroon
Central African
Republic Chad Colombia Comoros

Congo Cote d’Ivoire Democratic
Republic of Congo Egypt

Ethiopia Gabon Gambia Ghana
Guinea Honduras India Jordan
Kenya Lesotho Liberia Madagascar
Malawi Mali Morocco Mozambique
Myanmar Namibia Niger Nigeria

Pakistan Philippines Rwanda Sao Tome and
Principe

Senegal Sierra Leone South Africa Sri Lanka
Sudan Swaziland Tanzania Togo
Tunisia Uganda Vietnam Yemen
Zambia Zimbabwe

Notes: This table lists the 54 DHS sample countries.

Table A2: Summary statistics

Mean sd Min Max N

Main variables
Infant mortality (death
per 1000 infant) 58.720 235.101 0.000 1000.000 7085205

RE share 0.066 0.195 0.000 1.000 7091623
Treat 0.320 0.467 0.000 1.000 7091623
RE capacity per economic
unit 0.190 0.513 0.000 5.351 7040031

RE capacity per capita 0.026 0.153 0.000 3.834 7085205

Infant control variables
Kid birth month 6.346 3.403 1.000 12.000 7085205
Kid gender 1.485 0.500 1.000 2.000 7085205
Kid birth order 2.942 2.057 1.000 21.000 7085205

Woman level variables
Anemia level 0.720 0.810 0.000 3.000 1356460
Heart disease 0.019 0.136 0.000 1.000 966078
Diabetes 0.041 0.198 0.000 1.000 1138926
Underweight 0.175 0.380 0.000 1.000 2448590
Overweight 0.221 0.415 0.000 1.000 2448590

Notes: This table shows the summary statistics of main variables from 1990-2020.
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Table A3: First stage result

(1) (2) (3) (4)

Dependent variable RE commissioning
Treatrct

Bartik IV
Zrct

RE commissioning
Treatrct

Independent
variable RE share RE capacity

per capita

RE capacity
per economic

unit
Dependent variable 0.281*** 0.207*** 0.009*** 0.077***

[0.003] [0.006] [0.000] [0.001]
Year FE Yes Yes Yes Yes
Survey year FE Yes Yes Yes Yes
community FE Yes Yes Yes Yes
Observations 7,085,028 7,085,028 7,085,028 7,039,854
R-squared 0.572 0.490 0.327 0.900

Notes: This table presents the first stage result based on Model (2). Standard errors reported in square brackets are
clustered at the community level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table A4: Health effects of women

(1) (2) (3) (4) (5)
Dependent variable Anemia level Heart disease Diabetes Underweight Overweight
RE sharerct -0.084*** -0.017 -0.134*** 0.077*** -0.195***

[0.011] [0.024] [0.010] [0.008] [0.007]
community FE Yes Yes Yes Yes Yes
Survey year FE Yes Yes Yes Yes Yes
Observations 1,356,033 966,053 1,138,846 2,448,468 2,448,468

Notes: This table presents the health effects of women using IV method. Standard errors reported in square brackets
are clustered at the community level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table A5: Effects of RE on infant mortality and mortality at country level

Dependent variable Log infant mortality rate Log mortality rate

Total Female Male Total Female Male
(1) (2) (3) (4) (5) (6)

Treatct -0.0683*** -0.0690*** -0.0683*** -0.0552*** -0.0837*** -0.0597***
[0.0120] [0.0123] [0.0120] [0.0124] [0.0107] [0.0097]

Birth year FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Observations 1,474 1,474 1,474 1,515 1,515 1,515
R-squared 0.939 0.940 0.939 0.871 0.815 0.807

Notes: This table presents the effects of RE on infant and overall mortality at the country level. Standard errors,
reported in square brackets, are clustered at the country-year level. Significance levels are *** p < 0.01, ** p < 0.05,
and * p < 0.1.
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Table A6: Effects on the infant mortality rate from RE project commissioning

(1) (2) (3) (4) (5)
Index OC PM10 PM2.5 CO NMVOC
Treatct ×
Indicatorpollution

ct

-0.008*** -0.010*** -0.012*** -0.007*** -0.014***

[0.002] [0.002] [0.003] [0.002] [0.002]
Treatct -0.011*** -0.012*** -0.012*** -0.011*** -0.013***

[0.001] [0.001] [0.001] [0.001] [0.001]
Indicatorpollution

ct 0.009*** 0.012*** 0.013*** 0.009*** 0.015***
[0.002] [0.002] [0.003] [0.002] [0.002]

Birth year FE Yes Yes Yes Yes Yes
community FE Yes Yes Yes Yes Yes
Survey year FE Yes Yes Yes Yes Yes
Observations 3,138,922 3,138,922 3,138,922 3,138,922 3,138,922
R-squared 0.018 0.018 0.018 0.018 0.018

Notes: This table presents the effects of RE commissioning on infant mortality across countries with
different levels of air pollution. We examine how the impacts vary by interacting RE with different
pollution indicators. Columns 1 to 5, respectively, explore different air pollution measures: CO (carbon
monoxide), NMVOC (non-methane volatile organic compounds), OC (carbonaceous components of
organic carbon), PM10, and PM2.5. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table A7: Effects on economic level

(1) (2)
Dependent variable Light mean GDP per capita
Treat 0.256*** 0.691***

[0.017] [0.048]
Birth year FE Yes Yes
community FE Yes Yes
Survey year FE Yes Yes
Observations 3,103,334 269,311
R-squared 0.320 0.837

Notes: This table presents the effects of country economic level. Standard errors reported in square brackets are
clustered at the community level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.
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Table A8: The effect of RE on log family wealth index factor score (different wealth
index)

Region RE share RE project
commissioning

OLS 2SLS DID
(1) (2) (3)

RE sharerct
0.005*** 0.006***
[0.001] [0.001]

Treatrct
0.002***
[0.000]

Birth year FE Yes Yes Yes
community FE Yes Yes Yes
Survey year FE Yes Yes Yes
Infant controls Yes Yes Yes
Observations 1,515,351 1,515,351 1,515,351
R-squared 0.063 0.001 0.063

Notes: Columns 1 and 2, respectively, presents the OLS and 2SLS estimates of the effect of RE intensity on family
wealth level, based on model (1). Column 3 presents the DID estimate based on model (5). Standard errors reported in
square brackets are clustered at the community level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table A9: Total installed costs (2020 USD/kW)

Year Onshore
wind

Offshore
wind Solar Hydropower Bioenergy Geothermal

2010 2077.29 4945.45 4854.93 1333.96 2752.04 2752.96
2011 2054.43 5664.09 4162.81 1314.76 2645.98 4170.58
2012 1932.83 5012.19 3168.96 1405.28 1850.54 5588.20
2013 1995.92 5297.45 2781.30 1589.05 3220.16 4022.01
2014 1923.69 5578.14 2513.41 1456.48 3167.14 3796.17
2015 1747.23 5594.60 1910.89 1600.94 2752.96 3717.54
2016 1750.88 4405.10 1738.08 1897.17 2313.18 3904.98
2017 1752.71 4975.62 1503.11 1947.46 3081.19 4071.38
2018 1663.11 4866.82 1284.59 1525.97 1801.17 4383.15
2019 1577.17 3899.49 1061.50 1877.06 2351.58 4218.58
2020 1418.99 3301.54 931.67 1967.57 2672.50 3834.57
2021 1344.94 2893.76 868.59 2162.32 2387.24 4075.95
2022 1208.70 3179.94 830.18 2791.36 2049.86 3296.97
2023 1060.59 2560.04 693.04 2565.53 2496.04 4195.72

Notes: Data source: (IRENA, 2021), (IRENA, 2024b). We adjust the installed costs of these energy sources to 2020
USD.
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Table A10: Evidence of health inequality

(1) (2) (3) (4)

Dependent variable Log
generation

Infant
mortality

rate

Log GDP
per capita Fossil share

Log GDP per
capita 0.514***

[0.089]
Potentialc 0.979*** -0.085* 0.130***

[0.281] [0.045] [0.022]
Year FE Yes Yes Yes Yes
Observations 1,113 606 1,346 700
R-squared 0.119 0.075 0.176 0.059

Notes: This table provides descriptive evidence on country-level characteristics, including economic development,
electricity generation, renewable energy potential, and energy structure. Standard errors reported in square brackets are
clustered at the country level. Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table A11: Effect of RE on the inequality of infant mortality

(1) (2) (3)

Dependent variable Country-level infant
mortality GINI index

Infant
mortality

Regional infant
mortality

RE sharect -0.158**
[0.076]

RE sharecrt -0.002***
[0.001]

RE sharecrt × potentialr -0.007***
[0.001]

Potentialr 3.025***
[0.572]

Year FE Yes / Yes
Country FE Yes / /
community FE / Yes /
Survey year FE / Yes /
Birth year FE / Yes /
Observations 895 17,085,028 9,661

Notes: This table presents the effect of renewable energy (RE) on inequality in infant mortality. Column 1 estimates
the effect of RE share on the Gini index of infant mortality at the country level for the DHS sample countries; we do not
estimate the effect at the regional level as the DHS regions change over time. Column 2 estimates the interaction effect
of RE potential on infant mortality by extending the baseline model (1). Column 3 estimates the effect of RE potential
on regional infant mortality; this estimation does not include region fixed effects as RE potential is time-invariant.
Significance levels are *** p < 0.01, ** p < 0.05, and * p < 0.1.
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