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Abstract 

The investor, who holds his portfolio and doesn’t trade his shares, at current time can use the 

time series of the market trades that were made during the averaging interval with the securities 

of his portfolio to assess the current variance of the portfolio. We show how the time series of 

trades with the securities of the portfolio determine the time series of trades with the portfolio 

as a single market security. The time series of portfolio trades determine the return and variance 

of the portfolio in the same form as the time series of trades with securities determine their 

returns and variances. The description of any portfolio and any single market security is equal. 

The time series of portfolio trades define the decomposition of the portfolio variance by its 

securities. If the volumes of trades with all securities are assumed constant, the decomposition 

of the portfolio variance coincides with Markowitz’s (1952) expression of variance. However, 

the real markets expose random volumes of trades. The portfolio variance that accounts for the 

randomness of trade volumes is a polynomial of the 4th degree in the variables of relative 

amounts invested into securities and with the coefficients different from covariances of 

securities returns. We discuss the possible origin of the latent and unintended assumption that 

Markowitz (1952) made to derive his result. Our description of the portfolio variance that 

accounts for the randomness of real  trade volumes could help the portfolio managers and the 

majors like BlackRock’s Aladdin and Asimov, JP Morgan, and the U.S. Fed to adjust their 

models and forecasts to the reality of random markets. 
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1. Introduction 

More than seventy years ago, Markowitz (1952) described the portfolio variance Θ(t,t0) (1.2) 

as the quadratic form in variables Xj(t0) of relative amounts invested into the securities with the 

coefficients equal to the covariances θjk(t,t0) (1.3) of the returns of the securities that compose 

the portfolio. This result allowed Markowitz to formulate the principles of optimal selection of 

the portfolio with higher returns under lower variance. Since then, portfolio theory has been 

further developed by many contributions (Pogue, 1970; Markowitz, 1991; Rubinstein, 2002; 

Cochrane, 2014; Elton et al., 2014; Boyd et al., 2024). However, Markowitz’s expression of 

the portfolio variance Θ(t,t0) (1.2) remains unchanged.  

We believe that Markowitz’s (1952) result is well known and needs no additional clarifications. 

We follow Markowitz and consider the portfolio that was collected of j=1,.. J securities in the 

past at time t0. The mean return R(t,t0) (1.1) of the portfolio at time t takes the form: 𝑅(𝑡, 𝑡0) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1 𝑋𝑗(𝑡0)   (1.1) 

We denote the mean return Rj(t,t0) of the security j at time t with respect to time t0 in the past. 

The coefficients Xj(t0) in (1.1) denote the relative amounts invested into security j in the past 

at time t0. All prices are adjusted to the current time t. Markowitz (1952) derived the portfolio 

variance Θ(t,t0) (1.2) as a quadratic form in the variables of the relative amounts Xj(t0) invested 

into security j: 𝛩(𝑡, 𝑡0) = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝑋𝑗(𝑡0)𝐽𝑗,𝑘=1 𝑋𝑘(𝑡0)   (1.2) 

The coefficients θjk(t,t0) (1.3) in (1.2) denote the covariances of returns of securities j and k: 𝜃𝑗𝑘(𝑡, 𝑡0) = 𝐸 [(𝑅𝑗(𝑡𝑖, 𝑡0) − 𝐸[𝑅𝑗(𝑡𝑖, 𝑡0)]) (𝑅𝑘(𝑡𝑖, 𝑡0) − 𝐸[𝑅𝑘(𝑡𝑖, 𝑡0)])] (1.3) 

The expression of the portfolio variance Θ(t,t0) (1.2) for decades served successfully as a basis 

for the optimal portfolio selection and of the portfolio theory as a whole. 

The dependence of the portfolio variance on the variances of the securities that compose the 

portfolio determines the key issue for the methods of optimal portfolio selection. Actually, any 

valuable results in economics and finance are the consequences of particular approximations 

and assumptions. We restudy Markowitz’s expression of the portfolio variance Θ(t,t0) (1.2) 

and show that it gives the correct assessment of the portfolio variance only if the volumes of 

market trades with all securities that compose the portfolio are assumed to be constant during 

the averaging interval. Meanwhile, the time series of volumes of trades with the securities 

reveal their high irregularity or randomness during any reasonable interval. We derive a 

market-based expression of the portfolio variance Θ(t,t0) that accounts for the impact of the 

randomness of the time series of volumes of market trades with the securities. Our expression 
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of the portfolio variance Θ(t,t0) differs from (1.2) and is a polynomial of the 4th degree in the 

variables Xj(t0) of the relative amounts invested into securities.  

We highlight that our description of the portfolio variance that accounts for the randomness of 

trade volumes has nothing in common with numerous studies (Karpoff, 1986; Lo and Wang, 

2001; Goyenko, 2024) that consider different issues of the trading volume. 

It is evident that our market-based portfolio variance Θ(t,t0), which takes into account the 

randomness of the volumes of market trades with the securities of the portfolio, changes the 

existing methods for optimal selection and the optimal portfolio compositions. In our paper we 

don’t study this separate and complex problem. Investors and portfolio managers can use our 

results to adjust their procedures of optimal portfolio selections with the randomness of the 

volumes of market trades. However, we describe and explain the essence of two economic 

approximations that determine two expressions of the portfolio variance. The investors should 

take care of the consequences when and how they use one of these approximations.   

In Section 2, we study the portfolio that was collected by the investor in the past at time t0 of 

shares of j=1,2,..J securities. We assume that the investor holds his portfolio unchanged and 

doesn’t trade the shares of his portfolio. To assess at current time t the average return and 

variance of his portfolio, the investor observes the time series of all market trades that were 

performed with all securities of his portfolio during the averaging interval. We show how the 

investor should transform the time series of market trades with the securities of his portfolio to 

obtain the time series that describe the trades with his portfolio as a single market security. The 

portfolio’s time series equally describe the return and variance of the portfolio that is composed 

of many securities j=1,2,..J, J>>1, and the portfolio that is composed of a single security J=1.  

In Section 3, we derive how the time series of values and volumes of trades with a single 

security j of the portfolio and the time series of values and volumes of trades with the portfolio 

as a single security determine their average prices, returns, and the variances of prices and 

returns. In Section 4, we describe the decomposition of average price, return, and their 

variances of the portfolio by the securities that compose the portfolio. The decomposition of 

the portfolio variance Θ(t,t0) by its securities is a polynomial of the 4th degree in the variables 

of the relative amounts Xj(t0) (1.1; 1.2) invested into securities, and coefficients of this 

polynomial differ from the covariances θjk(t,t0) (1.3). We show that when all volumes of trades 

that were performed with the securities during the averaging interval are assumed constant, the 

expression of the portfolio variance takes the form (1.2). In Section 5, we discuss the imaginary 

hypothesis that may explain the unintended latent approximation, which led Markowitz to his 

form of the portfolio variance (1.2). The conclusion is in Section 6. 
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We collect most calculations in Appendices A – D. In App. A, we derive the expressions of 

the market-based means and variances of prices and returns of a market security. In App. B, 

we derive the market-based covariances between prices and returns of two securities. In App. 

C, we derive the decompositions of the market-based means and variances of prices and returns 

of the portfolio by its securities. In App. D, we explain the economic sense of the distinctions 

between the market-based and the frequency-based assessments of the statistical moments of 

prices and returns. All prices are adjusted to the current time t. 

2. Time series of trades with the portfolio as a single market security 

We assume that at time t0 in the past, the investor composed his portfolio of shares of  j=1,2,..J 

market securities. The investor holds his portfolio unchanged and doesn’t trade the shares of 

his portfolio. Let us denote the investor’s portfolio at time t0 in the past by the number Uj(t0) 

and the values Cj(t0) of shares of marker securities j=1,2,..J. The prices pj(t0) per share of each 

security j obey trivial equations: 𝐶𝑗(𝑡0) = 𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)       ;       𝑗 = 1, … 𝐽   (2.1) 

The prices pj(t) and the values Cj(t) of the shares Uj(t0) of security j can change in time t, but 

the number of shares Uj(t0) of each security j in the portfolio remains constant. We denote the 

value QΣ(t0) and the volume WΣ(t0) or the number of shares of the portfolio at time t0: 𝑄Σ(𝑡0) = ∑ 𝐶𝑗(𝑡0)𝐽𝑗=1        ;          𝑊Σ(𝑡0) = ∑ 𝑈𝑗(𝑡0)𝐽𝑗=1   (2.2) 

We define the price s(t0) (2.3) per one share of the portfolio similarly (2.1): 𝑄Σ(𝑡0) = 𝑠(𝑡0)𝑊Σ(𝑡0)    ;     𝑠(𝑡0) = ∑ 𝑝𝑗(𝑡0)𝐽𝑗=1 𝑥𝑗(𝑡0)   ;   𝑥𝑗(𝑡0) = 𝑈𝑗(𝑡0)𝑊Σ(𝑡0)  (2.3) 

We determine the portfolio at time t0 in the past by its value QΣ(t0), volume WΣ(t0), price s(t0), 

and by the set of corresponding values Cj(t0), volumes Uj(t0), and prices pj(t0) of the securities 

j=1,2,..J that compose the portfolio. Relations (2.3) decompose the price s(t0) per share of the 

portfolio by the prices pj(t0) (2.1) of its securities. The coefficients xj(t0) define the relative 

numbers of the shares Uj(t0) of security j in the total number of shares WΣ(t0) of the portfolio. 

The investor doesn’t trade the shares of his portfolio but at the current time t is looking for the 

assessments of the means and variances of the prices and returns of his portfolio. To do that, 

the investor observes the time series of market trades that were performed with all securities of 

his portfolio during the averaging interval. For convenience, we assume that market trades with 

all securities j=1,..J that compose the portfolio occur simultaneously at the same time ti with a 

short time span ε>0 between the trades and assume that ε is constant and is the same for the 

trades with all securities j=1,..J. For each averaging time interval Δ, the number of market 
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trades during the interval Δ is finite i=1,..N. For the current time t we denote the time averaging 

interval Δ (2.4) and consider the N terms of the time series of market trades at time ti during Δ:  ∆= [𝑡 − ∆2 ;  𝑡 + ∆2 ]    ;    𝑡𝑖+1 = 𝑡𝑖 + 𝜀 ∈ ∆   ;   𝑖 = 1, … 𝑁    ;    𝑁 ∙ 𝜀 = ∆   ;   𝜀 > 0 (2.4) 

We assume that during Δ (2.4), N trades were performed with each security j=1,2,..J of the 

portfolio. During Δ (2.4), each trade with the value Cj(ti) and volume Uj(ti) at time ti defines 

the price pj(ti) (2.5) with security j: 𝐶𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖)𝑈𝑗(𝑡𝑖)    ;      𝑡𝑖 ∈ ∆     ;   𝑖 = 1, … 𝑁 ;    𝑗 = 1, . . 𝐽 (2.5) 

The selection of the interval Δ (2.4) raises a question: what should be the duration of the 

averaging interval Δ (2.4) that can provide the investor with a reliable market-based assessment 

of the return and variance of his portfolio? What happens if the investor decides to sell his 

portfolio soon during Δ of the same duration? The investor hopes that the return of the portfolio 

after a possible sale would be close to his current assessment of the return and the variance 

during the period of the portfolio’s sale would be close to the current assessment of the 

variance. To get this, the sale of the portfolio as an additional volume of trades should not 

disturb a lot the statistical properties of market trades with the securities during the averaging 

interval Δ (2.4). To obtain that, the volumes of trades with each security j=1,2,..J in the market 

that are made during Δ (2.4) should be much more than the number of shares Uj(t0) (2.1) of 

security j in the portfolio of the investor. Simply speaking, to derive the reliable assessment of 

returns and variance of his portfolio, the investor should choose the averaging interval Δ that 

guarantees that the numbers of shares of each security j of his portfolio are less, for example, 

than 1-3 % of the total volumes of trades that were made with security j during Δ (2.4). 

The investor can assess the total value Cj(t) and volume Uj(t) of trades that were made with 

security j during Δ as: 𝐶Σj(𝑡) = ∑ 𝐶𝑗(𝑡𝑖)𝑁𝑖=1      ;       𝑈Σj(𝑡) = ∑ 𝑈𝑗(𝑡𝑖)𝑁𝑖=1    ;    𝑗 = 1, . . 𝐽  (2.6) 

The investor selects averaging interval Δ (2.4) so that, due to (2.2), it guarantees: 𝑈𝑗(𝑡0) ≪ 𝑈Σj(𝑡)    ;     𝑊Σ(𝑡0) = ∑ 𝑈𝑗(𝑡0)𝐽𝑗=1 ≪ ∑ 𝑈Σj(𝑡)𝐽𝑗=1 = ∑ ∑ 𝑈𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1   (2.7) 

These simple considerations highlight a rather important issue: the assessments of returns and 

variance of the portfolio that is composed of shares of j=1,..J securities depend on the duration 

of the averaging interval Δ (2.4). The more shares and securities in the portfolio, the longer the 

averaging interval Δ (2.4) should be. 

Now, let us notice that the changes of the scale λ of the values Cj(ti) and volumes Uj(ti) of trades 

at time ti with security j during Δ (2.4) don’t change the statistical properties of the price pj(ti). 

Let us define the normalized values cj(ti) and volumes uj(ti) of trades (2.8)  
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𝑐𝑗(𝑡𝑖) = 𝜆 ∙ 𝐶𝑗(𝑡𝑖)            ;          𝑢𝑗(𝑡𝑖) = 𝜆 ∙  𝑈𝑗(𝑡𝑖)   (2.8) 

The change of scale (2.8) transforms the equations (2.5) into (2.9):  𝑐𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖) 𝑢𝑗(𝑡𝑖)   𝑜𝑟   𝜆 ∙ 𝐶𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖) 𝜆 ∙ 𝑈𝑗(𝑡𝑖)  (2.9) 

It is obvious that random values Cj(ti), cj(ti), and volumes Uj(ti), uj(ti) (2.8; 2.9) define the same 

statistical properties of price pj(ti) of security j. Let us apply these useful relations, and for each 

security j=1,2,..J of the portfolio, choose the scale λj 𝜆𝑗 = 𝑈𝑗(𝑡0)𝑈Σj(𝑡)      (2.10) 

The changes of scale (2.10) for each security j=1,2,..J of the portfolio define normalized values 

cj(ti) and volumes uj(ti) (2.11): 𝑐𝑗(𝑡𝑖) = 𝜆𝑗  ∙ 𝐶𝑗(𝑡𝑖)            ;          𝑢𝑗(𝑡𝑖) = 𝜆𝑗 ∙  𝑈𝑗(𝑡𝑖)  (2.11) 

The relations (2.10; 2.11) guarantee that the total normalized volume uj(t) (2.12) of trades with 

each security j=1,..J of the portfolio during Δ (2.4) equals the number of shares Uj(t0) of 

security j that compose the investor’s portfolio: 𝑢Σj(𝑡) = ∑ 𝑢𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑗(𝑡0)𝑈Σj(𝑡) ∑ 𝑈(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑗(𝑡0)   (2.12) 

For each security j, the time series of normalized values cj(ti) and volumes uj(ti) (2.8) describe 

the trade of precisely Uj(t0) shares of the investor’s portfolio during Δ (2.4).  

Let us consider at time ti the sums of the trades with all securities j=1,2,..J, which compose the 

portfolio, and introduce the volumes W(ti) and values Q(ti) (2.13) of the trades with the portfolio 

aa a single security: 𝑄(𝑡𝑖) = ∑ 𝑐𝑗(𝑡𝑖)𝐽𝑗=1        ;        𝑊(𝑡𝑖) = ∑ 𝑢𝑗(𝑡𝑖)𝐽𝑗=1    (2.13) 

The relations (2.13) replace the initial time series of the values Cj(ti) and volumes Uj(ti) (2.5) 

of market trades with securities j=1,2,..J with the time series (2.13) that describe the values 

Q(ti) and volumes W(ti) of trades with the portfolio as a single market security. Similar to (2.5; 

2.7), the equation (2.14) determines the portfolio price s(ti) at time ti during Δ:  𝑄(𝑡𝑖) = 𝑠(𝑡𝑖) 𝑊(𝑡𝑖)        ;         𝑡𝑖 ∈ ∆     ;   𝑖 = 1, … 𝑁   (2.14) 

From (2.12; 2.13), obtain that the total volume of trades WΣ(t) (2.15) at time t during Δ is a 

constant and is equal to the number of shares WΣ(t0) (2.2) of the portfolio at time t0: 𝑊Σ(𝑡) = ∑ 𝑊(𝑡𝑖)𝑁𝑖=1 = ∑ ∑ 𝑢𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1 = ∑ 𝑈𝑗(𝑡0)𝐽𝑗=1 = 𝑊Σ(𝑡0)  (2.15) 

However, the total value QΣ(t) (2.16) of trades with the portfolio at current time t during Δ is 

determined by current prices of the securities, and that results in: 𝑄Σ(𝑡) = ∑ 𝑄(𝑡𝑖)𝑁𝑖=1 = ∑ ∑ 𝑐𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1 = ∑ ∑ 𝑝𝑗(𝑡𝑖)𝑢𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1   (2.16) 
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We remind the readers that the investor holds his portfolio unchanged and doesn’t trade its 

shares. However, the observations at current time t of the trades that were performed with the 

securities of the portfolio during Δ (2.4) allow us to assess the average price of the portfolio 

s(t) (2.17). Similar to (2.3), obtain: 

𝑄Σ(𝑡) = 𝑠(𝑡) 𝑊Σ(𝑡)     (2.17) 

The time series (2.13; 2.14) describe the values Q(ti), volumes W(ti), and prices s(ti) of the 

trades of the portfolio absolutely in the same way as the time series of the values Cj(ti), volumes 

Uj(ti), and prices pj(ti) describe trades of each of the market securities j=1,2,..J. The trade 

volumes W(ti) (2.13) of the portfolio are formed by the normalized volumes uj(ti) (2.11) of 

trades with each security j=1,2,..J of the portfolio. The total normalized volume uj(t) (2.12) 

of trades with each security j equals the number of shares Uj(t0) of that security in the portfolio 

at time t0. Thus, the relations (2.12; 2.13; 2.15) prove that the time series of the volumes W(ti) 

(2.13) of trades of the portfolio as a single security during Δ (2.4) precisely conform to the 

number of shares Uj(t0) of each security j in the portfolio at time t0.   

3. Market-based return and variance of the portfolio as a single security 

In this section we show that the time series of the values Q(ti) and volumes W(ti) (2.13-2.15) 

of trades with the portfolio as a single market security determine its return and variance in the 

same form as the time series of the values Cj(ti) and volumes Uj(ti) (2.5; 2.6) of trades with 

security j of the portfolio, or their normalized time series of values cj(ti) and volumes uj(ti) 

(2.11) determine the return and variance of market security j. 

At first, let us consider the time series of normalized values cj(ti) and volumes uj(ti) (2.8) and 

determine the return and variance of security j that had Uj(t0) shares in the investor’s portfolio 

at time t0 in the past. The total value cj(t) (3.1) of trades with security j during Δ (2.4) equals: 𝑐Σj(𝑡) = ∑ 𝑐𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑗(𝑡0)𝑈Σj(𝑡) ∑ 𝐶𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑗(𝑡0)𝑈Σj(𝑡) 𝐶Σj(𝑡)  (3.1) 

We use (2.9; 2.11; 2.12; 3.1) and define the average price pj(t) (3.2) of Uj(t0) shares of security 

j at current time t during Δ (2.4): 𝑐Σj(𝑡) = 𝑝𝑗(𝑡) 𝑢Σj(𝑡)  ;   𝑝𝑗(𝑡) = 𝑐Σj(𝑡)𝑢Σj(𝑡) = 𝐶Σj(𝑡)𝑈Σj(𝑡) = 1𝑢Σj(𝑡) ∑ 𝑝𝑗(𝑡𝑖) 𝑢𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑐𝑗(𝑡;1)𝑢𝑗(𝑡;1)   (3.2) 

The same expression of the average price p(t;1) follows from (2.5; 2.6): 𝑝𝑗(𝑡) = 𝐶Σj(𝑡)𝑈Σj(𝑡) = 1𝑈Σj(𝑡) ∑ 𝑝𝑗(𝑡𝑖) 𝑈𝑗(𝑡𝑖)𝑁𝑖=1    (3.3) 

One can easily find out that the average price pj(t) (3.2; 3.3) of Uj(t0) shares of security j during 

Δ (2.4) takes the form of volume weighted average price (VWAP) (Berkowitz et al., 1988; 
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Duffie and Dworczak, 2021). In (3.2) we define average normalized value cj(t;1) and volume 

uj(t;1) (3.4) of trades with Uj(t0) shares of security j during Δ (2.4). 𝑐𝑗(𝑡; 1) = 1𝑁 ∑ 𝑐𝑗(𝑡𝑖)𝑁𝑖=1    ;     𝑢𝑗(𝑡; 1) = 1𝑁 ∑ 𝑢𝑗(𝑡𝑖)𝑁𝑖=1   (3.4) 

The normalized number uj(t) (2.12) of shares of security j that were traded during Δ (2.4) 

equals the number of its shares Uj(t0) at time t0. We define the instant return Rj(ti,t0) (3.5) of 

the trade with security j at time ti with respect to time t0 in the past: 𝑅𝑗(𝑡𝑖, 𝑡0) = 𝑝𝑗(𝑡𝑖)𝑝𝑗(𝑡0)     (3.5) 

We use the so-called gross return Rj(ti,t0) (3.5) instead of the usual definition of return rj(ti,t0): 𝑟𝑗(𝑡𝑖, 𝑡0) = 𝑅𝑗(𝑡𝑖, 𝑡0) − 1 = 𝑝𝑗(𝑡𝑖)𝑝𝑗(𝑡0) − 1   (3.6) 

The variances of both definitions of return are the same. From (3.2; 3.3), obtain the average 

return Rj(t,t0) of Uj(t0) shares of security j at time t during Δ (2.4): 𝑅𝑗(𝑡, 𝑡0) = 𝑝𝑗(𝑡)𝑝𝑗(𝑡0) = 𝑝𝑗(𝑡)𝑢Σj(𝑡)𝑝𝑗(𝑡0)𝑢Σj(𝑡) = 𝑐Σj(𝑡)𝑝𝑗(𝑡0)𝑈𝑗(𝑡0) = 𝑐Σj(𝑡)𝐶𝑗(𝑡0) = 𝑈𝑗(𝑡0)𝑈Σj(𝑡) 𝐶Σj(𝑡)𝐶𝑗(𝑡0)  (3.7) 

From (2.11; 3.2; 3.3; 3.7), obtain that the average return Rj(t,t0) of security j can be expressed 

as value weighted average return (3.8), which is weighted by the normalized volumes uj(ti) 

(2.11) or equally by the volumes Uj(ti) (2.5; 2.6) of trades with security j: 𝑅𝑗(𝑡, 𝑡0) = 1𝑢Σj(𝑡) ∑ 𝑅𝑗(𝑡𝑖, 𝑡0) 𝑢𝑗(𝑡𝑖)𝑁𝑖=1 = 1𝑈Σj(𝑡) ∑ 𝑅𝑗(𝑡𝑖, 𝑡0) 𝑈𝑗(𝑡𝑖)𝑁𝑖=1   (3.8) 

We present the derivation of the market-based variances of prices and returns of a single 

security in App. A. The market-based variance θj(t,t0) (3.9) of return Rj(ti,t0) (3.5) of security j 

that accounts for the impact of random volumes of market trades is determined by the market-

based variance j(t) (3.10) of its price pj(ti) (2.9). 𝜃𝑗(𝑡, 𝑡0) = 𝐸𝑚 [(𝑅𝑗(𝑡𝑖, 𝑡0) − 𝑅𝑗(𝑡, 𝑡0))2] = 𝜙𝑗(𝑡)𝑝𝑗2(𝑡0)   (3.9) 𝜙𝑗(𝑡) = 𝐸𝑚[(𝑝𝑗(𝑡𝑖) − 𝑝𝑗(𝑡))2]    (3.10) 

In (3.9; 3.10), Em[..] denotes market-based averaging (A.3) that accounts for the randomness 

of volumes of trades. In App A we derive the market-based variance j(t) (A.16; 3.11) of prices 

pj(ti) (2.9) that depends on the time series of random values Cj(ti) and volumes Uj(ti) of trades 

with a security during Δ (2.4): 𝜙𝑗(𝑡) = Ψ𝐶𝑗(𝑡)+𝑝𝑗2(𝑡)Ψ𝑈𝑗(𝑡)−2𝑝𝑗(𝑡) 𝑐𝑜𝑣{𝐶𝑗(𝑡),𝑈𝑗(𝑡)}𝑈𝑗(𝑡;2)   (3.11) 

The notions of functions in (3.11) are given in App. A. We denote the variance Cj(t) (3.12) of 

values of trades with security j during Δ (2.4): 
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𝛹𝐶𝑗(𝑡) = 𝐸 [(𝐶𝑗(𝑡𝑖) − 𝐶𝑗(𝑡; 1))2] = 1𝑁 ∑ (𝐶𝑗(𝑡𝑖) − 𝐶𝑗(𝑡; 1))2𝑁𝑖=1 = 𝐶𝑗(𝑡; 2) − 𝐶𝑗2(𝑡; 1)  (3.12) 

We denote the variance Uj(t) (3.13) of volumes of trades with security j during Δ (2.4): 𝛹𝑈𝑗(𝑡) = 𝐸 [(𝑈𝑗(𝑡𝑖) − 𝑈𝑗(𝑡; 1))2] = 1𝑁 ∑ (𝑈𝑗(𝑡𝑖) − 𝑈𝑗(𝑡; 1))2𝑁𝑖=1 = 𝑈𝑗(𝑡; 2) − 𝑈𝑗2(𝑡; 1)  (3.13) 

We denote covariance cov{Cj(t),Uj(t)} (A.8) between the time series of values Cj(ti) and 

volumes Uj(ti) of trades with security j during Δ (2.4). The function Uj(t;2) denotes the average 

square (A.2) of the volumes Uj(ti) of trades with security j during Δ (2.4). 

The relations (3.9; 3.11) determine market-based variance θj(t,t0) (A.29; 3.14) of return Rj(ti,t0) 

(3.5) of security j during Δ (2.4): 𝜃𝑗(𝑡, 𝑡0) = 𝛹𝐶𝑗(𝑡)+𝑅𝑗2(𝑡,𝑡0)𝛹𝐶0𝑗(𝑡,𝑡0)−2𝑅𝑗(𝑡,𝑡0) 𝑐𝑜𝑣{𝐶𝑗(𝑡),𝐶0𝑗(𝑡,𝑡0)}𝐶0𝑗(𝑡,𝑡0;2)   (3.14) 

The notations in (3.14) are given in App. A. (A.24; A.26; A.30-A.32) and index j denotes 

security j=1,..J of the portfolio. The relations (3.11; 3.14) describe the market-based variances 

of prices and returns that account for the randomness of the volumes Uj(ti) of trades with 

security j during Δ (2.4). If one assumes that the volumes Uj(ti) of trades with security j during 

Δ (2.4) are constant, then variances of price and return of security j take the usual simple 

expressions (App.A.). 

If Uj(ti)=const, then the VWAP pj(t) (3.2; 3.3) takes the conventional simple form: 𝑝𝑗(𝑡) = 1𝑈Σj(𝑡) ∑ 𝑝𝑗(𝑡𝑖) 𝑈𝑗(𝑡𝑖)𝑁𝑖=1  →  𝑝𝑗(𝑡) = 1𝑁 ∑ 𝑝𝑗(𝑡𝑖)𝑁𝑖=1    (3.15) 

The average return Rj(t,t0) (3.8) of security j during Δ (2.4) takes the form (3.16): 𝑅𝑗(𝑡, 𝑡0) = 1𝑈Σj(𝑡) ∑ 𝑅𝑗(𝑡𝑖, 𝑡0) 𝑈𝑗(𝑡𝑖)𝑁𝑖=1  →  𝑅𝑗(𝑡, 𝑡0) = 1𝑁 ∑ 𝑅𝑗(𝑡𝑖, 𝑡0)𝑁𝑖=1    (3.16) 

The variance j(t) (3.11) of prices pj(ti) of security j takes the form (3.17) 𝜙𝑗(𝑡) = 1𝑁 ∑ (𝑝𝑗(𝑡𝑖) − 𝑝𝑗(𝑡))2𝑁𝑖=1     (3.17) 

The variance θj(t,t0) (3.14) of return Rj(ti,t0) of security j takes the form (3.18): 𝜃𝑗(𝑡, 𝑡0) = 1𝑁 ∑ (𝑅𝑗(𝑡𝑖, 𝑡0) − 𝑅𝑗(𝑡, 𝑡0))2𝑁𝑖=1    (3.18) 

We underline that the expressions of the variance j(t) (3.17) of prices and the variance θj(t,t0) 

(3.18) of return Rj(ti,t0) (3.16) of security j result from the assumption that all volumes of trades 

Uj(ti)=const with security j during Δ (2.4) are constant. In App. D., we discuss in more detail 

the distinctions between two approximations of a random and a constant trade volumes Uj(ti). 

The goal of the above considerations of rather common definitions of average price, return, 

and their variances of a particular security j was to demonstrate that they are expressed by the 

time series of normalized values cj(ti) and volumes uj(ti) or equally by the time series of values 
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Cj(ti) and volumes Uj(ti) of trades with security j during Δ (2.4). That presents the evidence that 

the time series of the value QΣ(t0), volume WΣ(t0), and price s(t0) (2.2; 2.3) that describe the 

initial state of the portfolio at time t0 in the past and the time series of the values Q(ti), volumes 

W(ti), and prices s(ti) (2.13; 2.14) at time ti of market trades with the portfolio as a single market 

security determine the return and variance of the portfolio completely in the same form as (3.7; 

3.8) and (3.11; 3.14). That is the result of the transformation of the time series of the values 

Cj(ti) and volumes Uj(ti) of trades with the securities j=1,2,..J that compose the portfolio into 

the time series that describe the values Q(ti) and volumes W(ti) of trades with the portfolio as a 

single security.  

The simple substitutions (3.18) of variables: 𝐶𝑗(𝑡𝑖) → 𝑄(𝑡𝑖)   ;     𝑈𝑗(𝑡𝑖) → 𝑊(𝑡𝑖)   ;     𝑝𝑗(𝑡𝑖) → 𝑠(𝑡𝑖)  (3.18) 

give the expressions of the portfolio price, return, and their variances. From (2.17), obtain:  𝑠(𝑡) = 𝑄Σ(𝑡)𝑊Σ(𝑡) = 1𝑊Σ(𝑡) ∑ 𝑠(𝑡𝑖) 𝑊(𝑡𝑖)𝑁𝑖=1    (3.19) 𝑅(𝑡, 𝑡0) = 𝑠(𝑡)𝑠(𝑡0) = 𝑄Σ(𝑡)𝑄Σ(𝑡0) = 1𝑊Σ(𝑡) ∑ 𝑅(𝑡𝑖, 𝑡0)𝑊(𝑡𝑖)𝑁𝑖=1    ;      𝑅(𝑡𝑖, 𝑡0) = 𝑠(𝑡𝑖)𝑠(𝑡0)  (3.20) 𝛷(𝑡) = Ψ𝑄(𝑡)+𝑠2(𝑡)Ψ𝑊(𝑡)−2𝑠(𝑡) 𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}𝑊(𝑡;2)     (3.21) Θ(𝑡, 𝑡0) = 𝛹𝑄(𝑡)+𝑅2(𝑡,𝑡0)𝛹𝑄0(𝑡,𝑡0)−2𝑅(𝑡,𝑡0) 𝑐𝑜𝑣{𝑄(𝑡),𝑄0(𝑡,𝑡0)}𝑄0(𝑡,𝑡0;2)   (3.22) 

The above expressions describe market-based mean price s(t) (3.19), return R(t,t0) (3.20), price 

variance Φ(t) (3.21), and return variance Θ(t,t0) (3.22) of the portfolio during Δ (2.4). These 

market-based expressions account for the impact of random volumes Uj(ti) of market trades 

with securities j=1,2,..J that compose the portfolio. We repeat that the investor collected this 

portfolio at time t0 in the past and holds his portfolio unchanged and doesn’t trade the shares 

of his portfolio. The investor observes the time series of the values Cj(ti) and volumes Uj(ti) of 

market trades with securities of his portfolio that were performed during Δ. The expressions 

(3.19-3.22) are the result of these observations. 

It is evident that if all volumes Uj(ti) of trades with all securities that compose the portfolio are 

assumed constant during Δ, the expressions (3.19-3.22) take simple forms: 𝑠(𝑡) = 1𝑊Σ(𝑡) ∑ 𝑠(𝑡𝑖) 𝑊(𝑡𝑖)𝑁𝑖=1  →  𝑠(𝑡) = 1𝑁 ∑ 𝑠(𝑡𝑖)𝑁𝑖=1   (3.23) 𝑅(𝑡, 𝑡0) = 1𝑁 ∑ 𝑅(𝑡𝑖, 𝑡0)𝑁𝑖=1      (3.24) Φ(𝑡) = 1𝑁 ∑ (𝑠(𝑡𝑖) − 𝑠(𝑡))2𝑁𝑖=1     (3.25) Θ(𝑡, 𝑡0) = 1𝑁 ∑ (𝑅(𝑡𝑖, 𝑡0) − 𝑅(𝑡, 𝑡0))2𝑁𝑖=1    (3.26) 
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The market-based expressions (3.19-3.22) of average price s(t), return R(t,t0), price variance 

Φ(t), and return variance Θ(t,t0) of the portfolio present them in forms that coincide with the 

expressions for a single security. However, the investors that are looking for the optimal 

compositions of their portfolio by the set of j=1,..J securities need the expressions that describe 

the decompositions of the portfolio properties by its securities. Actually, the definitions of the 

time series of the values Q(ti), volumes W(ti), and prices s(ti) (2.13; 2.14) of trades with the 

portfolio as a single security allow us to present the decomposition of the average price s(t) 

(3.19), return R(t,t0) (3.20), price variance Φ(t) (3.21), and return variance Θ(t,t0) (3.22) of the 

portfolio by its securities. 

4. Decomposition of the portfolio variance by its securities 

In this section we present the decompositions of the average price s(t) (3.19), return R(t,t0) 

(3.20), price variance Φ(t) (3.21), and return variance Θ(t,t0) (3.22) of the portfolio by its 

securities. The derivation is based on the results of Apps. A-D, and we refer there for detail. 

Let us consider the time series of the values Q(ti), volumes W(ti), and prices s(ti) (2.13; 2.14) 

of trades with the portfolio as a single market security.  

4.1 Decomposition of the mean price s(t): 

The decomposition of the mean price s(t) (3.19) of the portfolio at time t by the mean prices 

pj(t) (A.3) of the securities j=1,2,..J is given in (C.2): 

 𝑠(𝑡) = ∑ 𝑝𝑗(𝑡)𝐽𝑗=1  𝑥𝑗(𝑡0)      ;        𝑥𝑗(𝑡0) = 𝑈𝑗(𝑡0)𝑊𝛴(𝑡0)   (4.1) 

The coefficients xj(t0) in (4.1) describe the relative numbers of shares of the security j in the 

portfolio (2.3). We use Em[..] to denote market-based mathematical expectation and highlight 

its difference from the frequency-based mathematical expectation E[..] (see App. A; App. D).  

4.2 Decomposition of the return R(t,t0): 

We use (3.20) and (2.13; 2.14) and obtain the decomposition of return R(t,t0) (C.12; C.13): 𝑅(𝑡, 𝑡0) = 𝑠(𝑡)𝑠(𝑡0) = ∑ 𝑝𝑗(𝑡)𝑝𝑗(𝑡0)𝐽𝑗=1  𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊𝛴(𝑡0) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1  𝑋𝑗(𝑡0)  (4.2) 

The functions Xj(t0) define the relative amount invested into security j of the portfolio at time 

t0 in the past and coincide with (1.1; 1.2): 𝑋𝑗(𝑡0) = 𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊𝛴(𝑡0) = 𝐶𝑗(𝑡0)𝑄𝛴(𝑡0)     (4.3) 

4.3 Decomposition of the variance Φ(t) of prices: 



 12 

The average and average square of the portfolio values Q(t;1), Q(t;2) and volumes W(t;1), 

W(t;2) are determined in (A.2). We introduce coefficients of variation of the values (t), 

volumes (t), and their normalized covariance (t) (3.6) of portfolio trades: 𝜓2(𝑡) =  Ψ𝑄(𝑡)𝑄2(𝑡;1)     ;        𝜒2(𝑡) =  Ψ𝑊(𝑡)𝑊2(𝑡;1)    ;    𝜑(𝑡) =  𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}𝑄(𝑡;1)𝑊(𝑡;1)   (4.4) 𝑊(𝑡; 2) = 𝑊2(𝑡; 1) + Ψ𝑊(𝑡) = 𝑊2(𝑡; 1)[1 + 𝜒2(𝑡)]  (4.5) 

The relations (4.4; 4.5) allow us to transform the market-based variance Φ(t) (3.31) into (4.6): Φ(𝑡) = 𝜓2(𝑡)−2 𝜑(𝑡)+𝜒2(𝑡)1+𝜒2(𝑡)  𝑠2(𝑡)    (4.6) 

The decomposition of the variance Φ(t) (3.31; 4.6) of prices s(ti) of the portfolio by the 

covariances of normalized values and volumes of the securities j=1,..J that compose the 

portfolio takes the form (see B.8; B.9; C.6-C.9). 𝛷(𝑡) = 11+𝜒2(𝑡) [ ∑ 𝜓𝑗𝑘(𝑡)𝐽𝑗,𝑘=1 𝑝𝑗(𝑡)𝑝𝑘(𝑡) 𝑥𝑗(𝑡0)𝑥𝑘(𝑡0) −     −2 ∑ 𝜑𝑗𝑘(𝑡)𝐽𝑗,𝑘,𝑙=1 𝑝𝑗(𝑡)𝑝𝑙(𝑡) 𝑥𝑗(𝑡0)𝑥𝑘(𝑡0)𝑥𝑙(𝑡0)    + ∑ 𝜒𝑗𝑘(𝑡)𝐽𝑗𝑘𝑙𝑓=1 𝑝𝑙(𝑡)𝑝𝑓(𝑡) 𝑥𝑗(𝑡0)𝑥𝑘(𝑡0)𝑥𝑙(𝑡0)𝑥𝑓(𝑡0) ]  (4.7) 

If all trade volumes uj(ti) of all securities j=1,2,..J of the portfolio during the interval Δ (2.4) 

are assumed constant, then (4.7) takes the form (4.8). The functions σjk(t) (B.16) present the 

covariances of prices pj(ti) and pk(ti) of two securities j and k of the portfolio during Δ.  𝛷(𝑡) = 𝜓2(𝑡)𝑠2(𝑡) = ∑ 𝜎𝑗𝑘(𝑡)𝐽𝑗,𝑘=1 𝑥𝑗(𝑡0)𝑥𝑘(𝑡0)   (4.8) 

The derivation of (4.6-4.8) is given in App. C, (C3-C.10). 

4.4 Decomposition of the variance Θ(t,t0) of returns: 

We present the derivation of decomposition of the variance Θ(t,t0) (4.9) of returns in App. C 

(C.14-C.17). The decomposition of the variance Θ(t,t0) (3.11) of returns of the portfolio by its 

securities results from the decomposition of the variance Φ(t) (4.7) of prices. 𝛩(𝑡, 𝑡0) = 11+𝜒2(𝑡) [ ∑ 𝜓𝑗𝑘(𝑡)𝐽𝑗,𝑘=1 𝑅𝑗(𝑡, 𝑡0)𝑅𝑘(𝑡, 𝑡0) 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0) −     −2 ∑ 𝜑𝑗𝑘(𝑡)𝐽𝑗,𝑘,𝑙=1 𝑅𝑗(𝑡, 𝑡0)𝑅𝑙(𝑡, 𝑡0) 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)𝑋𝑙(𝑡0)    + ∑ 𝜒𝑗𝑘(𝑡)𝐽𝑗𝑘𝑙𝑓=1 𝑅𝑙(𝑡, 𝑡0)𝑅𝑓(𝑡, 𝑡0) 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)𝑋𝑙(𝑡0)𝑋𝑓(𝑡0) ]  (4.9) 

The decomposition (4.9) of the variance Θ(t,t0) (3.14) of returns of the portfolio is a polynomial 

of the 4th degree in the variables of relative amounts Xj(t0) invested into security j of the 

portfolio. The expression (4.9) differs a lot from Markowitz’s form of the portfolio variance 

Θ(t,t0) (1.2) as a quadratic form in variables of Xj(t0). The only cause of these distinctions is 

the impact of random volumes of market trades with the securities of the portfolio. For the 

approximation when all volumes of trades with all securities j=1,2,..J during Δ (2.4) are 
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assumed constant, the variance Θ(t,t0) (3.14; 4.9) takes the form (1.2) that was derived by 

Markowitz (1952): 𝛩(𝑡, 𝑡0) = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝐽𝑗,𝑘 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)    (4.10) 

The covariances θjk(t,t0) are determined in (B.17).  

We underline that one should consider the variances of any portfolio in the same way as the 

variances of any tradable market security. The portfolio variance of prices Φ(t) (3.21) and the 

variance of returns Θ(t,t0) (3.22) have the same expressions as the variances of prices ϕj(t) 

(3.11) and returns θj(t,t0) (3.14) of any market security j. The decompositions of the portfolio 

variances of prices Φ(t) (4.7) and returns Θ(t,t0) (4.9) by its securities are the result of the 

compositions of time series of the values Q(ti), volumes W(ti), and prices s(ti) (2.13; 2.14) of 

trades with the portfolio as a single market security by the corresponding time series that 

describe the values cj(ti), volumes uj(ti), and prices pj(ti) (2.9; 2.11) of trades of the securities 

that compose the portfolio. The expressions of the portfolio variance Θ(t,t0) (3.22; 4.9) 

highlight that the impact of risks of securities of the portfolio on the portfolio variance or 

portfolio risk has more complex dependence than was assumed by Markowitz (1.2).  

5. A hypothesis that may explain the origin of Markowitz’s variance 

Finally, we consider a hypothesis that may explain the emergence of the unintended 

assumptions that result in Markowitz’s decomposition of the portfolio variance Θ(t,t0) (1.2). 

We propose that at first, Markowitz derived the decomposition of the portfolio return R(t,t0) 

(1.1; 4.2) by the mean returns Rj(t,t0) of its securities. The expression (1.1) defines the portfolio 

return R(t,t0) as a linear form of the mean returns Rj(t,t0) of its securities with coefficients that 

equal to the relative amounts Xj(t0) invested into securities at time t0. Further, Markowitz made 

a latent assumption that at time ti the instant random returns Rj(ti,t0) of the securities define the 

random return R(ti,t0) of the portfolio at time ti in the same form as (1.1): 𝑅(𝑡𝑖, 𝑡0) = ∑ 𝑅𝑗(𝑡𝑖, 𝑡0)𝐽𝑗=1  𝑋𝑗(𝑡0)    (5.1) 

This “almost obvious” assumption (5.1) immediately results in (1.1) and (1.2). However, it is 

evident that the transition from (1.1) to (5.1) hides an approximation that neglects all factors 

with zero means but non-zero average squares that could significantly disturb the variance (1.2) 

of the portfolio. Our market-based consideration of this problem confirms that. 

The time series of the values Q(ti), volumes W(ti), and prices s(ti) (2.13; 2.14) of trades of the 

portfolio as a single security reveals a more complex dependence of the random returns R(ti,t0) 

of the portfolio on random returns Rj(ti,t0) of its securities. From (2.14; C.11), obtain the instant 

random return R(ti,t0) as a result of trade with the portfolio at time ti: 
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𝑅(𝑡𝑖, 𝑡0) = 𝑠(𝑡𝑖)𝑠(𝑡0) = 𝑄(𝑡𝑖)𝑠(𝑡0)𝑊(𝑡𝑖) = ∑ 𝑐𝑗(𝑡𝑖)𝑝𝑗(𝑡0)𝑢𝑗(𝑡𝑖)𝐽𝑗=1  𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊Σ(𝑡0)  𝑊Σ(𝑡0)𝑊(𝑡𝑖)  𝑈𝑗(𝑡𝑖)𝑈Σ𝑗(𝑡)  (5.2) 

The use (2.11; A.24) and (C.13), transforms (5.2) into (5.3): 𝑅(𝑡𝑖, 𝑡0) = ∑ 𝑅𝑗(𝑡𝑖, 𝑡0)𝐽𝑗=1 𝑋𝑗(𝑡0) 𝑊Σ(𝑡0)𝑊(𝑡𝑖)  𝑈𝑗(𝑡𝑖)𝑈Σ𝑗(𝑡)   (5.3) 

The average of (5.2) with the help of (3.19) and (4.1) give the same expression of the average 

return R(t,t0) (4.2) of the portfolio as (1.1). If one assumes that all volumes Uj(ti) of trades with 

all securities j=1,..J of the portfolio during Δ (2.4) are constant, obtain: 𝑈𝑗(𝑡𝑖) = 𝑈Σ𝑗(𝑡)𝑁  ;   𝑊(𝑡𝑖) = 𝑊Σ(𝑡0)𝑁  ⇒ 𝑊Σ(𝑡0)𝑊(𝑡𝑖)  𝑈𝑗(𝑡𝑖)𝑈Σ𝑗(𝑡) = 1  (5.4) 

In this case, the random returns R(ti,t0) (5.3) of the portfolio take the form (5.1). That is a result 

of the assumption that all volumes of trades with all securities j=1,..J of the portfolio during 

the averaging interval Δ (2.4) are assumed constant. Markowitz’s expression of the portfolio 

variance Θ(t,t0) (1.2) is a direct consequence of the (5.1). That clarifies the essence and 

limitations of Markowitz’s expression of the portfolio variance Θ(t,t0) (1.2), which is valid only 

if all trade volumes Uj(ti) during Δ (2.4) with all securities j=1,..J of the portfolio are assumed 

constant. 

If the investor whants assess the variance Θ(t,t0) of his portfolio that accounts for the 

randomness of the volumes of trades with the securities of his portfolio during the averaging 

interval Δ (2.4), he should consider (5.3). Let us denote the fluctuations of returns of the 

portfolio R(ti,t0) and of the securities Rj(ti,t0):  𝛿𝑅(𝑡𝑖, 𝑡0) = 𝑅(𝑡𝑖, 𝑡0) − 𝑅(𝑡, 𝑡0)  ;    𝛿𝑅𝑗(𝑡𝑖, 𝑡0) = 𝑅𝑗(𝑡𝑖, 𝑡0) − 𝑅𝑗(𝑡, 𝑡0) (5.5) 

The term 
𝑈𝑗(𝑡𝑖)𝑈Σ𝑗(𝑡) in (5.3) has the meaning of the random share of the trade volume Uj(ti) at time 

ti with security j in the total volume of trades Uj(t) during Δ (2.4). The term 
𝑊(𝑡𝑖)𝑊Σ(𝑡0) = 𝑊(𝑡𝑖)𝑊Σ(𝑡) in 

(5.3) is the random share of the volume Wj(ti) of trade at time ti with the portfolio during Δ (2.4) 

in the total volume W(t) or total number of shares W(t0) of the portfolio W(t)= W(t0). 

If one accounts for the randomness of trade volumes, these factors significantly disturb (5.1) 

and result in distinctions of the portfolio variance Θ(t,t0) from the expression (1.2).   

Let us denote Wj(ti,t0) (5.6) as a measure of randomness of the volumes Uj(ti) of trades at time 

ti with security j with respect to the volumes W(ti) of trades with the portfolio as a single security 𝛿𝑊𝑗(𝑡𝑖, 𝑡0) = 𝑊Σ(𝑡0)𝑈Σ𝑗(𝑡)  𝑈𝑗(𝑡𝑖)𝑊(𝑡𝑖) − 1    (5.6) 

Then, from (1.1; 5.3; 5.5; 5.6), obtain:  𝛿𝑅(𝑡𝑖, 𝑡0) = ∑ [𝛿𝑅𝑗(𝑡𝑖, 𝑡0)𝐽𝑗=1 + 𝑅𝑗(𝑡𝑖, 𝑡0) 𝛿𝑊𝑗(𝑡𝑖, 𝑡0)] 𝑋𝑗(𝑡0)  (5.7) 
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It is obvious that market-based mathematical expectation Em[...] of R(ti,t0) (5.7), which 

accounts for the impact of random volumes of trades with the securities of the portfolio and 

depends on the average price of the portfolio s(t)=Em[s(ti)] (4.1; 4.2), equals zero: 𝐸𝑚[ 𝛿𝑅(𝑡𝑖, 𝑡0)] = 0 

However, the square of (5.7) gives: 𝛿2𝑅(𝑡𝑖, 𝑡0) = ∑ 𝛿𝑅𝑗(𝑡𝑖, 𝑡0)𝐽𝑗,𝑘=1 𝛿𝑅𝑘(𝑡𝑖, 𝑡0)𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)    +2 ∑ 𝛿𝑅𝑗(𝑡𝑖, 𝑡0)𝑅𝑘(𝑡𝑖, 𝑡0)𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)𝛿𝑊𝑘(𝑡𝑖, 𝑡0)𝐽𝑗,𝑘=1 +    ∑ 𝑅𝑗(𝑡𝑖, 𝑡0)𝑅𝑘(𝑡𝑖, 𝑡0)𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)𝛿𝑊𝑗(𝑡𝑖, 𝑡0)𝛿𝑊𝑘(𝑡𝑖, 𝑡0)𝐽𝑗,𝑘=1   (5.8) 

The variance Θ(t,t0) of the portfolio is a market-based mathematical expectation of 2R(ti,t0): 𝛩(𝑡, 𝑡0) = 𝐸𝑚[ 𝛿2𝑅(𝑡𝑖, 𝑡0)]     (5.9) 

The averaging of the first term of (5.8) give (5.10; 511) that coincide with Markowitz’s 

expression of the variance Θ(t,t0) (1.2): 𝐸𝑚[∑ 𝛿𝑅𝑗(𝑡𝑖, 𝑡0)𝐽𝑗,𝑘=1 𝛿𝑅𝑘(𝑡𝑖, 𝑡0)𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)] = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝐽𝑗,𝑘 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)  (5.10) 𝜃𝑗𝑘(𝑡, 𝑡0) = 𝐸𝑚[𝛿𝑅𝑗(𝑡𝑖, 𝑡0)𝛿𝑅𝑘(𝑡𝑖, 𝑡0)]    (5.11) 

However, the averaging of (5.8) reveals additional terms (5.12; 5.13) that significantly change 

the expression of the portfolio variance Θ(t,t0) 2 ∑ 𝐸𝑚𝐽𝑗,𝑘=1 [𝑅𝑗(𝑡𝑖, 𝑡0)𝑅𝑘(𝑡𝑖, 𝑡0)𝛿𝑊𝑘(𝑡𝑖, 𝑡0)] 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)  (5.12) ∑ 𝐸𝑚𝐽𝑗,𝑘=1 [𝑅𝑗(𝑡𝑖, 𝑡0)𝑅𝑘(𝑡𝑖, 𝑡0)𝛿𝑊𝑗(𝑡𝑖, 𝑡0)𝛿𝑊𝑘(𝑡𝑖, 𝑡0)]𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)  (5.13) 

We derived the portfolio variance Θ(t,t0) (5.9-5.13) that accounts for the randomness of the 

volumes of trades with securities of the portfolio in Section 4. 

Actually, the decomposition (1.1) of the mean portfolio return R(t,t0) by the mean returns 

Rj(t,t0) of its securities doesn’t cause the similar decomposition of the random returns (5.1). 

That was a latent assumption of Markowitz. The impacts of random volumes of market trades 

with the securities of the portfolio cause the random returns R(ti,t0) of the portfolio to have a 

more complex form (5.2; 5.3), and the portfolio variance Θ(t,t0) takes the form (3.11; 4.9). 

However, the simplicity of Markowitz’s expression of the portfolio variance Θ(t,t0) (1.2) 

resulted in its being in use as the basis for optimal portfolio selection for more than 70 years. 

6. Conclusion 

The investor who holds his portfolio and doesn’t trade its shares can use the time series of 

market trades with the securities of the portfolio to assess portfolio return and variance in the 

same form as he assesses return and variance of any market security. The transformations of 
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the time series of market trades with securities that compose the portfolio determine the time 

series of trades with the portfolio as a single market security. That establishes the equality 

between the description of any portfolio and any single market security.  

The decomposition of the portfolio’s variance by its securities results from the dependence of 

the portfolio trade time series on the time series of trades with the securities and is a polynomial 

of the 4th degree in the variables of the relative amounts Xj(t0) invested into securities. The only 

cause of the distinctions from Markowitz’s expression of the portfolio variance Θ(t,t0) (1.2), 

which has a quadratic form, is the impact of the random volumes of trades with the securities. 

Markowitz’s decomposition of the portfolio variance Θ(t,t0) (1.2) is valid when all volumes of 

trades with all securities of the portfolio are assumed constant during the averaging interval. 

The current methods for selecting the portfolio with higher returns under lower variance that 

are based on decomposition Θ(t,t0) (1.2) are valid only for this approximation that neglects the 

impact of random trade volumes.  

The market-based portfolio selection that accounts for the influence of random volumes of 

market trades is more difficult. The expression of market-based portfolio variance Θ(t,t0) (3.11; 

4.9) reveals that the dependence of the portfolio risk on the risks of the securities that compose 

the portfolio is a more complex problem than it was described by Markowitz (1.2).  

To forecast the portfolio variance Θ(t,t0) (3.11; 4.9) at horizon T, one should predict the time 

series of the values and volumes of market trades with all securities of the portfolio at the same 

horizon T during the averaging interval Δ (2.4). That significantly complicates the forecasts of 

the portfolio variance and the methods for selecting optimal portfolios with lower variance and 

higher return. In this paper we don’t consider these problems. 
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Appendix A. Market-Based Means and Variances of a Security 

This Appendix gives brief derivations of the market-based means and variances of prices and 

returns of a market security that are based on the results (Olkhov, 2022-2025).  

Let us consider the equation (2.5) on the values C(ti), volumes U(ti), and prices p(ti) at time ti, 

i=1,..N, of market trades with a security during Δ (2.4): 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖) 𝑈(𝑡𝑖)     (A.1) 

We assess the n-th statistical moments of trade values C(t;n) and volumes U(t;n) by a finite 

number of N terms of time series during Δ in a generally accepted form: 𝐶(𝑡; 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)] =  1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1       ;         𝑈(𝑡; 𝑛) = 𝐸[𝑈𝑛(𝑡𝑖)] =  1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1    (A.2) 

We denote mathematical expectation E[..] of random trade values and volumes and recall that 

(A.2) gives the approximations of statistical moments by a finite number N of terms. The 

equation (A.1) prohibits independent definitions of statistical moments of values C(ti), volumes 

U(ti), and prices p(ti). We consider the trade values C(ti) and volumes U(ti) as the random 

variables that determine the market-based mean price p(t) (A.3) as the ratio of the total value 

CΣ(t;1) to the total volume UΣ(t;1) (A.4) of market trades that equals volume weighted average 

price (VWAP) (Berkowitz et al., 1988; Duffie and Dworczak, 2021): 𝑝(𝑡) = 𝐸𝑚[𝑝(𝑡𝑖)] = 𝐶𝛴(𝑡;1)𝑈𝛴(𝑡;1) = 1𝑈𝛴(𝑡;1) ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 = ∑ 𝑝(𝑡𝑖)𝜇(𝑡𝑖; 1)𝑁𝑖=1 = 𝐶(𝑡;1)𝑈(𝑡;1)  (A.3) 

We note Em[..] the market-based mathematical expectation to underline the distinctions with 

the generally accepted mathematical expectation E[..] (A.2) (Shiryaev, 1999; Shreve, 2004), 

which we call the frequency-based. We clarify the relations between the market-based Em[..] 

and the frequency-based E[..] mathematical expectations in App. D. The total values CΣ(t;1) 

to total volumes UΣ(t;1) (A.4) of market trades takes the form: 𝐶Σ(𝑡; 1) =  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1        ;         𝑈Σ(𝑡; 1) =  ∑ 𝑈(𝑡𝑖)𝑁𝑖=1     (A.4) 

The function μ(ti,1) (A.5) in (A.3) has the meaning of the weight function. 𝜇(𝑡𝑖; 1) = 𝑈(𝑡𝑖)𝑈Σ(𝑡;1)     ;     ∑ 𝜇(𝑡𝑖; 1)𝑁𝑖=1 = 1    (A.5) 

To derive the variance of price ϕ(t) (A.6) of a market security 𝜙(𝑡) = 𝐸𝑚 [(𝑝(𝑡𝑖) − 𝑝(𝑡))2] = 𝑣𝑎𝑟{𝑝(𝑡), 𝑝(𝑡)}   (A.6) 

one should consider the squares (A.7) of the equation (A.1):  𝐶2(𝑡𝑖) = 𝑝2(𝑡𝑖)𝑈2(𝑡𝑖)     (A.7) 

The equation (A.7) determines how the 2nd statistical moments of trade values C(t;2), volumes 

U(t;2) (A.2), and their covariance cov{C(t),U(t)} (A.8) determine the variance of price ϕ(t) 

(A.6). 
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𝑐𝑜𝑣{𝐶(𝑡), 𝑈(𝑡)} = 𝐸[(𝐶(𝑡𝑖) − 𝐶(𝑡; 1))(𝑈(𝑡𝑖) − 𝑈(𝑡; 1))] =   = 1𝑁 ∑ (𝐶(𝑡𝑖) − 𝐶(𝑡; 1))(𝑈(𝑡𝑖) − 𝑈(𝑡; 1))𝑁𝑖=1    (A.8) 

The equation (A.7) determines the weight function μ(ti,2) (A.9) that is similar to (A.3; A.5): 𝜇(𝑡𝑖; 2) = 𝑈2(𝑡𝑖)∑ 𝑈2(𝑡𝑖)𝑁𝑖=1     ;     ∑ 𝜇(𝑡𝑖; 2)𝑁𝑖=1 = 1    (A.9) 

The average Em[p2(ti)] must be consistent with the mean price p(t)= Em[p(ti)] (A.3) that is 

determined by the weight functions μ(ti,1) (A.5). To derive Em[p2(ti)] and the price variance 

ϕ(t) (A.6) that is consistent with the mean price p(t) (A.3) we define: 𝜙(𝑡) = 𝐸𝑚[(𝑝(𝑡𝑖) − 𝑝(𝑡))2] = ∑ (𝑝(𝑡𝑖) − 𝑝(𝑡))2𝜇(𝑡𝑖; 2)𝑁𝑖=1 = 𝐸𝑚[𝑝2(𝑡𝑖)] − 𝑝2(𝑡)   (A.10) 

We highlight that the mean price p(t) (A.3) in (A.10) is determined by the weight function 

μ(ti,1) (A.5), but not by μ(ti,2) (A.9). The definition of the price variance ϕ(t) (A.10) ties up the 

VWAP p(t) (A.3; A.5) and the averaging by the weight function μ(ti,2) (A.9). That defines the 

consistent values of the price variance ϕ(t) and Em[p2(ti)]. We refer to Olkhov (2022-2023) for 

further clarifications. One can calculate (A.10) as follows: 𝜙(𝑡) = ∑ 𝑝2(𝑡𝑖)𝑁𝑖=1 𝑤(𝑡𝑖; 2) − 2𝑝(𝑡) ∑ 𝑝(𝑡𝑖)𝜇(𝑡𝑖; 2)𝑁𝑖=1 + 𝑝2(𝑡) (A.11) 

From (A.2) and (A.7; A.9), obtain ∑ 𝑝2(𝑡𝑖)𝑁𝑖=1 𝜇(𝑡𝑖; 2) = 11𝑁 ∑ 𝑈2(𝑡𝑖)𝑁𝑖=1 1𝑁 ∑ 𝐶2(𝑡𝑖)𝑁𝑖=1 = 𝐶(𝑡;2)𝑈(𝑡;2)   (A.12) ∑ 𝑝(𝑡𝑖)𝜇(𝑡𝑖; 2)𝑁𝑖=1 = 11𝑁 ∑ 𝑈2(𝑡𝑖)𝑁𝑖=1 1𝑁 ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 𝑈(𝑡𝑖) = 𝐸[𝐶(𝑡)𝑈(𝑡)]𝑈(𝑡;2)    (A.13) 

We denote the joint mathematical expectation E[C(t)U(t)] of the values and volumes: 𝐸[𝐶(𝑡)𝑈(𝑡)] = 1𝑁 ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 𝑈(𝑡𝑖) = 𝐶(𝑡; 1)𝑈(𝑡; 1) + 𝑐𝑜𝑣{𝐶(𝑡), 𝑈(𝑡)}  (A.14) 

From (A.12-A.14), obtain  𝜙(𝑡) = 𝐶(𝑡;2)−2𝑝(𝑡)𝐶(𝑡;1)𝑈(𝑡;1)−2𝑝(𝑡)𝑐𝑜𝑣{𝐶(𝑡),𝑈(𝑡)}+𝑝2(𝑡)𝑈(𝑡;2)𝑈(𝑡;2) =    

𝐶(𝑡;2)−𝐶2(𝑡;1)+𝐶2(𝑡;1)−2𝑝(𝑡)𝐶(𝑡;1)𝑈(𝑡;1)+𝑝2(𝑡)𝑈2(𝑡;1)+𝑝2(𝑡)[𝑈(𝑡;2)−𝑈2(𝑡;1)]−2𝑝(𝑡)𝑐𝑜𝑣{𝐶(𝑡),𝑈(𝑡)}𝑈(𝑡;2)   (A.15) 

Finally, from (A.3; A.15), obtain the market-based variance ϕ(t) (A.16) of price of the security: 𝜙(𝑡) = Ψ𝐶(𝑡)+𝑝2(𝑡)Ψ𝑈(𝑡)−2𝑝(𝑡) 𝑐𝑜𝑣{𝐶(𝑡),𝑈(𝑡)}𝑈(𝑡;2)    (A.16) 

In (A.16) we denote the variance ΨC(t) (A.17) of trade values and the variance ΨU(t) (A.18) of 

trade volumes during Δ: Ψ𝐶(𝑡) = 𝐸 [(𝐶(𝑡𝑖) − 𝐶(𝑡; 1))2] = 1𝑁 ∑ (𝐶(𝑡𝑖) − 𝐶(𝑡; 1))2𝑁𝑖=1 = 𝐶(𝑡; 2) − 𝐶2(𝑡; 1)  (A.17) Ψ𝑈(𝑡) = 𝐸 [(𝑈(𝑡𝑖) − 𝑈(𝑡; 1))2] = 1𝑁 ∑ (𝑈(𝑡𝑖) − 𝑈(𝑡; 1))2𝑁𝑖=1 = 𝑈(𝑡; 2) − 𝑈2(𝑡; 1)  (A.18) 
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The mean price p(t) (A.3) and the variance ϕ(t) (A.16) of the price of a market security account 

for the impact of random volumes U(ti) of market trades during Δ (1.4).  

If one considers the approximation for which all trade volumes U(ti)=U are constant during Δ 

(2.4), then from (A.3) and (A.9; A.10), obtain the frequency-based approximations of the mean 

price p(t) (A.19) and variance ϕ(t) (A.20) of prices of a market security: 𝑖𝑓  𝑈(𝑡𝑖) = 𝑈 − 𝑐𝑜𝑛𝑠𝑡  ⇒  𝜇(𝑡𝑖; 1) = 𝑈(𝑡𝑖)∑ 𝑈(𝑡𝑖)𝑁𝑖=1 = 1𝑁        ;     𝜇(𝑡𝑖; 2) = 𝑈2(𝑡𝑖)∑ 𝑈2(𝑡𝑖)𝑁𝑖=1 = 1𝑁   𝑝(𝑡) = 𝐸𝑚[𝑝(𝑡𝑖)] = ∑ 𝑝(𝑡𝑖)𝜇(𝑡𝑖; 1)𝑁𝑖=1 = 1𝑁 ∑ 𝑝(𝑡𝑖)𝑁𝑖=1   (A.19) 𝜙(𝑡) = 𝐸𝑚 [(𝑝(𝑡𝑖) − 𝑝(𝑡))2] = ∑ (𝑝(𝑡𝑖) − 𝑝(𝑡))2𝜇(𝑡𝑖; 2)𝑁𝑖=1 = 1𝑁 ∑ (𝑝(𝑡𝑖) − 𝑝(𝑡))2𝑁𝑖=1 (A.20) 

The usual frequency-based assessments (A.19; A.20) neglect the impact of random trade 

volumes on the mean and variance of the price of a security. The expressions (A.19; A.20) use 

only random time series of prices p(ti), i=1,..N (Shiryaev, 1999; Shreve, 2004; Elton et al., 

2014). The neglecting of the impact of random trade volumes could result in significant errors 

for the assessments of the means and variances of big stakes of market securities and multi-

billion portfolios. The use of market-based means and variances of prices (A.3; A.16) that 

account for the impact of random volumes of market trades is mandatory for those who design 

reliable large market and macroeconomic models and forecasts. In particular, it is important 

for the developers of market and macroeconomic models like BlackRock's Aladdin and 

Asimov, JP Morgan, and the U.S. Fed. 

The derivation of higher market-based n-th statistical moments that determine market-based 

price probability with higher accuracy is given in Olkhov (2022). 

The derivations of the market-based mean and variance of returns are given in Olkhov (2023). 

However, the description of the mean and variance of returns with respect to the price of the 

market security at a specific time t0 in the past when the investor has collected his portfolio is 

a much simpler problem. We consider the gross return R(ti,t0) of price p(ti) of a market security 

at time ti with respect to its price p(t0) in the past at time t0 as: 𝑅(𝑡𝑖, 𝑡0) = 𝑝(𝑡𝑖)𝑝(𝑡0)    (A.21) 

The variance (A.23) of gross return R(ti,t0) (A.21) and net return r(ti,t0) (A.22) is the same: 𝑟(𝑡𝑖, 𝑡0) = 𝑝(𝑡𝑖)−𝑝(𝑡0)𝑝(𝑡0) = 𝑅(𝑡𝑖, 𝑡0) − 1    (A.22) 𝑣𝑎𝑟{𝑟(𝑡, 𝑡0)} = 𝐸[(𝑟(𝑡𝑖, 𝑡0) − 𝐸[𝑟(𝑡𝑖, 𝑡0)])2] = 𝐸[(𝑅(𝑡𝑖, 𝑡0) − 𝐸[𝑅(𝑡𝑖 , 𝑡0)])2] = 𝑣𝑎𝑟{𝑅(𝑡, 𝑡0)}   (A.23) 

The derivation of the mean and variance of returns (A.21) is much more convenient than for 

(A.22). To describe return R(ti,t0) (A.21), we introduce the equation (A.24), alike to (A.1): 
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𝐶(𝑡𝑖) = 𝑝(𝑡𝑖) ∙ 𝑈(𝑡𝑖) = 𝑝(𝑡𝑖)𝑝(𝑡0) ∙ 𝑝(𝑡0)𝑈(𝑡𝑖) = 𝑅(𝑡𝑖, 𝑡0)𝐶0(𝑡𝑖, 𝑡0)   𝐶(𝑡𝑖) = 𝑅(𝑡𝑖, 𝑡0)𝐶0(𝑡𝑖, 𝑡0)       ;        𝐶0(𝑡𝑖, 𝑡0) = 𝑝(𝑡0)𝑈(𝑡𝑖)  (A.24) 

The function C0(ti,t0) in (A.24) describes the value of the current trade volume U(ti) at the price 

p(t0) in the past at time t0. The return R(ti,t0) (A.21) at time ti is the ratio of the current trade 

value C(ti) of the trade volume U(ti) to its past value C0(ti,t0). The use of (A.24) results in the 

derivation of the market-based mean return R(t,t0) that is averaged during Δ (2.4) in the form 

that coincides with VWAP p(t) (A.3; A.19): 𝑅(𝑡, 𝑡0) = 𝐸𝑚[𝑅(𝑡𝑖, 𝑡0)] = 1∑ 𝐶0(𝑡𝑖,𝑡0)𝑁𝑖=1 ∑ 𝑅(𝑡𝑖, 𝑡0)𝐶0(𝑡𝑖, 𝑡0)𝑁𝑖=1 = 𝐶(𝑡;1)𝐶0(𝑡,𝑡0;1)   (A.25) 

The average C0(t,t0;1) (A.26) is determined similar to (A.2): 𝐶0(𝑡, 𝑡0; 1) = 1𝑁 ∑ 𝐶0(𝑡𝑖, 𝑡0)𝑁𝑖=1 = 𝑝(𝑡0)𝑈(𝑡; 1)   (A.26) 

From (A.25), obtain: 𝐶0(𝑡𝑖,𝑡0)∑ 𝐶0(𝑡𝑖,𝑡0)𝑁𝑖=1 = 𝑈(𝑡𝑖)∑ 𝑈(𝑡𝑖)𝑁𝑖=1 = 𝜇(𝑡𝑖; 1)      

The market-based mean return R(t,t0) (A.25) takes the form (A.3; A.27): 𝑅(𝑡, 𝑡0) = ∑ 𝑅(𝑡𝑖, 𝑡0)𝜇(𝑡𝑖; 1)𝑁𝑖=1 = 𝐸𝑚[𝑝(𝑡𝑖)]𝑝(𝑡0) = 𝑝(𝑡)𝑝(𝑡0)   (A.27) 

From (A.16) obtain the variance θ(t,t0) (A.28; A.29) of return of a market security: 𝜃(𝑡, 𝑡0) = 𝐸𝑚 [(𝑅(𝑡𝑖 , 𝑡0) − 𝑅(𝑡, 𝑡0))2] = 𝐸𝑚[(𝑝(𝑡𝑖)−𝑝(𝑡))2]𝑝2(𝑡0) = ∑ (𝑅(𝑡𝑖, 𝑡0) − 𝑅(𝑡, 𝑡0))2𝜇(𝑡𝑖; 2)𝑁𝑖=1  (A.28) 𝜃(𝑡, 𝑡0) = 𝜙(𝑡)𝑝2(𝑡0) = Ψ𝐶(𝑡)+𝑅2(𝑡,𝑡0)Ψ𝐶0(𝑡,𝑡0)−2𝑅(𝑡,𝑡0) 𝑐𝑜𝑣{𝐶(𝑡),𝐶0(𝑡,𝑡0)}𝐶0(𝑡,𝑡0;2)   (A.29) 

Function ΨC0(t,t0) (A.30) determines the variance of the past value C0(ti,t0) and 

cov{C(t),C0(t,t0)} (A.31) determines the covariance of the current C(ti) and past C0(ti,t0) trade 

values. The mean squares of the past values C0(t,t0;2) (A.32) are determined alike to (A.2): Ψ𝐶0(𝑡) = 1𝑁 ∑ (𝐶0(𝑡𝑖, 𝑡0) − 𝐶0(𝑡, 𝑡0; 1))2𝑁𝑖=1 = 𝐶0(𝑡, 𝑡0; 2) − 𝐶02(𝑡, 𝑡0; 1) (A.30) 𝑐𝑜𝑣{𝐶(𝑡), 𝐶0(𝑡, 𝑡0)} = 1𝑁 ∑ (𝐶(𝑡𝑖) − 𝐶(𝑡; 1))(𝐶0(𝑡𝑖, 𝑡0) − 𝐶0(𝑡, 𝑡0; 1))𝑁𝑖=1  (A.31) 𝐶0(𝑡, 𝑡0; 2) = 1𝑁  ∑ 𝐶02(𝑡𝑖, 𝑡0)𝑁𝑖=1    (A.32) 

The relations (A.25-A.32) determine the mean and variance of returns of a market security with 

respect to its price p(t0) in the past at time t0. 

If one considers the approximation for which all trade volumes U(ti) are assumed constant, 

then, similar to (A.19; A.20), from (A.25-A.32), obtain the frequency-based approximations of 

the mean R(t,t0) (A.33) and variance θ(t,t0) (A.34) of returns of a market security:  𝑅(𝑡, 𝑡0) = 𝐸𝑚[𝑅(𝑡𝑖, 𝑡0)] = 1𝑁 ∑ 𝑅(𝑡𝑖, 𝑡0)𝑁𝑖=1    (A.33) 
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𝜃(𝑡, 𝑡0) = 𝐸𝑚 [(𝑅(𝑡𝑖, 𝑡0) − 𝑅(𝑡, 𝑡0))2] = 1𝑁 ∑ (𝑅(𝑡𝑖, 𝑡0) − 𝑅(𝑡, 𝑡0))2𝑁𝑖=1  (A.34) 

The generally accepted frequency-based expressions of the mean R(t,t0) (A.33) and variance 

θ(t,t0) (A.34) of return describe the approximation for which all trade volumes are assumed 

constant. The frequency-based mean and variance (A.33; A.34) neglect the influence of the 

random volumes of market trades. Those who manage large stakes of securities and multi-

billion portfolios should keep that in mind. 

We highlight that Markowitz (1952) used the expression of the return R(t,t0) (1.1) of the 

portfolio that has absolutely the same form as VWAP p(t) (A.3) and market-based average 

return R(t,t0) (A.25; A.27). From (1.1), obtain:  𝑅(𝑡, 𝑡0) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝑋𝑗(𝑡0)𝐽𝑗=1 = 1𝑄𝛴(𝑡0) ∑ 𝑅𝑗(𝑡, 𝑡0)𝐶𝑗(𝑡0)𝐽𝐽=1     ;       𝑋𝑗(𝑡0) = 𝐶𝑗(𝑡0)𝑄𝛴(𝑡0)   (A.35) 

It is obvious that the return R(t,t0) (1.1; A.35) of the portfolio matches the form and the meaning 

of VWAP pj(t) (A.3) and the mean return R(t,t0) (A.25). We call Markowitz’s definition of the 

return R(t,t0) (1.1; A.35) of the portfolio Value Weighted Average Return, or VaWAR. We 

underline that there is no difference between determining the return of the portfolio R(t,t0) 

(A.35) via returns Rj(t,t0) of its numerous securities j=1,2,…J, and determining the mean price 

(A.3) or mean return R(t,t0) (A.25) of a market security via its N trade values at time ti during 

Δ (2.4). We consider that Markowitz (1952) has introduced the market-based averaging 

procedure as Value Weighted Averaging and Volume Weighted Averaging almost 35 years 

prior to Berkowitz et al. (1988). 

 

Appendix B. Covariances of Prices and Returns of Securities j and k 

The description of the market-based covariance σjk(t) (B.1) of prices pj(ti) and pk(ti) (2.5) of 

securities j and k at time t during Δ (2.4) follows (Olkhov, 2025).  𝜎𝑗𝑘(𝑡) = 𝑐𝑜𝑣{𝑝𝑗(𝑡), 𝑝𝑘(𝑡)} = 𝐸𝑚[(𝑝𝑗(𝑡𝑖) − 𝑝𝑗(𝑡)) (𝑝𝑘(𝑡𝑖) − 𝑝𝑘(𝑡))] (B.1) 

To define the market-based mathematical expectation Em[..] in (B.1), we consider the product 

(B.2) of two equations (2.5) that describe the securities j and k: 𝐶𝑗(𝑡𝑖)𝐶𝑘(𝑡𝑖) = 𝑝𝑗(𝑡𝑖)𝑝𝑘(𝑡𝑖) 𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)   (B.2) 

The same reasons that approve the derivation of the variance ϕ(t) (A.10) of prices allow 

determine the covariance σjk(t) (B.3) of prices pj(ti) and pk(ti) in a similar form: 𝜎𝑗𝑘(𝑡) = 1𝑈𝑗𝑘(𝑡) 1𝑁 ∑ (𝑝𝑗(𝑡𝑖) − 𝑝𝑗(𝑡)) (𝑝𝑘(𝑡𝑖) − 𝑝𝑘(𝑡))𝑁𝑖=1 𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖) (B.3) 𝑈𝑗𝑘(𝑡) = 𝐸[𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)] = 1𝑁 ∑ 𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)𝑁𝑖=1   (B.4) 
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Simple transformations of (B.3) give: 𝜎𝑗𝑘(𝑡) = 1𝑈𝑗𝑘(𝑡) [ 1𝑁 ∑ 𝑝𝑗(𝑡𝑖)𝑝𝑘(𝑡𝑖)𝑁𝑖=1 𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖) − 𝑝𝑘(𝑡) 1𝑁 ∑ 𝑝𝑗(𝑡𝑖)𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)𝑁𝑖=1 −𝑝𝑗(𝑡) 1𝑁 ∑ 𝑝𝑘(𝑡𝑖)𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)𝑁𝑖=1 ] + 𝑝𝑗(𝑡)𝑝𝑘(𝑡)    1𝑁 ∑ 𝑝𝑗(𝑡𝑖)𝑝𝑘(𝑡𝑖)𝑁𝑖=1 𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖) = 1𝑁 ∑ 𝐶𝑗(𝑡𝑖)𝐶𝑘(𝑡𝑖)𝑁𝑖=1 = 𝐸[𝐶𝑗(𝑡𝑖)𝐶𝑘(𝑡𝑖)]   1𝑁 ∑ 𝑝𝑗(𝑡𝑖)𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)𝑁𝑖=1 = 1𝑁 ∑ 𝐶𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)𝑁𝑖=1 = 𝐸[𝐶𝑗(𝑡𝑖)𝐶𝑘(𝑡𝑖)]   

From the above, obtain the expression for the covariance σjk(t): 𝜎𝑗𝑘(𝑡) = 𝐸[𝐶𝑗(𝑡𝑖)𝐶𝑘(𝑡𝑖)]−𝑝𝑘(𝑡)𝐸[𝐶𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)]−𝑝𝑗(𝑡)𝐸[𝑈𝑗(𝑡𝑖)𝐶𝑘(𝑡𝑖)]𝐸[𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)] + 𝑝𝑗(𝑡)𝑝𝑘(𝑡) (B.5) 

One can present the joint mathematical expectations of values and volumes as:  𝐸[𝐶𝑗(𝑡𝑖)𝐶𝑘(𝑡𝑖)] = 𝐶𝑗(𝑡; 1)𝐶𝑘(𝑡; 1) + 𝑐𝑜𝑣{𝐶𝑗(𝑡), 𝐶𝑘(𝑡)}    𝐸[𝐶𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)] = 𝐶𝑗(𝑡; 1)𝑈𝑘(𝑡; 1) + 𝑐𝑜𝑣{𝐶𝑗(𝑡), 𝑈𝑘(𝑡)}    𝐸[𝑈𝑗(𝑡𝑖)𝑈𝑘(𝑡𝑖)] = 𝑈𝑗(𝑡; 1)𝑈𝑘(𝑡; 1) + 𝑐𝑜𝑣{𝑈𝑗(𝑡), 𝑈𝑘(𝑡)}    𝑐𝑜𝑣{𝐶𝑗(𝑡), 𝑈𝑘(𝑡)} = 1𝑁 ∑ [𝐶𝑗(𝑡𝑖) − 𝐶𝑗(𝑡; 1)][𝑈𝑘(𝑡𝑖)𝑁𝑖=1 − 𝑈𝑘(𝑡; 1)]  (B.6) 

Simple calculations give that the sum of terms with mean values and volumes equal zero: 𝐶𝑗(𝑡; 1)𝐶𝑘(𝑡; 1) − 𝑝𝑘(𝑡)𝐶𝑗(𝑡; 1)𝑈𝑘(𝑡; 1) = 𝐶𝑗(𝑡; 1)[𝐶𝑘(𝑡; 1) − 𝑝𝑘(𝑡)𝑈𝑘(𝑡; 1)] = 0   𝑝𝑗(𝑡)𝑈𝑗(𝑡; 1)𝐶𝑘(𝑡; 1) − 𝑝𝑗(𝑡)𝑝𝑘(𝑡)𝑈𝑗(𝑡; 1)𝑈𝑘(𝑡; 1) = 𝑝𝑗(𝑡)𝑈𝑗(𝑡; 1)[𝐶𝑘(𝑡; 1) − 𝑝𝑘(𝑡)𝑈𝑘(𝑡; 1)] = 0  

Finally, obtain the covariance σjk(t) (B.7) of prices pj(ti) and pk(ti) of the securities j and k: 𝜎𝑗𝑘(𝑡) = 𝑐𝑜𝑣{𝐶𝑗(𝑡),𝐶𝑘(𝑡)}−𝑝𝑘(𝑡)𝑐𝑜𝑣{𝐶𝑗(𝑡),𝑈𝑘(𝑡)}−𝑝𝑗(𝑡)𝑐𝑜𝑣{𝑈𝑗(𝑡),𝐶𝑘(𝑡)}+𝑝𝑗(𝑡)𝑝𝑘(𝑡)𝑐𝑜𝑣{𝑈𝑗(𝑡),𝑈𝑘(𝑡)}𝑈𝑗𝑘(𝑡)   (B.7) 

We underline that the market-based covariance σjk(t) (B.7) of prices of securities j and k is 

determined by the covariances (B.6) of trade volumes and values of these securities. 

The symmetry of terms pk(t)cov{Cj(t),Uk(t)} and pj(t)cov{Uj(t),Ck(t)} allows express them: −𝑝𝑘(𝑡)𝑐𝑜𝑣{𝐶𝑗(𝑡), 𝑈𝑘(𝑡)} − 𝑝𝑗(𝑡)𝑐𝑜𝑣{𝑈𝑗(𝑡), 𝐶𝑘(𝑡)} = −2𝑝𝑘(𝑡)𝑐𝑜𝑣{𝐶𝑗(𝑡), 𝑈𝑘(𝑡)} 

We define ψjk(t), χjk(t), and φjk(t) (B.8; B.9) alike to the coefficients of variations (4.4):  𝜓𝑗𝑘(𝑡) =  𝑐𝑜𝑣{𝑐𝑗(𝑡),𝑐𝑘(𝑡)}𝑐𝑗(𝑡;1)𝑐𝑘(𝑡;1) = 𝑐𝑜𝑣{𝐶𝑗(𝑡),𝐶𝑘(𝑡)}𝐶𝑗(𝑡;1)𝐶𝑘(𝑡;1)    ;   𝜑𝑗𝑘(𝑡) = 𝑐𝑜𝑣{𝑐𝑗(𝑡),𝑢𝑘(𝑡)}𝑐𝑗(𝑡;1)𝑢𝑘(𝑡;1) = 𝑐𝑜𝑣{𝐶𝑗(𝑡),𝑈𝑘(𝑡)}𝐶𝑗(𝑡;1)𝑈𝑘(𝑡;1)   (B.8) 

𝜒𝑗𝑘(𝑡) =  𝑐𝑜𝑣{𝑢𝑗(𝑡),𝑢𝑘(𝑡)}𝑢𝑗(𝑡;1)𝑢𝑘(𝑡;1) = 𝑐𝑜𝑣{𝑈𝑗(𝑡),𝑈𝑘(𝑡)}𝑈𝑗(𝑡;1)𝑈𝑘(𝑡;1)     ;    𝑈𝑗𝑘(𝑡) = 𝑈𝑗(𝑡; 1)𝑈𝑘(𝑡; 1)[1 + 𝜒𝑗𝑘(𝑡)] (B.9) 

One can present (B.7) as: 

𝜎𝑗𝑘(𝑡) = 𝑐𝑜𝑣{𝐶𝑗(𝑡),𝐶𝑘(𝑡)}𝐶𝑗(𝑡;1)𝐶𝑘(𝑡;1) 𝐶𝑗(𝑡;1)𝐶𝑘(𝑡;1)−2𝑝𝑘(𝑡)𝑐𝑜𝑣{𝐶𝑗(𝑡),𝑈𝑘(𝑡)}𝐶𝑗(𝑡;1)𝑈𝑘(𝑡;1) 𝐶𝑗(𝑡;1)𝑈𝑘(𝑡;1)+𝑝𝑗(𝑡)𝑝𝑘(𝑡)𝑐𝑜𝑣{𝑈𝑗(𝑡),𝑈𝑘(𝑡)}𝑈𝑗(𝑡;1)𝑈𝑘(𝑡;1)𝑈𝑗(𝑡;1)𝑈𝑘(𝑡;1)𝑈𝑗(𝑡;1)𝑈𝑘(𝑡;1)[1+𝜒𝑗𝑘(𝑡)]   

Functions ψjk(t), χjk(t), and φjk(t) (B.8; B.9) describe the covariances of trade values and 

volumes of securities j and k that are normalized to unit means. The expression for Ujk(t) 
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follows from (B.4). The use of (B.8; B.9) and relations between mean trade values Cj(t;1), 

volumes Uj(t;1), and prices pj(t) (A.3) gives the covariance σjk(t) of prices: 𝜎𝑗𝑘(𝑡) = 𝜓𝑗𝑘(𝑡)−2𝜑𝑗𝑘(𝑡)+𝜒𝑗𝑘(𝑡)1+𝜒𝑗𝑘(𝑡)  𝑝𝑗(𝑡)𝑝𝑘(𝑡)   (B.10) 

The expression (B.10) presents the covariance σjk(t) of prices of securities j and k as covariances 

of normalized to unit means trade values and volumes of securities j and k.  

To derive the covariance θjk(t,t0) of returns of the securities j and k with respect to their prices 

pj(t0) and pk(t0) in the past at time t0 when the investor composed his portfolio, we introduce 

the equation (B.11) that has a form similar to (A.24) and (B.2) and obtain: 𝐶𝑗(𝑡𝑖)𝐶𝑘(𝑡𝑖) = 𝑅𝑗(𝑡𝑖, 𝑡0)𝑅𝑘(𝑡𝑖, 𝑡0)𝐶0𝑗(𝑡𝑖, 𝑡0)𝐶0𝑘(𝑡𝑖, 𝑡0)   (B.11) 

From (B.11), obtain the covariance θjk(t,t0) of returns of securities j and k: 𝜃𝑗𝑘(𝑡, 𝑡0) = 𝑣𝑎𝑟{𝑅𝑗(𝑡, 𝑡0), 𝑅𝑘(𝑡, 𝑡0)} = 𝐸𝑚 [(𝑅𝑗(𝑡𝑖, 𝑡0) − 𝑅𝑗(𝑡, 𝑡0)) (𝑅𝑘(𝑡𝑖, 𝑡0) − 𝑅𝑘(𝑡, 𝑡0))] =𝐸𝑚 [(𝑝𝑗(𝑡𝑖)−𝑝𝑗(𝑡)𝑝𝑗(𝑡0) ) (𝑝𝑘(𝑡𝑖)−𝑝𝑘(𝑡)𝑝𝑘(𝑡0) )] = 𝜎𝑗𝑘(𝑡)𝑝𝑗(𝑡0)𝑝𝑘(𝑡0)   (B.12) 

From (B.7; B.12), obtain the covariance θjk(t,t0) of returns: 𝜃𝑗𝑘(𝑡, 𝑡0) = 𝑐𝑜𝑣{𝐶𝑗(𝑡),𝐶𝑘(𝑡)}−𝑅𝑘(𝑡,𝑡0)𝑐𝑜𝑣{𝐶𝑗(𝑡),𝐶0𝑘(𝑡,𝑡0)}𝐶0𝑗𝑘(𝑡,𝑡0) −    − 𝑅𝑗(𝑡,𝑡0)𝑐𝑜𝑣{𝐶0𝑗(𝑡,𝑡0),𝐶𝑘(𝑡)}−𝑅𝑗(𝑡,𝑡0)𝑅𝑘(𝑡,𝑡0)𝑐𝑜𝑣{𝐶0𝑗(𝑡,𝑡0),𝐶0𝑘(𝑡,𝑡0)}𝐶0𝑗𝑘(𝑡,𝑡0)   (B.13) 

The functions C0j(ti,t0) in (B.12) defines the past values of the current trade volume Uj(ti) at 

price pj(t0) at time t0. The function C0jk(t,t0) in (B.13) describes the joint mathematical 

expectation (B.14) of the product of past values of securities j and k at time t0 𝐶0𝑗𝑘(𝑡, 𝑡0) = 𝐸[𝐶0𝑗(𝑡𝑖, 𝑡0)𝐶0𝑘(𝑡𝑖, 𝑡0)] = 1𝑁 ∑ 𝐶0𝑗(𝑡𝑖, 𝑡0)𝑁𝑖=1 𝐶0𝑘(𝑡𝑖, 𝑡0) (B.14) 

One can present the covariance θjk(t,t0) (B.13) in the form similar to (B.10) and (A.29): 𝜃𝑗𝑘(𝑡, 𝑡0) = 𝜎𝑗𝑘(𝑡)𝑝𝑗(𝑡0)𝑝𝑘(𝑡0) =  𝜓𝑗𝑘(𝑡)−2𝜑𝑗𝑘(𝑡)+𝜒𝑗𝑘(𝑡)1+𝜒𝑗𝑘(𝑡)  𝑅𝑗(𝑡, 𝑡0)𝑅𝑘(𝑡, 𝑡0)  (B.15) 

The market-based covariance θjk(t,t0) (B.15) of returns of the securities j and k is determined 

by the coefficients of covariances ψjk(t), φjk(t) (B.8), and χjk(t) (B.9). 

If one considers the approximation for which all trade volumes Uj(ti) with all securities that 

compose the portfolio are assumed constant during Δ, then the covariance σjk(t) (B.10) and the 

covariance θjk(t,t0) (B.15) take the frequency-based forms. If Uj(ti)=Uj constant, then:  𝑐𝑜𝑣{𝐶𝑗(𝑡), 𝑈𝑘(𝑡)} = 𝑐𝑜𝑣{𝑈𝑗(𝑡), 𝐶𝑘(𝑡)} = 𝑐𝑜𝑣{𝑈𝑗(𝑡), 𝑈𝑘(𝑡)} = 0   𝑐𝑜𝑣{𝐶𝑗(𝑡), 𝐶𝑘(𝑡)} = 1𝑁 ∑ (𝐶𝑗(𝑡𝑖) − 𝐶𝑗(𝑡; 1))(𝐶𝑘(𝑡𝑖) − 𝐶𝑘(𝑡; 1))𝑁𝑖=1 =  = 𝑈𝑗𝑈𝑘𝑁 ∑ (𝑝𝑗(𝑡𝑖) − 𝑝𝑗(𝑡))(𝑝𝑘(𝑡𝑖) − 𝑝𝑘(𝑡))𝑁𝑖=1     
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𝑈𝑗𝑘(𝑡) = 1𝑁 ∑ 𝑈𝑗𝑈𝑘𝑁𝑖=1 = 𝑈𝑗𝑈𝑘     

For that case, the covariance σjk(t) (B.10) takes the frequency-based approximation (B.16):  𝜎𝑗𝑘(𝑡) = 1𝑁 ∑ (𝑝𝑗(𝑡𝑖) − 𝑝𝑗(𝑡))(𝑝𝑘(𝑡𝑖) − 𝑝𝑘(𝑡))𝑁𝑖=1    (B.16) 

The covariance θjk(t,t0) (B.13; B.15) takes the frequency-based approximation (B.17):  𝜃𝑗𝑘(𝑡, 𝑡0) = 1𝑁  ∑ (𝑅𝑗(𝑡𝑖, 𝑡0) − 𝑅𝑗(𝑡, 𝑡0)) (𝑅𝑘(𝑡𝑖, 𝑡0) − 𝑅𝑘(𝑡, 𝑡0))𝑁𝑖=1   (B.17)  

 

Appendix C. The Decompositions of Means and Variances  

The decompositions of the portfolio’s mean price s(t) (2.17; 3.19) and the variance Φ(t) (3.21) 

of prices and variance Θ(t,t0) (3.22) of returns are determined by the time series of trade values 

Q(ti) and volumes W(ti) (2.13-2.17) that depend on the sums of the normalized values cj(ti) and 

volumes uj(ti) (2.11) of market trades of the securities j=1,2,..J, which compose the portfolio. 

The change of the order of sums defines the expressions of the decompositions. 

C.1 The decomposition of the mean price s(t) of the portfolio. 

 We use (2.13; 2.14; 3.19), and obtain: 𝑠(𝑡) = 1𝑊𝛴(𝑡0) ∑ 𝑠(𝑡𝑖)𝑊(𝑡𝑖)𝑁𝑖=1 = 1𝑊𝛴(𝑡0) ∑ 𝑄(𝑡𝑖)𝑁𝑖=1 = 1𝑊𝛴(𝑡0) ∑ ∑ 𝑐𝑗(𝑡𝑖)𝐽𝑗=1𝑁𝑖=1   (C.1) 

We express cj(ti) due to (2.10; 2.11), and change the order of sums: 𝑠(𝑡) = 1𝑊𝛴(𝑡0) ∑ ∑ 𝑝𝑗(𝑡𝑖) 𝑢𝑗(𝑡𝑖)𝐽𝑗=1𝑁𝑖=1 = ∑ 𝑈𝑗(𝑡0)𝑊𝛴(𝑡0)𝐽𝑗=1 1𝑈𝑗(𝑡0) ∑ 𝑝𝑗(𝑡𝑖) 𝑢𝑗(𝑡𝑖)𝑁𝑖=1     

From (A.3) and (2.10), obtain: 𝑠(𝑡) = ∑ 𝑝𝑗(𝑡)𝐽𝑗=1  𝑥𝑗(𝑡0)      ;        𝑥𝑗(𝑡0) = 𝑈𝑗(𝑡0)𝑊𝛴(𝑡0)   (C.2) 

We remind that Uj(t0) is a number of shares of the security j in the portfolio at time t0. The 

investor holds his portfolio and the number of shares of each security remain unchanged. 

Relations (C.2) give the decomposition of the mean price s(t) (C.1) of the portfolio during the 

averaging interval Δ (2.4) by the mean prices pj(t) (A.3) of the securities that compose the 

portfolio. Coefficients xj(t0) in (C.2) describe the relative numbers of shares of the security j in 

the portfolio. 

C.2 The decomposition of the variance Φ(t) of prices of the portfolio 

To derive the decomposition of the variance Φ(t) (3.21) of prices of the portfolio by the 

securities j=1,2,..J of the portfolio during Δ (2.4) we use (4.5; A.10; A.11) and substitut 

variables (3.18) to obtain the variance Φ(t) (C.3) of prices of the portfolio: 𝛷(𝑡) = 1𝑊(𝑡;2) 1𝑁  ∑ (𝑠(𝑡𝑖) − 𝑠(𝑡))2𝑊2(𝑡𝑖)𝑁𝑖=1    (C.3) 
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We replace the notions (A.16-A.18) of securities by the similar notions of the portfolio: Ψ𝐶(𝑡) → Ψ𝑄(𝑡)    ;   Ψ𝑈(𝑡) → Ψ𝑊(𝑡)     ;    𝑐𝑜𝑣{𝐶(𝑡), 𝑈(𝑡)} → 𝑐𝑜𝑣{𝑄(𝑡), 𝑊(𝑡)}  (C.4)  𝑝(𝑡) → 𝑠(𝑡)     ;        𝑈(𝑡; 2) → 𝑊(𝑡; 2)   (C.5) 

Similar to (A.16), obtain the expression of the variance Φ(t) of prices of the portfolio as a 

function of the variances of the portfolio’s values ΨQ(t), volumes ΨW(t) and their covariance 

cov{Q(t),W(t)} and as a function of the coefficients of variation of the portfolio trade values 

(t), volumes (t), and their normalized covariance (t) (4.4):  𝛷(𝑡) = Ψ𝑄(𝑡)+𝑠2(𝑡)Ψ𝑊(𝑡)−2𝑠(𝑡) 𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}𝑊(𝑡;2) = 𝜓2(𝑡)−2 𝜑(𝑡)+𝜒2(𝑡)1+𝜒2(𝑡)  𝑠2(𝑡)  (C.6) 

The definition of the values Q(ti) and volumes W(ti) (2.13) by sums of normalized values cj(ti) 

and volumes uj(ti) (2.11) help change the orders of sums and transform the variances of the 

portfolio’s values ΨQ(t), volumes ΨW(t) and their covariance cov{Q(t),W(t)}: Ψ𝑄(𝑡) = 1𝑁 ∑ (𝑄(𝑡𝑖) − 𝑄(𝑡; 1))2𝑁𝑖=1 = 𝑄(𝑡; 2) − 𝑄2(𝑡; 1)  ;   Ψ𝑊(𝑡) = 𝑊(𝑡; 2) − 𝑊2(𝑡; 1)   𝑐𝑜𝑣{𝑄(𝑡), 𝑊(𝑡)} = 1𝑁 ∑ (𝑄(𝑡𝑖) − 𝑄(𝑡; 1))𝑁𝑖=1 (𝑊(𝑡𝑖) − 𝑊(𝑡; 1)) = 𝐸[𝑄(𝑡𝑖)𝑊(𝑡𝑖)] − 𝑄(𝑡; 1)𝑊(𝑡; 1)  𝑄(𝑡; 2) = 1𝑁 ∑ 𝑄2(𝑡𝑖)𝑁𝑖=1 = 1𝑁  ∑ ∑ 𝑐𝑗(𝑡𝑖)𝑐𝑘(𝑡𝑖)𝐽𝑗,𝑘=1𝑁𝑖=1 = ∑ 𝐸[𝑐𝑗(𝑡𝑖)𝑐𝑘(𝑡𝑖)]𝐽𝑗,𝑘=1    𝐸[𝑄(𝑡𝑖)𝑊(𝑡𝑖)] = 1𝑁 ∑ 𝑄(𝑡𝑖)𝑊(𝑡𝑖)𝑁𝑖=1 = ∑ 𝐸[𝑐𝑗(𝑡𝑖)𝑢𝑘(𝑡𝑖)]𝐽𝑗,𝑘=1     𝑊(𝑡; 2) = 1𝑁 ∑ 𝑊2(𝑡𝑖)𝑁𝑖=1 = ∑ 𝐸[𝑢𝑗(𝑡𝑖)𝑢𝑘(𝑡𝑖)]𝐽𝑗,𝑘=1     

The use of (C.4; C.5) and (B.5-B.7) give the decomposition of the variance Φ(t) (C.6) of prices 

of the portfolio: 𝛷(𝑡) = 1𝑊(𝑡;2) ∑ [𝑐𝑜𝑣{𝑐𝑗(𝑡), 𝑐𝑘(𝑡)}𝐽𝑗,𝑘=1 − 2𝑠(𝑡)𝑐𝑜𝑣{𝑐𝑗(𝑡), 𝑢𝑘(𝑡)}  + 𝑠2(𝑡)𝑐𝑜𝑣{𝑢𝑗(𝑡), 𝑢𝑘(𝑡)}] (C.7) 

The use of functions ψjk(t), χjk(t), and φjk(t) (B.8; B.9) and (4.4; 4.5) transforms the 

decomposition of the variance Φ(t) (C.7) as: 𝛷(𝑡) = ∑ 𝑝𝑗(𝑡)𝑝𝑘(𝑡)𝜓𝑗𝑘(𝑡) −2𝑠(𝑡)𝑝𝑗(𝑡)𝜑𝑗𝑘(𝑡)+𝑠2(𝑡)𝜒𝑗𝑘(𝑡)1+𝜒2(𝑡)𝐽𝑗,𝑘=1  𝑥𝑗(𝑡0)𝑥𝑘(𝑡0)  (C.8) 

The coefficients xj(t0) in (C.8) define the relative numbers (2.3) of the shares Uj(t0) of securities 

j in the total number of shares WΣ(t0) of the portfolio. However, the decomposition (C.8) hides 

the dependence of the decomposition of the mean price s(t) (C.2) of the portfolio. Let us 

substitute (C.2) into (C.8) and obtain the final decomposition of the variance Φ(t) (C.9) of 

prices of the portfolio: 𝛷(𝑡) = 11+𝜒2(𝑡) [ ∑ 𝜓𝑗𝑘(𝑡)𝐽𝑗,𝑘=1 𝑝𝑗(𝑡)𝑝𝑘(𝑡) 𝑥𝑗(𝑡0)𝑥𝑘(𝑡0) −     −2 ∑ 𝜑𝑗𝑘(𝑡)𝐽𝑗,𝑘,𝑙 𝑝𝑗(𝑡)𝑝𝑙(𝑡) 𝑥𝑗(𝑡0)𝑥𝑘(𝑡0)𝑥𝑙(𝑡0)    + ∑ 𝜒𝑗𝑘(𝑡)𝐽𝑗𝑘𝑙𝑓 𝑝𝑙(𝑡)𝑝𝑓(𝑡) 𝑥𝑗(𝑡0)𝑥𝑘(𝑡0)𝑥𝑙(𝑡0)𝑥𝑓(𝑡0) ]  (C.9) 
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The decomposition of the variance Φ(t) (C.9) of prices of the portfolio is a polynomial of the 

4th degree by the relative numbers xj(t0) (2.3) of the shares Uj(t0) of security j. The variance 

Φ(t) of prices of the portfolio (C.6; C.8; C.9) accounts for the impact of random trade volumes.  

For the approximation when all volumes uj(ti) of all market trades with securities j=1,2,…J, 

that compose the portfolio are assumed constant during Δ (2.4), then the variance Φ(t) (C.8; 

C.9) of prices takes the quadratic form (C.10) for σjk(t) (B.16): 𝛷(𝑡) = ∑ 𝜎𝑗𝑘(𝑡)𝐽𝑗,𝑘=1 𝑥𝑗(𝑡0)𝑥𝑘(𝑡0)    (C.10) 

C.3 The decomposition of the mean return R(t,t0) of the portfolio 

The return R(ti,t0) of the portfolio with price s(ti) (2.14) at time ti during Δ (2.4) with respect to 

price s(t0) (2.3) of the portfolio at time t0 follows (A.21): 𝑅(𝑡𝑖, 𝑡0) = 𝑠(𝑡𝑖)𝑠(𝑡0) = 𝑄(𝑡𝑖)𝑠(𝑡0)𝑊(𝑡𝑖)    (C.11) 

The mean return R(t,t0) and its decomposition (C.12) follow the mean price s(t) (C.1) of the 

portfolio and its decomposition (C.2): 𝑅(𝑡, 𝑡0) = 𝑠(𝑡)𝑠(𝑡0) = ∑ 𝑝𝑗(𝑡)𝑝𝑗(𝑡0)𝐽𝑗=1  𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊𝛴(𝑡0) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1  𝑋𝑗(𝑡0)  (C.12) 𝑋𝑗(𝑡0) = 𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊𝛴(𝑡0) = 𝐶𝑗(𝑡0)𝑄𝛴(𝑡0)     (C.13) 

We remind that pj(t0) (2.1) is the price of the security j of the portfolio at time t0. The 

decomposition (C.12) coincides with (1.1) and the coefficients Xj(t0) (C.13) describe the 

relative amounts invested into security j=1,2,..J at time t0. 

C.4 The decomposition of the variance Θ(t,t0) of returns of the portfolio 

The substitutions (C.4; C.5) define the variance Θ(t,t0) (C.14) of returns of the portfolio, similar 

to the variance θ(t,t0) (A.29) of returns of a security: 𝛩(𝑡, 𝑡0) = 𝛷(𝑡)𝑠2(𝑡0) = 𝜓2(𝑡)−2 𝜑(𝑡)+𝜒2(𝑡)1+𝜒2(𝑡)  𝑅2(𝑡, 𝑡0) = Ψ𝑄(𝑡)+𝑅2(𝑡,𝑡0)Ψ𝑄0(𝑡,𝑡0)−2𝑅(𝑡,𝑡0) 𝑐𝑜𝑣{𝑄(𝑡),𝑄0(𝑡,𝑡0)}𝑄0(𝑡,𝑡0;2)  (C.14) 𝑄0(𝑡𝑖, 𝑡0) = 𝑠(𝑡0)𝑊(𝑡𝑖)    (C.15) 

Q0(ti,t0) (C.15) denotes  the value of the current trade volume W(ti) of the portfolio in the past 

at price s(t0) at time t0. The decomposition of the variance Θ(t,t0) (C.16) of returns of the 

portfolio by the securities that compose the portfolio is completely the same as the 

decomposition of the variance Φ(t) (C.7) of prices of the portfolio. 𝛩(𝑡, 𝑡0) = 1𝑄0(𝑡,𝑡0;2) ∑ [𝑐𝑜𝑣{𝑐𝑗(𝑡), 𝑐𝑘(𝑡)}𝐽𝑗,𝑘=1 − 2𝑅(𝑡, 𝑡0)𝑐𝑜𝑣{𝑐𝑗(𝑡), 𝑐0𝑘(𝑡, 𝑡0)}  +   +𝑅2(𝑡, 𝑡0)𝑐𝑜𝑣{𝑐0𝑗(𝑡, 𝑡0), 𝑐0𝑘(𝑡, 𝑡0)}]    (C.16) 

The function Q0(t,t0;2) in (C.16) is determined similar to (A.32): 𝑄0(𝑡, 𝑡0; 2) = 1𝑁 ∑ 𝑄02(𝑡𝑖, 𝑡0)𝑁𝑖=1       
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The use of (4.4; 4.5) gives the decomposition of the variance Θ(t,t0) (C.17) similar to (C.9): 𝛩(𝑡, 𝑡0) = 11+𝜒2(𝑡) [ ∑ 𝜓𝑗𝑘(𝑡)𝐽𝑗,𝑘=1 𝑅𝑗(𝑡, 𝑡0)𝑅𝑘(𝑡, 𝑡0) 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0) −     −2 ∑ 𝜑𝑗𝑘(𝑡)𝐽𝑗,𝑘,𝑙 𝑅𝑗(𝑡, 𝑡0)𝑅𝑙(𝑡, 𝑡0) 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)𝑋𝑙(𝑡0)    + ∑ 𝜒𝑗𝑘(𝑡)𝐽𝑗𝑘𝑙𝑓 𝑅𝑙(𝑡, 𝑡0)𝑅𝑓(𝑡, 𝑡0) 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)𝑋𝑙(𝑡0)𝑋𝑓(𝑡0) ]  (C.17) 

The decomposition of the variance Θ(t,t0) (C.17) of returns of the portfolio is a polynomial of 

the 4th degree by the relative amounts Xj(t0) (C.13) invested into the security j at time t0. That 

is rather different from the quadratic form (1.2) derived by Markowitz (1952). Such distinctions 

highlight the influence of the random volumes Uj(ti) of trades with securities j=1,2,..J that 

compose the portfolio. The market-based decomposition of the variance Θ(t,t0) (C.17) makes 

the search for higher returns under lower variance a much more complex problem. 

For the approximation when all trade volumes uj(ti) with securities of the portfolio are assumed 

constant during Δ:  𝐼𝑓 𝑢𝑘(𝑡𝑖) − 𝑐𝑜𝑛𝑠𝑡, 𝑡ℎ𝑒𝑛 ∶   𝑐𝑜𝑣{𝑐𝑗(𝑡), 𝑐0𝑘(𝑡, 𝑡0)} = 𝑐𝑜𝑣{𝑐0𝑗(𝑡, 𝑡0), 𝑐0𝑘(𝑡, 𝑡0)} = 0   

the portfolio variance Θ(t,t0) (C.17) takes the form (1.2; C.18) that was derived by Markowitz. 𝛩(𝑡, 𝑡0) = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝐽𝑗,𝑘 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)    (C.18) 

We repeat that the variance Φ(t) (C.10) of prices of the portfolio and the variance Θ(t,t0) (1.2; 

C.18) of the returns of the portfolio describe the approximation for which all volumes Uj(ti) of 

trades with all securities j=1,2,..J of the portfolio are assumed constant during Δ (2.4). The 

expressions (C.10; 1.2) neglect the impact of random volumes of trades with securities. 

 

Appendix D. Market-Based and Frequency-Based Statistical Moments  

In this Appendix, we briefly discuss the economic meaning of the distinctions between the 

market-based and the frequency-based valuations of the statistical moments of prices and 

returns of market securities and of the portfolio. One can find more details in Olkhov (2022-

2025). We use Em[..] to distinguish the market-based mathematical expectation from the 

frequency-based E[..] that is generally accepted (Shiryaev, 1999; Shreve, 2004) and denote the 

market-based p(t;n) and the frequency-based π(t;n) (D.1) statistical moments of prices:  𝑝(𝑡; 𝑛) = 𝐸𝑚[𝑝𝑛(𝑡𝑖)]           ;         𝜋(𝑡; 𝑛) = 𝐸[𝑝𝑛(𝑡𝑖)] = 1𝑁  ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1  (D.1) 

In the main text and in the App.A-C we denoted the average price p(t), but in this App.D we 

denote average price as p(t;1) (D.1). We use a frequency-based definition to assess the n-th 

statistical moments of the values C(t;n) and volumes U(t;n) (A.2; D.2) of market trades: 𝐶(𝑡; 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)] =  1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1       ;         𝑈(𝑡; 𝑛) = 𝐸[𝑈𝑛(𝑡𝑖)] =  1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1    (D.2) 
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 Any averaging interval Δ (2.4) contains only a finite number N of terms of time series of trades, 

and (D.1; D.2) assess the frequency-based statistical moments by N terms. The equation (A.1; 

D.3) define relations between the values C(ti), volumes U(ti), and prices p(ti) of trade at time ti: 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖) 𝑈(𝑡𝑖)     (D.3) 

The equation (D.3) prohibits the independent definitions of the average values, volumes, and 

prices. In App. A, we derived how the mean values C(t;1) and volumes U(t;1) define the 

VWAP p(t;1)=p(t) (A.3), which differs from the definition of the frequency-based average 

price π(t;1). However, in the approximation that all trade volumes U(ti)=U are assumed 

constant during Δ (2.4), from (D.2; D.3), obtain: 𝐶(𝑡; 1) = 𝐸[𝐶(𝑡𝑖)] =  1𝑁 ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 = 1𝑁 ∑ 𝑝(𝑡𝑖)𝑁𝑖=1 𝑈(𝑡𝑖) = 𝑈 1𝑁 ∑ 𝑝(𝑡𝑖)𝑁𝑖=1 = 𝑈𝜋(𝑡; 1)   (D.4) 

Another representation ties up the frequency-based mean price π(t;1) and the equation (D.3): 𝜋(𝑡; 1) = 1𝑁𝑈 ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 = 1𝑁 ∑ 𝐶(𝑡𝑖)𝑈𝑁𝑖=1 = 1𝑁 ∑ 𝑝(𝑡𝑖)𝑁𝑖=1    (D.5) 

The assumption that all volumes of trades are constant results in the frequency-based definition 

of the average price π(t;1) (D.1; D.4) through C(t;1) (D.2). To derive the frequency-based n-th 

statistical moment of price π(t;n), one should take the n-th degree (D.6) of (D.3) and again 

assume U(ti)=U – const. 𝐶𝑛(𝑡𝑖) = 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)    ;    𝑛 = 1,2, …   (D.6) 

From (D.2; D.6), follows: 𝐶(𝑡; 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)] =  1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1 = 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑛 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑛𝜋(𝑡; 𝑛) (D.7) 

The representation (D.8) highlights the dependence of pn(ti) on (D.6) and the ratio of the n-th 

degree of trade value Cn(ti) to the n-th degree of trade volume Un that is determined by (D.6): 𝜋(𝑡; 𝑛) = 1𝑁𝑈𝑛 ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1 = 1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑈𝑛𝑁𝑖=1 = 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶(𝑡;𝑛)𝑈𝑛   (D.8) 

To define how the n-th statistical moments of trade values C(t;n) (D.2) determine the n-th 

statistical moments of price π(t;n), one should use the set of equations (D.6) for n=1,2,.. . The 

more statistical moment of price π(t;n) would be assessed, the higher the accuracy of the 

approximation of price probability could be obtained (Shiryaev, 1999; Shreve, 2004). The 

number m of equations (D.6) for n=1,2,..m determines the approximation of price probability 

by the first m statistical moments of market trade values C(t;n) (D.2). 

The frequency-based statistical moments of price π(t;n) (D1; D.6) are generally accepted 

(Shiryaev, 1999; Elton et al., 2014), but the limitations of such approximations are omitted. 

We show that the n-th statistical moments of trade values C(t;n) (D.2) and equations (D.6) for 

n=1,2,… determine the frequency-based n-th statistical moments of price π(t;n) (D.1; D.6) only 
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for the approximation in which all trade volumes U(ti)=U are assumed constant during Δ (2.4). 

Otherwise, one should account for the impact of random trade volumes, consider the set of 

equations (D.6) for n=1,2,.. , and derive the market-based statistical moments of price p(t;1) 

(D.1; A.3), ϕ(t), p(t;2) (D.1; A.10) (Olkhov, 2022).  

The frequency-based assessments of the statistical moments of prices and returns neglect the 

randomness of market trade volumes. Market-based mean (A.3) and variance (A.16) of prices 

and mean (A.25) and variance (A.29) of returns of market securities account for the impact of 

random volumes of market trades.  

That determines the economic essence of the distinctions between the market-based and the 

frequency-based descriptions of statistical moments of prices and returns. Our market-based 

description takes into account the impact of random time series of volumes of trade with the 

securities during the averaging interval Δ. The conventional frequency-based description 

neglects this effect and assumes that all trade volumes are constant during Δ (2.4). The 

investors, who manage large stakes of securities and multi-billion portfolios, and the 

developers of large market and macroeconomic models like BlackRock’s Aladdin and Asimov, 

JP Morgan, and the U.S. Fed should keep that in mind.  
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