
MPRA
Munich Personal RePEc Archive

Noising the GARCH volatility: A
random coefficient GARCH model

Aknouche, Abdelhakim and Almohaimeed, Bader and
Dimitrakopoulos, Stefanos

Department of Mathematics, Faculty of Science, Qassim University,
Saudi Arabia, Department of Mathematics, Faculty of Science,
Qassim University, Saudi Arabia, Department of Statistics, Athens
University of Economics and Business, Greece

15 March 2024

Online at https://mpra.ub.uni-muenchen.de/125197/
MPRA Paper No. 125197, posted 28 Jul 2025 13:21 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/125197/


Noising the GARCH volatility: A random coefficient GARCH model

Abdelhakim Aknouche*, Bader Almohaimeed*, and Stefanos Dimitrakopoulos1**

*Department of Mathematics, College of Science, Qassim University, Saudi Arabia

**Department of Statistics, Athens University of Economics and Business, Greece

Abstract

This paper proposes a noisy GARCH model with two volatility sequences (an unobserved and

an observed/predictive one) and a stochastic time-varying conditional kurtosis. The unobserved

volatility equation, equipped with random coefficients, is a linear function of the past squared ob-

servations and of the past predictive volatility. The predictive volatility is the conditional mean of

the unobserved volatility, thus following the standard GARCH specification, where its coefficients

are equal to the means of the random coefficients. The means and the variances of the random

coefficients as well as the unobserved volatilities are estimated using a three-stage procedure. First,

we estimate the means of the random coefficients using the Gaussian quasi-maximum likelihood

estimator (QMLE), then the variances of the random coefficients, using a weighted least squares

estimator (WLSE), and finally the latent volatilities through a volatility filtering process under the

assumption that the random parameters follow an Inverse Gaussian distribution, with the innova-

tion being normally distributed. Hence, the conditional distribution of the model is the Normal

Inverse Gaussian (NIG), which entails a closed form expression for the posterior mean of the un-

observed volatility and of the random coefficients. Consistency and asymptotic normality of the

QMLE and WLSE are established under quite tractable assumptions. The proposed methodology

is illustrated with various simulated and real examples. It is shown that the filtered volatility can

improve both in-sample and out-of-sample forecasts of the predictive volatility, even when the fu-

ture observations are unknown and are replaced by their predictions.

Keywords: Noised volatility GARCH, Random coefficient GARCH, Markov switching GARCH,

QMLE, Weighted least squares, filtering volatility, time-varying conditional kurtosis.
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1 Introduction

Conditional variance/volatility models can be divided into two main categories, depending on whether

the volatility is a function or not of the present shocks/noises. The first category consists of observation-

driven models (Cox, 1981), such as the generalized autoregressive conditional heteroscedastic (GARCH)

model of Engle (1982) and Bollerslev (1986), and various extensions of it (cf. Francq and Zakoian,

2019). The second category consists of parameter-driven models (Cox, 1981), such as the stochastic

volatility (SV) models introduced by Taylor (1982-1986). Markov Switching GARCH (MS-GARCH)

models (Hamilton and Susmell, 1994; Gray, 1996; Klaassen, 2002; Haas et al, 2004a) are often clas-

sified as parameter-driven models (Francq and Zakoian, 2008-2019). However, a distinct difference

between these models and the SV models is that the MS-GARCH volatility is typically allowed to

depend on past observations, whereas in SV models, the latent volatility process has an autoregressive

structure that depends on its past latent values.

Observation-driven GARCH models are relatively simple to analyze and forecast in the context of

(Gaussian) quasi-maximum likelihood estimators (QMLEs). In particular, the volatility is determin-

istically obtained once the GARCH parameters have been estimated. Moreover, GARCH volatility is

synonymous with the concept of conditional variance given past information, which makes it easily

interpretable. However, the multiplicative form of the standard GARCH model generally implies a

constant conditional kurtosis, which is a non-negligible limitation (e.g. White et al, 2010; Smetanina,

2017). Moreover, GARCH volatility, by construction, does not incorporate contemporaneous/current

information in it, rendering it unable to adapt quickly to new events (e.g. Breitung and Hafner,

2016). This can also create a kind of distortion towards large variabilities, as it tends to ignore small

volatilities; see Figure 1. Thus, the standard GARCH model of Engle-Bollerslev could potentially

capture the actual volatility path of a series even better, if the current available information could

be integrated into the volatility equation. In particular, current information could be used in ex-post

volatility improving out-of-sample volatility forecasting (e.g. Zhang and Zhao, 2023).

On the contrary, SV-type models are able to integrate present shocks in the volatility equation,

making it latent/unobserved. The main motivation of using latent/stochastic volatility comes from

the idea that the arrival of information is random and unobserved (Ghysels et al., 1996). However,
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estimation of the SV models is non-trivial. In addition, the volatility does not depend on past obser-

vations, which can also be restrictive. In some variants of the SV model, the volatility is no longer

the conditional variance, which can lead to misinterpretation issues. For example, in the stochastic

volatility model with leverage in which the regression error and the volatility error are correlated (e.g.

Jacquier et al, 2004), the scale volatility process cannot be the conditional variance (Yu, 2005). In

this case, a comparison between the predictive performance of this type of volatility, which is just a

scale factor in a multiplicative error structure, and that of a conditional-variance-volatility, would be

unfair, if not biased.

A special SV model in which the two error terms are fully dependent was investigated by Breitung

and Hafner (2016) with the aim of combining the advantages of both the SV and GARCH models.

Their model was named Now-Casting volatility (henceforth NC-GARCH). Smetanina (2017) proposed

a real-time GARCH (RT-GARCH) model in which the squared model innovation is incorporated into

the GARCH volatility equation. In both the NC-GARCH and RT-GARCHmodels, the full dependence

of the two error terms allows for easy parameter estimation using the standard QMLE, which is a

significant statistical advantage over the standard SV model. Moreover, both models incorporate

current information into the (so-called) volatility, which is also another important addition to the

standard GARCH model. Finally, the conditional kurtosis in these models is time-varying, which is

yet another advancement. However, the full dependence between the two innovation terms in the NC-

GARCH and RT-GARCH models induces some interpretability issues. Firstly, the contemporaneous

volatility is no longer the conditional variance but just a scale factor in the multiplicative form assumed

by the two models. Secondly, with respect to the actual conditional variance, both the NC-GARCH

and RT-GARCH models can be reformulated within the class of (exponential) GARCH models with a

non-multiplicative structure (see Section 2 and Supplementary Material). Both models are therefore

observation-driven and this is the reason for which the QMLE is obtained easily, as is the case with the

Engle-Bollerslev GARCH model. On the other hand, comparison of the contemporaneous volatility

in these models with that of other classical GARCH type models is not fair, since in the former

the volatility is not the conditional variance. Finally, the volatility of volatility induced by real-time

GARCH models (cf. Ding, 2023; Wu et al, 2023) is not properly the conditional variance of conditional

variance.

MS-GARCH models can overcome the limitations of the GARCH and SV models. Indeed: i) the
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past of the observed process is integrated into the volatility specification and ii) the volatility depends

on the present shocks, which are materialized by the regime sequence. In addition, the volatility in

the MS-GARCH models is always the conditional variance given past information and present regime.

Nonetheless, MS-GARCH models (or some classes of them) still have some limitations. First, the

estimation and prediction of MS-GARCH models that are characterized by path dependence (Francq

and Zakoian, 2008-2019; Aknouche and Francq, 2022; Wee et al, 2022) is generally not straightforward.

Yet, there exist non-path dependent MS-GARCH models (Gray, 1996; Klaassen, 2002; Haas et al,

2004a-2004b), whose estimation is relatively easy to perform compared to path-dependent MS-GARCH

models. Second, the regime sequence on which the parameters depend is generally discrete-valued and

even finite. Finally, all volatility parameters depend on the same regime sequence, so a more flexible

scenario where each parameter has its own regime variable is ruled out, although the MS-GARCH of

Haas et al (2004a) could be extended to have this property.

Another competing class of regime switching GARCH models but with deterministic switching is

that of time-varying GARCH models (tvGARCH) in which the parameters vary deterministically over

time. There are in fact many versions of the tvGARCH model such as that of Dahlhauss and Subba

Rao (2006) and Roan and Ramanathan (2013), and that of Amado and Terasvirta (2013, 2017);

see also Campos-Martins and Sucarrat (2024). The resulting tvGARCH models are nonstationary

but locally stationary in the sense of Dahlhauss (1997). The estimation of the tvGARCH models is

relatively easy to perform using M-estimation based methods (Dahlhauss and Subba Rao, 2006; Amado

and Teräsvirta, 2013) and/or non-parametric local polynomial estimation (Rohan and Ramanathan,

2013), as these models belong to the class of observation-driven models. However, as is the case with

any observation-driven volatility model, the present information is not integrated into the volatility

equation.

Our paper aspires to contribute to the class of MS-GARCH models. In particular, we propose

a multi-regime-variable random-coefficient GARCH (RC-GARCH) model that has two volatility se-

quences and a time-varying conditional kurtosis. The first volatility is the observable/predictive condi-

tional variance sequence, which is nothing but the volatility equation of the standard GARCH model.

So, the predictive volatility is a deterministic function of past observations and can be estimated

from the data using the standard Gaussian QMLE. The second one is the unobserved (latent/hidden)

volatility, which depends both on present shocks and past observations, as is the case with the MS-
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GARCH models. In contrast with the MS-GARCH models that are based on a single specific regime,

the parameters in the unobserved volatility equation we propose evolve solely (Nicholls and Quinn,

1982; Regis et al, 2022), so that each coefficient has its own (continuous-valued) regime switching

mechanism. The predictive volatility can be seen as the conditional mean of the latent volatility,

given the past observations. Hence, the means of the random coefficients constitute the coefficients in

the predictive volatility equation.

Most importantly, in the proposed RC-GARCH representation, the latent volatility is more heavy-

tailed than the predictive one, and accordingly the noise of the resulting RC-GARCH model is more

light-tailed than that of the standard GARCH model. The latent volatility, therefore, can be seen

as an elevated noisy version of the standard GARCH volatility and can be better estimated with

the filtered volatility, which is its conditional mean given past and present information. In contrast

with the predictive volatility, the filtered volatility allows us to integrate the current observation and

could improve the forecasting ability of the predictive volatility as shown in Section 4 as well as

in our simulations given in an online material. Finally, the volatility of volatility generated by the

RC-GARCH model is indeed the conditional variance of conditional variance.

For the estimation of the model parameters, we develop a three-stage method, where asymptotic

properties of the first two stages are established. The first stage estimates the means of the random

coefficients using the standard Gaussian QMLE. In the second stage, the variances of the random

coefficients are estimated in a closed form using a weighted least squares estimate (WLSE), which is

consistent and asymptotically Normal (CAN) without any moment restrictions on the observed process

(see also Aknouche and Francq, 2023). Assuming the random coefficients to be Inverse Gaussian (IG)

distributed and the innovation to be normally distributed, the unobserved volatility is estimated in

the final stage through the filtered volatility, which is the posterior mean of the IG distribution. This

filtered volatility has a closed form expression due to the fact that the conditional distribution of the

model is Normal Inverse Gaussian (NIG). Such a distribution, which is a (continuous-valued) Gaussian

mixture with IG mixings, is very flexible and can account for many stylized facts, such as asymmetry

and heavy tailedness (e.g. Barndorff-Nielsen, 1997; Karlis, 2002; Rachev, 2003, 2008; Stentoft, 2008;

Ayala, and Blazsek, 2019; Mozumder et al, 2024).

The structure of the paper is as follows. Section 2 defines the model and concisely studies its

stability properties. Section 3 presents the proposed estimation approach. In particular, a test for
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randomness of the coefficients is proposed. Section 4 illustrates the methodology with a real dataset,

respectively, where it is shown that the filtered volatility can improve the forecasting ability of the

predictive volatility. Section 5 concludes.

The main proofs of this paper are displayed in an Online Supplementary Material. It also contains

various simulated examples, a procedure for predicting the latent volatility using the filtered volatility,

either when future observations are available or predicted, a second empirical application, and an

account of a general class of volatility models that encompasses all competing volatility models in

relation to the RC-GARCH model, namely the MS-GARCH, the time-varying GARCH (tvGARCH),

the real-time GARCH, and the Now-Casting GARCH models.

2 The proposed econometric specification

2.1 Noising the GARCH volatility: Some preliminaries

Consider the standard GARCH model (Engle, 1982; Bollerslev, 1986)

Yt = δtηt and δ2t = ω0 +

q∑
i=1

α0iY
2
t−i +

p∑
j=1

β0jδ
2
t−j (2.1)

where {ηt, t ∈ Z} is an iid (independent and identically distributed (iid)) sequence of real-valued

variables with mean 0 and variance 1, and the volatility coefficients satisfy ω0 > 0, α0i ≥ 0 for all

i ∈ {1, 2, ..., q} and β0j ≥ 0 for all j ∈ {1, 2, ..., j}. Assume that {ηt} can be factorized as follows

ηt = εtξt (2.2)

where (εt) and (ξt) are independent, iid, such that (εt) is real-valued with mean 0 and variance 1, and

(ξt) is positive-valued with E
(
ξ2t
)
= 1. Then, the standard GARCH model (2.1) could be written in

the following representation



Yt = δtηt = δt

ηt︷︸︸︷
ξtεt = δtξt︸︷︷︸

σt

εt = σtεt

σt = δtξt

δ2t = ω0 +
q∑

i=1
α0iY

2
t−i +

p∑
j=1

β0jδ
2
t−j

(2.3)
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In (2.3), the volatility (δ2t ) is observable, given the true parameter θ0 = (ω0, α01, ...α0q, β01, ...β0p)
′

whereas the volatility (σ2
t ) is unobservable (latent/hidden), even with perfect knowledge of θ0. In

addition, δ2t depends only on past observations F Y
t−1 := σ {Yt−u, u ≥ 1} and not on the present

(latent) shock ξt as σ
2
t does. Since E

(
σ2
t |F Y

t−1

)
= δ2t , the sequence

(
δ2t
)
can also be called predictive

volatility and is an estimate of σ2
t . Another estimate of σ2

t is the filtered volatility ϱ2t := E
(
σ2
t |F Y

t

)
which depends on the past and present observations.

Also, the new innovation (εt) of model (2.3) is less heavy-tailed than the innovation (ηt) of model

(2.1), whereas the latent volatility (σ2
t ) is more heavy-tailed than

(
δ2t
)
. Consequently, the standard

GARCH volatility
(
δ2t
)
is less erratic than the latent

(
σ2
t

)
and seems to describe the true variability

less well than
(
σ2
t

)
. This can be seen from Figure 1, where we have generated a time series (Panel a)

from a specific RC-GARCH(1, 1) model (see expression (2.5) below) along with the path of predictive

(Panel b), latent (Panel c) and filtered (Panel d) volatilities. In panel (b), we have annotated the

predictive volatility plot with artificial red curves. These curves are essentially created by large

volatilities (distorted in the direction of the green arrows), masking medium and small volatilities.

Such a feature does not appear in the plots for the unobserved and also the filtered volatilities, where

medium and small volatilities are more visible. Finally, note that in (2.3), the unobserved volatility(
σ2
t

)
has a multiplicative error model (MEM) representation (Engle and Russull, 1998; Engle, 2002;

Aknouche and Francq, 2021; Aknouche et al, 2022).

As in the MS-GARCH models, the latent volatility σ2
t also depends on past observations F Y

t−1 :=

σ {Yt−u, u ≥ 1}. In fact, the noised volatility σ2
t of the GARCH model (2.3) can be seen as an MS-

GARCH model, yet with a rather continuous regime sequence (ξt), since it can be rewritten as in the

following specification 

Yt = σtεt

σ2
t = ω0t +

q∑
i=1

α0itY
2
t−i +

p∑
j=1

β0jtδ
2
t−j

δ2t = ω0 +
q∑

i=1
α0iY

2
t−i +

p∑
j=1

β0jδ
2
t−j

(2.4)

in which the random coefficients ω0t = ξ2t ω0, α0it = ξ2t α0i, and β0jt = ξ2t β0j are “stochastically”

proportional (i.e. fully positively correlated) to and are governed by the same regime variable ξt,

the range of which can be uncountable. Equation (2.4) is, therefore, an iid regime-switching model

with a single switching sequence (ξt). We call the procedure of passing from (2.1) to (2.3)/(2.4) as
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“noising the GARCH volatility” and name (2.4) the random coefficient (RC-GARCH) model with a

single regime sequence.

In lieu of fully correlated random coefficients, which seems restrictive, the random coefficients of

the RC-GARCH model we propose are mutually independent. The resulting specification is, thus, a

multi-switching sequence (regime switching vector), where each coefficient has its own distribution.

In conventional MS-GARCH models, all regimes are governed by the same Markov mechanism. In

addition, the proposed model has a stochastic time-varying kurtosis that can be estimated from the

data, unlike the standard GARCH model, in which the conditional kurtosis is constant. Finally,

the parameters of this model are essentially the means and variances of the random coefficients, not

necessarily having fully specified distributions. Once these parameters are estimated, the distributions

of the random coefficients can be recovered through some parametric assumptions.

(a)
 

(b)

(c) (d)

Figure 1: Simulated RC-GARCH series with ω0 = 0.01, α0 = 0.1, and β0 = 0.85.

2.2 The RC-GARCH model

Let {εt, t ∈ Z} be an iid sequence of real-valued (random) variables with mean 0, variance 1, and

E
(
ε4t
)
:= κ < ∞ 1. In addition, let {ωt, t ∈ Z}, {αit, t ∈ Z} (i = 1, ..., q), and {βit, t ∈ Z} (j = 1, ..., p)

be iid sequences of non-negative random variables with means ω0 > 0, α0i ≥ 0 and β0j ≥ 0, and

1If E
(
ε4t
)
< ∞, then E

(
ε2t
)
= 1 implies that E

(
ε4t
)
> 0. Assume that E

(
ε2t
)
= 1. Assume, in contradiction, that

E
(
ε4t
)
= 0. Then, εt = 0 a.s. which implies that E

(
ε2t
)
= 0. Hence, E

(
ε4t
)
> 0.
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variances σ2
0ω, σ

2
0αi

, and σ2
0βj

, respectively. Assume that {εt, t ∈ Z}, {ωt, t ∈ Z}, {αit, t ∈ Z}, and

{βit, t ∈ Z} are mutually independent.

The observable process {Yt, t ∈ Z} is said to be a random coefficient GARCH (RC-GARCH) if it

is given by

Yt = σtεt (2.5a)

σ2
t = ωt +

q∑
i=1

αitY
2
t−i +

p∑
j=1

βjtδ
2
t−j (2.5b)

where

δ2t := V ar
(
Yt|F Y

t−1

)
= E

(
σ2
t |F Y

t−1

)
(2.5c)

is the observable/predictive conditional variance which, by taking the conditional expectation with

respect to F Y
t−1, satisfies the following standard (Engle-Bollerslev’s) GARCH dynamics

δ2t = ω0 +

q∑
i=1

α0iY
2
t−i +

p∑
j=1

β0jδ
2
t−j . (2.5d)

As emphasized by the Co-Editor, an important question about the model (2.5) is the uniqueness of

σ2
t . Indeed, as in (2.2), assuming that εt = ξtε

∗
t , where ξt and ε∗t are independent, model (2.5) can be

rewritten as

Yt = σ∗
t ε

∗
t

σ∗2
t = ω∗

t +

q∑
i=1

α∗
itY

2
t−i +

p∑
j=1

β∗
jtδ

2
t−j

where σ∗
t = σtξt, ω

∗
t = ξtωt, α∗

it = ξtαit, and β∗
jt = ξtβjt. However, in the latter representation

the coefficients ω∗
t , α∗

it, and β∗
jt are no longer mutually independent since they all depend on ξt.

So the uniqueness of model (2.5) is ensured by the mutual independence of its coefficients. Let

F Y,ϕ
t−1 = σ

{(
Yt−u, ϕ

′
t−u+1

)′
, u ≥ 1

}
be the complete σ-algebra generated by the past observations

up to time t − 1 and the past and present of the random inputs of (2.5) up to time t, where ϕt =

(ωt, α1t, ..., αqt, β1t, ..., βpt)
′. Then

σ2
t := V ar

(
Yt|F Y,ϕ

t−1

)
(2.6)

is referred to as the complete (or latent/unobservable) volatility of the model (2.5). Comparing the
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complete and predictive volatilities in (2.5b) and (2.5d), respectively, we have

σ2
t − δ2t = ωt − ω0 +

q∑
i=1

(αit − α0i)Y
2
t−i +

p∑
j=1

(βjt − β0j) δ
2
t−j .

Therefore, from the mutual independence of the random coefficients, the conditional variance

of the latent volatility σ2
t also called “volatility of volatility” has the following linear-in-parameter

GARCH-type representation

V ar
(
σ2
t |F Y

t−1

)
= V ar

(
V ar

(
Yt|F Y,ϕ

t−1

)
|F Y

t−1

)
= E

((
σ2
t − δ2t

)2 |F Y
t−1

)
= σ2

0ω +

q∑
i=1

σ2
0αi

Y 4
t−i +

p∑
j=1

σ2
0βj

δ4t−j (2.7)

in terms of Y 4
t−i and δ4t−j . Thus, the conditional variance of the squared RC-GARCH process has the

form

V ar
(
Y 2
t |F Y

t−1

)
= κ

(
V ar

(
σ2
t |F Y

t−1

)
+ δ4t

)
− δ4t = κV ar

(
σ2
t |F Y

t−1

)
+ (κ− 1) δ4t . (2.8)

In particular, the conditional kurtosis of the RC-GARCH model given by

κt :=
E(Y 4

t |FY
t−1)

(V ar(Yt|FY
t−1))

2 = κ

(
V ar(σ2

t |FY
t−1)

δ4t
+ 1

)
= κ(1 + σ2

0ω
1
δ4t

+

q∑
i=1

σ2
0αi

Y 4
t−i

δ4t
+

p∑
j=1

σ2
0βj

δ4t−j

δ4t
) (2.9)

is stochastically time-varying and has a linear representation (in terms of
Y 4
t−i

δ4t
and

δ4t−j

δ4t
), unlike the

standard Engle-Bollerslev’s GARCH model in which κt is restrictively constant.

Note that the RC-GARCH process given by (2.5) can be seen as an extended regime-switching

GARCH model in which the coefficients, components of ϕt, are not necessarily governed by the same

law, as is the case with the standard Markov-Switching GARCH (MS-GARCH) models (Haas et al,

2004a; Francq and Zakoian, 2005-2008; Aknouche and Francq, 2022). Moreover, the RC-GARCH

model, being a general mixture GARCH model with not necessarily finite-valued mixings, is therefore

related to the finite mixture GARCH model of Haas et al (2004b) which, in turn, is a particular case

of the MS-GARCH of Haas et al (2004a).

In addition, a Markov structure could be assumed for these random coefficients, but this makes

the RC-GARCH model more complex and many simple and closed-form formula for the RC-GARCH
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model (2.5) are lost. Note finally that the proposed RC-GARCH model (2.5) is not a path-dependent

Markov switching and is similar to the representation of Gray (1996) in the sense that (2.5b) is used

instead of the following path-dependent recursion

σ2
t = ωt +

q∑
i=1

αitY
2
t−i +

p∑
j=1

βjtσ
2
t−j ,

where the lagged latent volatility σ2
t−j is replaced by its conditional mean δ2t−j = E

(
σ2
t−j |F

Y
t−j−1

)
.

2.3 Now-casting and real-time GARCH models

As highlighted in the introduction, our main motivation in this paper is to introduce a GARCH model

whose volatility also depends on current information. There are, actually, two classes of volatility

models achieving this goal, namely the Now-Casting GARCH (NC-GARCH) model of Breitung and

Hafner (2016) and the real-time GARCH (RT-GARCH) model of Smetanina (2017). We, thus, give

in this subsection a brief description of these two models and the main difference between them and

the RC-GARCH model we propose.

In its simplest form, the RT-GARCH model of Smetanina (2017) is given by (we consider the

RT-GARCH(1,1) for simplicity)

Yt = λtηt

λ2
t = ω + αY 2

t−1 + βλ2
t−1 + φη2t

where (ω, α, β, φ)′ ∈ (0,∞) × [0,∞)3 and the sequence (ηt) is iid with mean zero, unit variance,

and a symmetric density. As emphasized by Smetanina (2017), the volatility sequence (λt) is not

the conditional variance given the past (and present) information. So
(
λ2
t

)
is just a scale factor in

the multiplicative form Yt = λtηt. Taking δ2t = ω + αY 2
t−1 + βλ2

t−1 so that λ2
t = δ2t + φη2t , and

putting ht := V ar (Yt|F t−1) = δ2t + φE
(
η4t
)
, the RT-GARCH model can be written as a standard
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but non-MEM exponential GARCH (EGARCH) model as follows

Y 2
t = htη

2
t + φη2t

(
η2t − E

(
η4t
))

ht = ω1 + αY 2
t−1 + βht−1 + ϕη2t−1

λ2
t = ht + φ

(
η2t − E

(
η4t
))

where ω1 = ω + φE
(
η4t
)
(1− β) and ϕ = βφ. When φ = 0, the Engel-Bollerslev GARCH model

is retrieved. In the latter representation, Yt =
√
htη2t + φη2t

(
η2t − E

(
η4t
))

:= g (ht, ηt;φ) is not a

multiplicative function of
√
ht and ηt, or more precisely is a multiplicative term plus the additive term

φη2t
(
η2t − E

(
η4t
))

that makes the conditional Kurtosis not constant contrary to what happens with

the standard multiplicative GARCH model.

Thus, the RT-GARCHmodel provides two types of volatilities: First, the conditional variance given

past information (up to time t − 1) ht = V ar (Yt|Yt−1, Yt−2, ...) in the spirit of the Engle-Bollerslev

GARCH model. Second, the real-time/contemporaneous volatility λ2
t = V ar (Yt|Yt−1, Yt−2, ...) +

φ
(
η2t − E

(
η4t
))

which is the conditional variance plus the additional term φ
(
η2t − E

(
η4t
))
. Unless

φ = 0, the real-time volatility λ2
t is not the conditional variance given past or past-present informa-

tion and therefore has only a formal effect in the multiplicative relationship Yt = λtηt. The name

“real-time GARCH” probably comes from the fact that the volatility equation for the scaling factor

λ2
t contains the current innovation term φη2t . However, if the considered volatility is the condi-

tional variance ht = V ar (Yt|Yt−1, Yt−2, ...) given past information, then the term “real-time” loses

all its meaning and the model does not fit into the framework of parameter driven models such as

the (standard) SV, the MS-GARCH and the RC-GARCH models in which the “complete” volatility

σ2
t = V ar (Yt|Yt−1, Yt−2, ...; et) is the conditional variance given past observations and present random

parameters.

On the other hand, since the real-time volatility λ2
t is not the conditional variance, comparing it to

the conditional variance of a standard GARCH model does not seem to be fair. In fact, the conditional

variance of the RT-GARCH model given past-present information V ar (Yt|Yt−1, Yt−2, ...; ηt) is zero and

therefore makes no sense. Moreover, the so-called volatility of volatility (e.g. Ding, 2020-2023) which

is V ar
(
λ2
t |Yt−1, Yt−2, ...

)
is not the conditional variance of the conditional variance, as is the case with

the RC-GARCH model. Thus, the relevance of the RT-GARCH model in volatility forecasting using

12



ht (as shown by Smetanina, 2017) seems to come mainly from the non-MEM structure and/or the

EGARCH term ϕη2t−1 in the conditional variance equation. Extensions of the RT-GARCH model are

given by Ding (2020-2023) and Wu et al (2023).

Similar conclusions can be drawn for the NC-GARCH model of Breitung and Hafner (2016) which

is given by the following equation

Yt = σtηt

log
(
σ2
t

)
= ω + β log

(
σ2
t−1

)
+ φet

where et :=
(
log
(
η2t
)
− E

(
log
(
η2t
)))

, (ω, β, φ)′ ∈ R3, and the sequence (ηt) is iid with mean zero, unit

variance, and a symmetric density. Since in this model, the innovation term et is fully dependent with

ηt, the so-called volatility σ2
t cannot be the conditional variance of Yt even given the past of et up to

time t. Taking log (ht) := ω + β log
(
σ2
t−1

)
, so that log

(
σ2
t

)
= log (ht) + φet, Breitung and Hafner

(2016)’s model becomes

Y 2
t = htη

2
t expφ

(
log
(
η2t
)
− E

(
log
(
η2t
)))

log (ht) = ω + β log (ht−1) + βφet−1

which is a specific EGARCH model but with a non-multiplicative structure. Note that when φ = 0

the standard GARCH(0,1) model is retrieved. See the Supplementary Material for more details about

these models and their relationships with other volatility models.

2.4 Stability properties

We now study the existence of a causal/nonanticipative stationary and ergodic solution to equation

(2.5) following the conventional stochastic recurrence equation (SRE) approach (Francq and Zakoian,

2019). Combining (2.5a), (2.5b), and (2.5d) we obtain the following stochastic recurrence equation

Zt = AtZt−1 +Bt, (2.10)

13



driven by the iid sequence {(At, Bt), t ∈ Z}, where Zt = (Y 2
t , ..., Y

2
t−q+1, δ

2
t , ..., δ

2
t−p+1)

′,

Bt = (ωtε
2
t , 0(q−1)×1, ω0, 0(p−1)×1)

′, and

At =



α1tε
2
t · · · αq−1,tε

2
t αqtε

2
t β1tε

2
t · · · βp−1,tε

2
t βptε

2
t

1 · · · 0 0 0 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · 1 0 0 · · · 0 0

α01 · · · α0,q−1 α0q β01 · · · β0,p−1 β0p

0 · · · 0 0 1 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · 1 0



,

0m×n being the null matrix of dimension m× n. Let

γ (A) = inf
{
1
tE log ∥At...A2A1∥ , t ≥ 1

}

be the largest Lyapunov exponent associated with the iid-driven SRE (2.10) (Bougerol and Picard,

1992). Consider also

β =



β01 · · · β0,p−1 β0p

1 · · · 0 0

...
. . .

...
...

0 · · · 1 0


.

The following result gives conditions for equation (2.10) to have a unique strictly stationary and

ergodic solution.

Proposition 2.1 i) Assume E
(
log
(
ε2t
))

< ∞, E (log (ωt)) < ∞, E (log (αit)) < ∞ and E (log (βjt)) <

∞ ( i = 1, ..., q, j = 1, ..., p). A necessary and sufficient condition for model (2.10) to have a unique

nonanticipative/causal strictly stationary and ergodic solution is that

γ (A) < 0. (2.11)
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Such a solution is given for all t ∈ Z by

Zt =

∞∑
j=0

j−1∏
i=0

At−iBt−j , (2.12)

where the series in the right hand side of (2.12) converges absolutely almost surely.

ii) If (2.10) admits a strictly stationary solution, then

ρ (β) < 1. (2.13)

In the special case where p = q = 1, another simple and equivalent stationarity condition for (2.10)

is as follows

E
(
log
∣∣α1tε

2
t−1 + β1t

∣∣) < 0,

while (2.13) reduces to 0 ≤ β01 < 1.

Conditions for the existence of second and fourth moments of the model (2.5) are given as follows.

Proposition 2.2 Assume E
(
ε2t
)
< ∞, E (ωt) < ∞, E (αit) < ∞ and E (βjt) < ∞ ( i = 1, ..., q,

j = 1, ..., p). A sufficient condition for the process given by (2.1) to be strictly stationary and ergodic

with E
(
Y 2
t

)
< ∞ is that

ρ (E (At)) < 1 (2.14)

where

E (At) =



α01 · · · α0,q−1 α0q β01 · · · β0,p−1 β0p

1 · · · 0 0 0 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · 1 0 0 · · · 0 0

α01 · · · α0,q−1 α0q β01 · · · β0,p−1 β0p

0 · · · 0 0 1 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · 1 0



.

Using a similar device by Chen and An (1998) and Francq and Zakoian (2019), condition (2.14)
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reduces to the following
q∑

i=1

α0i +

p∑
j=1

β0j < 1.

The unconditional mean of the process is given under (2.14) by

E
(
Y 2
t

)
= ω0

1−
q∑

i=1
α0i−

p∑
j=1

β0j

.

Proposition 2.3 Assume E
(
ε4t
)
< ∞, E

(
ω2
t

)
< ∞, E

(
α2
it

)
< ∞, and E

(
β2
jt

)
< ∞ ( i = 1, ..., q,

j = 1, ..., p). A sufficient condition for the process given by (2.1) to be strictly stationary and ergodic

with E
(
Y 4
t

)
< ∞ is that

ρ (E (At ⊗At)) < 1. (2.15)

When p = q = 1, the eigenvalues of E (At ⊗At) are

{
κα2

01 + 2α01β01 + β2
01 + κσ2

0α1
+ σ2

0β1
, 0
}
,

so condition (2.15) is

κα2
01 + 2α01β01 + β2

01 + κσ2
0α1

+ σ2
0β1

< 1.

In particular, when all slope parameters are not random, i.e. σ2
0α1

= σ2
0β1

= 0, we obtain the

fourth moment condition for the standard GARCH(1, 1) model (Francq and Zakoian, 2019). Proofs

of Propositions 2.1-2.3 are given in the online material.

3 Parameter estimation

The parameters of the RC-GARCH model are now estimated given a realization Y1, ..., Yn gener-

ated from (2.5). These parameters are of three types, namely: i) the random coefficient means θ0 =

(ω0, α01, ...α0q, β01, ...β0p)
′, ii) the random coefficient variances Λ0 =

(
σ2
0ω, σ

2
0α1

, ..., σ2
0αq

, σ2
0β1

, ..., σ2
0βp

)′
,

and iii) the unobserved conditional variances σ2
1, ..., σ

2
n which are augmented parameters. To estimate

the model parameters we use a three-stage procedure, where each stage deals with each block of pa-

rameters in the mentioned order. In particular, the Gaussian QMLE is first used to estimate θ0. In

principle, no assumption on the distribution of the innovation εt is needed. Second, a weighted least

squares estimate is used for Λ0 and requires the specification of the fourth moment κ = E
(
ε4t
)
. For the

16



latent volatilities σ2
1, ..., σ

2
n, we use the posterior mean ϱ2t := E

(
σ2
t |Y1, ..., Yt

)
(1 ≤ t ≤ n), also called

the filtered volatility. To get closed form results, the random coefficients are assumed to be Inverse

Gaussian (IG) distributed, while the innovation is assumed to be normally distributed N (0, 1). As

such, the conditional distribution Yt|F Y
t−1 of the model is Normal Inverse Gaussian (NIG) distributed

(Barndorff-Nielsen, 1997), where the conditional posterior mean σ2
t |Y1, ..., Yt can be easily obtained in

closed form (e.g. Karlis, 2002). The NIG distribution (see the online material) has many advantages

over the normal distribution, such as allowing for asymmetry and heavy tailedness and is very flexible

in modelling financial time series (Bardorff-Nielsen, 1997; Karlis, 2002; Rachev, 2003; Blazsek et al,

2018).

3.1 Estimating the random coefficient means

First, the parameter vector θ0 = (ω0, α01, ...α0q, β01, ...β0p)
′ is estimated from the data using the

Gaussian QMLE. Then, the predictive volatilities δ21 , ..., δ
2
n are estimated from (2.1d). For all generic

θ = (ω, α1, ...αq, β1, ...βp)
′ ∈ Θ ⊂ Rp+q+1 let

δ2t (θ) = ω +

q∑
i=1

αiY
2
t−i +

p∑
j=1

βjδ
2
t−j (θ) , t ∈ Z (3.1)

be the generic predictive volatility, which exists and is strictly stationary and ergodic whenever (2.11)

and the following condition
p∑

j=1

βj < 1, ∀θ ∈ Θ, (3.2)

are satisfied. Given arbitrary initial values Y0, ...Y1−q,δ̃
2
0 , ..., δ̃

2
1−p, let δ̃

2
t (θ) be an observable approxi-

mation to (3.1) given by

δ̃2t (θ) = ω +

q∑
i=1

αiY
2
t−i +

p∑
j=1

βj δ̃
2
t−j (θ) , t ≥ 1. (3.3)

The Gaussian QMLE of θ0 is a solution to the following problem

θ̂n = argmin
θ

L̃n (θ) (3.4)
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where

L̃n (θ) =
1
n

n∑
t=1

ℓ̃t (θ) and ℓ̃t (θ) = log δ̃2t (θ) +
Y 2
t

δ̃2t (θ)
. (3.5)

Based on the standard asymptotic GARCH theory (Francq and Zakoian, 2004-2019) it will be shown

that θ̂n is consistent and asymptotically Normal under the following standard assumptions.

A1 Θ is a compact.

A2 Conditions (2.11) and (3.2) are satisfied.

A3 The distribution of ε2t is non-degenerate and E
(
ε2t
)
= 1.

A4 The polynomials Aθ0 (z) =
q∑

i=1
α0iz

i and Bθ0 (z) = 1−
p∑

i=1
β0iz

i have no common roots, Aθ0 (z) ̸=

1, and α0q + β0p ̸= 0.

A5 θ0 is in the interior of Θ.

A6 E
(
ε4t
)
= κ < ∞.

Set

I := E

(
(κ−1)δ4t (θ0)+κV ar(σ2

t |FY
t−1)

δ8t (θ0)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
and J := E

(
1

δ4t (θ0)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
. (3.6)

Theorem 3.1 Under A1-A4,

θ̂n
a.s.→

n→∞
θ0. (3.7)

If, in addition, A5 -A6 are satisfied then

√
n
(
θ̂n − θ0

)
D→

n→∞
N
(
0, J−1IJ−1

)
, (3.8)

where J is invertible.

When all random parameters are degenerate, it follows that σ2
t = δ2t and

V ar
(
σ2
t |F Y

t−1

)
= V ar

(
δ2t |F Y

t−1

)
= 0

since δ2t is F Y
t−1-measurable. Thus, E

(
∂lt(θ0)

∂θ
∂lt(θ0)
∂θ′

)
reduces to (κ− 1)E

(
1

δ4t (θ0)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
, which

is the covariance matrix of the Gaussian QMLE of the standard GARCH model (Francq and Zakoian,
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2004-2019). Consistent estimates of I and J are given, respectively, by

În = 1
n

n∑
t=1

(Y 2
t −δ̂2t )

2

δ̂8t

∂δ̂2t
∂θ

∂δ̂2t
∂θ′ , Ĵn = 1

n

n∑
t=1

1

δ̂4t

∂δ̂2t
∂θ

∂δ̂2t
∂θ′ , (3.9a)

where

δ̂2t = δ̃2t

(
θ̂n

)
, 1 ≤ t ≤ n. (3.9b)

For proof of Theorem 3.1, see the online material.

3.2 Estimating the random coefficient variances

At this stage, the distribution of εt and hence of Yt|σ2
t has to be specified. It is assumed that εt

is normally distributed with mean zero and unit variance (εt ∼ N (0, 1)) and hence κ = E
(
ε4t
)
=

3. Then, Λ0 = (σ2
0ω, σ

2
0α1

, ..., σ2
0αq

, σ2
0β1

, ..., σ2
0βp

)′ will be estimated from a regression built from the

volatility of volatility equations (2.7)-(2.8). Consider et =
(
Y 2
t − δ2t

)2 − V ar
(
Y 2
t |F Y

t−1

)
so that

(Nichols and Quinn, 1982) (
Y 2
t − δ2t

)2
= V ar

(
Y 2
t |F Y

t−1

)
+ et. (3.10a)

Then, from (2.8) and (2.7), we have V ar
(
σ2
t |F Y

t−1

)
= M ′

tΛ0 and

V ar
(
Y 2
t |F Y

t−1

)
= κM ′

tΛ0+(κ− 1) δ4t ,

so (3.10a) becomes

(Y 2
t −δ2t )

2−(κ−1)δ4t
κδ4t

= 1
δ4t
M ′

tΛ0 +
et
κδ4t

, (3.10b)

where E
(

et
κδ4t

|F Y
t−1

)
= 1

κδ4t
E
(
et|F Y

t−1

)
= 0 and

Mt = (1, Y 4
t−1, ..., Y

4
t−q, δ

4
t−1, ..., δ

4
t−p)

′. (3.11)

From the regression (3.10b), a WLS estimate of Λ0 is given by

Λ̂n =

(
n∑

t=1

1

δ̂8t
M̂tM̂

′
t

)−1 n∑
t=1

M̂t
(Y 2

t −δ̂2t )
2−(κ−1)δ̂4t

κδ̂8t
(3.12)
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where δ̂2t = δ̃2t (θ̂n) is evaluated from (3.9b) and

M̂t = (1, Y 4
t−1, ..., Y

4
t−q, δ̂

4
t−1, ..., δ̂

4
t−p)

′.

To study the consistency and asymptotic normality of Λ̂n, define

A = E
(

1
δ8t (θ0)

MtM
′
t

)
(3.13a)

B = 1
κ2E

(
e2t
δ16t

MtM
′
t

)
= 1

κ2E

(
V ar

(
(Y 2

t −δ2t )
2|FY

t−1

)
δ16t

MtM
′
t

)
. (3.13b)

Clearly, these matrices are finite (and A is invertible) under the following moment assumption.

A7: E
(
ε8t
)
< ∞.

Theorem 3.2 Under A1 -A4 and A6,

Λ̂n
a.s.→

n→∞
Λ0. (3.14)

If, in addition, A7 holds then

√
n
(
Λ̂n − Λ0

)
D→

n→∞
N
(
0, A−1BA−1

)
. (3.15)

Assuming that εt ∼ N (0, 1), all moments of εt are finite, so the eight moment assumption A7

which remains quite strong, can be valid in applications. From (3.10a) and (2.8), consistent estimates

of A and B in (3.13) are, respectively,

Ân = 1
n

n∑
t=1

1

δ̂8t
M̂tM̂

′
t and B̂n = 1

n

n∑
t=1

(
(Y 2

t −δ̂2t )
2−(κ−1)δ̂4t−κM ′

tΛ̂n

)2
κ2δ̂16t

M̂tM̂
′
t . (3.16)

For proof of Theorem 3.2, see the online material.

3.3 Estimating/filtering the unobserved volatilities and random coefficients

Finally, the unobserved volatilities σ2
1, ..., σ

2
n are estimated using the filtered volatilities

ϱ2t = E
(
σ2
t |Y1, ..., Yt

)
, t = 1, ..., n, (3.17)
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that we obtain from the filtered distribution f
(
σ2
t |Y1, ..., Yt

)
. Note that the unobserved volatility σ2

t

can also be estimated by the predictive volatility δ2t = E
(
σ2
t |Y1, ..., Yt−1

)
but the latter does not use

the current observation Yt as is the case with ϱ2t given by (3.17).

Consider the RC-GARCH model (2.5). We first need to specify the distribution of the innovation

εt and the random coefficients θt := (ωt, α1t, ..., αqt, β1t, ..., βpt)
′. We, thus, assume that

εt ∼ N (0, 1) so that Yt|σ2
t ∼ N

(
0, σ2

t

)
. (3.18)

Then, the random coefficients are assumed to be IG distributed (see the online material), that is

ωt ∼ IG (ω0, λω) with mean ω0 and shape λω so V ar (ωt) =
ω3
0

λω
(3.19a)

αit ∼ IG (α0i, λαi) with mean α0i and shape λαi so V ar (αit) =
α3
0i

λαi
(3.19b)

βjt ∼ IG
(
β0j , λβj

)
with mean β0j and shape λβj

so V ar (βjt) =
β3
0j

λβj
. (3.19c)

The precise choice of the IG distribution is due to the fact that closed-form formulas can be ob-

tained for the posteriors and because the resulting distribution of Yt|F Y
t−1 is very flexible. From the

summability property of the IG distribution (see the online material) and the mutual independence of

{ωt, t ∈ Z}, {αit, t ∈ Z} (i = 1, ..., q), and {βjt, t ∈ Z} (j = 1, ..., p), which entails the conditional inde-

pendence of ωt, αitY
2
t−i, and βjtδ

2
t−j (i = 1, ..., q, j = 1, ..., p) given F Y

t−1, the conditional distribution

of σ2
t |F Y

t−1 is thus,

σ2
t |F Y

t−1 ∼ IG
(
δ2t ,∆

2
t

)
. (3.20a)

In view of (3.19), δ2t is given by (2.5d) and

∆2
t = λω +

q∑
i=1

λαiY
2
t−i +

p∑
j=1

λβj
δ2t−j (3.20b)

where λω =
ω3
0

σ2
0ω
, λαi =

α3
0i

σ2
0αi

, and λβj
=

β3
0j

σ2
0βj

.

Consequently, the conditional distribution of the model given by

f
(
Yt|F Y

t−1

)
=

∫
(0,∞)

f
(
Yt, σ

2
t |F Y

t−1

)
dσ2

t =

∫
(0,∞)

f
(
σ2
t |F Y

t−1

)
f
(
yt|σ2

t

)
dσ2

t , (3.21)
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is a continuous mixture of normal distributions with Inverse Gaussian mixings. This distribution is

called Normal Inverse Gaussian (NIG, see the online material). It has a closed form density (see the

online material) and is also given in the following hierarchical mixture (see the online material)


Yt|σ2

t ∼ N
(
0, σ2

t

)
σ2
t |F Y

t−1 ∼ IG
(
δ2t ,∆

2
t

) =⇒ Yt|F Y
t−1 ∼ NIG

(
∆t

δ2t
, 0,∆t, 0

)
. (3.22)

The posterior/filtered volatility σ2
t |F Y

t has the density

f
(
σ2
t |F Y

t

)
= f

(
σ2
t |Yt,F Y

t−1

)
=

f(σ2
t |FY

t−1)f(Yt|σ2
t )

f(Yt|FY
t−1)

which is nothing but the generalized inverse Gaussian (GIG) distribution (cf. the online material). In

fact, the GIG distribution is conjugate for the normal distribution, so the distribution of σ2
t |F Y

t is

given by (cf. the online material)


σ2
t |F Y

t−1 ∼ IG
(
δ2t ,∆

2
t

)
Yt|F Y

t−1, ϕt ∼ N
(
0, σ2

t

) =⇒ σ2
t |F Y

t ∼ GIG
(
−1, ∆t

δ2t

√
∆2

t + Y 2
t ,

∆t

δ2t

)

where GIG(τ, φ, γ) denotes the Generalized Inverse Gaussian distribution with parameters τ, φ, γ (cf.

the online material). Thus, the filtered volatility given by

ϱ2t = E
(
σ2
t |F Y

t

)
= 1

f(Yt|FY
t−1)

∫
(0,∞)

σ2
t f
(
σ2
t |F Y

t−1

)
f
(
Yt|σ2

t

)
dσ2

t (3.23)

can be obtained in a closed form. Using the result of Barndorff-Nielssen (1978) for the GIG distribution

(see also Karlis, 2002, formula (4)), a closed form formula for the IG posterior mean in (3.23) is given

in the online material. Hence, the estimate ϱ̂2t of ϱ2t is obtained while replacing the true parameters

in the expression (3.23) by their estimates obtained in the first and second stages, giving

ϱ̂2t = Ê
(
σ2
t |F Y

t

)
=

δ̂2t

√
∆̂2

t+Y 2
t

∆̂t

K0

(
∆̂t
δ̂2t

√
∆̂2

t+Y 2
t

)
K−1

(
∆̂t
δ̂2t

√
∆̂2

t+Y 2
t

) (3.24)

where Ê denotes the expectation in which the true parameters are replaced by their estimates, δ̂2t is

given by (3.9b), Kr (y) denotes the modified Bessel function of the third kind of order r evaluated at
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y, and from (3.20b)

∆̂2
t = λ̂ω +

q∑
i=1

λ̂αiY
2
t−i +

p∑
j=1

λ̂βj
δ̂2t−j . (3.25)

The estimates λ̂ω = ω̂3

σ̂2
ω
, λ̂αi =

α̂3
i

σ̂2
αi

, and λ̂βj
=

β̂3
j

σ̂2
βj

(i = 1, ..., q, j = 1, ..., p) are obtained from

(3.4), (3.19), (3.9b), and (3.12). Note finally that ∆2
t can be interpreted as a “conditional” heavy-tail

parameter (see the online material; Barndorff-Nielsen and Prause, 2001).

It is also possible to make inference about the regimes taken by each random coefficient using its

posterior mean given the past and present observations. In view of the independence of the random

coefficients, their inverse Gaussian priors given by (3.19), and the normality assumption (3.18) about

the model innovation, the posterior distribution of the coefficients is generalized inverse Gaussian. For

instance, for the random coefficient ωt we have


ωt|F Y

t−1 ∼ IG (ω0, λω)

Yt|F Y
t−1, ϕt ∼ N

(
0, σ2

t

) =⇒ ωt|F Y
t ≡ ωt|Yt ∼ GIG

(
−1,

√
λω
ω0

√
λω + Y 2

t ,
√
λω
ω0

)
.

Likewise,

αit|Yt ∼ GIG
(
−1,

√
λαi

α0

√
λαi + Y 2

t ,

√
λαi

α0

)
, 1 ≤ i ≤ q

βjt|Yt ∼ GIG
(
−1,

√
λβj

β0

√
λβj

+ Y 2
t ,

√
λβj

β0

)
, 1 ≤ j ≤ p.

Therefore, similarly to σ2
t |F Y

t , the posterior means of the random coefficients are given from the mean

of the GIG distribution by (cf. the online material)

E
(
ωt|F Y

t

)
= E (ωt|Yt) =

ω0

√
λω+Y 2

t√
λω

K0

(√
λω
ω0

√
λω+Y 2

t

)
K−1

(√
λω
ω0

√
λω+Y 2

t

)
E
(
αit|F Y

t

)
= E (αit|Yt) =

α0

√
λαi+Y 2

t√
λαi

K0

(√
λαi
α0

√
λαi+Y 2

t

)
K−1

(√
λαi
α0

√
λαi+Y 2

t

) , 1 ≤ i ≤ q

E
(
βjt|F Y

t

)
= E (βjt|Yt) =

β0

√
λβj

+Y 2
t√

λβj

K0

(√
λβj
β0

√
λβj

+Y 2
t

)

K−1

(√
λβj
β0

√
λβj

+Y 2
t

) , 1 ≤ j ≤ p.

(3.26)

The estimated posterior means are obtained while replacing the true parameters by their estimates.

The following algorithm summarizes the three-stage method to estimate the RC-GARCH param-

eters (2.5).
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Algorithm 3.1 (Three-stage method)

Given an observed series Y1, ..., Yn:

Stage I

1- Estimate θ0 = (ω0, α01, ..., β0p)
′ using the Gaussian QMLE θ̂n given by (3.4).

2- Estimate the predictive volatilities δ̂21 , ..., δ̂
2
n from (3.3), where δ̂2t = δ̃2t (θ̂n) (1 ≤ t ≤ n).

3- Estimate the asymptotic variance of θ̂n and hence its asymptotic standard error (ASE) from

(3.9).

Stage II

4- Estimate the variances of the random coefficients Λ0 =
(
σ2
0ω, σ

2
0α1

, ..., σ2
0αq

, σ2
0β1

, ..., σ2
0βp

)′
using

the WLSE Λ̂n from (3.12).

5- Estimate the asymptotic variance and then the ASE of Λ̂n from (3.16).

Stage III

6- Estimate the filtered volatilities ϱ̂21, ..., ϱ̂
2
n from (3.24)-(3.25), using the posterior mean of the

Inverse Gaussian distribution.

7- Estimate the posterior mean of the random coefficients from (3.26).

3.4 Testing the randomness of coefficients

As for any random coefficient model, an important step in building a RC-GARCH model is to test for

the randomness of its coefficients. This may validate the random-coefficient structure of the model.

We, thus, use Wald tests for the null hypothesis of the nullity of the variance parameter Λ0 (or some of

its components) against its opposite as alternative, based on the asymptotic distribution of the WLSE

Λ̂n. Such a null hypothesis writes for each component of Λ0 as follows

H i
0 : Λ0i = 0, i = 1, ..., p+ q + 1. (3.27)

A feasible Wald statistic for testing (3.27), based on the asymptotic distribution of the WLSE as given

by (3.15), is defined by

Wi,n = n
Λ̂2
n,i

ĝi
, i = 1, ..., p+ q + 1, (3.28)
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where ĝi is the ith diagonal element of the matrix Σ̂ = Â−1B̂Â−1 with Â and B̂ being given by (3.16).

Under H i
0 in (3.27) and the assumptions of Theorem 3.2 it can be seen that

Wi,n
D→ χ2

(1) as n → ∞.

Given a size α ∈ (0, 1), let χi,α be the critical value such that P (Wi,n > χi,α) → α as n → ∞. The

null H i
0 is thus rejected if Wi,n > χi,α.

If the null (3.27) is not rejected, this does not imply that all volatility coefficients are not random,

and it may be possible that at least one of the coefficients is random. Letting M = (1, ..., 1)′ be a

1× (p+ q + 1)-vector of ones, a global hypothesis over all coefficients can be considered as the null

H0 : M
′Λ0 = 0, (3.29)

for which we use again the Wald test. A Wald statistic for (3.29) is given by

Wn =
(
M Λ̂n

)′ (
M 1

n Σ̂M
′
)−1

M Λ̂n. (3.30)

Under H0 and the above assumptions of Theorem 3.2 it can be seen that

Wn
D→ χ2

(1) as n → ∞.

4 Empirical data: An application to Cisco stock returns

The empirical application concerns the daily returns of Cisco stock for the period 01/02/2001 to

12/31/2008 that consists of n = 2011 observations (see Figure 2). The series, taken from Tsay (2010),

exhibits conventional stylized facts of stock return series, such as dependence without correlation, high

persistence, and volatility clustering (see Figure 2).

Applying the first two stages of Algorithm 3.1, gives the estimated RC-GARCH(1,1) model for

which the estimated means and variances of the random coefficients as well as their asymptotic stan-
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forecasting ability of the predictive volatility (which is that of the standard Engle-Bollerslev

GARCH model) even when the true observations are replaced by their predictions.

5 Empirical data: An application to Cisco stock re-

turns

The empirical application concerns the daily returns of Cisco stock for the period from

01/02/2001 to 12/31/2008 involving n = 2011 observations (see Figure 2). The series,

taken from Tsay (2010), exhibits conventional stylized facts of stock return series, such as

dependence without correlation, high persistence, and volatility clustering (see Figure 2).

(a) (b)

(c) (d)

Figure 2. CISCO stock return series: (a) The CISCO return series of RCISCO; (b) 

sample autocorrelation, (c) sample autocorrelation of squares, (d) histogram.

Applying the �rst two stages of Algorithm 3.1, gives the estimated RC-GARCH(1,1)

34dard errors (ASE) in parentheses are displayed in Table 1.

ωt α1t β1t

QMLE ω̂n α̂1n β̂1n α̂1n + β̂1n

3.2e-06
(1.8e-06)

0.0341
(0.0077)

0.9609
(0.0082)

0.9950

WLSE σ̂2
ωn σ̂2

αn σ̂2
βn FMC

5.6e-08
(9.7e-08)

0.1229
(0.0480)

1.3650
(0.9231)

2.7260

Table 1. QML and WLS estimates for the RC-GARCH(1, 1).

The parameter estimate α̂1n+ β̂1n ≃ 0.9950 indicates a strong persistence, while the estimated RC-

GARCH model remains strictly stationary with a finite second moment. In addition, the estimated

indicator of the fourth moment condition,

FMC := 3α̂2
1n + 2α̂1nβ̂1n + β̂2

1n + κσ̂2
0α1

+ σ̂2
0β1

≃ 2.7260,

is larger than one, so the estimated RC-GARCH model has an infinite fourth moment and hence

an infinite unconditional kurtosis. Nevertheless, the conditional (excess) kurtosis κ̂t − 3 (see (2.9))

is finite and its estimated values are plotted in Figure 4 (Panel (d)). Note that all parameters are

significant and, in particular, the variance parameters as confirmed by Table 2, which reports the

Wald statistics defined in (3.28). The hypothesis that the parameter ωt is random is only accepted at

the level 0.50, which is highly stringent. However, the randomness of the parameter αt is accepted at

any level even at 0.01. The hypothesis that βt is not random is accepted at the level 0.1. This show
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that the randomness of the RC-GARCH model is not rejected at least at the level 0.10, regarding the

global Wald statistics. The same holds for the Intel application (see Supplementary Material).

Wω,n Wα,n Wβ,n

0.3349 6.5446 2.1867

Table 2. Individual Wald Statistics for

testing the randomness of coefficients.

Next, the posterior means E (ωt|Yt), E (αt|Yt) and E (βt|Yt) (1 ≤ t ≤ n) of the random coefficients

are plotted in Figure 3. It can be seen that, as expected, each posterior mean exhibits a behavior that

is consistent with the continuous regime assumption. To get an idea about the behavior of the random

coefficients, the graphs of the simulated random coefficients (ωt, αt, βt) obtained from the estimated

RC-GARCH(1,1) model as well as the random persistence αt + βt are given in the Supplementary

Material, where it is shown that the generated αt and βt coefficients as well as their persistence can

flexibly exceed unity by a large margin.

Next, the posterior means E (!tjYt), E (�tjYt) and E (�tjYt) (1 � t � n) of the random

coe¢ cents are ploted in Figure 3. It can be seen that, as expected, each posterior mean

exhibits a behavior that is consistent with the continuous regime assumption. Note that

the �ltered volatilities obtained from these posterior means through (3.27) have a very close

behavior and performs similarly as those directly obtained from (3.24) (see the supplementary

material). To get an idea about the behavior of the random coe¢ cients, the graphs of

simulated random coe¢ cients (!t; �t; �t) from the SISCO estimated RC-GARCH(1,1) model

as well as the random persistence �t + �t are ploted in the supplementary material, where

it is shown that the generated �t and �t coe¢ cients as well as their persistence can �exibly

exceed unity by a large margin.

(a) (b)

(c)

Figure 3. Posterior means of the random coe¢ cients (!t; �t; �t) :

(a) E (!tjYt) , (b) E (�tjYt) , (c) E (�tjYt) , 1 � t � n.

Figure 4 shows the predictive volatility b�2t (Figure 3 (a)), which is nothing but the volatil-
36

Figure 4 shows the predictive volatility δ̂2t (Figure 3 (a)), which is nothing but the volatility of

the standard GARCH model, and the filtered volatility ϱ̂2t (Figure 4 (b)) obtained from Stage 3 of

the Algorithm 3.1. The filtered volatility ϱ̂2t is more erratic and captures small and large volatilities
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better than the predictive volatility does. In addition, as mentioned in the introduction, the filtering

volatility ϱ̂2t does not seem to contain curves in the sense of large volatilities as the predictive (or

standard GARCH) volatility δ̂2t does. The conditional excess kurtosis (panel (d)) exceptionally shows

very large picks, which are probably due to the fourth-order instability of the model. Panel (c) shows

the time plot of the volatility of volatility generated by the RC-GARCH model, whose behavior is

consistent with that of the predictive volatility.

ity of the standard GARCH model, and the �ltered volatility b%2t (Figure 4 (b)) obtained from
Stage 3 of the Algorithm 3.1. The �ltered volatility b%2t is more erratic and captures small
and large volatilities better than does the predictive volatility. In addition, as mentioned in

the introduction, the �ltering volatility b%2t does not seem to contain curves in the sense of

large volatilities as does the predictive (or standard GARCH) volatility b�2t . The conditional
excess kurtosis (panel (d)) exceptionally shows very large picks, which are probably due to

the fourth-order instability of the model. Panel (c) shows the time plot of the volatility of

volatility generated by the RC-GARCH model, whose behavior is consistent with that of the

predictive volatility.

(a) (b)

(c) (d)

Figure 4. Estimated RC-GARCH for CISCO series. (a) Predictive volatility,

(b) �ltered volatility, (c) volatility of volatility, (d) conditional excess kurtosis.

We now assess the in-sample performance of the RC-GARCH(1,1) model in terms of

both model �t and volatility forecasting. We thus compare the RC-GARCH(1,1) model

37

We finally assess the out-of-sample forecasting ability of four competing volatilities. The first one

is the Normal GARCH predictive volatility δ̂2t , the second one is the NIG filtered volatility ϱ̂2t in which

the future returns are available, the third one is the NIG filtered volatility ϱ̂∗2t in which the future

returns Yt+j (j ≥ 1) are estimated by 0 (see also online material), while the fourth one is the MS-

GARCH volatility (MS). We have not included the out-of-sample volatility forecasts generated by the

tvGARCH model since they are not available from the package tvGARCH, while error messages are

thrown, when estimating the tvGARCH model based on truncated series. We, thus, estimate the four

volatility models on the basis of the first nc observations of the series, where 1 < nc < n. Then, we

compute the one-step ahead volatility forecast on the period (nc + 1, ..., n) for each model and obtain

the three criteria: i) the MSFE= 1
n−nc

n∑
t=nc+1

(Y 2
t − ĥt)

2, ii) the MAFE = 1
n−nc

n∑
t=nc+1

∣∣∣Y 2
t − ĥt

∣∣∣, and
iii) the MQLI= 1

n−nc

n∑
t=nc+1

(log ĥt +
Y 2
t

ĥt
). The one-step ahead GARCH predictive volatility forecast

is simply δ̂2t (nc + 1 ≤ t ≤ n), while that of the filtered volatility is obtained from expression (A.5)

(given in the online material) with h = 1. Finally, the one-step ahead MS-GARCH volatility forecast
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are obtained using the function “predict()” of the package MSGARCH of Ardia et al (2019). Table 3

shows the computed values of the above criteria for the four models and for various truncated series

with sample size nc ∈ {1450, 1500, 1600, 1700, 1800, 1900} (cf. Table 3).

nc 1450 1500 1600 1700 1800 1900

δ̂2t

MSFE

MAFE

MQLI

2.12e-06

0.00061

−6.6401

2.29e-06

0.00063

−6.5706

2.78e-06

0.00072

−6.6338

3.58e-06

0.00085

−6.1700

4.78e-06

0.00103

−5.9546

8.57e-06

0.00157

−5.3450

ϱ̂2t

MSFE

MAFE

MQLI

9.59e-07

0.00036

−7.2763

1.05e-06

0.00038

−7.1797

1.29e-06

0.00043

−6.9818

1.65e-06

0.00051

−6.8116

2.25e-06

0.00064

−6.6594

4.09e-06

0.00099

−6.0851

ϱ̂∗2t

MSFE

MAFE

MQLI

1.29e-08

0.00008

−9.6907

1.45e-08

0.00008

−9.6465

1.84e-08

0.00009

−9.5180

2.45e-08

0.00012

−9.3342

3.60e-08

0.00015

−8.9941

6.85e-08

0.00024

−8.4441

MS

MSFE

MAFE

MQLI

2.74e-06

0.00075

−6.8789

2.16e-06

0.00061

−6.6866

3.79e-06

0.00086

−6.7176

3.45e-06

0.00081

−6.2358

4.60e-06

0.00098

−6.0537

8.39e-06

0.00149

−5.3804

Table 3. Out-of-sample volatility forecasting performance of the filtered volatility, the predictive

volatility, and the MS-GARCH volatility (MS). ϱ̂2t : filtered volatility using available returns.

ϱ̂∗2t : filtered volatility using predictive returns.

From Table 3 some conclusions can be drawn. i) First, it can be seen that regardless of the chosen

time-cut nc, the filtered volatilities ϱ̂2t and ϱ̂∗2t give better out-of-sample forecasts with respect to the

above-mentioned criteria. In particular ϱ̂∗2t outperforms ϱ̂2t in terms of all criteria and all nc. Moreover,

ϱ̂2t dominates both δ̂2t and the MS-GARCH volatility in terms of all criteria and all nc. ii) Second,

except the cases nc ∈ {1450, 1600}, the MS-GARCH volatility outperforms the standard GARCH

volatility for all other nc and all criteria.

For a more meaningful comparison between the four volatility forecasts in Table 3, we resort to

the Model Confidence Set method of Hansen et al (2011) using the R package MCS of Bernardi

and Catania (2014). Regarding the mean square loss function (MSFE), we found that the forecasts

obtained by the filtered volatility ϱ̂∗2t constitutes the Superior Set Models for all nc, with the GARCH

and MS-GARCH volatilites being excluded from this set.

All in all, confirming the results of the simulation Section (see online material), our CISCO appli-

cation showed that the filtered volatility is able to improve the in-sample GARCH volatility forecasts
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and also the out-of-sample forecasts, even when the future data are not available and are replaced by

their predictions.

It should be noted that, the comparison of predictive and filtered volatilities is not used here in

the sense of a competition between them, but only to see how filtered volatility, based on predictive

volatility, could complement the latter, which is important, especially in volatility forecasting. In fact,

filtered volatility can be used in nowcasting, as it could improve volatility forecasting when current or

immediate future observations are available/predicted.

5 Conclusion

This work proposed a random coefficient GARCH (RC-GARCH) model with a time-varying condi-

tional kurtosis and a latent conditional volatility sequence driven by past observations and present iid

random inputs. The proposed formulation, which is path-independent, mimics the Markov switching

specification of Gray (1996) in a continuous-valued regime framework, and is different from earlier

random coefficient GARCH models introduced by Kazakevicius et al (2004), Klivecka (2004), and

Thavaneswaran et al (2005). The latent volatility, which is the main focus of this paper, can be esti-

mated in two ways. First, using the predictive/observable volatility, which is the conditional mean of

the latent volatility given past observations. It is, therefore, entirely determined by past observations

and is exactly the same as the volatility of the standard Engle-Bollerslev GARCH model. Second,

the latent volatility can be estimated using the filtered volatility, which is the conditional mean of

the latent volatility given past and present observations. This filtered volatility has the advantage

of also incorporating the current observation and thus can better describe latent volatility. Through

simulation and empirical studies, we found that the filtered volatility can increase the in-sample fore-

casting ability and model fit via the conditional NIG distribution and also the out-of-sample ability if

the data were available or even predicted. The same conclusion holds for the application of the Intel

returns, given in the Supplementary Material. Thus, the RC-GARCH model equipped with the two

volatility estimates for the latent volatility can shed more light on the evolution of the variability of

the underlying series. In particular, the volatility and volatility of volatility generated by the model

are understood in the natural sense of conditional variance and therefore do not have an abusive

meaning as is the case with some SV and real-time volatility models in which volatility is no longer

the conditional variance. Furthermore, as suggested by the co-Editor, the RC-GARCH model also
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provides a standard GARCH volatility, unlike most parameter-driven models.

Regarding estimation, the QMLE for the means of the random coefficients is consistent and asymp-

totically Normal (CAN) with a different covariance matrix than the QMLE of the standard GARCH.

In addition, the WLSE for the variances of the random coefficients is also CAN and is given in a

closed form regardless of the distribution of the model. Finally, assuming that the random coefficients

are IG distributed and the innovation is Normal, the conditional model is NIG distributed. The NIG

hypothesis allows for closed-form posteriors, is very flexible, and can account for heavy tailedness and

asymmetry. Moreover, the latent volatility filtering process is obtained simply in a closed form unlike

most parameter-driven models (SV, MS-GARCH) that require highly computational methods to filter

the latent volatility.

Further extensions of this paper are possible. First of all, the asymmetry parameter was set to zero

although it could be considered as an unknown parameter to be estimated. Also, alternative estimation

methods could be used, such as the Bayesian approach or the EM algorithm (Karlis, 2002). Other

random-coefficient GARCH models could be considered, such as the random coefficient EGARCH,

the random coefficient asymmetric power GARCH, the random coefficient tvGARCH (in the sense of

Amado and Teräsvirta, 2013), and the random coefficient score-driven model. Finally, multivariate

extensions of the RC-GARCH model seem appealing. These aspects of analysis could be analyzed in

a future research agenda.
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1 Inverse Gaussian and Normal Inverse Gaussian distributions

A continuous random variable Z is said to have an Inverse Gaussian (IG) distribution with mean ρ > 0

and shape λ > 0 (Z ∼ IG (ρ, λ)) if its probability density function is given by

f (z; ρ, λ) =
√
λ√

2πz3
exp

(
−λ(z−ρ)2

2ρz

)
, z > 0. (A.1)

An equivalent form is given in terms of the mean ρ and the dispersion (1/shape) ϕ = 1
λ . The original

parametrization (e.g. Barndorff-Nielsen, 1978-1997; Karlis, 2002) has been expressed in terms of the

parameters φ =
√
λ and γ =

√
λ
ρ so that ρ = φ

γ and λ = φ2, giving

f (z;φ, γ) = φ√
2πz3

exp (φγ) exp
(
−1

2

(
φ2

z + γ2z
))

, z > 0.

The mean and variance of the IG distribution are E (Z) = ρ and V ar (Z) = ρ3

λ , and in terms

of the IG(φ, γ) parametrization by E (Z) = φ
γ and V ar (Z) = φ

γ3 . The IG distribution is lin-

ear in the sense that if Z1 ∼ IG (ρ1, λ1) and Z2 ∼ IG (ρ2, λ2) are independent then aZ1 + bZ2 ∼

IG (aρ1 + bρ2, aλ1 + bλ2) (a, b > 0).

A continuous mixture of normal distributions with Inverse Gaussian mixings leads to the Normal

1Correspondence to: Stefanos Dimitrakopoulos, dimitrakopoulos.stefanos@outlook.com. We would like to pay tribute
to Prof. Mike Tsionas for his contribution to this paper, who would have been a co-author of it, but unfortunately he
passed away.
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Inverse Gaussian (NIG) distribution that has a closed form. A continuous random variable Y is said

to have a NIG distribution with parameters α, φ, µ, β (Y ∼ NIG (α, β, φ, µ), α, φ > 0, |β| ≤ α, µ ∈ R)

if its probability density function is given by (Barndorff-Nielsen, 1978)

f (y;α, β, φ, µ) =
αφK1

(
α
√

φ2+(y−µ)2
)

π
√

φ2+(y−µ)2
exp(φ

√
α2 − β2 + β (y − µ)) (A.2)

where K1 is the modified Bessel function of the third kind of order one. In terms of the hierarchi-

cal mixture form, the NIG distribution is defined as follows (Barndorff-Nielsen, 1997; Karlis, 2002;

Murphy, 2007)


Z|γ, β, φ ∼ IG (γ, φ)

Y |Z, µ, β ∼ N (µ+ βZ,Z)

=⇒ Y ∼ NIG
(√

γ2 + β2, β, φ, µ
)
.

In particular, when β = 0 and µ = 0, and using the mean-shape parametrization of the IG (ρ, λ)

with φ =
√
λ and γ =

√
λ
ρ , the above hierarchical form of the NIG

(√
λ
ρ , 0,

√
λ, 0
)
distribution becomes


Z|ρ, λ ∼ IG (ρ, λ)

Y |Z ∼ N (0, Z)

=⇒ Y ∼ NIG
(√

λ
ρ , 0,

√
λ, 0
)
. (A.3)

The mean and variance of the NIG variable are E (Y ) = µ + φβ
γ and V ar (Y ) =

φ(γ2+β2)
γ3 . The

NIG distribution is closed under affine transformations: If Y ∼ NIG (α, β, ρ, µ) then (Paolella, 2007)

aY + b ∼ NIG
(

α
|a| ,

β
a , |a| ρ, aµ+ b

)
. The main advantage of the NIG distribution over the normal

distribution is that it allows for asymmetry (with parameter β) and heavy tailedness (with parameter

α); see Barndorff-Nielsen, (1997). Note that µ is a location parameter while ρ is a scale parameter.

Another advantage of the NIG and IG distributions is that the posterior mean of the IG distribution

E (Z|Y ) can be obtained in a closed form using the Generalized Inverse Gaussian (GIG) distribution.

A ransom variable Z is said to have a GIG (τ, φ, γ) distribution with parameters τ, φ and γ if

f (z; τ, φ, γ) =
(

γ
φ

)τ
zτ−1

2Kτ (φγ)
exp

(
−1

2

(
φ2

z + γ2z
))

, z > 0.

In terms of the mean-shape representation of the IG (ρ, λ) distribution, the GIG(τ, ρ, λ) distribution
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takes the form

f (z; τ, ρ, λ) = ρ−τ zτ−1

2Kτ

(
λ
ρ

) exp
(
−1

2

(
λ
z + λ

ρ2
z
))

, z > 0.

The r-th moment of the GIG (τ, φ, γ) distribution is given by

E (Zr) =
(
φ
γ

)r
Kτ+r(φγ)
Kτ (φγ)

.

For τ = −1
2 , the GIG

(
−1

2 , φ, γ
)
coincides with the IG (φ, γ) distribution. The main advantage of

the GIG distribution is that it is conjugate to the normal distribution: If Y |Z, µ, β ∼ N (µ, µ+ βZ)

and Z|τ, φ, γ ∼ GIG (τ, γ, φ) then,

Z|Y, µ, β, τ, φ, γ ∼ GIG

(
τ − 1

2 ,

√
φ2 + (Y − µ)2,

√
γ2 + β2

)

In particular, when β = µ = 0, it follows that

Y |Z ∼ N (0, Z)

Z|τ, γ, φ ∼ GIG (τ, γ, φ)

⇒ Z|Y, τ, φ, γ ∼ GIG
(
τ − 1

2 ,
√
φ2 + Y 2, γ

)

and the posterior mean is given by

E (Z|Y, τ, φ, γ) =
√

φ2+Y 2

γ

Kτ+1/2

(
γ
√

φ2+Y 2
)

Kτ−1/2

(
γ
√

φ2+Y 2
) ,

where Kr (y) denotes the modified Bessel function of the third kind of order r evaluated at y. Taking

τ = −1
2 , the posterior mean of the particular IG (φ, γ) distribution writes as (cf. Barndorff-Nielsen,

1997; Karlis, 2002, formula (4))

E (Z|Y, φ, γ) := E
(
Z|Y, τ = −1

2 , γ, φ
)
=

√
φ2+Y 2

γ

K0

(
γ
√

φ2+Y 2
)

K−1

(
γ
√

φ2+Y 2
) .

In terms of the mean-shape parametrization φ =
√
λ and γ =

√
λ
ρ , the posterior mean of the

IG(ρ, λ) distribution takes the form

E (Z|Y, ρ, λ) = ρ
√
λ+Y 2
√
λ

K0

(√
λ
ρ

√
λ+Y 2

)
K−1

(√
λ
ρ

√
λ+Y 2

) . (A.4)
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In R, we use the function dnig() of the package fBasics for the density of the NIG distribution,

and the invgauss() function of the package actuar for the IG(ρ, λ) density under the mean-shape

representation. Moreover, to evaluate (A.4), we use the function besselK of the package base.

2 Forecasting volatilities

Since the volatility σ2t is not observable even with a perfect knowledge of the parameters θ0 and Λ0, it

is only estimated using available data. We have seen that there are two estimates of σ2t : the predictive

volatility δ2t = E
(
σ2t |F Y

t−1

)
given data up to time t − 1, which is exactly the standard GARCH

volatility, and the filtered volatility ϱ2t = E
(
σ2t |F Y

t

)
, which uses data up to time t. As is the case

with the MS-GARCH model of Haas et al (2004a), the RC-GARCH model allows for a closed-form

volatility. Since the model offers two types of (predictive, filtered) volatilities, two volatility forecasts

can be provided. The predictive volatility
(
δ2t
)
is exactly that of a standard GARCH model, so the

one-step and multi-step ahead forecasts δ2t+h are obtained with the same formula as with the standard

GARCH model (e.g. Francq and Zakoian, 2019). Then, if Yt+1, ..., Yt+h are already available, the

filtered volatility forecast ϱ2t+h can be obtained while adapting (3.24) expression of the main paper as

follows

ϱ̂2t+h := Ê
(
σ2t+h|F Y

t+h

)
=

δ̂2t+h

√
∆̂2

t+h+Y 2
t+h

∆̂t+h

K0

(
∆̂t+h

δ̂2
t+h

√
∆̂2

t+h+Y 2
t+h

)
K−1

(
∆̂t+h

δ̂2
t+h

√
∆̂2

t+h+Y 2
t+h

) , h ≥ 1, (A.5)

where ∆̂2
t+h is updated from (3.25) expression of the main paper. Of course, Yt+1, ..., Yt+h are generally

not available, but predictions of them could be obtained to anticipate filtered volatility forecasts. We

denote by ϱ̂∗2t+h the filtered volatility obtained exactly from (A.5) when Yt+1, ..., Yt+h are replaced by

their predictions Ŷt+1, ..., Ŷt+h, where Ŷt+j = E
(
Yt+j |F Y

t

)
(1 ≤ j ≤ h). Thus, ϱ̂2t+h and ϱ̂∗2t+h can be

seen as a complement to the volatility forecast δ̂2t+h, if Yt+1, ..., Yt+h can be obtained/predicted.

The following algorithm summarizes the main steps for obtaining RC-GARCH volatility forecasts.

Algorithm 3.2 Volatility forecasts

Given a RC-GARCH series Y1, ..., Yn, and initial values Y0, ..., Y1−q, δ
2
0 , ..., δ

2
1−p.

Step1: Compute the predictive volatilities δ̂21 , ..., δ̂
2
n given the parameter estimate θ̂n from

δ̂2t = Ê
(
σ2t |Y1, ..., Yt−1

)
= ω̂ +

q∑
i=1

α̂iY
2
t−i +

p∑
j=1

β̂j δ̂
2
t−j , 1 ≤ t ≤ n.
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Step 2: Compute the filtered volatilities ϱ̂2t = Ê
(
σ2t |Y1, ..., Yt

)
, 1 ≤ t ≤ n given the parameter

estimates θ̂n and Λ̂n using expression (3.24) in the main paper.

Step 3: Compute δ̂2t+h = Ê
(
σ2t+h|Y1, ..., Yt

)
(h ≥ 1) using the standard GARCH volatility forecast

formula.

Step 4: Given new/predicted observations Yn+1, ..., Yn+h:

Compute ϱ̂2t+h = Ê
(
σ2t+h|Y1, ..., Yt+h

)
from expression (A.5).

Use δ̂2t and ϱ̂2t (1 + n ≤ t ≤ n+ h) as (predictive and filtered) volatility forecasts.

3 Proofs

Proof of Propositions 2.1-2.3 The proofs of Propositions 2.1-2.3 are standard and follow the same

lines of the stability proofs for GARCH models (see e.g. Francq and Zakoian, 2019). Hence, they are

omitted but they are available upon request.

Proof of Theorem 3.1 The proof is similar to that of QMLE’s consistency and asymptotic

normality for the GARCH model (Francq and Zakoian, 2004-2019). So, only the relevant steps of the

proof are provided. Define Ln (θ) and ℓt as L̃n (θ) and ℓ̃ in (3.5) while substituting δ̃2t (θ) in (3.3) by

δ2t (θ) given by (3.1). Concerning the consistency result (3.7), the following intermediary lemmas are

proved under A1-A4 in the same way as in Francq and Zakoian (2004).

a) limn→∞ supθ∈Θ

∣∣∣L̃n (θ)− Ln (θ)
∣∣∣ = 0 a.s.

b) E (ℓt (θ0)) <∞, E (ℓt (θ)) is minimized at θ = θ0, and E (ℓt (θ0)) = E (ℓt (θ)) ⇒ θ = θ0.

c) For any θ ̸= θ0, there is a neighborhood V (θ) so that

lim sup
n→∞

inf
θ∗∈V(θ)

L̃n (θ
∗) > lim inf

n→∞
L̃n (θ0) a.s.

The proof of the asymptotic normality result (3.8) can be split into the following lemmas.

d)
√
n supθ∈Θ

∥∥∥∂L̃n(θ)
∂θ − ∂Ln(θ)

∂θ

∥∥∥ a.s.→
n→∞

0.

e)
√
n∂Ln(θ0)

∂θ
D→

n→∞
N (0, I).

f) ∂2Ln(θ∗)
∂θ∂θ′

a.s.→
n→∞

J , where θ∗ is between θ̂n and θ0.

Result d) is proved in the same way as in Francq and Zakoian (2004). So only e) and f) are

established here.
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Regarding e), the sequence
{√

n∂Ln(θ0)
∂θ , t ∈ Z

}
is a square-integrable martingale with respect to

{F t, t ∈ Z} with

n1/2 ∂Ln(θ0)
∂θ = n−1/2

n∑
t=1

(
1− Y 2

t

δ2t (θ0)

)
1

δ2t (θ)

∂δ2t (θ0)
∂θ .

Since the ergodic theorem under (2.11) entails

n∑
t=1

n−1
(
1− Y 2

t

δ2t (θ0)

)2
1

δ4t (θ)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

a.s.→
n→∞

E

(
1

δ4t (θ0)
E

((
1− Y 2

t

δ2t (θ0)

)2
|F Y

t−1

)
∂δ2t (θ0)

∂θ
∂δ2t (θ0)

∂θ′

)
(A.6)

where

E

((
1− Y 2

t

δ2t (θ0)

)2
|F Y

t−1

)
= 1

δ4t (θ0)
E
((
δ2t − σ2t ε

2
t

)2 |F Y
t−1

)
=

V ar(Y 2
t |FY

t−1)
δ4t (θ0)

= 1
δ4t (θ0)

(
(κ− 1) δ4t + κV ar

(
σ2t |F Y

t−1

))
(A.7)

the result e) thus follows from (A.6), (A.7), and the central limit theorem for square-integrable mar-

tingales (e.g. Billingsley, 2008; Francq and Zakoian, 2019).

To prove f), the Taylor expansion of the criterion (3.5) at θ0, the almost convergence of θ̂n to θ0,

and the ergodic theorem yield

n−1
n∑

t=1

∂2ℓt(θ∗ij)
∂θi∂θj

= n−1
n∑

t=1

∂2ℓt(θ0)
∂θi∂θj

+ oa.s. (1)
a.s.→

n→∞
E
(
∂2ℓt(θ0)
∂θi∂θj

)
= E

((
1− σ2

t ε
2
t

δ2t (θ0)

)
1

δ2t (θ0)

∂2δ2t (θ0)
∂θ∂θ′

)
+ E

((
2Y 2

t

δ2t (θ0)
− 1
)

1
δ2t (θ0)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
= J ,

which completes the proof. □

Proof of Theorem 3.2 i) We first prove (3.14). Under A1-A4, the strong consistency of θ̂n

entails δ2t − δ̂2t
a.s.→
t→∞

0 and hence
∥∥∥M̂t −Mt

∥∥∥ a.s.→
t→∞

0, where ∥.∥ denotes the Euclidian norm in Rp+q+1.
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Therefore, a standard argument shows that (3.12) becomes

Λ̂n =

(
n∑

t=1

1
δ8t
MtM

′
t

)−1 n∑
t=1

Mt
(Y 2

t −δ2t )
2−(κ−1)δ4t
κδ8t

+ oa.s. (1) ,

which, in turns using (3.10), gives

Λ̂n − Λ0 =

(
1
n

n∑
t=1

1
δ8t
MtM

′
t

)−1

1
n

n∑
t=1

Mt
et
κδ8t

+ oa.s. (1) . (A.8)

Now under (2.11), the ergodic theorem yields

1
n

n∑
t=1

1
δ8t
MtM

′
t

a.s.→
n→∞

A (A.9)

and, further under A6,

1
n

n∑
t=1

Mt
et
κδ8t

a.s.→
n→∞

E
(
Mt

et
κδ8t

)
= E

(
Mt

1
κδ8t

E
(
et|F Y

t−1

))
= 0. (A.10)

Thus, (3.14) follows from (A.8)-(A.10).

ii) To show (3.15), we first rewrite (A.8) as follows

√
n
(
Λ̂n − Λ0

)
=

(
1
n

n∑
t=1

1
δ8t
MtM

′
t

)−1

1√
n

n∑
t=1

Mt
et
κδ8t

+ oa.s. (1) . (A.11)

The ergodic theorem shows under A7 that

n∑
t=1

(
1√
n
Mt

et
κδ8t

)(
1√
n
Mt

et
κδ8t

)′
= 1

nκ2

n∑
t=1

e2t
δ16t
MtM

′
t

a.s.→
n→∞

1
κ2E

(
V ar

(
(Y 2

t −δ2t )
2|FY

t−1

)
δ16t

MtM
′
t

)
. (A.12)

From (A.12) and A5-A7, the central limit theorem for square-integrable martingales implies

1√
n

n∑
t=1

Mt
et
κδ8t

D→
n→∞

N (0, B) . (A.13)

The result (3.15) thus follows from (A.11), (A.9), and (A.13). □
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4 Related volatility models

Let the general multiplicative volatility model

Yt = σtηt

ψ2
t = ω +

q∑
i=1

αiY
2
t−i +

p∑
j=1

βψ2
t−j + φet

where (ηt) and (et) are iid, and ηt has mean zero and unit variance. For simplicity of exposition we

consider the case p = q = 1 giving:

Yt = σtηt (A.14a)

ψ2
t = ω + αY 2

t−1 + βψ2
t−1 + φet. (A.14b)

The model (A.14) encompasses many popular volatility models.

i) Engle-Bollerslev GARCH model

When ψt = σt, (ω, α, β)
′ ∈ (0,∞) × [0,∞)2, and φ = 0, model (A.14) reduces to the standard

Engle-Bollerslev GARCH(1.1) model (Engle, 1982; Bollerslev, 1986)

Yt = σtηt (A.15a)

σ2t = ω + αY 2
t−1 + βσ2t−1. (A.15b)

In this case, the volatility

σ2t = V ar (Yt|Yt, Yt−1, ...) (A.16)

is the conditional variance of Yt given the past (Yt−u, u ≥ 1) up to time t − 1. The model (A.15)

belongs to the class of observation-driven volatility models (Cox, 1981; Francq and Zakoian, 2019).

ii) Standard stochastic volatility model

When ψ2
t = log σ2t , α = 0, (ω, β, φ) ∈ R2 × [0,∞), and (et) is real-valued with mean 0 and unit

variance, the model reduces to the standard stochastic volatility (SV) model (Taylor, 1982-1986),
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which simply writes as

Yt = σtηt (A.17a)

log
(
σ2t
)
= ω + β log

(
σ2t−1

)
+ φet (A.17b)

In this case, σ2t is no longer the conditional variance of Yt given past process (Yt) up to time t− 1, i.e.

in the sense of (A.16). However, if (ηt) and (et) are independent/uncorrelated then

E (Yt|σt) = E (Yt|et, et−1, ...) = σtE (ηt) = 0, (A.18)

so (Yt) is a F e
t -martingale difference (F e

t = σ {et−u, u ≥ 0} being the σ−algebra generated by

{et−u, u ≥ 0}), and

E
(
Y 2
t |σt

)
= σ2tE

(
η2t
)
= σ2t = V ar (Yt|et, et−1, ...) , (A.19)

and therefore σ2t is the conditional variance of Yt given the past and present values of (et) up to time

t. Even if et is not observable, the variance σ
2
t = V ar (Yt|et, et−1, ...) can be estimated. So in this case,

the name volatility, in the sense of the conditional variance for σ2t , makes sense.

Note that when ηt and et are correlated/dependent, as it happens for the SV model with leverage

(cf. Jacquier et al, 2004), (Yt) is no longer a martingale difference in the sense of (A.18) and σ2t is not

the conditional variance, neither in the sense of (A.16) nor in the sense (A.19). Finally, the SV model

(A.17) belongs to the class of parameter-driven models (Cox, 1981).

iii) Now-Casting GARCH model

When ψ2
t = log σ2t , α = 0, (ω, β, φ) ∈ R3, and et = log

(
η2t
)
− E

(
log
(
η2t
))

is real-valued with

mean zero and a symmetric distribution, the model (A.14) reduces to the now-casting GARCH (NC-

GARCH) model of Breitung and Hafner (2016), which is given by

Yt = σtηt (A.20a)

log σ2t = ω + β log σ2t−1 + φ
(
log
(
η2t
)
− E

(
log
(
η2t
)))

. (A.20b)

Since in this model, the volatility innovation term et = log
(
η2t
)
− E

(
log
(
η2t
))

is fully dependent

with the model innovation term ηt, the so-called volatility σ2t cannot be the conditional variance of Yt
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neither in the sense of (A.16) nor in the sense of (A.19), i.e. even given the past and present values of

(et) up to time t. Taking

log ht := ω + β log σ2t−1,

it follows from the second equation of the model (A.20) that

log σ2t = log ht + φet,

Hence, Breitung and Hafner’s model (A.20) becomes

log Y 2
t = log σ2t + log η2t

log σ2t = log ht + φet

where, since E(et) = 0, it holds

E
(
log σ2t |σ2t−1

)
= log ht.

Hence, log ht = log σ2t − φet so the NC-GARCH model (A.20) writes as

Y 2
t = htη

2
t exp (φet) (A.21a)

log ht = ω + β log ht−1 + βφet−1 (A.21b)

which is a non-MEM exponential GARCH(1.1). Thus, the model (A.20) written as (A.21) can be seen

as an observation-driven volatility model.

iv) Real Time GARCH model

When ψt = λt, (ω, α, β, φ) ∈ (0,∞)× [0,∞)3, et = η2t , and ηt has a symmetric density, the model

(A.14) reduces to the RT-GARCH of Smetanina (2017), which is given by

Yt = λtηt (A.22a)

λ2t = ω + αY 2
t−1 + βλ2t−1 + φη2t . (A.22b)

Since the volatility innovation term φη2t is fully dependent with the model innovation term ηt, the

so-called volatility λ2t cannot be the conditional variance of Yt neither in the sense of (A.16) nor in the
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sense of (A.19). This resembles the case of the now-casting GARCH of Breitung and Hafner (2016).

Taking δ2t = ω + αY 2
t−1 + βλ2t−1 so that λ2t = δ2t + φη2t and ht = δ2t + φE

(
η4t
)
, the RT-GARCH model

can be written as a non-multiplicative EGARCH model as follows

Y 2
t = htη

2
t + φη2t

(
η2t − E

(
η4t
))

(A.23a)

ht = V ar (Yt|F t−1) (A.23b)

ht = ω1 + αY 2
t−1 + βht−1 + ϕη2t−1 (A.23c)

λ2t = ht + φ
(
η2t − E

(
η4t
))

(A.23d)

where ω1 = ω + φE
(
η4t
)
(1− β) and ϕ = βφ. Note that (A.22) written in the form of (A.23) turns

out to be an observation-driven model.

v) Time-varying GARCH model with decomposed volatility

When ψ2
t = σ2t = gn,tδ

2
t and δ2t = ω+ α

Y 2
t−1

gn,t−1
+ βδ2t−1, where gn,t is a given deterministic function,

then model (A.14) becomes a time-varying GARCH (TV(k)-GARCH(1, 1)) model as proposed by

Amado and Teräsvirta (2013, 2017) and is given by

Yt = σtηt 1 ≤ t ≤ n (A.24a)

σ2t = gn,tδ
2
t (A.24b)

δ2t = ω + α
Y 2
t−1

gn,t−1
+ βδ2t−1. (A.24c)

The volatility σ2t = V ar (Yt|Yt−1, Yt−2, ...) is decomposed into the multiplication of two components:

The first one, the long-term/nonstationary component gn,t is a deterministic function given, for ex-

ample, in terms of logistic transition functions as follows

gn,t = a0 + a1

(
1 + exp

(
−γ

k∏
l=1

(
t
n − cl

)))−1

,

where the corresponding parameters a0, a1, γ, (cl)l=1,k are known, respectively, as the intercept, size,

speed, and locations, and t
n ∈ [0, 1] is called the transition variable. The second one, the stationary

short-term/rescaled component δ2t is a standard GARCH volatility in terms of
Y 2
t−1

gn,t−1
and δ2t−1. Other

forms of the transition variable and the transition logistic functions can be exhibited, see Amado
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and Teräsvirta (2013, 2017) and Campos-Martins and Sucarrat (2024). Note that model (A.24) is an

observation-driven volatility model.

vi) General time-varying GARCH model

Taking ψt = σt with

σ2t = ω
(
t
n

)
+ α

(
t
n

)
Y 2
t−1 + β

(
t
n

)
σ2t−1, 1 ≤ t ≤ n,

where ω (.), α (.), and β (.) are non-negative deterministic functions, model (A.14) becomes a tvGARCH(1, 1)

model and is given explicitly by

Yt = σtηt 1 ≤ t ≤ n (A.25a)

σ2t = ω
(
t
n

)
+ α

(
t
n

)
Y 2
t−1 + β

(
t
n

)
σ2t−1. (A.25b)

Model (A.25) was proposed by Dahlhauss and Subba Rao (2006) in the case β (.) = 0 and extended

to the GARCH case by Rohan and Ramanathan (2013). The tvGARCH model (A.25) belongs to the

class of observation-driven models. The solution of (A.25) is nonstationary but locally stationary in

the sense of Dahlhauss (1997).

vii) Present-regime Markov Switching GARCH model

In (A.14), set ψt = σt (St) with St being a finite homogeneous stationary and ergodic Markov chain

with a transition probability Pij = P (St = j|St = i) and a stationary distribution P (St = j) = πj ,

i, j ∈ {1, ...,K}. If (A.14b) is replaced by the following recursion

σ2t (s) = ωs + αsY
2
t−1 + βsσ

2
t−1 (s) , s ∈ {1, ...,K}

then model (A.14) becomes a Markov Switching GARCH (MS-GARCHK (1, 1)) model in the sense of

Haas et al (2004a). This model is also called present-regime MS-GARCH (cf. Aknouche and Francq,

2022) and is given by

Yt = σt (St) ηt (A.26a)

σ2t (s) = ωs + αsY
2
t−1 + βsσ

2
t−1 (s) . (A.26b)
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Model (A.26) is also called a finite Markov mixture GARCH and can be seen as a parameter-driven

model. In the particular case where (St) is iid, the model (A.26) is called iid mixture GARCH (cf.

Haas et al, 2004b). Note finally that whenever (St) and (ηt) are independent,

σ2t : = σ2t (St)

= V ar
(
Yt|F Y,S

t−1

)

can be seen as the conditional variance of Yt given F Y,S
t−1 = σ {(Yt−u, St−u+1) , u ≥ 1}, the σ-algebra

generated by the past of (Yt) up to time t− 1, and the past and present of (St) up to time t.

5 Details of obtaining (2.7)-(2.9) and (3.10b)

First, we have

V ar
(
σ2t |F Y

t−1

)
= E

((
σ2t − δ2t

)2 |F Y
t−1

)
= E([ωt − ω0 +

q∑
i=1

(αit − α0i)Y
2
t−i +

p∑
j=1

(βjt − β0j) δ
4
t−j ]

2|F Y
t−1)

= E
(
(ωt − ω0)

2
)
+

q∑
i=1

E (αit − α0i)
2 Y 4

t−i +

p∑
j=1

E (βjt − β0j)
2 δ4t−j

= σ2ω +

q∑
i=1

σ2αi
Y 4
t−i +

p∑
j=1

σ2βj
δ4t−j . (A.27)

Hence,

V ar
(
Y 2
t |F Y

t−1

)
= E

((
Y 2
t − E

(
Y 2
t |F Y

t−1

))2 |F Y
t−1

)
= E

((
σ2t ε

2
t − δ2t

)2 |F Y
t−1

)
= E

(
ε4t
)
E
(
σ4t |F Y

t−1

)
− 2Eε2t δ

2
tE
(
σ2t |F Y

t−1

)
+ δ4t

= κ
(
V ar

(
σ2t |F Y

t−1

)
+
(
E
(
σ2t |F Y

t−1

))2)− 2δ4t + δ4t

= κV ar
(
σ2t |F Y

t−1

)
+ (κ− 1) δ4t . (A.28)
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In particular, the conditional kurtosis of the RC-GARCH model is given by

κt =
E(Y 4

t |FY
t−1)

(V ar(Yt|FY
t−1))

2 =
E(ε4t )E(σ4

t |FY
t−1)

(V ar(Yt|FY
t−1))

2

=
κ
(
V ar(σ2

t |FY
t−1)+(E(σ2

t |FY
t−1))

2
)

δ4t

=
κ(V ar(σ2

t |FY
t−1)+δ4t )

δ4t
.

Let et =
(
Y 2
t − δ2t

)2 − V ar
(
Y 2
t |F Y

t−1

)
so that

(
Y 2
t − δ2t

)2
= V ar

(
Y 2
t |F Y

t−1

)
+ et. (A.29)

Then, from (A.27) and (A.28) we have V ar
(
σ2t |F Y

t−1

)
=M ′

tΛ0 and

V ar
(
Y 2
t |F Y

t−1

)
= κM ′

tΛ0 + (κ− 1) δ4t ,

so (A.29) becomes

(
Y 2
t − δ2t

)2
= V ar

(
Y 2
t |F Y

t−1

)
+ et

= κM ′
tΛ0 + (κ− 1) δ4t + et

where

Mt = (1, Y 4
t−1, ..., Y

4
t−q, δ

4
t−1, ..., δ

4
t−p)

′.

Hence (
Y 2
t − δ2t

)2 − (κ− 1) δ4t = κM ′
tΛ0 + et

so that

(Y 2
t −δ2t )

2−(κ−1)δ4t
κδ4t

= 1
δ4t
M ′

tΛ0 +
et
κδ4t

,

where E
(

et
κδ4t

|F Y
t−1

)
= 1

κδ4t
E
(
et|F Y

t−1

)
= 0.
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6 Simulated data

The finite-sample performances of the QML and WLS estimators given by Algorithm 3.1 are assessed

for the RC-GARCH(1, 1) model via a Monte Carlo simulation study. To this end, three cases of the

RC-GARCH model are considered. In the first case, εt is Gaussian, whereas the random coefficients

ϕt = (ωt, αt, βt) are inverse Gaussian distributed ; see Table 1. In the second case, εt is Gaussian,

while the random coefficients are Poisson distributed; see Table 2. Finally, in the third case, εt is

Gaussian, where the random coefficients are exponentially distributed; see Table 3.

We run the QMLE and WLSE on 1000 sample-paths generated from the RC-GARCH(1, 1) model

with sample size n ∈ {1000, 3000, 5000}, and θ0 = (ω0, α0, β0)
′ = (0.01, 0.15, 0.80)′. This choice

is close to the estimated values obtained in the real applications. The variance parameters Λ0 =(
σ20ω, σ

2
0α, σ

2
0β

)
are deduced accordingly from the distribution of ϕt in each case (see Tables 1-3). For

the QMLE, we use the nonlinear optimization function “nlimb”, while for the WLSE, the constrained

nonnegative least squares function “nnls”. In fact, without any nonnegativity constraint, the WLS

estimates can give negative values.

QMLE WLSE

n (θ0,Λ0) ω0 α0 β0 σ20ω σ20α σ20β

0.0100 0.1500 0.8000 0.0100 0.3375 0.2560

1000

Mean

StD

ASE

0.0113

0.0058

0.0048

0.1527

0.0558

0.0475

0.7898

0.0627

0.0554

0.0097

0.0331

0.0144

0.2929

0.0822

0.0649

0.2772

0.0709

0.0635

3000

Mean

StD

ASE

0.0103

0.0031

0.0027

0.1507

0.0330

0.0294

0.7980

0.0366

0.0328

0.0082

0.0212

0.0115

0.3598

0.0776

0.0529

0.2699

0.0565

0.0501

5000

Mean

StD

ASE

0.0102

0.0021

0.0021

0.1509

0.0233

0.0229

0.7983

0.0254

0.0256

0.0086

0.0170

0.0104

0.3325

0.0358

0.0226

0.2522

0.0473

0.0388

Table 1. QMLE and WLSE results for 1000 RC-GARCH(1,1) series with

sample size n, ωt ∼ IG (ω0, 0.0001) , αt ∼ IG (α0, 0.01) , and βt ∼ IG (β0, 2) .
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QMLE WLSE

n (θ0,Λ0) ω0 α0 β0 σ20ω σ20α σ20β

0.0100 0.1500 0.8000 0.0100 0.1500 0.8000

1000

Mean

StD

ASE

0.0111

0.0052

0.0048

0.1513

0.0488

0.0459

0.7901

0.0592

0.0553

0.0109

0.0509

0.0430

0.1482

0.0549

0.0464

0.7770

0.0421

0.0388

3000

Mean

StD

ASE

0.0105

0.0026

0.0025

0.1523

0.0277

0.0276

0.7950

0.0311

0.0309

0.0100

0.0316

0.0295

0.1480

0.0327

0.0303

0.8099

0.0364

0.0252

5000

Mean

StD

ASE

0.0103

0.0020

0.0019

0.1504

0.0203

0.0215

0.7970

0.0235

0.0240

0.0099

0.0122

0.0086

0.14971

0.0284

0.0206

0.8065

0.0291

0.0257

Table 2. QMLE and WLSE results for 1000 RC-GARCH(1,1) series with sample size n,

ωt ∼ P (ω0) , αt ∼ P (α0) , and βt ∼ P (β0) .
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QMLE WLSE

n (θ0,Λ0) ω0 α0 β0 σ20ω σ20α σ20β

0.0100 0.1500 0.8000 0.0001 0.0225 0.6400

1000

Mean

StD

ASE

0.0117

0.0051

0.0044

0.1535

0.0379

0.0372

0.7851

0.0534

0.0485

0.0029

0.0056

0.0051

0.0366

0.0364

0.0338

0.6350

0.0438

0.0445

3000

Mean

StD

ASE

0.0100

0.0024

0.0022

0.1481

0.0216

0.0207

0.8011

0.0283

0.0258

0.0013

0.0018

0.0031

0.0229

0.0311

0.0269

0.6421

0.0390

0.0369

5000

Mean

StD

ASE

0.0102

0.0018

0.0017

0.1515

0.0163

0.0167

0.7991

0.0198

0.0189

0.0013

0.0027

0.0019

0.0275

0.0275

0.0279

0.6408

0.0274

0.0226

Table 3. QMLE and WLSE results for 1000 RC-GARCH(1,1) series with sample size n,

ωt ∼ Γ
(
1, 1

ω0

)
, αt ∼ Γ

(
1, 1

α0

)
, and βt ∼ Γ(1, 1

β0
).

For each instance, the mean, StDs (standard-deviations), and ASEs (asymptotic standard errors)

of estimates over the 1000 sample-paths are shown in Tables 1-3. A few conclusions can be drawn.

Firstly, the true values of the parameters are well estimated, given their smaller ASEs, which are quite

close to their StDs, especially for the QMLE part. Secondly, the results overall confirm the asymptotic

theory of Section 3 of the main paper (Theorems 3.1-3.2). Indeed, the larger the sample size, the more

accurate the estimate is in terms of bias and standard errors. Thirdly, the QMLE gives slightly more

accurate results, especially in terms of bias, StDs, and ASEs.

Since the predictive volatility of the RC-GARCH model is exactly that of the standard GARCH

model which is well known, our main interest will be in the filtered volatility which also incorporates

the current observation and is obtained in a closed form. So a crucial question is to see if this filtered

volatility can improve the forecasting ability of the predictive GARCH volatility. We, thus, first assess

the in-sample volatility forecasting ability of the predictive and filtered volatilities given respectively

by (2.5d) and (3.23). We use the true parameters since the estimated parameters could alter the vision

about the ability of each kind of volatility. We generate 1000 NIG RC-GARCH series with sample

size 3000 for each of which we obtain the predictive volatility
(
δ2t
)
and the filtered volatility

(
ϱ2t
)
. The

17



true parameters are chosen so as to be close to those estimated in the real application (cf. Section 4 of

the main paper). Since the actual volatility
(
σ2t
)
is unavailable in practice, we use the squared series

Y 2
t as a proxy (Table 4, panel (a)). We also use the true volatility σ2t in comparison (Table 4, panel

(b)) We compute for each volatility and each replication the following criteria: i) the mean square

forecast error, with proxy MSFE= 1
n

n∑
t=1

(Y 2
t − ht)

2 and with true volatility MSFET = 1
n

n∑
t=1

(σ2t − ht)
2,

and ii) the mean absolute forecast error with proxy MAFE = 1
n

n∑
t=1

∣∣Y 2
t − ht

∣∣ and with ture volatility

MAFET = 1
n

n∑
t=1

∣∣σ2t − ht
∣∣, where the generic ht ∈

{
δ2t , ϱ

2
t

}
. Then, the sample mean of each one of

MSFEs, MSFETs, MAFEs, and MAFETs over the 1000 replications are obtained and are denoted,

respectively, by MMSFE, MMSFET, MMAFE, and MMSFET (cf. Table 4 panels (a) and (b)). The

best criteria are reporteed in bold. It can be observed from Table 4 that the filtered volatility ϱ2t

gives the best MMSFE, MMSFET, MMAFE, and MMSFET compared to the predictive volatility δ2t .

Moreover, as expected, the criteria computed on the basis of the true volatility σ2t are smaller than

those obtained using the proxy Y 2
t .

(a) (a) (b) (b)

MMSFE MMAFE MMSFET MMAFET

Predictive volatility δ2t 0.000137 0.001809 0.000101 0.001776

Filtered volatility ϱ2t 0.000095 0.001193 0.000061 0.001163

Table 4. In-sample forecasting comparison between the predictive and filtered

volatilities for 1000 NIG RC-GARCH series with n = 3000, ω0 = 0.00001,

λω = 1e-8, α0 = 0.05, λα = 0.00005, β0 = 0.94, λβ = 0.65.

(a) Using the square Proxy X2
t . (b) Using the true volatility σ2t .

We now assess the out-of-sample forecasting ability of the predictive and filtered volatilities. We

generate 1000 replications of the NIG RC-GARCH model with sample size n = 3000 and the same

parameters as in Table 4. For each replication we compute the one-step ahead predictive volatility δ2t

for t ∈ {nc + 1, ..., n} where nc (1 < nc < n) is the sample size of the truncated series and belongs

to {2000, 2200, 2400, 2600, 2800}. We compute the filtered volatility ϱ2t for t ∈ {nc + 1, ..., n} and

also obtain the modified filtered volatility ϱ∗2t in which the future observations (Ync+j) are estimated

by their conditional means Ŷnc+j = E
(
Ync+j |F Y

nc

)
= 0 (1 ≤ j ≤ n − nc). Then, we obtain the
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three above criteria for each replication: i) the MSFE= 1
n−nc

n∑
t=nc+1

(Y 2
t − ht)

2, ii) the MAFE =

1
n−nc

n∑
t=nc+1

∣∣Y 2
t − ht

∣∣, and iii) the MQLI= 1
n−nc

n∑
t=nc+1

(log ht +
Y 2
t

ĥt
), as well as their sample means

over the replications, giving MMSFE, MMAFE and MMQLI (cf. Table 5).

nc 2000 2200 2400 2600 2800

δ2t

MMSFE

MMAFE

MMSFET

MMAFET

0.000199

0.002997

0.000152

0.002949

0.000361

0.003560

0.000199

0.003473

0.000227

0.004221

0.000206

0.004120

0.000653

0.005937

0.000410

0.005825

0.000601

0.010391

0.000604

0.010319

ϱ2t

MMSFE

MMAFE

MMSFET

MMAFET

0.000112

0.001938

0.000078

0.002048

0.000218

0.002298

0.000097

0.002359

0.000103

0.002706

0.000087

0.002740

0.000388

0.003801

0.000217

0.003791

0.000244

0.006587

0.000249

0.006519

ϱ∗2t
MMSFE

MMAFE

0.000056

0.001792

0.000091

0.002547

0.000084

0.002964

0.000155

0.004098

0.000244

0.007011

Table 5. Out-of-sample forecasting comparison between the predictive and filtered

volatilies for 1000 NIG RC-GARCH series with n = 3000, ω0 = 0.00001,

λω = 1e-8, α0 = 0.05, λα = 0.00005, β0 = 0.94, and λβ = 0.65.

It can be seen from Table 5 that the filtered volatilities ϱ2t and ϱ∗2t outperform the predictive

volatility δ2t for all criteria and all time cut nc even if the true observations are replaced by their

predictions. Regarding MMAFE, ϱ2t gives better volatility forecasts while with respect to MMSFE,

ϱ∗2t surprisingly outperforms ϱ2t . Overall, the filtered volatilities improve the forecasting ability of the

predictive volatility (which is that of the standard Engle-Bollerslev GARCH model), even when the

true observations are replaced by their predictions.

Finally, to see the effect of the absence of coefficient randomness on the QMLE and WLS esti-

mates, we generate 1000 Normal GARCH replications with sample size n ∈ {1000, 3000, 5000} and

(ωt, αt, βt) = (ω0, α0, β0). For each replication we obtain the QML and WLS estimates and then the
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mean, StD and ASE of estimates over the 1000 replications.

QMLE WLSE

n (θ0,Λ0) ω0 α0 β0 σ20ω σ20α σ20β

0.0100 0.1500 0.8000 0.0000 0.0000 0.0000

1000

Mean

StD

ASE

0.0112

0.0038

0.0042

0.1485

0.0289

0.0294

0.7927

0.0401

0.0415

0.0004

0.0008

0.0007

0.0035

0.0012

0.0010

0.0043

0.0019

0.0018

3000

Mean

StD

ASE

0.0105

0.0018

0.0021

0.1502

0.0185

0.0167

0.7968

0.0226

0.0220

0.0002

0.0004

0.0003

0.0018

0.0010

0.0008

0.0028

0.0013

0.0071

5000

Mean

StD

ASE

0.0102

0.0013

0.0015

0.1495

0.0140

0.0127

0.8010

0.0156

0.0166

0.0000

0.0002

0.0001

0.0004

0.0003

0.0006

0.0018

0.0009

0.0045

Table 6. QMLE and WLSE results for 1000 RC-GARCH(1,1) series with sample size n,

and degenerated coefficients (ωt, αt, βt) = (ω0, α0, β0) .

The same conclusions can be drawn from Table 6 as was the case with the previous simulations.

The parameters are well estimated, and in particular the variance parameters are close to zero, and

their ASE and StD are also close to zero as the sample size increases. Moreover, the mean parameters

are very well estimated since the QMLE becomes in this case the MLE. Note finally that unreported

simulations showed that in most replications (more that 95% of cases) the global test of randomness

rejected the randomness of parameters at any reasonable level, even with 0.01 significance level.

7 Application to the Intel stock returns

We fit the RC-GARCH(1, 1) model to the daily returns of the Intel stock (RINTEL) spanning from

12/15/72 to 12/31/08. In total, we have n = 9097 observations. The series, taken from Tsay (2010),

exhibits conventional stylized facts of stock return series, such as dependence without correlation, high

persistence, and volatility clustering (see Figure S.1).

The parameter estimates are reported in Table S.1. Conclusions similar to those for the CISCO
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without correlation, high persistence, and volatility clustering (see Figure S.1).

(a) (b)

(c) (d)

Figure S.1 Intel stock return series: (a) The RINTEL series; (b) sample autocorrelation

(c) sample autocorrelation of squares, (d) histogram.

The parameter estimates are reported in Table S.1. Similar conclusions as for the SISCO

application can be drawn: the estimated model is highly persistent, has a �nite second

moment and an in�nite fourth moment.

!t �1t �1t

QMLE b!n b�1n b�1n b�1n + b�1n
7:4e-06
(1:9e-06)

0:0520
(0:0069)

0:9397
(0:0071)

0:9918

WLSE b�2!n b�2�n b�2�n FMC

5:7e-08
(1:1e-07)

0:0255
(0:0177)

0:6447
(0:4031)

1:710

Table S.1. QML and WLS estimates for the RC-GARCH(1:1); Intel series.

7

application can be drawn: the estimated model is highly persistent, has a finite second moment and

an infinite fourth moment.

ωt α1t β1t

QMLE ω̂n α̂1n β̂1n α̂1n + β̂1n

7.4e-06
(1.9e-06)

0.0520
(0.0069)

0.9397
(0.0071)

0.9918

WLSE σ̂2ωn σ̂2αn σ̂2βn FMC

5.7e-08
(1.1e-07)

0.0255
(0.0177)

0.6447
(0.4031)

1.710

Table S.1. QML and WLS estimates for the RC-GARCH(1.1); Intel series.

The sample autocorrelations of the normalized residuals and squared normalized residuals ε̂ := Yt
ϱ̂t

(see Figure S.2 (a)-(b)) look like an independent noise as the sample autocorrelations of residuals and

their squares do not show significant spikes.

As in the CISCO application, the variance parameters are all significant as confirmed by Table

S.2. The hypothesis of randomness of each coefficient cannot be rejected at any reasonable level and

the value Wn = 2.8291 of the global Wald statistic suggests that the randomness of the model cannot
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The sample autocorrelations of the normalized residuals and squared normalized residualsb" := Ytb%t (see Figure S.2 (a)-(b)) look like an independent noise as the sample autocorrelations
of residuals and their squares do not show signi�cant spikes.

(c) (d)

Figure S.2. (a) Residuals, (b) ACF of squared residuals; RINTEL series.

As in the CISCO application, the variance parameters are all signi�cant as con�rmed

by Table S.2. The hypothesis of randomness of each coe¢ cient cannot be rejected at any

reasonable level and the value Wn = 2:6347 of the global Wald statistic suggests that the

randomness of the model cannot be rejected at reasonable level.

W!;n W�;n W�;n

0.2622 2.0016 2.6501

Table S.2. Individual Wald Statistics for testing

the randomness of coe¢ cients; RINTEL series.

The plots of posterior means of the random coe¢ cients as displayed in Figure 3 show

that each posterior mean exhibits a proper behavior that is more pronounced than for the

8

be rejected at reasonable level.

Wω,n Wα,n Wβ,n

0.2622 2.0016 2.6501

Table S.2. Individual Wald Statistics for testing

the randomness of coefficients; RINTEL series.

The plots of the posterior means of the random coefficients as displayed in Figure S.3 show that

each posterior mean exhibits a proper behavior that is more pronounced than for the RC-GARCH

coefficients in the CISCO empirical application.

The graphs of the simulated random coefficients (ωt, αt, βt) from the estimated RC-GARCH(1.1)

model using the RINTEL series as well as the random persistence αt+βt are plotted in Figure S.4. It

can be seen that the generated αt and βt coefficients as well as their persistence can be largely greater

than the unity.

The predictive and smoothed volatilities are plotted in Figure S.5 (panel (a) and panel (b), respec-

tively). The conditional excess kurtosis κ̂t − 3 (Figure S.5 panel (d)) seems to be in accordance with

the estimated predictive volatility of the model. Also, the volatility of volatility plotted in panel (c)

of Figure S.5, has a consistent behavior with the predictive volatility.

Figure S.7 shows the probability integral transform (PIT) of the RINTEL series (Yt)1≤t≤n with

respect to three conditional distributions: (a) the standard Normal GARCH(1, 1) with Normal con-

ditional distribution N (0, δ̂2t ), (b) The RC-GARCH(1.1) with Normal Inverse Gaussian conditional

distribution Yt ∼ NIG(∆̂tδ̂
−2
t , 0, ∆̂t, 0), and (c) the MS-GARCH2(1.1) model with Normal mixings

(cf. Haas et al, 2004a; Ardia et al, 2019). The estimation results for the tvGARCH model are not
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CISCO RC-GARCH coe¢ cients.

(a) (b)

(c)

Figure S.3. Posterior means of the random coe¢ cients (!t; �t; �t) :

(a) E (!tjYt) , (b) E (�tjYt) , (c) E (�tjYt) , 1 � t � n; Intel series.

The graphs of simulated random coe¢ cients (!t; �t; �t) from the estimated RC-GARCH(1:1)

model using the RINTEL series as well as the random persistence �t+�t are plotted in Fig-

ure S.4. It can be seen that the generated �t and �t coe¢ cients as well as their persistence

9

available for the RINTEL series since the tvGARCH package give error message. The parameter

estimates of MS-GARCH2(1.1) model as well as their ASEs in parenthesis are reported in Table S.3

while the MS-GARCH2(1.1) volatility plot is displayed in Figure S.6.

P̂11 P̂21 ω̂1 α̂1 β̂1 ω̂2 α̂2 β̂2

0.9190
(0.0738)

0.6699
(0.0541)

0.0000
(0.0000)

0.0192
(0.0063)

0.9722
(0.0016)

0.0003
(0.0001)

0.1703
(0.2250)

0.8248
(0.0066)

Table S.3. Estimated MS-GARCH2(1.1) model; the Intel returns.

Likelihood: 20476.094, AIC = −40936.1889, BIC = −40879.2633.

It can be seen from Figure S.7 that the returns fit better with the NIG RC-GARCH model and the

MS-GARCH model, followed by the Normal GARCH model. However all PITs for all models show a

kind of mixture distribution due to significant picks at the probability 0.5.

Table S.4 shows the MSFE, MAFE and MQLI computed for the three models as did for the CISCO

application. It can be observed that the filtered volatility ϱ̂2t provides the best MSFE, MAFE, and

MQLI compared to the GARCH(1.1) predictive volatility δ̂2t and also the MS-GARCH2 (1, 1) volatility.
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can be largely greater than the unity.

(a) (b)

(c) (d)

Figure S.4 Simulated random coe¢ cients (!t; �t; �t) and the persistence �t + �t

from the estimated RC-GARCH (1; 1) model using the RINTEL series.

The predictive and smoothed volatilities are plotted in Figure S.5 (panel (a) and panel

(b), respectively). The conditional excess kurtosis b�t � 3 (Figure S.5 panel (d)) seems to be
in accordance with the estimated predictive volatility of the model. Also, the volatility of

10

In addition, the MS-GARCH volatility outperforms the GARCH(1.1) regarding all criteria. However,

all criteria for the three volatility models are quite close to each other.

MSFE MSAE MQLI

Predictive volatility δ̂2t 7.2e-06 0.00089 −6.4391

Filtered volatility ϱ̂2t 4.3e-06 0.00060 −6.9334

MS-GARCH2 (1, 1) volatility 5.2e-06 0.00087 −6.2829

Table S.4. In-sample forecast comparison of the GARCH(1.1),

the RC-GARCH(1.1) the MS-GARCH(1.1) volatilities.

Regarding the out-of-sample forecasting ability of the predictive volatility, Table S.5 shows the

computed values of the above criteria for the four models and for various truncated series with sample

size nc ∈ {6000, 7000, 8000, 8400, 8800}. Conclusions similar to the CISCO application can be made

here as well. The filtered volatilities (ϱ̂2t , ϱ̂
∗2
t ) based on true or predictive observations provide the best

MSFE, MAFE, and MQLI for all nc. Moreover, the forecasts of ϱ̂∗2t are better that those of ϱ̂2t , and
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volatility plotted in panel (c), has a consistent behavior with the predictive volatility.

(a) (b)

(c) (d)

Figure S.5. Estimated RC-GARCH for RCISCO series. (a) Predictive volatility,

(b) �ltered volatility, (c) volatility of volatility, (d) conditional excess kurtosis.

Figure S.7 shows the probability integral transform (PIT) of the RINTEL series (Yt)1�t�n

with respect to three conditional distributions: (a) the standard Normal GARCH(1; 1) with

Normal conditional distribution N (0;b�2t ), (b) The RC-GARCH(1:1) with Normal Inverse
Gaussian conditional distribution Yt � NIG(b�t

b��2t ; 0; b�t; 0), and (c) the MS-GARCH2(1:1)

model with Normal mixings (cf. Haas et al, 2004a; Ardia et al, 2019). The the estimation

results for the tvGARCH model are not available for the RINTEL series since the tvGARCH

package give error message. The parameter estimates of MS-GARCH2(1:1) model as well as

their ASEs in parenthesis are reported in Table S.3 while the MS-GARCH2(1:1) volatility

11

the MS-GARCH volatility outperforms the GARCH volatility for all criteria and all nc.

nc 6000 7000 8000 8400 8800

δ̂2t

MSFE

MAFE

MQLI

4.20e-06

0.00085

−6.3331

5.13e-06

0.00088

−6.4250

1.26e-06

0.00052

−6.9263

1.64e-06

0.00062

−6.7295

3.5e-06

0.00102

−6.0596

ϱ̂2t

MSFE

MAFE

MQLI

2.95e-06

0.00067

−6.6557

3.62e-06

0.00069

−6.7462

8.09e-07

0.00039

−7.2302

1.06e-06

0.00048

−7.0392

2.25e-06

0.00078

−6.4440

ϱ̂∗2t

MSFE

MAFE

MQLI

1.75e-08

0.00013

−8.9539

2.22e-08

0.00015

−8.8375

2.05e-08

0.00014

−8.9041

1.67e-08

0.00012

−9.0932

2.12e-08

0.00012

−9.1636

MS

MSFE

MAFE

MQLI

3.53e-06

0.00075

−6.5482

4.38e-06

0.00079

−6.6157

1.08e-06

0.00049

−7.0459

1.27e-06

0.00053

−6.9483

3.01e-06

0.00091

−6.2912

Table S.5. Out-of-sample volatility forecasting performance of the filtered volatility, the predictive

volatility, and the MS-GARCH volatility (MS). ϱ̂2t : filtered volatility using available returns.

ϱ̂∗2t : filtered volatility using predictive returns.

Finally, using the model confidence set test of Hansen et al (2011) through the R package “MSC”

of Bernardi and Catania (2014), the filtered volatilities (ϱ̂2t , ϱ̂
∗2
t ) constitute the superior model for all
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plot is displayed in Figure S.6.

bP11 bP21 b!1 b�1 b�1 b!2 b�2 b�2
0:9190
(0:0738)

0:6699
(0:0541)

0:0000
(0:0000)

0:0192
(0:0063)

0:9722
(0:0016)

0:0003
(0:0001)

0:1703
(0:2250)

0:8248
(0:0066)

Table S.3. Estimated MS-GARCH2(1:1) model; the Intel returns.

Likelihood: 20476.094, AIC = 40936:1889, BIC = 40879:2633.

Figure S.6. MS-GARCH2 (1; 1) volatility; Intel returns.

It can be seen from Figure S.7 that the returns �t better with the NIG RC-GARCH

model and by the MS-GARCH model, followed by the Normal GARCH model. However

all PITs for all models show a kind of mixture distribution due to signi�cant picks at the

12

probability 0.5.

(a) (b)

(c)

Figure S.7 PITs of the RINTEL with respect to: (a) The Normal GARCH(1:1),

(b) the NIG RC-GARCH(1:1), (c) the mixture Normal MS-GARCH2(1:1).

Table S.4 shows the MSFE, MAFE and MQLI computed for the three models as for

the CISCO application. It can be observed that the �ltered volatility b%2t provides the best
MSFE, MAFE, and MQLI compared to the GARCH(1:1) predictive volatility b�2t and also
the MS-GARCH2 (1; 1) volatility. In addition, the MS-GARCH volatility outperforms the

GARCH(1:1) regarding all criteria. However, all criteria for the three volatility models are

13

criteria and all nc.
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8 Additional empirical analysis for the CISCO application

8.1 In-sample performance

We now assess the in-sample performance of the RC-GARCH(1,1) model in terms of both model fit

and volatility forecasting. We, thus, compare the RC-GARCH(1,1) model with two popular volatility

models, namely the two-regime Markov-switching GARCH(1,1) (MS-GARCH2(1,1)) model of Haas

et al (2004a) and the time-varying GARCH model of Amado and Teräsvirta (2013, 2014, 2017) with

a single logistic transition function (TV(1)-GARCH(1,1)). To this end, we use the MSGARCH R

package of Ardia et al (2019) for the MS-GARCH model and the tvgarch package of Campos-Martins

and Sucarrat (2024) for the tvGARCH model. The two models are described in this Supplementary

Material. The choice of the MS-GARCH model is natural, as both the RC-GARCH and MS-GARCH

models are mixture GARACH models. As pointed out in the introduction of the main paper, the

tvGARCH model could also be viewed as a (nonstationary) regime switching GARCH model but

with a deterministic regime sequence. For the MS-GARCH(1,1) model, an instance with two regimes

(MS-GARCH2(1,1)) is estimated. For more than two regimes, the estimated transition probabilities

of the MS-GARCH2(1,1) are not significant. The same holds for the tvGARCH(1,1) model with a

multiple logistic transition function.

Figure S.8 shows the probability integral transform (PIT) of the return series (Yt)1≤t≤n with respect

to four conditional distributions: (a) the standard Normal GARCH(1, 1) with Normal conditional dis-

tribution N (0, δ̂2t ), (b) the RC-GARCH(1,1) with Normal Inverse Gaussian conditional distribution

Yt ∼ NIG(∆̂tδ̂
−2
t , 0, ∆̂t, 0), (c) the MS-GARCH2(1,1) model with Normal mixings (cf. Haas et al,

2004a; Ardia et al, 2019), and finally, (d) the tvGARCH(1,1) model with a Normal conditional dis-

tribution N (0, δ̂2t ĝn,t), where gn,t = δ̂0 + δ̂1
1

1+exp(γ̂( t
n
−ĉ))

is the estimated deterministic time-varying

component (cf. Amado and Teräsvirta, 2013-2017; Campos-Martins and Sucarrat, 2024). The pa-

rameter estimates of both TV(1)-GARCH(1,1) and MS-GARCH(1,1) models as well as their volatility

plots are reported in the Supplementary Material. It can be seen from Figure S.8 that the returns

fit well with the NIG RC-GARCH model and the MS-GARCH model (as the corresponding PITs are

close to a straight line) followed by the tvGARCH model, and finally by the standard GARCH model.

Thus, the PIT suggests that the NIG distribution could be a good model for the CISCO returns.

The PIT results (Figure S.8) are also verified by the in-sample volatility forecasting ability of the
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returns.

(a) (b)

(c) (d)

Figure 5. PITs of the data with respect to: (a) The Normal GARCH(1,1),

(b) the NIG RC-GARCH(1,1), (c) the Normal TV(1)-GARCH(1,1),

(d) the mixture Normal MS-GARCH2(1,1).

The above PIT results are also comforted with the in-sample volatility forecast ability of

the four models. Since the actual volatility is unobservable, we use the squared return Y 2t as a

proxy (as in the Simulation Section), which is unbiased and commonly used in the literature

(see e.g. Charles and Olivier, 2017), although it is noisy (Lopez, 2001). We compute for each

model the above three criteria (cf. Section 4): i) the mean square forecast error MSFE=
1
n

nP
t=1

(Y 2t
bht)2, ii) the mean absolute forecast error given by MAFE = 1

n

nP
t=1

Y 2t
bht , and iii)

the mean QLIKE (cf. Patton, 2011; Aknouche and Francq, 2023) MQLI= 1
n

nP
t=1

(logbht+ Y 2tbht ),
where bht is the estimated volatility generated by each model (cf. Table 8). Following Patton
(2011), the MSFE criterion is robust for forecast comparison if the true volatility is replaced
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Figure S.8: PITs of the CISCO data with respect to: (a) The Normal GARCH(1,1), (b) the NIG RC-
GARCH(1,1), (c) the Normal TV(1)-GARCH(1,1), (d) the mixture Normal MS −GARCH2(1, 1).

four models. Since the actual volatility is unobservable, we use the squared return Y 2
t as a proxy (as did

in the simulation above), which is unbiased and commonly used in the literature (see e.g. Charles and

Olivier, 2017), although it is noisy (Lopez, 2001). We compute for each model the three criteria also

used in our simulation exercises (see above): i) the mean square forecast error MSFE= 1
n

n∑
t=1

(Y 2
t −ĥt)2,

ii) the mean absolute forecast error, given by MAFE = 1
n

n∑
t=1

∣∣∣Y 2
t − ĥt

∣∣∣, and iii) the mean QLIKE (cf.

Patton, 2011; Aknouche and Francq, 2023) MQLI= 1
n

n∑
t=1

(log ĥt +
Y 2
t

ĥt
), where ĥt is the estimated

volatility generated by each model (cf. Table S.6). Following Patton (2011), the MSFE criterion is

robust for forecast comparison if the true volatility is replaced by some consistent proxy such as the

squared return. From Table S.6, it can be seen that the filtered volatility ϱ̂2t provides the best MSFE,

MAFE, and MQLI compared to the predictive volatility (which is that of a GARCH model), the

tvGARCH volatility, and MS-GARCH volatility. The tvGARCH volatility is better than the GARCH

and MS-GARCH regarding the MQLI, but the GARCH volatility outperforms the tvGARCH and MS-

GARCH regarding the criteria MSFE and MAFE. The MS-GARCH provides the worst (in-sample)

28



volatility forecast, although all criteria for the four models are quite close to each other.

MSFE MSAE MQLI

Predictive volatility δ̂2t 7.22e-06 0.00089 −6.4391

Filtered volatility ϱ̂2t 4.28e-06 0.00068 −6.6335

TV(1)-GARCH(1, 1) volatility 7.28e-06 0.00091 −6.4422

MS-GARCH2 (1, 1) volatility 7.94e-06 0.00102 −6.4026

Table S.6. In-sample forecast comparison of the RC-GARCH(1,1),

the MS-GARCH(1,1), and the tvGARCH(1,1).

8.2 Some additional graphs

3 Complements to the SISCO application

3.1 Some additional graphs

(a) (b)

Figure S.9. (a) ACF of residuals. (b) ACF of squared residuals; CISCO 

series.
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(a) (b)

(c) (d)

Figure S.7. Simulated random coe¢ cients (!t; �t; �t) and the persistence �t + �t

from the estimated RC-GARCH (1; 1) model based on the RSISCO series.

3.2 Estimation results for the TV(1)-GARCH(1:1) model

Using the package "tvGARCH" of Campos-Martins and Sucarrat (2024), we estimate a

TV(1)-GARCH(1:1) model based on the RINTEL series. The method used is the estimation

by parts of Amado and Terasvirta (2013). The parameter estimates are reported in Table

S.6. For higher-orders TV(k)-GARCH(1:1) models with k � 2; the estimated models are

17

Figure S.10. Simulated random coefficients (ωt, αt, βt) and the persistence αt + βt from the estimated
RC-GARCH(1,1) model based on the CISCO series.
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8.3 Estimation results for the TV(1)-GARCH(1.1) model

Using the package “tvGARCH ” of Campos-Martins and Sucarrat (2024), we estimate a TV(1)-

GARCH(1.1) model based on the CiSCO series. The method used is the estimation by parts of

Amado and Terasvirta (2013). The parameter estimates are reported in Table S.7. For higher-orders

TV(k)-GARCH(1.1) models with k ≥ 2, the estimated models are not available from the package

“tvGARCH”, which delivers error messages.

â0 â1 γ̂ ĉ ω̂ α̂ β̂

0.0008 0.0020
(0.0007)

3.5391
(1.0112)

0.9955
(0.0649)

0.0108
(0.0102)

0.0761
(0.0586)

0.9126
(0.0642)

Table S.7. Estimated TV(1)-GARCH(1.1) model; CISCO returns.

Likelihood: 4629.672.

The generated volatility by the estimated TV(1)-GARCH(1.1) model is displayed in Figure S.11 (a),

while in panel (b) of the same figure we display the graph of the estimated long-term deterministic

component

ĝn,t = â0 + â1
(
1 + exp

(
−γ̂
(
t
n − ĉ

)))−1
.

not available from the package "tvGARCH" which delivers error messages.

ba0 ba1 b
 bc b! b� b�
0:0008 0:0020

(0:0007)
3:5391
(1:0112)

0:9955
(0:0649)

0:0108
(0:0102)

0:0761
(0:0586)

0:9126
(0:0642)

Table S.6. Estimated TV(1)-GARCH(1:1) model; CISCO returns.

Likelihood: 4629.672.

The generated volatility by the estimated TV(1)-GARCH(1:1) model is displayed in Fig-

ure S.7 (a), while panel (b) in the same �gure plots the graph of the estimated long-term

deterministic component

bgn;t = ba0 + ba1 1 + exp b
 t
n

bc��� 1
.

(a) (b)

Figure S.11. (a) Volatility induced by the TV(1)-GARCH(1:1) model.
(b) Estimated long-term function gbn;t; CISCO series.

bP11 bP21 b!1 b�1 b�1 b!2 b�2 b�2
0:9936
(0:0000)

0:0694
(0:0000)

0:0000
(0:0000)

0:0219
(0:0000)

0:9750
(0:0000)

0:0007
(0:0000)

0:0787
(0:0000)

0:8553
(0:0000)

Table S.7. Estimated MS-GARCH2(1:1) model; CISCO returns.

Likelihood: 4724.2557, AIC = 9432:5114, BIC = 9387:6603.
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8.4 Estimation results for the MS-GARCH2(1.1) model

On the basis of the CISCO series, the parameter estimates of two-regime MS-GARCH2(1.1) models

and their ASEs in parenthesis are reported in Table S.8, while the MS-GARCH2(1.1) volatility plot
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is displayed in Figure S.12.

P̂11 P̂21 ω̂1 α̂1 β̂1 ω̂2 α̂2 β̂2

0.9936
(0.0000)

0.0694
(0.0000)

0.0000
(0.0000)

0.0219
(0.0000)

0.9750
(0.0000)

0.0007
(0.0000)

0.0787
(0.0000)

0.8553
(0.0000)

Table S.8. Estimated MS-GARCH2(1.1) model; CISCO returns.

Likelihood: 4724.2557, AIC = −9432.5114, BIC = −9387.6603.

The volatility generated by the MS-GARCH(1.1) model for the RCISCO series is plotted in Figure

S.12.

The volatility generated by the MS-GARCH(1:1) model for the RCISCO series is plotted in

Figure S.8.

Figure S.12. Volatility induced by the MS-GARCH2(1:1) 
model.

4 Details of obtaining (2.7)-(2.9) and (3.10b)

First we have

V ar �2t jFY
t 1

�
= E

��
�2t �2t

�2 jFY
t 1

�
= E([!t !0 +

qX
i=1

(�it �0i)Y
2
t i +

pX
j=1

jt 0j

�
�4t j]

2jFY
t 1)

= E (!t !0)
2�+ qX

i=1

E (�it �0i)
2 Y 4

t i +

pX
j=1

E jt 0j

�2
�4t j

= �2! +

qX
i=1

�2�iY
4
t i +

pX
j=1

�2
j
�4t j: (S.14)

Hence

V ar Y 2
t jFY

t 1

�
= E

��
Y 2
t E Y 2

t jFY
t 1

��2 jFY
t 1

�
= E

��
�2t "

2
t �2t

�2 jFY
t 1

�
= E "4t

�
E �4t jFY

t 1

�
2E"2t �

2
tE �2t jFY

t 1

�
+ �4t

= �
�
V ar �2t jFY

t 1

�
+ E �2t jFY

t 1

��2�
2�4t + �4t

= � V ar �2t jFY
t 1

�
+ �4t

�
�4t

= �V ar �2t jFY
t 1

�
+ (� 1) �4t : (S.15)
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