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Abstract

Research in anthropology and neuroscience has shown that people have a
cognitive limit on the number of stable relationships they can maintain. In
this spirit, we consider a network formation game in which the cost of link
formation is increasing in the agent’s degree. In this class of games, as
opposed to commonly studied games with a fixed cost of link formation, the
order in which agents form the network (order of play) determines its final
structure. In particular, we find that only certain orders of play can explain
the formation of circle and complete bipartite networks. We also find that
there is multiplicity of equilibria only when marginal costs of link formation
are intermediate. Our results show as well that some orders of play are better
than others for predicting the equilibrium structure when it is not unique,
and that playing last is usually harmful.
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“There is a cognitive limit on the number of relationships that an individual can monitor
simultaneously.”

— Robin Dunbar (1992)

1 Introduction

Research in anthropology and neuroscience has shown that people have a cog-
nitive limit on the number of stable relationships they can maintain. This finding
is widely recognized in the social sciences as Dunbar’s number, which places the
typical upper bound at around 150 stable connections. Network formation models
have typically overlooked these empirical findings, often assuming that the cost of
forming each link is fixed and independent of an individual’s existing number of
connections. This assumption has usually been made in both simultaneous link
formation games (e.g. Jackson and Wolinsky, 1996; Bala and Goyal, 2000) and
sequential ones (e.g. König et al., 2014; Joshi et al., 2025, 2020). When costs
of link formation are fixed, the network always converges to the same structure
at equilibrium, independently of the order in which agents form links (henceforth
order of play).

In the current paper, we show that the order of play determines the equilibrium
structure of a network when costs of link formation are increasing in the agent’s
degree. We consider a sequential game of network formation where agents can
unilaterally delete a subset of own links, and bilaterally form links. Agents have a
linear-quadratic utility function, which is very standard in the network economics
literature (see, for example, Ballester et al., 2006), so that the incentive of agents
to form links comes from the resulting increase in Bonacich centrality. Agents do
not necessarily wish to form a link with every other agent, since link formation is
costly, and this cost is increasing in the agent’s degree.

Our results show that only certain orders of play can explain the formation of
circles and complete bipartite networks, which play a key role in various areas like
leadership (Cabrales and Hauk, 2022), finance (Gualdi et al., 2016) or scientific
competition (Cimini et al., 2014). We find that there is multiplicity of equilib-
ria only when marginal costs of link formation are intermediate. We furthermore
find that playing last is usually harmful, because it typically entails that agents
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who have previously played are "satisfied" with the neighbors they have, and do
not wish to form any additional links. Finally, we show that some orders of play
are better than others for predicting the final structure of the network when the
equilibrium is not unique. The model we present also explains the formation of
complete multipartite and ring lattice networks, which hold a central place in top-
ics like public goods (Kinateder and Merlino, 2017), social hierarchy (Baetz, 2015)
or trade (Wilhite, 2001). To the best of our knowledge, this paper is the first one
to explicitly relate the order of play to the equilibrium structure of the network.

The paper by Jackson and Watts (2002) considers as well a network formation
game in which the cost of link formation is increasing in the agent’s degree. The
incentive of agents to form links comes from the possibility of playing a 2× 2 co-
ordination game with their neighbors. However, the authors focus their attention
on the strategies of agents in the coordination game, and do not consider how the
order of play affects the equilibrium structure of the network. The paper by Sadler
(2025) also studies link formation costs that increase with an agent’s degree. A key
strength of his approach is its broad applicability, as it avoids parametric assump-
tions on preferences of agents. To guarantee equilibrium existence and uniqueness
in such a general setting, he introduces an axiomatic condition known as the mutual
favorite property. While this assumption is elegant and powerful, it also implies
that the order of play does not affect the final network structure, as agents con-
sistently seek to connect with the same preferred partner throughout the game.
In contrast, we show that focusing on marginal link formation costs—when either
sufficiently high or low—can also ensure the existence of a unique equilibrium,
while allowing the network structure to depend on the order of play. This offers a
complementary perspective, as it allows the equilibrium network to depend on the
order of play.

Although the order in which agents play a game has not yet been explicitly
shown to be a determinant of the equilibrium structure of a network, recent work
outside the network literature highlights its growing importance. For instance,
Le Quement et al. (2025) shows that the order in which one consults experts for
advice matters, as it is usually better to ask for advice from less reliable experts
first, rather than advice from more reliable ones. As another example, Barberà
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and Gerber (2025) shows that in games where the order of play is endogenous, it
usually determines the outcome of the game. We show, in the current paper, that
their conclusion also extends to games with exogenous orders of play. The paper by
Hinnosaar (2024) shows, in the context of sequential contests, that earlier movers
are better off than later moves, which resonates with our result that playing last
is usually harmful.1

The remainder of the paper is organized as follows. Section 2 presents the
model. Section 3 presents the results. Section 4 discusses possible avenues for
future research. Section 5 concludes.

2 The model

We next present the model, and introduce notation. We will define additional
notation throughout the paper when necessary.
Network definitions. We consider a set of agents N = {1, ..., N}. Every pair of
agents i, j ∈ N can either share a link (in which case, gij = 1) or not (in which
case, gij = 0). We call network, adjacency matrix, or (network) structure, the
matrix G such that entry of the ith row and jth column corresponds to gij. We
consider that gij = gji for any pair of agents i, j ∈ N , i.e., links are undirected. We
denote by GN the set which is composed of all possible adjacency matrixes, given
N . A walk from agent i to agent j is a sequence of agents {i, i + 1, · · · , j − 1, j}
and links {gi,i+1,, · · · , gj−1,j} such that gmn = 1 for all m ∈ {i, i+1, · · · , j−1} and
n = m+1. A path is a walk in which all nodes are distinct. The length of a walk or
path equals the number of nodes in the sequence less 1. The shortest path between
nodes i and j is the path which consists of the minimal number of nodes, among all
paths between i and j. The neighborhood of agent i is Ni = {j ∈ N \{i} : gij = 1},
and its cardinality |Ni| = di is the degree of agent i. Agent i is a neighbor of agent
j if i is in the neighborhood of agent j. Agent i is a k-distance neighbor of agent j
if the length of the shortest path between i and j is k. A component of a network
is a set C of nodes such that there exists a walk from any node i ∈ C to any node

1The order of play has also recently gained importance in other fields, such as computer
science (e.g. Hu et al., 2024).
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j ∈ C, but not to any node outside C. We denote by Ci the component to which
node i belongs. An independent set of G is a non-empty subset of players who are
not linked to each other. A circle is a component composed of 4 agents or more
who all have exactly degree 2.2 A complete bipartite component is a component
composed of two independent sets, such that every agent in one independent set is
linked to all agents in the other independent set. We denote by G+ij (G−ij) the
network obtained from G by adding (deleting) link gij. A complete component is
a component in which all nodes are linked to each other. A dyad is a complete
component composed of two nodes, and a triad is a complete component composed
of three nodes. Network G′ is adjacent to G if G′ = G+ij or G′ = G−ij for some
ij. We say that two agents i and j are automorphically equivalent in network G, if
there is an automorphism of G that maps i to j and j to i, i.e., if re-labeling i to
j and j to i does not alter the structure of the network. We say that G is denser
than G′ if G′ ⊆ G.

Effort and utility function. Every agent i ∈ N exerts effort xi ≥ 0 in the
activity. The utility of each agent i is defined in (1):

Ui(xi,x−i) = xi + α
∑
j ̸=i

gijxixj −
1

2
x2
i , (1)

given x−i and α, where vector x−i =
(
x1 · · · xi−1 xi+1 · · · xN

)
denotes the

effort exerted by all agents other than i, and 0 < α < 1
(N−1)

is a parameter that
measures strategic complementarity in effort exerted between neighbors.3 We de-
note by Ui(G) and by xi(G) the utility function of agent i in network G, and the
effort exerted by agent i in network G respectively. We also denote by Ui(G+mn)

and by xi(G+mn) the utility of agent i and the effort exerted by agent i, re-
spectively, in network G+mn. We define ∆Ui(G+mn) = Ui(G+mn) − Ui(G) and
∆xi(G+mn) = xi(G+mn)− xi(G).

2A circle is usually considered to be a component composed of 3 agents or more who all have
exactly degree 2. As is explained below, this definition allows for an easier characterization of
the results, and does not change the nature of the results.

3Condition 0 < α < 1
(N−1) ensures that Bonacich centrality is well defined (Jackson, 2008).
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Nash equilibrium. We denote by x∗
i the equilibrium value of agent i, which is

the value xi that maximizes her utility. Vector x∗ =
(
x∗
1 · · · x∗

N

)
is the Nash

equilibrium of the game, in which no agent has a profitable unilateral deviation
from her equilibrium value. If we let x′

i be any value of xi, and x∗
−i be the set

of equilibrium values of all agents other than i, then the Nash equilibrium is such
that, for all agents i ∈ N , U(x∗

i ,x
∗
−i) ≥ U(x′

i,x
∗
−i) for all x′

i ∈ R≥0.
As follows from Ballester et al. (2006), the Nash equilibrium of the game is given
by vector X, composed of one column and N rows.

X = [IN − αG]−11, (2)

where IN is the identity matrix of dimension N . The ith entry of vector X is
commonly called the Bonacich centrality of agent i (Bonacich, 1987).

Cost of link formation. The cost of link formation function c(d) maps a degree
d ∈ N to a positive real-valued number c ∈ R≥0. Formally, c : N → R≥0 is a
discrete function such that c(0) = 0 and c(d+ 1)− c(d) > 0 for all d ≥ 1.4

Network formation process. The game is dynamic and time is discrete. We
define function P : N ×GN ×R>0× (N → R>0) → N , which maps an agent i ∈ N
who plays at time t, a network structure G ∈ GN , a value α ∈ R>0 and a cost
of link formation function c(d) that maps a degree d ∈ N to a positive real value
c ∈ R>0, to an agent j ∈ N who plays at time t + 1. After an agent i ∈ N plays
at time t, function P selects which agent plays at time t + 1. We call function
P the order of play. Notation S[t] denotes set S at time t, where S can be any
set. In particular, notations G[t], di[t] and gij[t] respectively denote adjacency
matrix G at time t, degree of agent i at time t and link indicator gij at time t.
Agents are myopic in the sense that they seek to generate the highest immediate
incremental utility from the deletion or the formation of a new link. The structure
of the network is common knowledge. The timing of events is the following:

1. The network starts as empty, i.e. gij[0] = 0 for all i, j ∈ N .
4We set c(0) = 0 to avoid the trivial case in which agents do not form any link.
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2. A randomly chosen agent, denoted by 1, plays first at time t = 1. Agent 1
can delete any existing links with neighbors in N1[1] (however, at time t = 1,
the neighborhood of agent 1 is empty). Agent 1 deletes a subset of own links
if the incremental utility generated by the link deletion is strictly positive.

3. All agents then adjust the effort they exert in the activity, so that a new
Nash equilibrium is achieved given the new network structure.

4. Agent 1 proposes at most one link to one agent j /∈ N1[1]. Agent 1 will
only propose a link to another agent if the incremental utility generated by
the newly formed link is strictly larger than some cost she incurs from link
formation. The cost she incurs from link formation is given by function
c(d), where d is her degree before the proposition of the link. If a link is
formed between two agents, the cost corresponding to their degree before
the formation of the link is incurred by both agents, and sunk.
Out of all the agents j who i can select to propose a link to, i will select
the agent with whom the formation of a new link generates the highest
incremental utility ∆Ui(G+ij). If there are two or more such agents, agent i
will randomly select whom to propose the link to among these agents. The
agent who proposes the link (in this case, agent i) is called the sender, and
the agent to whom the link is proposed to (in this case, agent j) is called the
receiver.

5. Receiver j can either accept or decline the link proposed by sender i. If j
accepts, then the link between i and j is formed. If j declines, then it is not
formed. Agent j accepts if ∆Uj(G+ij) ≥ c(dj), and declines if ∆Uj(G+ij) <

c(dj). In equilibrium, a sender only proposes a link to a receiver if the receiver
will accept the formation of the link.

6. All agents adjust again the effort they exert in the activity, so that a new
Nash equilibrium is achieved given the new network structure.

7. Function P selects which agent plays next, at time t = 2.
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8. The process is recursive and starts again from bullet point number 2, where
it is the agent selected by P that plays at the next period. We call any
sequence of networks generated between times r and s, {G[r], ...,G[s]}, an
improving path. When no agent has an incentive to (i) delete any subset of
own links, and (ii) form any new link, the game ends. We denote by G∗ such
a resulting network.

Network G∗ is commonly defined as the pairwise stable (Nash) equilibrium. For-
mally, G∗ is a pairwise stable equilibrium if

Ui(G
∗) ≥ Ui(G

∗
−iλ1−iλ2···−iλr

), (3)

for each i ∈ N and any {λ1, λ2, · · · , λr} ⊆ Ni(G
∗), and

Ui(G
∗
+ij)− c(d) > 0 =⇒ Uj(G

∗
+ij)− c(dj) < 0, (4)

for each i, j ∈ N . Equation (3) indicates that, in G∗, no agent has an incentive
to delete any subset of own links, and equation (4) indicates that, in G∗, no agent
has an incentive to form a new link.

Notation related to the order of play. The following notation will be used
to define specific orders of play, and will be recalled throughout the paper when
necessary. We denote by GL[t] the set of agents that have an incentive to form a
link at time t+1, given the network structure at time t. We denote by GLCi[t] =

GL[t]∩{j ∈ Ci[t]} the subset of GL[t] in which all nodes belong to the component
of i. We denote by GLNCi[t] = GL[t] \GLCi[t] the subset of GL[t] in which all
nodes do not belong to the component of i, i.e. GLNCi[t] is the complementary
set of GLCi[t]. Time τ is the first time in which P = j ∈ GLNCi[t] for some
agent i, i.e., the first time in which a node from a different component plays.
We denote by GP [t] the set of agents who have played at least once in the time
interval {1, ..., t}. We denote by U(·) the discrete uniform distribution. Binary
variable Lt

i→j equals 1 if agent i proposes a link to agent j at time t and the link
is formed at time t, and equals 0 otherwise.
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3 Network formation analysis

We first provide some results regarding the incentives of players and the exis-
tence of a pairwise stable (Nash) equilibrium, in Section 3.1. We next characterize
network structures in equilibrium by considering two orders of play, which will be
formally defined below, in Section 3.2 (additional orders of play are considered in
Appendix A). We show that complete bipartite networks and circles can only be
explained by one order of play each, out of the ones we consider. We then provide
some additional results, in Section 3.3. We first give conditions for specific struc-
tures to emerge, which are complete multipartite and ring lattice networks. We
next show that playing last is usually harmful. Finally, we look at which orders of
play are better for predicting the equilibrium structure of the network.

3.1 Preliminary results

The incremental utility that an agent i receives when she forms a new link with
agent j is:

∆Ui(G+ij) = ∆xi(G+ij) · (
1

2
∆xi(G+ij) + xi(G)). (5)

Recall that ∆xi(G+ij) is the incremental effort that agent i exerts after the addition
of link ij in network G. Equation (5) can be retrieved from the equality Ui =

1
2
x2
i ,

which holds at equilibrium (Belhaj et al., 2016). Equation (5) is particularly
important because it allows us to know whether the formation of a link is profitable
for agent i. We now state Lemma 1, and give an intuition of it in Example 1 and
Figures 1a and 1b below.

Lemma 1. [Joshi et al. 2025] Suppose {Ci ⊆ G} ⊆ (⊂){C̃i ⊆ G̃} and ij /∈ C̃i.
Then, for all G:

∆Ui(G̃+ij) ≥ (>)∆Ui(G+ij) and ∆Uj(G̃+ij) ≥ (>)∆Uj(G+ij).

Example 1. Suppose that it is profitable for agent 2 to form a link with agent 4
in network G, i.e., ∆U2(G+24) > c(2) (see Figure 1a). Because component C̃2 is
denser than component C2, the Bonacich centrality of agent 2 in network G̃, x2(G̃),
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Figure 1a: Network G Figure 1b: Network G̃ Figure 1c: Network G′

is strictly larger than her Bonacich centrality in network G, x2(G) (see Figure 1b).
The incremental Bonacich centrality of agent 2 generated by linking with agent
4 in network G̃, ∆x2(G̃+24), is also strictly larger than the incremental Bonacich
centrality of agent 2 generated by linking with agent 4 in network G, ∆x2(G+24).
It follows, from equation (5), that the incremental utility of agent 2 generated by
linking with agent 4 in network G̃, ∆U2(G̃+24), is strictly larger than the incremen-
tal utility of agent 2 generated by linking with agent 4 in network G, ∆U2(G+24).□

Lemma 1 is very helpful because the formation of one link between some agent i in
a component Ci (e.g., agent 1 in the network of Figure 1a) and some agent j (e.g.,
agent 5 in the network of Figure 1a), implies that the formation of one link between
some agent ĩ in a component C̃2 denser than C2 (e.g., agent 2 in the network of
Figure 1b), who is automorphically equivalent with agent i in component C2, and
some agent who is as least as Bonacich central as j (e.g., agent 4 in the network
of Figure 1b, who is at least as Bonacich central as agent 5 in the network of
Figure 1a), generates at least as much incremental utility. It is important that
agents i and ĩ are automorphically equivalent in C2. Otherwise, we cannot infer
the profitability of the formation of one link from the profitability of the formation
of another link. For instance, agents 1 and 3 are automorphically equivalent in
component C1 in network G′ of Figure 1c. If it is profitable for agent 1 to form
a link with agent 5 at time t, then we can infer that it is profitable as well for
agent 3 to form a link with agent 5 at time t. We cannot infer, however, that it
is profitable for agents 2 and 4 to form a link with agent 5 at time t, since their
Bonacich centralities x2(G

′) and x4(G
′) are lower than the Bonacich centralities
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x1(G
′) and x3(G

′) of agents 1 and 3.
We next show that a pairwise stable (Nash) equilibrium exists. For this, we first
state the following lemma, which directly follows from the fact that deleting a
subset of own links reduces one’s Bonacich centrality.

Lemma 2. It is never profitable for any agent to delete a subset of own links.

Since it is never profitable for agents to delete links, they never enter cycles in
which links are repeatedly formed and deleted indefinitely.

Proposition 1. Given any order of play P, a pairwise stable equilibrium exists.

3.2 Main results

3.2.1 Equilibrium uniqueness

A recent and very useful approach to addressing equilibrium multiplicity in
network formation games—when link formation costs increase with the agent’s
degree—is the application of the mutual favorite property (Sadler, 2025). This
property requires that agent i prefers agent j as a neighbor over all agents k

such that ik ∈ G, and simultaneously, j prefers i over all ℓ such that jℓ ∈ G,
throughout the entire linking process. Under this assumption, the order of play
becomes irrelevant to the equilibrium structure of the resulting network. Because
we study the influence of the order of play on the equilibrium structure, we do not
adopt this method. Instead, we propose an alternative way to address equilibrium
multiplicity—one that retains the relevance of the order of play—by considering
either low or high marginal costs of link formation. As we will show, it is typically
intermediate marginal costs that generate multiple equilibria. We will first define
the order of play PRO (which stands for receiver-outside). Then, we will show by
means of an example that there can be equilibrium multiplicity. Finally, we will
use the same example and vary the marginal costs of link formation to show that
multiplicity of equilibria can only happen when marginal costs of link formation
are intermediate.
When the order of play is PRO, the receiver of the link is the one playing next, and
the agents who do not belong to the component of the receiver play afterwards.
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Recall that Lt
i→j is a binary variable which equals 1 if agent i proposes a link to

agent j at time t and the link is formed at that period, and equals 0 otherwise.
Set GL[t] comprises the agents that have an incentive to form links at time t+ 1,
given the network structure at time t. Set GLC[t] (GLNC[t]) is a subset of GL[t]
that comprises the agents that do (not) belong to the component of agent i, and
have an incentive to form a link at time time t+ 1. Formally,

PRO =


j ∈ G, if Lt

i→j = 1 and j ∈ GL[t]

l ∼ U(GLNCi[t]) if Lt
i→j = 1, j /∈ GL[t] and ∃l ∈ GLNCi[t]

l ∼ U(GLCi[t]) if Lt
i→j = 1, j /∈ GL[t] and ∄l ∈ GLNCi[t]

.

We distinguish between three cases which lead to different identities of agent j:

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, and

agent j can propose a link at time t + 1, i.e. j ∈ GL[t], then it is agent j

that plays at time t+ 1, i.e. PRO = j.

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1,

but agent j is not able to propose a link at time t + 1, i.e. j /∈ GL[t], and
there exists at least another agent l who does not belong to the component
of i who can propose a link at time t + 1, i.e. ∃l ∈ GLNCi[t], then an
agent l is randomly selected out of these agents who do not belong to the
same component of i at time t and who can propose a link at time t+ 1, i.e.
PRO = l ∼ U(GLNCi[t]).

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, but

agent j is not able to propose a link at time t+1, i.e. j /∈ GL[t], and there is
no other agent l who does not belong to the component of i who can propose
a link at time t+1, i.e. ∄l ∈ GLNCi[t], then an agent l is randomly selected
out of the agents who do belong to the component of agent i at time t and
can propose a link at time t+ 1, i.e. PSO = l ∼ U(GLCi[t]).

By means of an example, we next show that there can be multiplicity of equilibria.
Figures 2a, 2b, 2c, 2d, 3a, 3b, 3c and Table 1 illustrate the example.
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Example 2. Suppose α = 0.01, c(1) = 0.01, c(2) = 0.0105, c(3) = 0.0107985 and
c(4) = 5.
Periods 1-6. At time t = 1, agent 1 links with agent 2. Given the value of α
and the shape of c(d), agent 2 plays at time t = 2 and links with agent 3. Agent
3 plays at time t = 3 and links with agent 1. Agent 6 plays at time t = 4, and a
second triad is formed, with agents 5 and 6, at time t = 6 (see Figure 2a).
Periods 7-9. At time t = 7, agent 6 plays and links with agent 3 (chosen ran-
domly among agents 1, 2 and 3). It is not profitable for the receiver of the link,
agent 3, to form a link at time t = 8, and hence agent 4 is randomly selected to
play at time t = 8. It is too costly for agent 3 to accept a link from agent 4, and
so agent 4 forms a link with agent 1 (chosen randomly among agents 1 and 2). It
is not profitable for the receiver of the link, agent 1, to form a link at time t = 9,
and hence agent 2 is selected to play at time t = 9. It is too costly for agents 4
and 6 to accept a link from agent 2, and so agent 2 forms a link with agent 5 (see
Figure 2b). At time t = 10, agent 5 plays and links with agent 3 (chosen randomly
among agents 1 and 3 —see Figure 2c).
Path A - Period 11. It is not profitable for agent 3 to form a link at time t = 11,
and so agent 6 is selected to play at time t = 11 and links with agent 2, who
generates the highest incremental utility. At time t = 12, agents 1 and 4 only have
three links, but they cannot form any other links, because it is not profitable for
the other agents to form a fifth link. Because no agent has any incentive to form
a link at time t = 12, G′[11] is the pairwise stable equilibrium (see Figure 2d).
Path B - Periods 11,12. At time t = 11, it is not profitable for agent 3 to
form a link, and so agent 4 is randomly selected to play (instead of agent 6, as in
Path A). Agent 4 is already linked to all agents, except 2 and 3, and would like
to link with agent 3. However, agent 3 would decline the link proposed by agent
4 because a fifth link is too costly. Therefore, agent 4 links with agent 2 at time
t = 11 (see Figure 3b). At time t = 11, all agents have four links, except agents
1 and 6 who have three links. Since it is too costly to form a fifth link, agent 1
(chosen randomly among agents 1 and 6) is selected to play at time t = 12 and
links with agent 6. Therefore, network G′′[12] forms, and since it is too costly to
form a fifth link, G′′[12] is the pairwise stable equilibrium (see Figure 3c). □
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Figure 2a: G′[6] Figure 2b: G′[9] Figure 2c: G′[10]

Figure 2d: G′[11]

Figure 3a: G′′[10] Figure 3b: G′′[11] Figure 3c: G′′[12]

(a) Example 2 (Path A)

Path A
Sender Receiver

Period 1 1 2
Period 2 2 3
Period 3 3 1
Period 4 6 4
Period 5 4 5
Period 6 5 6
Period 7 6 3
Period 8 4 1
Period 9 2 5
Period 10 5 3
Period 11 6 2

(b) Example 2 (Path B)

Path B
Sender Receiver

Period 1 1 2
Period 2 2 3
Period 3 3 1
Period 4 6 4
Period 5 4 5
Period 6 5 6
Period 7 6 3
Period 8 4 1
Period 9 2 5
Period 10 5 3
Period 11 4 2
Period 12 1 6

Table 1: Linking process of Example 2: Path A and Path B.
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Let us now increase the value of c(2). As we show in the next example, the equi-
librium is now unique.

Example 3. Suppose α = 0.01, c(1) = 0.01, c(2) = 5.
Periods 1-6. The linking process is the same as the one presented in Example 2,
up until period 6 (see Figure 2a). Since it is too costly to form a third link, G′[6]

is the pairwise stable equilibrium. □

When marginal costs of link formation are large, they prevent agents from entering
network structures which can lead to equilibrium multiplicity.

Proposition 2. If there exists low enough d for which c(d) is large enough, then
the pairwise stable equilibrium is unique.

Marginal costs of link formation need to be large enough for a low enough degree,
because otherwise, agents can still enter a network structure which allows for equi-
librium multiplicity. If, for instance, the structure which allows for equilibrium
multiplicity is attained when nodes reach degree 5, but costs of link formation can
only prevent the formation of degree 7, then large marginal costs do not ensure
equilibrium uniqueness.
It is straightforward that, when marginal costs of link formation are low enough,
the unique pairwise stable equilibrium is a complete network. The complete net-
work is taken as an intuitive example to show that low marginal costs of link
formation ensure equilibrium uniqueness, but low marginal costs of link forma-
tion can also ensure the existence of a unique non-complete network. Figure 4
summarizes Section 3.2.1.

Marginal cost
0

Unique equilibrium Multiple equilibria Unique equilibrium

Figure 4: Network equilibrium structure by marginal cost of link formation
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3.2.2 The receiver-outside case

Order of play PRO has been defined in Section 3.2.1. We next show that G∗ can
be a circle of any size when the order of play is PRO, whereas it cannot be a circle
composed of 6 or more agents when the order of play is any of the other ones we
consider (including those in Appendix A).
An example is shown in Figures 5a, 5b and 5c which represent a network G com-
posed of 6 agents at times 2, 4 and 6 respectively.

Example 4. Suppose α = 0.01, c(1) = 0.01 and c(2) = 5.
Periods 1,2. At time t = 1, agent 1 plays and links with agent 2. Given the
values of α and c(1), it is not profitable for agent 2 to form a link at time t = 2,
and therefore, agent 5 plays next. At time t = 2, agent 5 links with agent 6, and
so network G[2], represented in Figure 5a, arises.
Periods 3,4. At time t = 3, agent 6 links with agent 1. At time t = 4, it is
not profitable for agent 1 to form a link, and so agent 4 (randomly chosen among
agents 3 and 4) plays next. At time t = 4, agent 4 links with agent 5, and so
network G[4], represented in Figure 5b, arises.
Periods 5,6. At time t = 5, it is not profitable for agent 5 to form a new link,
and so agent 3 is selected to play next. At time t = 5, agent 3 links with agent 4
(randomly chosen among agents 2 and 4). At time t = 6, it is not profitable for
agent 4 to form a link, and so agent 2 plays at time t = 6 and links with agent
3. Network G[6], represented in Figure 5c, arises. At time t = 7, no agent has an
incentive to form any other link, and so G[6] is the pairwise stable equilibrium. □

Figure 5a: G[2] Figure 5b: G[4] Figure 5c: G[6]

16



Example 4
Sender Receiver

Period 1 1 2
Period 2 5 6
Period 3 6 1
Period 4 4 5
Period 5 3 4
Period 6 2 3

Table 2: Linking process in Example 4.

Circle networks are widely studied in a variety of contexts within the networks
literature (see, for example, Cabrales and Hauk (2022) in the context of leadership
in networks). Given that the order of play is PRO, G∗ is a circle if and only if (i)
c(1) is large enough so that it is not profitable for an agent in a dyad to link with
a singleton, and low enough so that it is profitable for an agent in a dyad to link
with another agent in another dyad, and (ii) c(2) is large enough so that a third
link is not profitable.
We define the circle as a component composed of 4 or more agents who all have
degree 2. This way, we exclude the trivial case of the triad, which necessitates a
different linking process to form than circles of any other size. We can thus give
sufficient and necessary conditions on the shape of c(d) for the formation of a
circle at equilibrium, which would not be necessary if we included the special case
of the triad. We denote by c(1), c(1) and c(2) the threshold values of c(1) and c(2)

that satisfy points (i) and (ii) above.

Proposition 3. Suppose P = PRO. G∗ is a circle if and only if c(1) ≤ c(1) < c(1)

and c(2) ≥ c(2) for some c(1), c(1) and c(2).

As explained below, the order of play that is presented in the next section, 3.2.3,
cannot explain the formation of circles of any size.

3.2.3 The sender-outside case

We next consider an order of play in which the sender of a link is the one
playing next, and in which agents who do not belong to the component of the
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sender play afterwards. Formally,

PSO =


i ∈ G if Lt

i→j = 1 and i ∈ GL[t]
j ∼ U(GLNC[t]) if Lt

i→j = 1, i /∈ GL[t] and ∃j ∈ GLNC[t]

j ∼ U(GLC[t]) if Lt
i→j = 1, i /∈ GL[t] and ∄j ∈ GLNC[t]

.

We distinguish between three cases which lead to different identities of agent j.

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, and

agent i is able to propose another link at time t + 1, i.e. i ∈ GL[t], then it
is agent i that plays at period t+ 1, i.e. PSO = i.

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, but

agent i is not able to propose another link at time t+ 1, i.e. i /∈ GL[t], and
there exists at least another agent j who does not belong to the component
of i who can propose a link at time t + 1, i.e. ∃j ∈ GLNCi[t], then an
agent j is randomly selected out of these agents who do not belong to the
same component of i at time t and who can propose a link at time t+ 1, i.e.
PSO = j ∼ U(GLNCi[t]).

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, but

agent i is not able to propose another link at time t+ 1, i.e. i /∈ GL[t], and
there is no other agent j who does not belong to the component of i who
can propose a link at time t + 1, i.e. ∄j ∈ GLNCi[t], then an agent j is
randomly selected out of the agents who do belong to the component of agent
i at time t and can propose a link at time t+1, i.e. PSO = j ∼ U(GLCi[t]).

One can easily verify that PSO can explain the formation of circles composed of
up to 5 agents, but not more. Indeed, two agents in different dyads can link with
each other, after which a singleton plays and links with either agent with degree 1
in the line. Since this agent plays again, she necessarily links with the other agent
with degree 1 in the line and closes the circle.
While PSO cannot explain the formation of circles of any size, it can explain the
formation of complete bipartite networks, which PRO cannot explain (nor the other
two orders of play presented in Appendix A). An example is shown in Figures 6a,
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Figure 6a: G[3] Figure 6b: G[6] Figure 6c: G[9]

6b and 6c which represent a network G composed of 6 agents at times 3, 6 and 9
respectively.

Example 5. Suppose α = 0.01, c(1) = 0.01, c(2) = 0.0103 and c(3) = 5.
Periods 1-3. At time t = 1, agent 1 plays and links with agent 4. Given the
values of α, c(1), c(2) and c(3), agent 1 links with agents 5 and 6 at times t = 2

and t = 3 respectively.
Periods 4-6. At time t = 4, it is not profitable for agent 1 to form a link, and so
agent 2 plays at time t = 4. It is profitable for agent 2 to link with agents 4, 5 and
6 as well, at times t = 4, t = 5 and t = 6 respectively.
Periods 7-9. At time t = 7, it is not profitable for agent 2 to form a link, and
so agent 3 plays at time t = 7. It is profitable for agent 3 to link with agents 4, 5
and 6, at times t = 7, t = 8 and t = 9 respectively. A fourth link is too costly to
form. Since no agent has an incentive to form a new link at time t = 10, G[9] is
the pairwise stable equilibrium. □

Bipartite networks are central in understanding matters such as European inte-
gration (Di Clemente et al., 2022), trade networks (Saracco et al., 2015), finance
networks (Gualdi et al., 2016) or scientific competition of countries (Cimini et al.,
2014). The order in which nodes form links determines whether these networks
arise or not. We now state Proposition 4. Note that t = (τ−1)2 corresponds to the
period in which the first complete bipartite forms, and t = 2(τ − 1)2 corresponds
the period in which the second one forms.

Proposition 4. Suppose P = PSO. G∗ is composed of complete bipartite compo-
nents if and only if
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Example 5
Sender Receiver

Period 1 1 4
Period 2 1 5
Period 3 1 6
Period 4 2 4
Period 5 2 5
Period 6 2 6
Period 7 3 4
Period 8 3 5
Period 9 3 6

Table 3: Linking process in Example 5.

(i) N ≥ 2(τ − 1), and
(ii) gij[t] = 0 for τ ≤ t ≤ 2(τ − 1)2 for all i, j ∈ GP [t].

Condition (i) ensures that at least one complete bipartite network arises. Recall
that τ is the first time in which an agent that does not belong to the component of
the sender plays, and hence, (τ − 1) corresponds to number of nodes in one of the
two independent sets of the bipartite component. If N < 2(τ−1), then a complete
bipartite network will temporarily arise, after which agents in the independent
set of larger size will link with each other. Condition (ii) ensures that agents in
different bipartite components do not link with each other, and that agents in the
same partition of a bipartite component do not link with each other either.5

One can easily check as well that when the order of play is PRO, complete bipartite
components composed of 5 or more agents cannot arise. If the order of play is PRO,
a dyad first forms and either agent of the dyad links with a singleton, then a triad
necessarily forms, which is by definition absent from a bipartite network. If two
dyads form first, a line of four agents forms at the following period, and N ≥ 5,
then a circle composed of 5 agents necessarily forms, as mentioned earlier.

5Suppose that the conditions of Proposition 4 hold. One can easily check that G[τ − 1] is a
star, G[(τ − 1)2] is a complete bipartite component and G[2(τ − 1)2] is a network composed of
2 complete bipartite components, given that N is large enough.
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3.3 Additional results

3.3.1 Multipartite and ring lattice components

As discussed in the previous sections, complete bipartite and circle networks can
only be explained by one order of play each, out of the four we consider (including
those in Appendix A). These structures are special cases of complete multipartite
and ring lattice networks respectively. Multipartite and ring lattice networks are
essential in understanding matters such as public goods (Kinateder and Merlino,
2017), social hierarchy (Baetz, 2015), trade (Wilhite, 2001) and small-world net-
works (Watts and Strogatz, 1998). A natural follow-up question to the previous
analysis is whether these structures can also arise at equilibrium, and if they are
also exclusive to a certain order of play. We find that these structures can arise,
but that multiple orders of play can explain their formation. We next define these
structures.
A complete multipartite component is composed of two or more independent sets,
such that every node in each independent set is linked to every node in every
other independent set, whereas a complete bipartite component is a complete mul-
tipartite component with only two independent sets. A k-ring lattice is a regular
component which consists of a circle in which all nodes are also linked to their
distance-l neighbors, for all l ∈ {2, ...k}.

Remark 1. Consider any order of play.
(i) If two complete components CC1 and CC2, both composed of x agents, arise at
some period t, and
(ii) if it is profitable for every agent in CC1[t] to link with exactly x − 1 agents in
CC2[t] and no agent outside CC2[t], and
(iii) if it is profitable for every agent in CC2[t] to link with exactly x− 1 agents in
CC1[t] and no agent outside CC1[t],
then G∗ is composed of components which are both complete multipartite and ring
lattice.

Example 2 (Path B) shows how conditions (i), (ii) and (iii) lead to a network
composed of components which are both complete multipartite and lattice at equi-
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librium, when the order of play is PSI . At period t = 6, two triads arise (con-
dition (i)), and at period t = 12, every agent in each triad links with exactly
two agents of the other triad (conditions (ii) and (iii)). The different indepen-
dent sets of network G′′[12] in Figure 3c are {1,5}, {2,6} and {3,4}. To see
why network G′′[12] is also a ring lattice, consider network G′′[12], such that
g13 = g32 = g25 = g54 = g46 = g61 = 1 and all other link indicators take value 0,
which is a circle. It is then easy to see that all agents are linked to their distance-2
neighbors in the circle.

3.3.2 Social inequalities

We have characterized the formation of networks composed of complete bipar-
tite, complete multipartite and ring lattice components, as well as circle networks.
The question of welfare is natural in this context. Are there agents who benefit
from, or are harmed by the formation of these structures? Social inequalities is a
central topic in public economics, and has also drawn attention in the field of social
networks (DiMaggio and Garip, 2012). We find that the number of agents in the
network, N , is a determinant of inequalities. Furthermore, playing last is usually
harmful. We next state new definitions. We denote by CK the component in which
the last link is formed. We say that a component C is of degree d if di = d for all
i ∈ C. We denote by |C∗

1 | the number of nodes in component C1 at equilibrium.

Proposition 5. Suppose that G∗ is unique and composed of K components, among
which K − 1 are either complete bipartite, complete multipartite or ring lattice
components of degree d.
(i) If N is a multiple of |C∗

1 |, then Ui(G
∗) = Uj(G

∗) for all i, j ∈ N .
(ii) If N is not a multiple of |C∗

1 | and all agents i ∈ CK have degree di ≤ d in
G∗ with at least one strict inequality, then Ui(G

∗) < Uj(G
∗) for all i ∈ CK and

j /∈ CK.

When N is a multiple of |C∗
1 |, all components of G∗ have the same structure.

Furthermore, all agents in this component that is formed and replicated exert the
same effort. Since utility of agent i is given by U∗

i = 1
2
x∗2
i (Belhaj et al., 2016),

all agents have the same utility. When N is not a multiple of |C∗
1 |, the component
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that is formed last is composed of less agents, and agents in this component usually
have a lower Bonacich centrality, and hence a lower utility. Playing last is usually
harmful, because it forces the player to form a component with a lower number
of nodes. Even when N is not a multiple of |C∗

1 |, it is not always the case that
agents in component CK have a lower Bonacich centrality. If, for instance, G∗ is
composed of K−1 complete bipartite components composed of 4 agents each, and
one triad, then N is not a multiple of |C∗

1 |. However, all agents have the same
degree, and hence the same Bonacich centrality, and hence the same utility.6

3.3.3 Time of viability

We have shown that there often is multiplicity of pairwise stable equilibria. We
next study whether some orders of play allow us to know at an earlier period the
final structure of the network. We find that, under some conditions, orders of play
PRI and PSI (defined in Appendix A) are better for predicting the equilibrium
structure than PRO and PSO. Informally speaking, orders of play PRI and PSI are
identical to orders of play PRO and PSO, with the exception that when it is not
profitable for the sender or receiver of the link to play next, it is an agent inside the
component—and not outside—who plays next. We next make some definitions.
We call the selection of some agent i by function P that ensures the existence of
some pairwise stable equilibrium G∗, the viability of G∗ as the unique pairwise
stable network. We call the period γG∗ ∈ T at which the viability of G∗ as the
unique pairwise stable network happens, the time of viability of G∗ as the unique
pairwise stable network. We denote by γj

G∗ , for j ∈ {SI, SO,RI,RO}, the time of
viability of G∗ as the unique pairwise stable network, given that the order of play
is Pj, for j ∈ {SI, SO,RI,RO} respectively. We denote by C∗

K = {C∗
1 , ..., C∗

K}
the set of components that can form at equilibrium. We denote by η(C∗

k) the
number of periods needed to know with certainty the structure of component C∗

k ,
if G∗ were only composed of C∗

k . We denote by θ(C∗
k) the maximal number of

periods needed for component C∗
k to form, if G∗ were only composed of C∗

k .7 We
6When G∗ is a circle, all agents have the same Bonacich centrality, and hence the same utility,

regardless of the value of N .
7We want to capture the number of periods needed for a component to form. If we do not

assume that G∗ is only composed of C∗
k , then η(C∗

k) and θ(C∗
k) may capture periods in which
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define V =
∑K

k=1 θ(C∗
k) − η(C∗

k). For example, in Example 2, the structure of the
component at equilibrium is known with certainty at period t = 11 (when Paths
A and B start), and so, η(C∗

1) = 11. The maximal number of periods needed
for the component to form is θ(C∗

1) = 12. Since there is only one component at
equilibrium, we have V = 12− 11 = 1.

Proposition 6. There exists a threshold of V under which γSI
G∗(γRI

G∗) ≤ γSO
G∗ (γRO

G∗ ).

We next give an intuition for Proposition 6. Suppose that the order of play is PSI ,
that some network G∗ is composed of 3 components C∗

1 , C∗
2 and C∗

3 , such that it
takes up to 12 periods for C∗

1 to form, up to 12 periods for C∗
2 to form, and 4 periods

for C∗
3 to form. Suppose further that C∗

3 only has one possible structure, and that
η(C∗

1) = η(C∗
2) = 12, i.e., V =

∑2
k=1 θ(C∗

k)− η(C∗
k) = 0 is low. In that case, it takes

12 periods for C∗
1 to form, and 12 additional periods to know with certainty the

structure of C∗
2 . Thus, γSI

G∗ = 12 + 12 = 24. If the order of play is PSO instead,
then the formation of component C∗

3 can start before we know with certainty the
structure of C∗

1 and C∗
2 at the pairwise stable equilibrium, and thus, γSI

G∗ ≤ γSO
G∗ .

Suppose instead that η(C∗
1) = η(C∗

2) = 7, i.e., V =
∑2

k=1 θ(C∗
k)−η(C∗

k) = 5+5 = 10

is larger. If P = PSO, then it is possible that C∗
1 is known with certainty at period

t = 7, that C∗
2 starts forming at t = 8 so that it is known with certainty at period

t = 14, and thus, that γSO
G∗ = 14, which is lower than γSI

G∗ = 12+7 = 19. The same
reasoning applies to orders of play PRI and PRO.
Even though it is not always possible, ex ante, to know with certainty which
network structure arises in the long run, it is possible to know it after the network
starts forming, and it is possible to know it earlier for some orders of play than for
others. Whether it is possible to know it earlier for orders of play PSI and PRI or
PSO and PRO depends on V .

4 Discussion

We believe that this model opens up promising avenues for future research. In
particular, there are two important directions worth exploring, which pose major

other components are being formed, which are irrelevant to the structure of C∗
k .
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challenges within the current framework, but may be more tractable when ap-
proached through a different, simpler model. First, we consider non-simultaneous
formation and deletion of links, where agents first decide whether to delete a subset
of own links, and only then decide to propose the formation of a link. In this sense,
we follow the approach of papers like Hiller (2017), which, applied to our paper,
implies that agents never find it profitable to delete links, as is the case in papers
like Joshi et al. (2025, 2020).8 Considering simultaneous deletion and formation
of links would prevent us from ensuring the existence of a pairwise stable equilib-
rium, since agents could enter a cycle where some links are repeatedly formed and
deleted. Second, agents are myopic, in the sense that they seek to generate the
highest immediate incremental utility from the deletion or the formation of a new
link. If agents are allowed to be farsighted, then a set of farsightedly pairwise sta-
ble equilibria exists (see Theorem 2 of Herings et al. (2009)). However, the model
becomes intractable, making it difficult to characterize the equilibrium. These
modeling challenges remain particularly compelling, offering interesting directions
for future research.

5 Conclusion

We consider a network formation model in which sunk costs of link formation
are increasing in the agent’s degree. In this class of models, the order in which
agents sequentially form the network (order of play) determines its final structure.
Our main result is that only certain orders of play can explain the formation of
complete bipartite and circle networks. We also find that the equilibrium is unique
when marginal costs of link formation are intermediate, and that some orders
of play are better than others for predicting the final structure of the network
when the equilibrium is not unique. We furthermore show that playing last is
usually harmful. The model we present also explains the formation of complete
multipartite and ring lattice networks.

8There is no consensus on whether simultaneous or non simultaneous deletion and formation
of links should be used (Jackson, 2008, p. 375).
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Appendix A Other orders of play

A.1 The sender-inside case

We consider an order of play in which the sender of a link is the one playing next,
and in which agents belonging to the component of the sender play afterwards.
Formally,

PSI =


i ∈ G if Lt

i→j = 1 and i ∈ GL[t]
j ∼ U(GLCi[t]) if Lt

i→j = 1, i /∈ GL[t] and ∃j ∈ GLCi[t]

j ∼ U(GLNCi[t]) if Lt
i→j = 1, i /∈ GL[t] and ∄j ∈ GLCi[t]

.

We distinguish three cases which lead to different identities of agent j:

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, and

agent i is able to propose another link at time t + 1, i.e. i ∈ GL[t], then it
is agent i that plays at time t+ 1, i.e. PSI = i.

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, but

agent i is not able to propose another link at time t+ 1, i.e. i /∈ GL[t], and
there exists some agent j belonging to the component of i who can propose
a link at time t+ 1, i.e. ∃j ∈ GLCi[t], then an agent j is randomly selected
out of these agents who belong to the same component of i at time t and can
propose a link at time t+ 1, i.e. PSI = j ∼ U(GLCi[t]).

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, but

agent i is not able to propose another link at time t+ 1, i.e. i /∈ GL[t], and
there is no other agent j belonging to the component of i who can propose
a link at time t+ 1, i.e. ∄j ∈ GLCi[t], then an agent j is randomly selected
out of the agents who do not belong to the component of agent i at time t

and who can propose a link at time t+ 1, i.e. PSI = j ∼ U(GLNCi[t]).

When the order of play is PSI , the pairwise stable equilibrium is usually composed
of complete components. An example is shown in Figures 7a, 7b, 7c, 7d, 7e and
7f which represent a network G composed of 4 agents at times 1, 2, 3, 4, 5 and 6
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Figure 7a: G[1] Figure 7b: G[2] Figure 7c: G[3]

Figure 7d: G[4] Figure 7e: G[5] Figure 7f: G[6]

respectively.

Example 6. Suppose α = 1
4
, c(1) = 0.2 and c(2) = 0.5.

Periods 1-3. At time t = 1, agent 1 plays first, and forms a link with agent 2.
Given the values of α, c(1) and c(2), agent 1 forms a link with agent 3 at time
t = 2, and with agent 4 at time t = 3.
Periods 4,5. Agent 4 is randomly selected to play at t = 4. Notice that the
dashed frame in Figure 7c has the same structure as G[1], from which follows
G[1] ⊆ G[3]. Agent 4 therefore forms a link with agent 2 at time t = 4, by Lemma
1. Notice that the dashed frame in Figure 7d, has a denser structure than G[2],
from which follows G[2] ⊆ G[4]. Agent 4 therefore forms a link with agent 3 at
time t = 5, by Lemma 1.
Period 6. By following the same reasoning, we deduce that link 23 is profitable
as well. Because no agent can form another link at time t = 7, G[6] is the pairwise
stable equilibrium. □
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Example 6
Sender Receiver

Period 1 1 2
Period 2 1 3
Period 3 1 4
Period 4 4 2
Period 5 4 3
Period 6 2 3

Table 4: Linking process in Example 6.

When the order of play is PSI , a complete component, such as G[6] presented in
Example 6, always arises. If it is never profitable for any two agents in different
non-singleton components, then G∗ is composed of complete components. If it can
be profitable for agents in different non-singleton components to form a link with
each other, then there is multiplicity of equilibria, and thus the characterization
of equilibria becomes more challenging.

Proposition 7. Suppose P = PSI . If gij[t] = 0 for τ ≤ t ≤ 2τ for all i ∈ C1[τ − 1]

and all j /∈ C1[τ − 1], then G∗ is composed of complete components.

Recall that τ , defined in Section 2, is the first time in which some player outside
C1 is selected to play next. Hence, condition gij[t] = 0 for τ ≤ t ≤ 2τ for all
i ∈ C1[τ − 1] and all j /∈ C1[τ − 1] means that, between the time in which the
first component has finished forming (period τ) and the time in which the second
component has finished forming (period 2τ), agents in the first component have
not formed a link with agents in other non-singleton components (gij[t] = 0 for all
i ∈ C1[τ − 1] and all j /∈ C1[τ − 1]). One can easily show that if this condition is
fulfilled, then G∗ is composed of 2 identical complete components. If it has not
been profitable for agents in the first component to form a link with agents in
the second component between periods τ and 2τ , then it immediately follows that
is not profitable either for agents in components formed at later periods to form
a link with agents in preivously formed components. Hence, G∗ is composed of
complete components in this case.
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A.2 The receiver-inside case

We consider an order of play in which the receiver of a link is the one playing next,
and in which agents who belong to the component of the receiver play afterwards.
Formally,

PRI =


j ∈ G, if Lt

i→j = 1 and j ∈ GL[t]

l ∼ U(GLCi[t]) if Lt
i→j = 1, j /∈ GL[t] and ∃l ∈ GLCi[t]

l ∼ U(GLNCi[t]) if Lt
i→j = 1, j /∈ GL[t] and ∄l ∈ GLCi[t]

,

We distinguish between three cases which lead to different identities of agent j:

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, and

j is able to form a new link at time t + 1, i.e. j ∈ GL[t], then it is agent j

that plays at time t+ 1, i.e. PRI = j.

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, but

agent j is not able to form a new link at time t + 1, i.e. j /∈ GL[t], and
there exists at least another agent who belongs to the component of i who
can form a link at time t+1, i.e. ∃l ∈ GLCi[t], then an agent l is randomly
selected out of these agents who belong to the same component of i at time
t and can form a new link at time t+ 1, i.e. ∃l ∈ GLCi[t].

• If a sender i successfully links with an agent j at time t, i.e. Lt
i→j = 1, but

agent j is not able to form a new link at time t+1, i.e. j /∈ GL[t], and there
does not exist at least another agent who belongs to the component of i who
can form a link at time t+1, i.e. ∄l ∈ GLCi[t], then an agent l is randomly
selected out of the agents who do not belong to the same component of i at
time t and who can form a new link at time t+ 1, i.e. ∃l ∈ GLNCi[t].

When the order of play is PRI , the pairwise stable equilibrium is usually also com-
posed of complete components. An example is shown in Figures 8a, 8b, 8c, 8d and
8e which represent a network G composed of 5 agents at times 1, 2, 3, 5 and 7
respectively.
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Example 8. Suppose α = 0.01, c(1) = 0.01, c(2) = 0.0103 and c(3) = 0.0104.
Periods 1-7. At time t = 1, agent 1 plays first and forms a link with agent 2.
Given the values of α and c(1), agent 2 links with agent 3 at time t = 2. Notice
that the dashed frame in Figure 8b has the same structure as G[1], from which
follows G[1] ⊆ G[2]. Agent 3 therefore forms a link with agent 1 at time t = 3,
by Lemma 1. By following the same reasoning, one can easily check that agents 1
and 2 form triads with agents 4 and 5 at times t = 5 and t = 7 respectively. □

Example 11
Sender Receiver

Period 1 1 2
Period 2 2 3
Period 3 3 1
Period 4 1 4
Period 5 4 2
Period 6 2 5
Period 7 5 1
Period 8 3 4
Period 9 4 5
Period 10 5 3

Table 5: Linking process in Example 11.

Once it is not profitable for the two agents that played first to form any other triad,
it is the turn of agents inside the formed component to play. These agents link
together until the component becomes complete. An example is shown in Figures
9a, 9b, 9c and 9d which represent network G at times 7, 8, 9 and 10 respectively.

Example 8 (continuation). Periods 8-10. Suppose that, at t = 8, agent 3 is
selected to play. Notice that the dashed frame in Figure 9a has the same structure
as G[3], from which follows G[3] ⊆ G[7]. Agent 3 therefore forms a link with agent
4 at time t = 8, by Lemma 1. Notice that the dashed frame in Figure 9b has a
denser structure than G[5], from which follows G[5] ⊆ G[8]. Agent 4 therefore
forms a link with agent 5 at t = 9, by Lemma 1. By following the same reasoning,
we can deduce that it is profitable for agent 5 to form a link with agent 3 at time
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Figure 8a: G[1] Figure 8b: G[2] Figure 8c: G[3]

Figure 8d: G[5] Figure 8e: G[7]

Figure 9a: G[7] Figure 9b: G[8] Figure 9c: G[9]

Figure 9d: G[10]
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t = 10. At time t = 11, no agent has an incentive to form a link, and so the
complete network G[10] is the pairwise stable equilibrium. □

Order of play PRI is similar to PRI : when two components form and it is not
profitable for agents in either component to form a link with agents in the other
components, G∗ is composed of complete components.

Proposition 8. Suppose P = PRI . If gij[t] = 0 for τ ≤ t ≤ 2τ for all i ∈ C1[τ −1]

and all j /∈ C1[τ − 1], then G∗ is composed of complete components.

Appendix B Proofs

Proof of Lemma 2. Suppose, ad absurdum, that it is profitable for an agent to
delete a subset of own links with agents in set λ = {λ1, ..., λk}. It follows that
∆xi(G−iλ1,...,−iλk

) < 0. It directly follows from xi(G) ≥ 0 for any i and G that
∆xi(G−iλ1,...,−iλk

)+xi(G) ≥ 0, and hence that 1
2
∆xi(G−iλ1,...,−iλk

)+xi(G) ≥ 0. It
follows that ∆Ui(G−iλ1,...,−iλk

) = ∆xi(G−iλ1,...,−iλk
)·(1

2
∆xi(G−iλ1,...,−iλk

)+xi(G)) ≤
0. A contradiction arises. Since set λ is chosen without loss of generality, a con-
tradiction arises for any λ. □

Proof of Proposition 1. Suppose, ad absurdum, that a pairwise stable equilib-
rium does not exist. Because it is never profitable for agents to delete links (Lemma
2), we deduce that at every period t ∈ [1,∞), an agent forms a link. It follows that
there exists a period t in which G[t] is a complete network, and a period t + 1 in
which G[t+ 1] = G+ij [t] for some pair of agents i, j ∈ N . A contradiction arises,
since no additional link can be formed in the complete network G[t]. □

Proof of Proposition 2. Suppose that, given α and c(d), the maximum degree
in some structure G1, which allows for multiplicity of equilibria, is m. Increase
the value of c(m − 1) so that G1 cannot arise. If the pairwise stable equilibrium
is unique, then the proof is complete. If some structure G2 with maximum degree
n and which allows for multiplicity of equilibria can still arise, increase c(n− 1) so
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that G2 cannot arise. By induction of the argument, we arrive to network G com-
posed of dyads and at most one singleton, which is necessarily a unique pairwise
stable equilibrium. □

Proof of Proposition 3. Suppose that the order of play is PRO. Threshold
values c(1), c(1) and c(2) are defined as follows. It is profitable for an agent in
a dyad to link with a singleton if and only if c(1) < c(1). It is profitable for an
agent in a dyad to link with another agent in a dyad if and only if c(1) < c(1).
It is profitable for an agent in a circle network to form a link with a distance-2
neighbor if and only if c(2) < c(2).
Step 1: Prove that, if c(1) ≤ c(1) < c(1) and c(2) ≥ c(2), then G∗ is a
circle.
At time t = 1, the agent who plays first, denoted by 1, links with some singleton,
denoted by 2. At time t = 2, it is not profitable for agent 2 to link with a singleton,
and so some agent, denoted by 3, plays and links with some singleton, denoted by
4. At time t = 3, agent 4 links with agent 2, chosen among agent 1 and agent
2 without loss of generality. It is not profitable for agent 2 to form a third link,
and so some singleton, denoted by 5, plays at time t = 4, and links with agent 4,
chosen among agent 1 and agent 4 without loss of generality. By induction of the
argument, every agent who does not belong to the formed line component links
with either of the two agents with degree 1 in the line, until G becomes a line.
When G is a line, both agents with degree 1 in the line link with each other, and
so G∗ is a circle. Since c(2) ≥ c(2), it is not profitable for any agent in the circle
to form third link, and so the pairwise stable equilibrium is a circle network.
Step 2: Prove that, if G∗ is a circle, then c(1) ≤ c(1) < c(1) and
c(2) ≥ c(2).
Suppose that G∗ is a circle, and, ad absurdum, that c(2) < c(2). Because c(2) <

c(2), it is profitable for agents in the circle network G∗ to link between themselves.
Network G∗ is not a circle, and so, a contradiction arises.
Let us suppose that G∗ is a circle, and, ad absurdum, that c(1) < c(1) and
c(2) ≥ c(2). Because c(1) < c(1), agents will form triads. Because c(2) ≥ c(2), it
is not profitable for the agents in the triads to link between themselves. Network
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G∗ is not a circle, and so, a contradiction arises—recall that we define a circle as
a component composed of 4 agents or more in which all agents have degree 2.
Let us suppose that G∗ is a circle, and, ad absurdum, that c(1) ≥ c(1) and
c(2) ≥ c(2). Because c(1) ≥ c(1), agents form dyads, and it is not profitable
for the agents in the dyads to link between themselves. Network G∗ is not a circle,
and so, a contradiction arises. □

Proof of Proposition 4. Suppose that the order of play is PSO.
Step 1: Prove that if conditions (i) and (ii) are fulfilled, then G∗ is com-
posed of complete bipartite components.
Let us suppose that N ≥ 2(τ−1) and that it is not profitable for any pair of agents
who have played during time interval τ ≤ t ≤ 2(τ − 1)2 to form a link with each
other during time interval τ ≤ t ≤ 2(τ − 1)2. Agent 1 successively links with τ − 1

agents until it is not profitable for her to form a new link, so that a star component
forms. Agent 2, chosen without loss of generality among the players which do not
belong to the newly formed star component, successively links with all agents in
the neighborhood of agent 1. Once agent 2 has linked with all the neighborhood
of agent 1, it is not profitable for agent 2 to link with a singleton, since it is not
profitable for agent 2 to link with agent 1. By induction of the argument, agents
who do not belong to the component of agent 1 successively link with all agents
in the neighborhood of agent 1, until a bipartite component forms. Because all
agents in the formed bipartite component have the same Bonacich centrality, and
because it is not profitable for agents outside the formed bipartite component to
link with agents who have already played, it is not profitable for them either to link
with any other agent inside the formed bipartite component. Therefore, a second
complete bipartite component forms, and it forms at t = 2(τ − 1)2. By induction
of the argument, complete bipartite components form until the network attains a
pairwise stable equilibrium.
Step 2: Prove that if G∗ is composed of complete bipartite components,
then conditions (i) and (ii) are fulfilled.
Let us suppose that G∗ is composed of complete bipartite components, and, ad
absurdum, that N < 2(τ − 1). Because N < 2(τ − 1), there exists a period in

34



which G is a complete bipartite network, and in which the independent set s1 of
the agent who played first is composed of less agents than the other independent
set s2. Because, at this period, all agents are in the same component, it is some
agent inside the component who plays next. Agents in set s2 next link with each
other and, a contradiction arises, since we assumed that G∗ is composed of com-
plete bipartite components.
Ssuppose that G∗ is composed of complete bipartite components, and, ad absur-
dum, that there exists at least one period t in which gij[t] = 1, where τ ≤ t ≤
2(τ − 1)2 for a pair of agents i, j ∈ GP [t]. It follows that there exists some agent i
who played and successively linked with singletons, after which a singleton j linked
with at least one neighbor of agent i, and up to all neighbors of agent i, and then
linked with agent i, which implies that a triad formed. A contradiction arises,
since there are no triads in bipartite components, by definition. □

Proof of Proposition 5. Suppose that G∗ is unique and composed of K com-
ponents, among which K − 1 are either complete bipartite, complete multipartite
or ring lattice components of degree d.
Prove part (i).
Let us suppose that N is a multiple of |C∗

1 |, and, ad absurdum, that there is a pair
i, j ∈ N such that Ui(G

∗) ̸= Uj(G
∗). Since N is a multiple of |C∗

1 |, all compo-
nents in the network have the same structure, which is either complete bipartite,
complete multipartite or ring lattice of degree d. In any of these components,
every agent has the same Bonacich centrality. Because all agents have the same
Bonacich centrality, they also have the same utility. A contradiction arises, since
we assumed that there exist at least two agents who have different utilities.
Prove part (ii).
Let us suppose that N is not a multiple of |C∗

1 |, that all agents i ∈ CK have de-
gree di ≤ d in G∗ with at least one strict inequality, and, ad absurdum, that
Ui(G

∗) ≥ Uj(G
∗) for at least one i ∈ CK and one j /∈ CK . Because di ≤ d for

all i ∈ CK , with at least one strict inequality, we have xi(G
∗) < xj(G

∗) for all
i ∈ CK and j /∈ CK . It follows that Ui(G

∗) < Uj(G
∗) for all i ∈ CK and j /∈ CK .

A contradiction arises, since we assumed that Ui(G
∗) ≥ Uj(G

∗) for all i ∈ CK and
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j /∈ CK . □

Proof of Proposition 6. We prove that, if V =
∑K

k=1 θ(C∗
k)−η(C∗

k) is low enough
and there exists a network G of viability of G∗ as the unique pairwise stable net-
work, then γSI

G∗ ≤ γSO
G∗ . The same reasoning suffices to show γRI

G∗ ≤ γRO
G∗ . We

denote by K the set of agents who belong to components whose structure in G∗ is
known with certainty at period t = 0.
Let us suppose that, for a given α and c(d), network G∗ is composed of K com-
ponents, among which L < K are known with certainty at period t = 0. Suppose
further that η(Ci) = θ(Ci) for all i /∈ K, and, ad absurdum, that γSI

G∗ > γSO
G∗ .

The earliest period at which the structure of G∗ can be known with certainty is∑
i/∈K θ(Ci), which coincides with γSI

G∗ . A contradiction arises.
Let us now suppose that L = K, i.e. all components can have multiple struc-
tures at equilibrium, that η(Ci) = θ(Ci) for all i ∈ N , and, ad absurdum, that
γSI
G∗ > γSO

G∗ . The period at which the structure of G∗ is known with certainty is∑
i∈N θ(Ci), which coincides with the period at which the last link is formed, which

thus coincides with both γSI
G∗ and γSO

G∗ . A contradiction arises. □

Proof of Proposition 7. Suppose that the order of play is PSI , that it is not
profitable for any pair of agents i ∈ C1[τ−1] and j /∈ C1[τ−1] to form a link during
time interval τ ≤ t ≤ 2τ , and, ad absurdum, that G∗ is not composed of complete
components. Agent 1 successively links with x singletons until it is not profitable
for her to form a new link, so that a star component C1 forms. It follows that it
is profitable for any agent i ∈ C1 with degree di ≤ (x − 1) to link with any agent
j ∈ N .
Thus, all agents inside C1 form a link between themselves until the component
becomes complete. After the complete component has formed, if it is profitable for
some agent in the component to successively form links with singletons, and attain
some degree d̃i. Then, it is profitable as well for all agents inside the component
to attain degree d̃i, and hence form a complete component again. By following
the same reasoning and because gij[t] = 0 for τ ≤ t ≤ 2τ for all i ∈ C1[τ − 1] and
all j /∈ C1[τ − 1], we can deduce that a second complete component forms in the

36



time interval τ ≤ t ≤ 2τ . It is therefore not profitable either for any complete
component formed afterwards to link with any other previously formed complete
component. By induction of the argument, complete components form until the
network attains a pairwise stable equilibrium, and a contradiction arises since we
assumed that G∗ is not composed of complete components. □

Proof of Proposition 8. Suppose that the order of play is PRI , that it is not
profitable for any pair of agents i ∈ C1[τ − 1] and j /∈ C1[τ − 1] to form a link
during time interval τ ≤ t ≤ 2τ , and, ad absurdum, that G∗ is not composed of
complete components. At time t = 1, agent 1 links with some agent 2. At time
t = 2, agent 2 plays. If it is not profitable for agent 2 to link with a singleton,
then G∗ is composed of dyads and at most a singleton, and so, a contradiction
arises. If, at time t = 2, agent links with some agent 3, then agent 3 links with
agent 1 at time t = 3, by Lemma 1, and so a triad forms. By induction of the
argument, agents 1 and 2 successively form y triads with other agents until it is
not profitable for them to form a new triad, and reach degree y + 1. We denote
this time by ζ. It follows that it is profitable for any agent who is part of x < y

triads and with degree (x + 1) to form a link with any agent. At time t = ζ,
agent 3 is part of 1 triad, and has degree 2, which implies that it is profitable for
her to form a link with any agent inside the component. Agent 3, chosen among
players inside the formed component without loss of generality, links with agent
4 at time t = ζ + 1, chosen among players inside the formed component without
loss of generality. At time t = ζ + 1, agent 4 is part of x < y triads and has
degree (x+ 1), and thus links with some agent 5 at time t = ζ + 2, chosen among
players inside the formed component without loss of generality. By following the
same reasoning, we find that 5 links with agent 3 at time t = ζ + 3, so that agent
3 is part of x < y triads and has degree (x + 1) at time t = ζ + 3. By induction
of the argument, agents 3 and 4 successively form triads with agents inside the
component until they reach degree y+1. By induction of the argument, all agents
inside the component successively form triads until they reach degree y + 1. Once
all agents reach degree y + 1, the component is complete.
If, after the component becomes complete, it is profitable for some agents i, j ∈ C1
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to successively form triads with singletons, and attain some degree d̃i, then it is
profitable as well for all agents inside C1 to attain degree d̃i, and hence form a
complete component again.
By following the same reasoning and because gij[t] = 0 for τ ≤ t ≤ 2τ for all
i ∈ C1[τ−1] and all j /∈ C1[τ−1], we can deduce that a second complete component
forms in the time interval τ ≤ t ≤ 2τ . It is therefore not profitable either for any
complete component formed afterwards to link with any other previously formed
complete component. By induction of the argument, complete components form
until the network attains a pairwise stable equilibrium, and a contradiction arises
since we assumed that G∗ is not composed of complete components. □
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