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Abstract

Existing literature does not capture efficiency losses on the dynamic adjustment path of
smuggling control market from initial to final equilibrium after a shock in order to formulate an
optimal smuggling control policy. Furthermore, number of public service units and smuggling
control rate are major determinants of smuggling cases controlled in a society, and a policy
without taking into consideration such vital determinants cannot ensure adjustment of number
of smuggling cases controlled as a result of cost movement in desired time, which may lead to
extra efficiency losses than those envisaged during policy formulation for an optimal level of
smuggling control in a society. This article designs a comprehensive optimal smuggling control
policy mechanism by modeling a three dimensional smuggling control system in society capturing
number of public service units, smuggling control rate, and cost, while taking into account
efficiency losses during adjustment of smuggling control market, smuggling control rate and
number of public service units in addition to those which result due to movements from initial
to final equilbriums. (JEL H00, H19, H83)

Keywords: Smuggling, Public Service, Optimal Policy, Adjustment Path, Equilibrium, Coordina-
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1 Introduction

Smuggling- a criminal activity is defined as an illegal transportation of goods, people or information
violating the laws/regulations imposed. The motivations to smuggle include evasion of customs
duties, taxes, money laundering, trade of illegal items, such as, drugs, weapons, exotic wildlife, and
illegal movement of people across border. Smuggling occurs when a good or service either illegal,
or with too many duties and taxes at the import/export stage is in ample demand to motivate a
supplier to supply that even at the risk of being caught and punished. Therefore, the smuggling
of drugs, weapons, tobacco, alcohol, etc., is widespread. The smugglers have a substantial price
premium on the goods they smuggle, which makes it attractive for them to smuggle the goods in
spite of a significant risk of being caught and punished. The smugglers can make huge profits by
evading customs duties and taxes which they have to pay in case the goods are brought through
legal channels. A smuggler can sell the smuggled goods at a far higher margin by buying the goods
at a place with lower taxes, and selling those at a place with higher taxes.

There are fewer research articles written on smuggling from the perspective of devising a government
policy to combat smuggling. Bhagwati and Hansen (1973) first presented a theory of smuggling.
They showed that the commonly believed notion that smuggling could improve social welfare was
not true although the resources may get diverted from public to the private sector, which is usually
considered as more efficient. Buehn and Eichler (2012) analyzed the impact of business and political
cycles and priorities of political parties on smuggling illegal goods from the USA-Mexico border
from 1980 to 2004 and showed that smuggling of goods would be significantly reduced before the
congressional elections if the president of the USA was a Republican. Kireenko and Nevzorova
(2015) investigated the effects of the shadow economy on the level and quality of life of people from
150 countries over the period 1999-2000. The results of this study showed that, despite the increase
revenues of shadow economy, the increased size of shadow economy reduces life expectancy and
quality of life (inverse relationship). Tahmasebi and Rocca (2015) obtained a fuzzy estimate for
underground economy using a structural equation modeled with fuzzy data. Elhassab, Elhassab
and Villanger (2016) studied the "peace markets," banned by the government of Sudan after the
war broke out in the border areas between Sudans, using information obtained from within the war
zones and found that, although the high profit from such trading is a key motive, supporting family
and kin is an equally important objective for many of the parties involved. The practice may also
have several important side functions, such as asset protection or providing a platform for political
influence. Tsui (2016) concludes that although an increase in the duty on cigarette may result in
the smuggling of cigarette, however, the consumption of cigarette still goes down on account of
the fact that the price of smuggled cigarette also increases due to higher duties and taxes. Sadri

and Yeganegi (2016) show that there is a significant positive relationship between economic growth



and smuggling cycles. Reuter and OSRegan (2017) attempts to identify the scope and methods of
wildlife trafficking in the Americas and its connections to organised crime.

A comprehensive optimal smuggling control policy mechanism has been designed by modeling a
three dimensional smuggling control system after bifurcating it into two dimensional panels. In
one panel, public service (in terms of number of smuggling incidents controlled) and cost of per
smuggling incident controlled is considered (this is a traditional price-quantity panel for depicting
supply and demand in a market); whereas, in the other panel, number of public service units and
smuggling control rate are considered. The model in the first panel is based on a market for public
service in terms of number of smuggling incidents controlled. Four market agents exist in the
market, i.e., public sector/government as a supplier of service, consumer of service, government in
the role of deciding the cost charged to the private sector for smuggling control through taxes (tax
policy maker) and allocation of budget to the public offices for smuggling control, and government
for exercising smuggling control policy. The government influences the cost through its roles as
a tax policy maker/budget allocator and that of exercising the smuggling control policy, however,
takes the cost as given in the role of a service supplier. For the model in the other panel, there are
three types of infinitely-lived agents: public and private sectors which demand a certain number of
public service units against each smuggling control rate, a representative —or a unit mass of— public
service units who control smuggling, and public sector as one entity who supplies certain number
of public service units against each smuggling control rate.

In order to capture a bigger picture of the smuggling control system in society, we present dynamics
and equilibria in panels A and B of figure 1. In order to formulate an optimal smuggling control
policy, the government needs to devise policies for both panels, i.e., A and B. For panel B, this
paper develops a dynamic smuggling control model, and based on that, derives an optimal smuggling
control policy by minimizing the efficiency loss, i.e., excessive or inadequate smuggling control public
service in the final equilibrium as compared to the initial one, i.e., before the implementation of
the smuggling control policy; as well as during the adjustment of the smuggling control public
service system subject to the government’s smuggling control policy cost constraint. The results
from panel B decide the constraint in panel A, i.e., an increase/decrease in number of smuggling
cases controlled per unit time. For panel A, this paper develops a theory and designs a dynamical
model for an optimal number of public service units (a unit can be defined as a customs official, a
local office, an investigator, or a group of investigators, etc.) and the smuggling control rate based
on that theory. For panel A, the optimality is in the sense of having maximum gains possible,
i.e., minimizing the social damage in terms of inadequate/excessive number of public service units
in initial equilibrium; as well as the social loss in terms of excessive or inadequate number of
units on the dynamic adjustment path before arriving at the final equilibrium, subject to a certain

increase/decrease in number of smuggling cases controlled per unit time (obtained by deriving an



optimal policy for panel B). As soon as a policy to change the number of public service units and
smuggling control rate is adopted, it does not lead to an equilibrium immediately, and rather the
number of public service units follow a dynamic adjustment path to come to a point where the
number of units demanded in society becomes equal to the number supplied due to both public and
private sector’s efforts. This paper considers the social damage in the initial equilibrium as well
as on the dynamic adjustment path from initial to the final equilibrium after implementation of a
panel A policy to find an optimal policy, i.e., to minimize the social damage subject to a certain
increase/decrease in number of smuggling cases controlled per unit time.

The natural course of occurrence of panel A, and panel B, and hence equilibria in both panels
is simultaneous. There are a certain number of public service units to control smuggling in a
society and they control smuggling at some rate, i.e., the upward sloping curve in panel A; and
the areas of rectangles by drawing perpendiculars from points on the supply curve in panel A to
x, and y-axes correspond to the horizontal coordinates or abscissas on the supply curve in panel
B. Similarly, society desires/demands a certain number of public service units to control smuggling
against a smuggling control rate, i.e., the downward sloping curve in panel A; and the areas of
rectangles by drawing perpendiculars from points on the demand curve of society in panel A to x,
and y-axes correspond to the abscissas on the demand curve in panel B. The demand and supply
of public service measured in terms of number of smuggling cases controlled determines the cost
per unit smuggling case controlled in panel B. However, for the government’s policy formulation,
the government has a cost constraint which must be satisfied for an optimal level of smuggling
cases controlled in society, therefore, the natural order for an optimal policy formulation for the
government is to find an optimal level of number of smuggling cases controlled subject to the cost
constraint, and then for an optimal control to keep the number at the optimal level, devise a
policy for an optimal number of public service units and the smuggling control rate subject to the
constraint determined by the optimal policy in panel B, i.e., the change in number of smuggling
cases controlled per unit time. For panel B, the existing literature on smuggling control policy
does not take into consideration the efficiency losses/gains on the dynamic adjustment path as well
as the final equilibrium in comparison with the initial equilibrium in smuggling control system.
When government exercises a smuggling control policy, the government’s cost as a supplier of
public service jumps to the pre-policy cost plus the per smuggling case control cost incurred as
a result of the policy, which affects the public service supply in society and disrupts the supply-
demand equilibrium. Supply and demand of public service measured as the number of smuggling
cases controlled along with the cost adjust over time to bring final equilibrium. The adjustment
mechanism of cost is based on the premise that when the smuggling control system goes out
of equilibrium due to public policy, the consumers and suppliers of public service do not have

coordinated decisions at the current cost. While deriving an optimal smuggling control policy, it



is important to have efficiency considerations both during the adjustment of the system as well as
in the final equilibrium as compared to the initial one. For panel B, a dynamic smuggling control
model has been developed and based on that, an optimal smuggling control policy has been derived
by minimizing the efficiency loss, i.e., excessive or inadequate public service in the final equilibrium
as compared to the initial one, i.e., before the implementation of the policy; as well as during the
adjustment of the demand and supply subject to the government’s smuggling control policy cost
constraint.

The remainder of this paper is organized as follows: Section 2 presents the model for panel B.
Section 3 solves the model for a smuggling control policy for panel B. Section 4 presents a dynamic
optimal smuggling control policy for panel B. Section 5 demonstrates how individual components
of panel A are joined together to form a dynamic smuggling control model for panel A. Section 6
provides a solution to model A with a smuggling control policy. Section 7 derives a dynamic optimal
smuggling control policy for panel A. Section 8 presents the summary of findings and conclusion.

Appendix provides the detailed mathematical steps in derivations in the text.

2 The Model-Panel B

The model is based on a market for public service in terms of number of smuggling cases controlled.
Suppose that the market is in equilibrium in the initial condition. Four market agents exist in the
market, i.e., public sector/government as a supplier of service, consumer of service, government in
the role of deciding the cost charged to the private sector for smuggling control through taxes (tax
policy maker) and allocation of budget to the public offices for smuggling control, and government
for exercising smuggling control policy. The government influences the cost through its roles as
a tax policy maker/budget allocator and that of exercising the smuggling control policy, however,
takes the cost as given in the role of a service supplier. If number of smuggling cases controlled
changes due to an exogenous shock, the cost cannot jump on its own to bring the public service
market in a new equilibrium. Government as a tax policy maker changes the cost/taxes in the
public interest to bring the new equilibrium after making the cost follow an adjustment path.
In the final equilibrium, it is optimal for tax policy maker to stay put and not to change the
cost /taxes further. Supplier of public service receives cost of smuggling control from another wing
of government which relies on tax collection; the tax policy makers keep track of the supply and
demand of smuggling control public service and raise/lower the cost to bring the public service
market in equilibrium. The supplier of public service maximizes the public benefit; the tax policy
maker maximizes the public benefit as a difference of the public utility due to smuggling control,
and the cost of provision of public service through tax collection subject to the constraints; the
consumer maximizes the profit/benefit /utility depending on the type of consumer, i.e., whether the

consumer cares more about their profits (e.g., local industry is at a disadvantage if the products



they manufacture are smuggled and they are unable to compete with those), intellectual property
rights, health, etc.

The mechanism regarding the cost/taxes adjustment is contingent upon the premise that at the
current cost, suppliers’ and consumers’ decisions are not coordinated when an exogenous shock
happens to the public service market and pushes it out of equilibrium. Let us consider the following
example as an illustration of the working of this market: A public service market is in equilibrium as
a starting point/initial condition. An exogenous positive supply shock will result into an expansion
of number of smuggling cases controlled as the new total supply does not match the demand of
consumers at the current cost, which will be reflected into an increase in cumulative number of
smuggling cases controlled. The tax policy maker will reduce the tax rate so that the public
service supplier finds it optimal to supply a lower level of public service in terms of number of
crimes controlled. A final equilibrum will eventually result with a higher number of smuggling
cases controlled and a lower cost/tax rate than those in the initial equilibrium. The equilibrium is
defined as follows:

(i) The supplier of public service maximizes the public utility /benefit; the consumer maximizes
the profit/benefit /utility; and the tax policy maker maximizes the public benefit as a difference of
the public utility due to smuggling control, and the cost of provision of public service through tax
collection subject to the constraints as mentioned in Section 2 in detail.

(ii) The demand of number of smuggling cases controlled equals the supply when the public service
market is in equilibrium, and the cumulative number of smuggling cases controlled does not change.
Section 3 mentions the Routh—Hurwitz stability criterion, i.e., the necessary and sufficient equi-
librium condition for a linear dynamical system. The tax policy maker is a price taker (takes the
cost/tax rate as given) under public service market equilibrium. In an out of equilibrium scenario
of the market, the tax policy maker has an incentive to change the cost/tax rate during the adjust-
ment process until the new equilibrium arrives, where the tax policy maker again becomes a price
taker. When government exercises a smuggling control policy, the cost/tax rate adjusts rather than
jumping to a new value and gradually brings the new equilibrium. The basis of the adjustment of
cost/tax rate is endogenous decision making by public sector/government, the consumer of public
service, and the tax policy maker as follows: When public service market is in equilibrium, the
number of smuggling cases controlled is equal to the number demanded in each time period. If
government exercises an expansionary public service policy, i.e., increases the number of smuggling
cases controlled, a wedge is created between the number controlled and the number demanded. If it
was possible for the suppliers of public service and the tax policy makers change the service supply
and the cost/tax rate immediately; and the tax policy makers had known the new demand and
supply patterns after the change in the cost/tax rate, the tax policy makers would set a tax rate

such that the public benefit minus their cost through taxes would get maximized and the public



service market would clear. This information, however, is not known to the tax policy makers,
therefore, they change the tax rate based on their best guess/estimates about the new market
scenario, which drives the market to the new equilibrium. When the tax policy maker decreases
the cost/tax rate, the supplier supplies a lower quantity of service than before. The tax policy
maker will keep decreasing the tax rate until the new equilibrium arrives about which they get an
idea through the continuously decreasing number of smuggling cases until eventually a new equilib-
rium arrives with some efficiency losses during the adjustment. The over employment of resources
available with the public service provider/supplier to control number of smuggling cases excessive
of the number demanded is the efficiency loss as a result of a smuggling control policy during the
adjustment of the market, and the total loss is equal to the sum of the one during the adjustment
period plus/minus the loss/gain in final equilibrium.

Mathematically speaking, the first order derivatives of the objective functions of all agents have
been taken to maximize their objectives, and the individual equations are solved simultaneously
to get a mathematical expression for their collective response. An assumption for simplification
is that the final equilibrium is not too off from the pre-policy equilibrium; this implies that an
assumption regarding linearization of demand and supply schedules is reasonable. Figure 2 depicts
that linearization is a reasonable assumption for movement of an equilibrium from point a to b,
however, it does not seem to be reasonable to assume linearity of supply curve when the equilibrium
moves from point a to ¢, for which a non-linear dynamical system (beyond the scope of this paper)

needs to be considered.

2.1 Tax Policy Maker/Budget Allocator (TPM/BA)

Tax policy maker/budget allocator decides the cost of per smuggling case controlled after evalu-
ating the existing scenario of demand, and supply of public service, and allocate budget to the
public offices to supply public service to control smuggling. TPM/BA maintain data on cumu-
lative number of uncontrolled smuggling cases, i.e., whether the number is increasing, decreasing
or staying constant. If the cumulative number of uncontrolled smuggling cases does not vary, the
public service market is in equilibrium, as neither supply nor demand changes. If the cumulative
number of uncontrolled smuggling cases is rising, there must be a higher demand from the private
sector to control more smuggling than before. Similarly, if the number of uncontrolled smuggling is
decreasing, the supply must be higher than the demand. The cumulative number of uncontrolled
smuggling cases in a public service market is analgous to an inventory between supply and demand
in a goods market. If the rate of supply and demand is the same, the inventory does not change. If
inventory changes, that implies either a change in the supply rate, demand rate or both (different
rates).

When the service supply gets a shift to the right while demand stays the same, the supply of service



is higher than demand and the cost goes down in the new equilibrium. In the same manner, when
the public service demand to control smuggling shifts to the right while supply stays the same,
the cost goes up in the new equilibrium. This implies that summation of differences of supply and
demand, i.e., X(supply — demand) is inversely related to cost change, ceteris peribus. If demand
of public service as well as supply both shift in a manner that X(supply — demand) stays the
same, the cost will also not change. The demand and the supply shocks are unified by the term
Y (supply — demand), as both are in fact just affecting this . To depict the model mathematically,
the problem of TPM/BA has been considered as follows:

2.1.1 Short-run Problem

In this section, the short-run problem (which means the TPM/BA’s objective is myopic and is not

doing dynamic optimization) of TPM/BA is considered as follows:

Il =U,(r) — sp(ms(r, ep)), (1)

where

IT = net social benefit,

U,(r) = social benefit due to public service of smuggling control,

r = cost,

mp = cumulative no. of smuggling cases controlled = X(supply — demand), which is just (supply —
demand) for one time period.

ep = factors influencing mp other than cost including the budget allocated to the public service
providers which might be different from the cost charged to the private sector in terms of taxes.
sp(mp(r,ep)) = social cost to control smuggling as a function of mp (increasing in mp).

Taking the derivative of eq. (1) with respect to cost, we get:

Uy(r) = sp(mp(r,ep))mp (r,ep) = 0. (2)

If the supply curve shifts to the right on account of a decreased cost per unit smuggling case
controlled to the public service providers, say due to an improved computerized database of customs
regarding smugglers, the number of smuggling cases controlled is no more in equilibrium. As the
number of smuggling cases controlled is higher than before at the current value of r, the term
sp(mp(r,ep)) is higher at the existing r for TPM/BA. As the term, m/z,(r, ep) is a function of r,
therefore, it is the same as before because the value of r has not yet changed. The implication is

that at the existing value of r, the TPM/BA now faces the following inequality:

o

v Ul(r) — sg(mp(r,eg))mg (r,eg) <0, (3)



which implies that in order to have an extra smuggling case controlled, the TPM/BA must decrease
the cost to the private sector in the form of taxes after supply shock to satisfy the net social benefit
maximization condition. Now the short term gains accrued from a reduced marginal cost are being
reaped by the public service provider, as the marginal cost of public service has decreased but their
market cost is the same as before until changed by the TPM/BA in the next budget allocation. A
plot of net social benefit maximizing pairs of mp and the respective cost is a downward sloping
curve with cost on the y-axis and mp on the x-axis. The concept is analogous to demand and

supply curves.

2.1.2 Dynamic Problem

This section discusses the dynamic problem of TPM/BA. Present discounted value of future stream
of net social benefits are maximized in a dynamic environment, and the present value at time zero
is given below:

o0

V(0) = Of [U:(r) = sp(mp(r,ep))] e dt, (4)

o denotes the discount rate. r(t) is the control variable and mp(t) the state variable. Maximization

problem is as follows:

MazV (0) = I[Ur(r) — cp(mp(r,en))] e dt,

subject to the constraints that

mp(t) = mg(r(t),ep(r(t), zB))r(t) + mgy(r(t), en(r(t), zg))ez, (r(t), z5)r(t) (state equation, de-
scribing how the state variable changes with time; zp are exogenous factors),

mp(0) = mps (initial condition),

mp(t) > 0 (non-negativity constraint on state variable),

mp(00) free (terminal condition).

The current-value Hamiltonian is as follows:

H = U, (r () —s5(mp(r(t), es(r(t), z8)))+ps ()7 (t) mp(r(t), ep(r(t), 2B)) + mpy(r(t),es(r(t), zp))*

Now the maximizing conditions are as follows:
(7) r*(t) maximizes f{[for all ¢: %—Ij =0,
H
(ii) pp — opp = — 2L,
(iii) mp" = gf (this just gives back the state equation),
(

iv) hm MB( Ymp(t)e " = 0 (the transversality condition).



The first two conditions are as follows:

o
and
i — o = _jH = y(mp(r(t), en(r(t), 25))). (7)
mp

In equilibrium, r(¢) = 0, and the expression % boils down to the following (see appendix):

Ul(r () — g};(mB(r(t),eB(r(t),zB))){ mlg, (r(t),ep(r(t), zB)) + My (r(t), ep(r(t), zp))* } _o

If supply curve shifts to the right, then the number of smuggling cases controlled is higher at the
existing cost, and the term ¢ (mp(r(t), ep(r(t), zp))) is higher at the existing cost at that time. The
term multiplying ¢ (mp(r(t), ep(r(t), z))), i.e., Mg (r(t),er(r(t), z5))+m/gy (r(t), e(r(t), zB))ez, (r(t), 2B)
is a function of cost and has not changed as the cost is the same as before. Therefore, the TPM/BA

now faces the following inequality at the existing cost:

oit
or

The TPM/BA must decrease the cost for satisfying the net social benefit optimization condition

< 0.

after the shock. This implies that there is a negative relationship between the cumulative number
of smuggling cases controlled in society and the cost. If the rate of supply of public service in terms
of number of smuggling cases controlled is equal to the demand rate, the number of smuggling
cases controlled is in equilibrium. If a difference of a finite magnitude comes into force between the
supply and demand rates, and the public and the private sector do not react to a change in the
cost caused by a difference in the supply and demand rates, the cost will continue changing until
the saturation point of society comes. The response of TPM/BA can be depicted by the following

formulation:



Cost rate change x change in cumulative no. of controlled smuggling cases.
R = cost rate change.
Mp = mp — mps = change in cumulative no. of controlled smuggling cases,
mp = cumulative no. of controlled smuggling cases at time t,

mps = cumulative no. of controlled smuggling cases in steady state equilibrium.

dmp d(mp —mps) dMp
I t — tout = = =
T dt at

or Mp = [ (input — output) dt.

Cost rate change x [ (supply rate — demand rate) dt, or
R = —K,, [ (supply rate — demand rate) dt,

where K, is the proportionality constant. A negative sign indicates that when (supply rate — demand rate)

is positive, R is negative, i.e., the cost decreases. The above expression can also be written as:

[ (supply rate — demand rate) dt = ———, or

J (wpi — wpo) dt = ——, (8)

wp; = supply rate,
wpg = demand rate,

K,,, = dimensional constant.

When ¢t = 0, supply rate = demand rate, i.e., public service market is in equilibrium and eq. (8)

can be expressed as:

f (wBis — wBos) dt = 0. (9)

The subscript s denotes steady state equilibrium and R = 0 in steady state. Subtracting eq. (9)
from eq. (8), we get:

R

f (wBi - wBiS) dt — f (wBO - wBOs) dt = _K7, or
R
f (WBz - WBO) dt = _Kij (10)

10



where wp; — wpis = Wg; = change in supply rate,

wpo — wpos = Wpo = change in demand rate.

R, Wp; and Wpg are deviation variables, i.e., deviation from steady state equilibrium and have

zero initial values. Eq. (10) can also be expressed as:

R = —Kp, [Wgdt = —K,,Mpg, (11)

where Wp = Wp; — Wpo. If R gets a jump as a result of some factor other than a change in
cumulative number of smuggling cases controlled, that is another input which can be added to eq.
(11) as follows:

R=— meBdt—i-EB:—KmMB—i-EB. (11&)

There can also be an exogenous shock in cumulative number of smuggling cases controlled other
than the feedback of cost.

2.2 Private Sector/Consumer of Public Service

The private sector/people living in a society maximize the present discounted value of the future

stream of net benefits, and their present value at time zero is as follows:

V(0) = ZO[Zp (np(t)) = p(r (np (£)))] ="t (12)

Zyp (nyp) is a concave downward (decreasing in slope) increasing function of the number of smuggling
cases controlled, the higher the number, the higher the private sector’s utility. ¢,(r (n,)) is the cost
to the private sector for consumption of public service to control smuggling, the higher the number
of smuggling cases controlled, the higher is the cost. The cost curve with respect to r(¢) is concave
upward, i.e., increasing in slope.

rp denotes the discount rate. np(t) is the control variable, and r(t) is the state variable. The

maximization problem can be written as

MasV(0) - T 12, (1)) — ol (my (£)))] €,
np(t 0

subject to the constraints that:
r(t) = r'(ny (t))np (t) (state equation, describing how the state variable changes with time),
r(0)

= r; (initial condition),
r(t) > 0 (non-negativity constraint on state variable),

11



r(c0) free (terminal condition).

The current-value Hamiltonian for this case is

H = Zyy (n(£)) = p(r (ny (1)) + pp(t) 7/ (mp (8))72 (2) - (13)
Now the maximizing conditions are as follows:

(i) n,*(t) maximizes H for all : % =0,

.. . OH
(i) pp — Tplp = — 3>
(iid) 7 = gTFi (this just gives back the state equation),

(1v) tlim pp(t)r(t)e~"" = 0 (the transversality condition).
—00

The first two conditions can be expressed as follows:

OH p

G = (1) = 5 g ()1 (g () -+ 1(6) (2 () 6) =0 (14)
and
fip — Tatty = — A = 641 (my (1) (15)
oH

In equilibrium, ny, (t) = 0, and the expression boils down to the following:

onyp

Z, (np(t) = s (r (np (1)) 7' (np () = 0.

If r(t) goes up, the term ¢,(r (n, (t))) goes up, and the private sector now faces the following

inequality:

gﬁi < 0. (16)
The demand of private sector regarding number of smuggling cases to be controlled goes down to
satisfy the dynamic optimization problem of the private sector. If change in demand of private
sector is proportional to a change in per unit cost i.e., R, or linearization of the demand curve

around the steady state equilibrium leads to the following:

Wa(t) = —KqR(t), (17)

where Wy(t) is change in demand of the private sector with respect to the initial steady state
equilibrium value. As it is a deviation variable, i.e., deviation from the steady state, it has a zero
initial value. There is a time lag between the change in cost of per smuggling case controlled and
change in demand of number of smuggling cases to be controlled, therefore, a dead time element

needs to be incorporated in the above expression which results in the following:

12



Wa(t) = —K4R(t — 7q1). (18)

2.3 Public Service Provider/Supplier

Public authorities as a supplier of public service maximize the present discounted value of future

stream of net benefits for society, and the present value at time zero is as follows:

V(0) = [ [Zc (ne(t)) — se(r (ne(t)))] e "eldt. (19)

o—g

Z.(ne(t)) is the public service benefit for society, and increasing in number of smuggling cases
controlled, i.e., n¢(t). <.(r (nc(t))) is the public service cost to society, the higher the number of
smuggling cases controlled, the higher is the cost. The cost curve with respect to r(¢) is concave
downward, i.e., decreasing in slope.

r. denotes the discount rate. mn.(t) is the control variable, and r(t) is the state variable. The

maximization problem is as follows:

MazV(0) =
{r()}

subject to the constraints that:

[Ze (ne(t)) = <e(r (ne(t)))] ™" dt,

r(t) = r'(n. (t))n.(t) (state equation which describes how the state variable changes with time),
r(0) = rg (initial condition),

r(t) > 0 (non-negativity constraint on state variable), and

r(c0) free (terminal condition).

The current-value Hamiltonian is expressed as follows:

H = Z: (ne(t)) = se(r (ne(1)) + pe(®)r' (ne())ric(1). (20)

The maximizing conditions can be expressed in the following form:
(1) n.*(t) maximizeiﬁ for all ¢: g—z =0,

(i1) pic — Tefe = _%717:17

(iii) 7" = % (this just gives back the state equation), and
(1v) tlirgouc(t)r(t)e_rct = 0 (the transversality condition).

The first two conditions can be expressed as follows:

OH
one

and
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fe = Tette = =5 = S (ne (1) 22)

In equilibrium 7. (t) = 0, and the expression g—fi boils down to the following:

Zg (ne(t)) = selr (ne(8))) 7' (ne (1) -

If 7(t) goes up, the term ¢/(r (n. (t))) goes down, and the public service provider faces the following

inequality:

Zg (ne(t)) = solr (ne(®))) 7' (ne (£)) > 0.

The number of smuggling cases controlled by the public service provider will go up to satisfy the
dynamic optimization problem. If the change in the number of smuggling cases controlled by the
public service provider is proportional to a change in r(t), i.e., R, or linearization of the supply

curve around the steady state equilibrium leads to the following;:

Wi = — K, (Co — R) = —Ke(t), (23)

where C. is the change in the cost of public service provider per smuggling case controlled, which
might get affected due to various factors in society. The decision to change number of smuggling
cases controlled depends on the difference of R, and C.. K, is the proportionality constant; W,,, C.
and R are deviation variables. There is a time lag between the change in cost of per smuggling
case controlled and change in number of smuggling cases controlled by the public service provider,
therefore, a dead time element needs to be incorporated in the above expression which results in

the following:

Wi = —Kse(t — T42).
3 Solution of the Model-Panel B with a Smuggling Control Policy

Combining expressions from egs. (1la), (18),and (23) respectively along with 7457 = 0, and rear-
ranging gives:

dR(t

U0 4 K0+ K R(D) = K KCo(0). (24)
The Routh-Hurwitz stability criterion (which provides a necessary and sufficient condition for
stability of a linear dynamical system) for the above differential equation’s stability is K,,(Ks +

K4) > 0; and as K,,,,K;, and K, are all defined as positive numbers, this criterion holds. This
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ensures that, away from a given initial equilibrium, every adjustment mechanism will lead to another
equilibrium.
Suppose government reduces per smuggling case controlled cost of the public service provider by
B, say through provision of some funds to buy an advanced technology for smuggling control, the
above equation can be written as:

dR(t)

T + Kn(Ks + Kg)R(t) = =K, KsB. (25)

The solution is given by the following expression:

KB KB LK (Kt K
R(t) = — + e~ [Km(KatKalt, 26

( ) (Ks + Kd) (Ks + Kd) ( )
R(0) = 0 (the initial condition), and R(c0) = 7% (the final steady state equilibrium value).
In response to a policy, the per smuggling case controlled cost dynamics depends on the parameters
K, Ky, K, and B.

4 A Dynamic Optimal Smuggling Control Policy-Panel B

After a smuggling control policy, there are efficiency gains in post policy equilibrium in comparison
with the initial/pre-policy equilibrium. However, there are also some efficiency losses during the
adjustment period of smuggling control market until new equilibrium arrives. As soon as smuggling
control policy is implemented, supply of public service expands, whereas the demand remains the
same at the initial per unit cost, pushing the smuggling control market out of equilibrium. Now the
adjustment of per unit cost begins to equalize the supply and demand to bring the new smuggling
control market equilibrium. The post policy equilibrium cost is a function of demand and supply
elasticities. From the previous section, change in supply as a result of a smuggling control policy

is as follows:

Win(0) = — K, [C.(0) — R(0)] = K.B, (27)
as R(0) = 0.

As a result of smuggling control policy, supply of public service goes up by K;B. As demand does
not change, therefore, cumulative number of smuggling cases controlled also goes up by K;B. Now
the market is out of equilibrium, and the market forces push the smuggling control market toward a
new equilibrium through the movement in per unit cost. As the per unit cost changes, the demand
and supply of public service also change through feedback. If cumulative number of smuggling cases

controlled goes up, it indicates a higher supply than demand and vice versa. There is no efficiency
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loss if smuggling control market is in equilibrium, and demand and supply are same. If market
is out of equilibrium, either supply or demand is excessive at that point in time. Therefore, the
total efficiency loss during the adjustment of smuggling control market is a sum of the differences
in supply and demand at all points in time. Total efficiency loss for a smuggling control policy can

be expressed as:

- /Wm(oo)dt+MB(t). (28)

With Smuggling Control Policy Cost Constraint:
The smuggling control policy cost (SCPC) can be expressed as (see appendix):

SCPC = B [wim(0) + Ks {B+ R()}] . (29)

Our problem of minimising efficiency loss subject to smuggling control policy cost constraint is as

follows:

mBinEL st. SCPC < Gp.

G p is the government’s cost for exercising smuggling control policy. The choice variable is smuggling
control policy, i.e., B, and the constraint is binding at t = 0. The Lagrangian for the above problem

can be written as follows (see appendix):

0
oo /KKdB 1[ KB KB
(

— +
K +Kd Km Ks +Kd) (Ks +Kd)

e%Kmu@+wa_.KmA;B}

K.B K.B
A Gp — B lwim(0) + Ko B — —— s _[KM(KS+Kd)]t}H'
+[B P 0+ { (Kot Ka) | (Kot Ka)*

The first order condition with respect to B leads to the following:

0
KK, K, K. e (K,
Awim (0) — / (Ks+f<id)dt - ﬁ [_(K8+Kd) + Ceals (K (Ks+Kg)|t _ K, K,
o - . . Km(Ks+K . (30)
20K [1 ~w®t+k) T (Ks—&-st)ei[ (KKt
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The derivative with respect to A, is as follows:

K,B K,B
Gp— B |lwm(0) + K, { B — ——* s —[Km(Ks+Kd)}tH — 0. 31
B [w (0)+ { K, 1 Kg) (K1 Ko)© (81)

Putting eq. (30) into (31), we get:

JB

A= .

K K
h = Ks 1— s il —[Km (Ks+Kg)lt
where QB [ (K5+Kd)+(K5+Kd)€ ,

0
KK, 1 K K
= [ 4 - — |- - S e EmEAR |
5 / (Ko + Kq)" Em [ (K 1 Ky) | (Kt Ko)©

—0oQ
A is a positive number because when GG g increases, the minimum efficiency loss also increases. From
eq. (30):

Awim(O) — JB
B=——7_--—""—"— 32
2Qn (32)
By replacing A with its value in the above expression, we get:
Wim (0) — \/wfm(()) +4QpGp
B=- . (33)

2QB
The second order condition for minimization has been checked (see appendix). Suppose that the
government has $1000 available to be spent as smuggling control policy cost. The initial value of
number of smuggling cases controlled is 100, and the value of each one of the variables, K,,, K
and K, is equal to one. After plugging in these values in eq. (33), we get:
100 — +/10000 + 4000

B=- =9.161
2 )

where Qp = 1 — 0.333 + 0.333e™%, and at t = 0, Qg = 1. The smuggling control policy cost
is SCPC = B |w;j,(0)+ Q@pB] = 1000. Therefore the optimal smuggling control policy is that

the government provides an extra remuneration of $9.161 per smuggling case controlled to public

service provider.
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5 The Model-Panel A

Theoretical arguments are built upon Figure 3, where the y-axis represents the smuggling control
rate, i.e., number of smuggling cases controlled per public service unit, and the x-axis, represents the
number of public service units per unit time in society. The upward sloping supply curve represents
total number of public service units in society due to efforts of public sector. If number of smuggling
cases controlled per public service unit is higher, the public sector has an incentive to invest more in
public service units as their objective is to maximize social benefit. The downward sloping demand
curve shows the relationship between smuggling control rate and demand of number of public service
units. As smuggling control rate goes up, demand of number of public service units decreases. The
point where both curves intersect is an equilibrium point representing the equilibrium smuggling
control rate and number of public service units in society. At a smuggling control rate, where
demand of number of public service units is higher than supply, the smuggling control rate will
increase until the number of public service units on both curves equal. Similarly, at a smuggling
control rate where supply is higher than demand, the smuggling control rate will go down until the
equilibrium arrives.

Let us assume that number of public service units on supply curve equals the number on demand
curve and there is an equilibrium smuggling control rate. There are three types of infinitely-lived
agents: public and private sectors which demand a certain number of public service units against
each smuggling control rate, a representative —or a unit mass of— public service units who control
smuggling, and public sector as one entity who supplies certain number of public service units
against each smuggling control rate. The mechanism for adjustment of smuggling control rate is
based on lack of coordination between agents in society regarding supply and demand of number of
public service units at existing smuggling control rate when either supply or demand curve shifts and
pushes the smuggling control rate and number of public service units out of equilibrium. Suppose
that number of public service units are in equilibrium, and an upward shift in the demand curve
increases the number of public service units on demand curve at the existing smuggling control rate.
Now, the number of public service units on demand curve are greater than their number on supply
curve. Public service providers will increase smuggling control rate, and public sector will find it
optimal to have a higher number of public service units in new equilibrium. This will result in a
higher smuggling control rate, and a higher number of public service units when new equilibrium
arrives. The equilibrium is defined as follows:

(i) Private sector as consumer of public service maximize their benefit, public service providers
maximize the net benefit of public service for society, and the public sector maximizes the social
benefit, subject to the constraints they face (mentioned in their individual dynamic optimization

problems in Section 5).
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(ii) The number of public service units on upward sloping supply curve equals the number on down-
ward sloping demand curve, and the smuggling control rate does not change during equilibrium.
The conditions for existence of equilibrium (Routh-Hurwitz stability criterion, which provides a
necessary and sufficient condition for the stability of a linear dynamical system) are mentioned in
Section 6.

The smuggling control rate is given for both private and public sector as consumer and supplier
of public service units respectively. Public service provider does not have an incentive to change
smuggling control rate during equilibrium. They have an incentive to change smuggling control
rate only during the state of disequilibrium. The government formulates and implements a policy
to increase/decrease number of public service units in society, either by increasing or decreasing
the public supply or demand; or by influencing the private sector demand. A new equilibrium
does not result instantaneously as soon as the policy gets implemented, and rather the smuggling
control rate, and number of public service providers adjust over time to lead to a new equilibrium.
The adjustment takes place as a result of an endogenous decision making by agents to maximize
their objective functions subject to constraints, i.e., both the public and private sector in their
roles regarding supply and demand and public service providers. There is some social damage
during the adjustment process, which is defined as the sum of too many or too few public service
providers. The total social damage includes the damage during the adjustment process as well as
that in the initial equilibrium. This is the total loss for the purpose of minimizing it subject to
constraints. There might still be some social damage in the final equilibrium, however, that is not
part of the objective function which needs to be minimized as that cannot be improved upon due
to constraints.

In order to derive the results mathematically, the objectives of the agents have been maximized
subject to their respective constraints through the first order conditions, which are solved simul-
taneously to get the collective outcome of their decisions. An important assumption is that after
the implementation of the policy to have an optimal number of public service providers, the new
equilibrium arrived at is not too off the equilibrium in the initial state. On account of this, the

linearization of supply and demand curves seems reasonable.

5.1 Public Service Provider

A public service provider controls smuggling. A state of equilibrium implies that demand of number
of public service providers in society equals supply. Any change in number of public service provider
is on account of a change in supply, demand or both due to private sector, government or both at
a different rate.

The link between number of public service providers, supply, and demand can be illustrated as

follows: When demand curve shifts to the right, while supply stays the same, the cumulative number
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of public service provider is unable to meet new societal demand at the existing smuggling control
rate, and the smuggling control rate goes up to equalize demand and supply in new equilibrium.
If supply curve shifts rightwards, whereas the demand does not shift, cumulative number of public
service provider goes up at the existing smuggling control rate, therefore smuggling control rate
goes down in new equilibrium. This discussion implies that there exists a negative relationship
between change in cumulative number of public service providers and change in smuggling control
rate. The horizontal axis in Figure 3 reflects the rate of supply and demand both by private and
public sectors, and not the cumulative number of public service providers in society. Supply and
demand rates are flow variables, whereas cumulative number of public service providers is a stock
variable.

The following mechanism is involved in bringing about such changes: Suppose that the number of
public service providers demanded is in equilibrium with the supply, and the smuggling control rate
stays the same over time. Now suppose that the demand curve does not shift whereas the supply
curve shifts to the right due to a decrease in the marginal cost of having another unit of public service
provider by public sector. As the number of provider units increases, the smuggling control rate
decreases, and the feedback of private sector is to increase their demand of public service providers
along the demand curve. The adjustment path to the new equilibrium is dependent on the direction
of shock and how public service providers react to that shock. In order to depict the behavior of the
public service provider mathematically, let us consider the utility /benefit maximization problem of

public service provider as follows:

5.1.1 Short Run Problem

The short run problem of public service provider is myopic in the sense that no dynamic optimization
is being done on their part. A discrete analog is a one period problem, and the objective is to make
the intuition clear and simple so that author is ready to grasp the more complicated dynamic

problem in next section. The objective function of public service provider is as follows:

O =Uc(c) —sa(malc,eaq)), (34)

where

© = net benefit of public service for society,

Uc(c) = benefit of public service as a positive function of smuggling control rate,

¢ = number of smuggling cases controlled per public service provider (smuggling control rate in a
dynamic setting),

m4 = cumulative number of public service providers in society = X(supply — demand), which is
just (supply — demand) for one time period.

e = other factors which affect the total number of public service providers in society,
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ca(ma(c,eq)) = cost as a function of total number of public service providers in society (increasing
in number).

The first order condition of © with respect to c is as follows:

Ue(e) = Salmale, ea))miyi (¢, ea) = 0. (35)

If supply curve shifts to the right, say on account of a decreased cost to public sector for establishing
a public service provider unit, the number of public service providers is no more in equilibrium. As
number of units is higher than before at the current value of ¢, the term ¢’y (ma(c, ea)) is higher at
the existing c. As the term, m/y; (¢, e4) is a function of ¢, therefore, it is the same as before because
the value of ¢ has not yet changed. The implication is that at the existing value of ¢, the public
service provider now faces the following inequality:

@ =U

dc ¢

which implies that the public service provider chooses to decrease smuggling control rate to satisfy

(€) = sa(male, ea))miy (c,ea) <0, (36)

the condition of maximization of net benefit for society after the supply shock. If various net benefit
maximizing pairs of values of cumulative number of public service providers and the respective
smuggling control rate chosen by public service provider are plotted together, a downward sloping

curve results with number of units on z-axis, and the smuggling control rate on y-axis.

5.1.2 Dynamic Problem

The public service provider maximizes present discounted value of future stream of net benefits of

public service in a dynamic setting, and the present value at time zero is as follows:

V(0) = [ [Uec(c) — sa(malc,eq))] e tdt, (37)

oy

w denotes the discount rate. c(t) is the control variable, and my(t) is the state variable. The

maximization problem can be written as

MazxV (0) =
{e®}

subject to the constraints that
ma(t) = myq(c(t), ealc(t), z4))e(t) +m yo(c(t), ealc(t), z4)) €4y(c(t), za)é(t) (state equation, de-
scribing how the state variable changes with time; z4 are exogenous factors),

[Ue(c) — sa(malc,eq))] e ldt,

o3y

ma(0) = mas (initial condition),
ma(t) > 0 (non-negativity constraint on state variable),

ma(o0) free (terminal condition).
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The current-value Hamiltonian for this case is

B = Ua(c(®)—salmale(t). ea(c(t). za))) +ua(i(e) | a0 el 2a)) b mian(0) ealelt), 2a))s
€a1 (C(t)7 ZA) (38)

Now the maximizing conditions are as follows:
(i) ¢*(t) maximizes H for all ¢: 91—,

(#0) pra — wpa = -7,
(i) ma™ = 68,% (this just gives back the state equation),

(1v) tlim pa(t)yma(t)e®t = 0 (the transversality condition).
—00

The first two conditions are as follows:

and

bia = s = =g = Shmalelt), ea(e(t), 24))) (10)
ma

In equilibrium, ¢(t) = 0, and the expression % boils down to the following:

Uelt) ~ satma(elt) cafe(t), zap) { "0 ealelt) 20, % il alet):2a)e 4y,

If supply curve shifts to the right, then the number of public service providers is higher at the
existing smuggling control rate, and the term ¢y(ma(c(t), ea(c(t),z4))) is higher at the exist-
ing smuggling control rate at that time. The term multiplying </;(ma(c(t),ea(c(t),za))), ie.,
m/yy (c(t),ealc(t), za)) +m/yy(c(t), ealc(t), za))e'y; (c(t), za) is a function of smuggling control rate
and has not changed as the smuggling control rate is the same as before. Therefore, the public

service provider now faces the following inequality at the existing smuggling control rate:
OH B
dc

The public service unit must decrease the smuggling control rate for satisfying the dynamic op-

0.

timization condition after the shock. This implies that there is a negative relationship between
cumulative number of public service units in society and the smuggling control rate. If the rate of
supply of units in society is equal to the demand rate, the number of units is in equilibrium. If a
difference of a finite magnitude comes into force between the supply and demand rates, and the

public and the private sector do not react to a change in the smuggling control rate caused by a
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difference in the supply and demand rates, the smuggling control rate will continue changing until
the saturation point of the society comes. The behavior of public service unit can be depicted by

the following formulation:

Crime control rate change x change in cumulative number of public service units.
C = smuggling control rate change.
My =my — mas = change in cumulative number of units,
ma = cumulative number of units at time t,

mas = cumulative number of units in steady state equilibrium.

_dmya  d(ma—mas)  dMa
Input — output = i a = a0

or My = [ (input — output) dt.

Smuggling control rate change o [ (supply rate — demand rate) dt, or
C = —K_.[ (supply rate — demand rate) dt,

K. is the constant of proportionality; supply and demand rates are number of public service
providers per unit time. When (supply rate — demand rate) is positive, C' is negative, and hence a

negative sign, i.e., the smuggling control rate goes down. Rearranging the above expression gives:

| (supply rate — demand rate) dt = _KE’ or

[ (wa; — wAo) dt = — (41)

o
K.

wa; = supply rate,
w40 = demand rate,

K. = dimensional constant.

In the initial steady state equilibrium at ¢ = 0, supply rate = demand rate, and eq. (41) can be

written as

f (wais — waps) dt = 0. (42)

Due to the condition of the steady state equilibrium, the subscript s has been added. In the steady
state, C' = 0, and subtracting eq. (42) from eq. (41) leads to:
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o

f (wA’l - wAiS) dt - f (wA[) — ’lUAOS) dt = _K , Or
C

where wa; — wa;s = Wa; = change in supply rate,

wag — WAgs = Wap = change in demand rate.

The capital letters denote the deviation variables, i.e., deviation from the initial equilibrium. C, W4;
and Wy are all deviation variables, and their initial values are zero. Eq. (43) can be rearranged

as:

C=—K.[Wadt = —K.Ma, (44)
where Wy = Wy, — Wag. If C gets affected by an input other than M4, then an input must be
added to the right hand side of eq. (44) which changes to the following:

C = —chWAdt—i-EA: —K.My+ E4. (44&)
My can also get an exogenous input other than the feedback of the smuggling control rate.
5.2 Public Sector/Supplier of Public Service Units
As a supplier of public service units to control smuggling, the public sector maximizes the present
discounted value of the future stream of net benefits, and their present value at time zero is as
follows:

V(0) = [ [Upr (npr) — spr(c(npr))] €777t (45)

Upr (nyr) is social benefit and an increasing function of number of public service units, the higher
the number, the higher the social benefit. ¢p,(c(n,)) is cost to society for establishment of public
service units, the higher the smuggling control rate, the higher is the cost. The cost curve with
respect to smuggling control rate is concave downward, i.e., decreasing in slope.

rpr denotes the discount rate. myp,(t) is the control variable, and c(t) is the state variable. The

maximization problem can be written as

Maz V(0) = [ [Upr (npr) — pr(c (npr))] e,
{rpr(t)} 0
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subject to the constraints that:

c(t) = (npr (t))npr (t) (state equation, describing how the state variable changes with time),
¢(0) = ¢4 (initial condition),

c(t) > 0 (non-negativity constraint on state variable),

¢(00) free (terminal condition).

The current-value Hamiltonian for this case is

H = Upr (npr(t)) = Spr(c (npr (£))) + () € (npr (£))72pr (2) - (46)
Now the maximizing conditions are as follows:
: iges B . OH _
(i) npy*(t) maximizes If for all t: 7= = 0,
(”) :U’}.vr - TpTJU«pr = _%%a
(iii) ¢* = ;TII{T (this just gives back the state equation),

(1v) tlim ppr (t)c(t)e™" = 0 (the transversality condition).
—00

The first two conditions are as follows:

;ni = U, (e () — sl (¢ (1 (1)) € (g (£)) + pir(£) € (g () (£) = 0, (47)
and
b~ Tyt = — 0 = 6 (¢ e (1)) (18)

In equilibrium, ny, (£) = 0, and the expression gTZ boils down to the following:

Upr (pr(£)) = s (¢ (- (1)) € (mpr (£)) = 0.

If smuggling control rate goes up, the term ¢,.(c(ny (t))) goes down, and the public sector now

faces the following inequality:

OH
Ongyr

> 0.

The number of public service units due to public sector’s efforts will go up to satisfy the dynamic
optimization problem of the public sector. If change in number of public service units is proportional
to a change in smuggling control rate, i.e., C, or linearization of the supply curve around the steady

state equilibrium leads to the following:

Wor(t) = KprC(1), (49)
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where W, (t) is change in number of public service units with respect to initial steady state equi-
librium value. As it is a deviation variable, i.e., deviation from the steady state, it has a zero
initial value. There is a time lag between the change in smuggling control rate and the change
in number of public service units, therefore, a dead time element needs to be incorporated in the

above expression which results in the following:

W (t) = KpnC(t — 1) (50)

5.3 Private Sector/Demander of Public Service Units

Both public and private sectors in a society demand public service units to control smuggling in
society. However, we just present the private sector as a demander to economize on typing space.
The total demand is a sum of both public and private demand. In this section, we present the role
of the private sector as a demander of public service units to control smuggling. As a demander,
the private sector maximizes the present discounted value of future stream of net benefits, and their

present value at time zero is as follows:

V(0) =

[Upu (Mpu) — Spule (npu))] e "ruldt, (51)

where Up, (npy) is the private sector benefit increasing in number of public service units to control
smuggling and concave downward. ¢p,(c(ny,)) is the cost to the private sector, the higher the
smuggling control rate, the higher is the cost. The cost curve with respect to smuggling control
rate is concave upward, i.e., increasing in slope.

rpu denotes the discount rate. ny,(t) is the control variable,and c(t) is the state variable. The

maximization problem can be written as

Maz V(0) = [ [Upu (npu) — Spu(c (npu))] e "rtd,
{rpu(t)} 0

subject to the constraints that:

c(t) = (npy (t))npy (t) (state equation, describing how the state variable changes with time),
¢(0) = ¢4 (initial condition),

¢(t) > 0 (non-negativity constraint on state variable),

c(0c0) free (terminal condition).

The current-value Hamiltonian for this case is

H = Upu (npu(t)) = pu(€ (npu (1)) + ppu(t) € (g (1)) (2) - (52)

Now the maximizing conditions are as follows:

26



() npy,*(t) maximizes EN{ for all t: Ban% =0,
(19) ppu — T'pubpu = 7%713’

(iid) & = 361% (this just gives back the state equation),
(

iv) tllrgoupu(t)c(t)e_’"wt = 0 (the transversality condition).

The first two conditions are as follows:

e = U () = Sl i (4)) g (8) 4 tul0) o () () = 0. (53)
and
i~ Tt = — o = shule (s (1) (54)

In equilibrium, 7y, (t) = 0, and the expression % boils down to the following:

Upu (npu (1)) = s (€ (npu (1)) ¢ (i (£)) = 0.

If smuggling control rate goes up, the term ¢, (c (npy (t))) goes up, and the private sector now faces

the following inequality:

oH

< 0.
Onpu

The number of public service units demanded by private sector will go down to satisfy the dynamic
optimization problem of the private sector. If change in number of public service units demanded
by the private sector is proportional to a change in smuggling control rate, i.e., C, or linearization

of the demand curve around the steady state equilibrium leads to the following;:

Wiu(t) = Kpu [€(t) = C(t)] = —Kpun(t), (55)

where €(t) = e — eg; e is a reference smuggling control rate with respect to which variation in
smuggling control rate is considered by the private sector for decision making. It is a parameter
which may vary over time or remain fixed for a while. W), (t) is the change in number of public
service units with respect to the initial steady state equilibrium value. As it is a deviation variable,
i.e., deviation from the steady state, it has a zero initial value. There is a time lag between the
change in smuggling control rate and the change in number of public service units demanded by
the private sector, therefore, a dead time element needs to be incorporated in the above expression

which results in the following:

Wpu(t) = _Kpun(t - 7'd2)' (56)
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6 Solution of the Model-Panel A with a Smuggling Control Policy

The model is solved for the simplest case when 741 = 7430 = 0. For solution of more complex cases,
please see appendix. A policy from panel A must be synchronized with that from panel B, i.e., the
supply and demand curves should be moving in the same direction in both panels. In this section,
we just present an example on how an optimal policy can be framed from panel A when the demand
curve shifts, however, this has to be in line with the policy from panel B as they cannot be treated
as independent of each other. Suppose the government adopts a policy (such as a media campaign
to create awareness about smuggling, and simultaneously increasing the smuggling control rate)
where demand of public service units gets a shift in the upward direction. From eq. (44a), (49),
and (55), and in the absence of an exogenous shock in number of public service units, D(t) = 0,

we get the following expression:

Wpu(t) = Kpu [A = C(#)],

where A is the size of the policy. This implies that

dC'(t
di) + Ko (Kpr + Kpu)C(t) = K Kpy A (57)

According to the Routh—Hurwitz stability criterion, the necessary and sufficient condition for sta-
bility of the above differential equation is K.(K,, + Kjp,) > 0, which holds as K., K, and K, are
all defined to be positive. This condition ensures that starting from an initial condition away from
an initial equilibrium every adjustment mechanism will lead to another equilibrium. The solution

has the form

C(t) _ KpuA K;DTA e—[KC(KpH—Kpu)]t. (58)
Kpr + Kpu Kpr + Kpu
When ¢t = 0, C(0) = A (the initial condition), and when t = co, C(c0) = % (the final steady

state equilibrium value).

7 A Dynamic Optimal Smuggling Control Policy-Panel A

The social damage due to inadequate/excessive smuggling control units includes the damage in the
initial equilibrium, i.e., before the adoption of a smuggling control policy, plus the damage during
the adjustment process from initial equilibrium to the final. After government adopts a policy to
enhance/reduce the number of public service units, it shifts either the supply or the demand curve,
e.g., it shifts the demand curve upward by a magnitude depending upon the size of the policy, which
is taken as A in the solution of the model with a smuggling control policy. The smuggling control

rate then adjusts over time to bring the new equilibrium rate which is higher than the previous
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equilibrium smuggling control rate and lower than that which existed at the time the policy was
implemented depending on the elasticity of supply and demand curves. An excessive number of
public service units in society implies that the number is higher on the supply curve than that on
the demand curve, and a shortage in their number implies the opposite. When the number on the
supply and the demand curve becomes equal, the new equilibrium has arrived. When the number
is different on supply and demand curve, that difference is the social damage at that point in time.
Furthermore, the number of smuggling control units in society was lower (in this example) in the
previous equilibrium, which is also social damage in equilibrium. If we sum up either the number
of excessive units on the supply curve or their number on the demand curve short of supply curve,

we get the total social damage in terms of number of units as follows:

0
SD = Ma(t) + / W, (00) dt. (59)

An increase in number of smuggling control units per unit time is as follows (see appendix):
INS = Awipu(0) + Kp, {A—C(2)}]. (60)

If we want to minimize the social damage subject to the constraint that an increase in number of
smuggling cases controlled per unit time is greater than or equal to G 4 (change in number of smuggling cases contr

our problem is as follows:

mjnSD st. INS > Gy <: dij) .

dt
The choice variable is A, i.e., an initial upward jump in the smuggling control rate chosen by
government to shift the demand curve, and the constraint is binding. Lagrangian for the above

problem is given below:

0
L= Ma(t) + /Wpr(oo)dt A G = Afwipa(0) + Kpu {A — C(H)}].

Lagrangian can be written as:

_ 1 KpuA KprA (KoKt Kpu)t
£="% HKW+KPU Ko+ K€ — AL KeKor}
0
KpuA KprA KoKyt Kt
+ /Wpr(oo)dt + A [GA —A [wlpu(()) + Kpu {A — Ko+ Ky — Ko+ Kpue .

The first order condition with respect to A is as follows:
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o fc Kpr+Kpu - Kpr+Kp1L
Kpu Kpr —[Ke(Kpr+Kpu)t
—2)\Kpu 1 P D e~ [Kc(Kpr+Kpu)]

L ()~ 7 = Kpr e—[KdeKw)lt}+{1+K0Kpr}]'

o Kpr+Kpu o Kpr+Kpu

The first order condition of the Lagrangian with respect to A is as follows:

A KpA KA kit |
Gp— A {w,pu(O) + Kpu {A Kpr n Kpu Kpr n Kpue P P = 0. (62)

After substituting the value of A from eq. (61) into (62), the later becomes as follows:
Ja
V5(0) —4QC.a

A must be positive as the social damage increases with an increase in G 4.

A:

K, K,
where Q4 = — K. {1 - LB pr e[Kc(KprJeru)}t} :
7 Kpr + Kpu  Kpr + Kpu

1 ~K K,
- L pu _ pr —[Ke(Kpr+Kpu)]t 1 KCK i
AT R H Kpr + Kpu  Kpr + Kpue +{1+ pr}

Eq. (61) can also be written as

. )\wipu(O) — JA

A= (63)

Plugging the value of A into eq. (63) leads to:

apu(0) — y/w?  (0) — 4QAG
A:wp (0) \/wp (0) —4Qa A 60
2Q4

A is a policy in a dynamical setting for an optimal number of smuggling control units. The second

order condition for minimization is checked (see appendix).

8 Conclusion

When the government exercises a smuggling control policy for panel B, government’s supply curve
shifts downward /upward, which affects the number of smuggling cases controlled and pushes smug-
gling control market out of equilibrium. Supply and demand of public service in terms of number
of smuggling cases controlled along with the cost adjust over time to lead to the final equilibrium.
There are efficiency losses/gains on the dynamic adjustment path as well as in final equilibrium in
comparison with the initial equilibrium. The efficiency losses during the adjustment process must

also be accounted for while formulating an optimal smuggling control policy. Eq (33) gives a policy
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for an optimal number of smuggling cases controlled considering the demand and supply adjustment
over time. The expressions are a function of the slopes of demand, supply and cumulative number
(a function of supply and demand) curves as well as the initial pre-policy equilibrium number of
smuggling cases controlled.

For panel A, smuggling control rate depends on the parameters K., Ky, Kpy, 741 and 742. For given
values (estimated through data) of these parameters, we can predict how smuggling control rate will
change over time, as a result of an exogenous shock resulting in the shift of either supply, demand
or both curves. Figure 3 depicts how a shift in the supply, demand or both curves determines
the crime control rate and the number of crime control units in society. An optimal policy (which
shifts either the supply, demand or both curves) which minimizes the social damage in terms of
inadequate number of smuggling control/public service units in the initial equilibrium as well as the
social loss on dynamic adjustment path (when the number of units is not in equilibrium) subject
to a certain increase in number of smuggling cases controlled per unit time can be derived on a
case by case basis. In equilibrium, the area under the demand curve is the social benefit in terms

of number of smuggling cases controlled per unit time.

9 Appendix:

9.1 Dynamic Problem of the Tax Policy Maker/Budget Allocator (TPM/BA)

This section discusses the dynamic problem of TPM/BA. Present discounted value of future stream
of net social benefits are maximized in a dynamic environment, and the present value at time zero
is given below:

V(0) = [ [Ur(r) = sp(mp(r,ep))] e~ "dt, (65)
0
o denotes the discount rate. r(t) is the control variable and mp(t) the state variable. Maximization

problem is as follows:

o0
MazV (0) = [ [Us(r) — sg(mp(r,ep))] e ""dt,
{r@®)} 0

subject to the constraints that

mp(t) = mlg(r(t),e(r(t), z))r(t) + mgy(r(t), ep(r(t), z5))es, (r(t), zp)r(t) (state equation, de-
scribing how the state variable changes with time; zp are exogenous factors),

mp(0) = mps (initial condition),

mp(t) > 0 (non-negativity constraint on state variable),

mp(o0) free (terminal condition).

The current-value Hamiltonian is as follows:
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T = Ur (0)=sa(ms(r(0),en(r(0),2))+up()i(e) | o100 Co (0200 % palr(0) enlr(t) 2m)-
eBl(r(t)v ZB) (66)

Now the maximizing conditions are as follows:
(7) r*(t) maximizes H for all ¢: %—Ij =0,

(@) pip — opp = L,
(iii) mp” = % (this just gives back the state equation),

(1v) tlim pup(t)mp(t)e " = 0 (the transversality condition).
—00

The first two conditions are as follows:

oH

=, = U (1) = sip(mp(r(t), en(r(t), 25)) { miel(r(t%eB(r(t),z;i

r

m%n(r(t), ep(r(t), z)) + m%m(r(t), ep(r(t), ZB))ESEH(T(t)a zB)+
+ up ()7 (t) * | mpy (r(t),en(r(t), 2B))epy (1(t), 2B) + Mpyy (r(t), en(r(t), z8))eF (r(t), 2B)+
Mgy (7(t), eB(r(t), 2B))eB 1 (7(t), 2B)
=0, (67)
and
b = o = 5o = dy(mi(r(t), en(r(t), =), (65)
mp

In equilibrium, r(¢) = 0, and the expression % boils down to the following;:

!/

Up(r (t)) — sp(mp(r(t),ep(r(t), 2B))) { mjgl(r(t)’eB(r(t)’Zii)(;t??fégr(t)’eB(T(t)’ZB))* } =0.

If supply curve shifts to the right, then the number of smuggling cases controlled is higher at the

existing cost, and the term ¢z (mp(r(t),ep(r(t), zp))) is higher at the existing cost at that time. The

term multiplying ¢ (mp(r(t), es(r(t), 2))), i.e., Mg (r(t), er(r(t), zB))+m/gy (r(t), en(r(t), zB) )€z, (1(t), 2B)
is a function of cost and has not changed as the cost is the same as before. Therefore, the TPM/BA

now faces the following inequality at the existing cost:

OH

O = UL (0) ~ hlom(r@)ea(r(o)za) { om0 =)

mip (1(t), eB(r(t), 2B)) + mip(r(t), es(r(t), z5))
+pup(t)r(t) * | mpyy (r(t),en(r(t), zB))ep, (1(t), 2B) + Mpoy(r(t), ep(r(t
Mg (r(t), ep(r(t), 28))eR, (r(t), 2B)

<0,
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The TPM/BA must decrease the cost for satisfying the net social benefit optimization condition
after the shock. This implies that there is a negative relationship between the cumulative number
of smuggling cases controlled in society and the cost. If the rate of supply of public service in terms
of number of smuggling cases controlled is equal to the demand rate, the number of smuggling
cases controlled is in equilibrium. If a difference of a finite magnitude comes into force between the
supply and demand rates, and the public and the private sector do not react to a change in the
cost caused by a difference in the supply and demand rates, the cost will continue changing until
the saturation point of society comes. The response of TPM/BA can be depicted by the following
formulation:

Cost rate change < change in cumulative no. of controlled smuggling cases.
R = cost rate change.
Mp = mp — mps = change in cumulative no. of controlled smuggling cases,
mp = cumulative no. of controlled smuggling cases at time t,
mps = cumulative no. of controlled smuggling cases in steady state equilibrium.
dmp d(mp —mps) dMp

Input — output = = =
P P dt dt dat

or Mp = [ (input — output) dt.
Cost rate change o [ (supply rate — demand rate) dt, or

R = —K,, [ (supply rate — demand rate) dt,

where K, is the proportionality constant. A negative sign indicates that when (supply rate — demand rate)
is positive, R is negative, i.e., the cost decreases. The above expression can also be written as:

[ (supply rate — demand rate) dt = o

J(wpi = wpo) dt = —7—, (69)

wp; = supply rate,

wpo = demand rate,

K,,, = dimensional constant.

When t = 0, supply rate = demand rate, i.e., public service market is in equilibrium and eq. (69)
can be expressed as:

f (wBis — wBOS) dt = 0. (70)
The subscript s denotes steady state equilibrium and R = 0 in steady state. Subtracting eq. (70)
from eq. (69), we get:

R

f (wBi - wBiS) dt — f (wBO - wBOs) dt = _K7, or
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J (Wi~ Who)dt = -, ()

m

where wp; — wp;s = Wpg; = change in supply rate,

wpg — wWpos = Wpo = change in demand rate.

R, Wp; and Wpq are deviation variables, i.e., deviation from steady state equilibrium and have
zero initial values. Eq. (71) can also be expressed as:

R=—K, [Wpdt = —K,,Mg, (72)

where Wp = Wp; — Wpo. If R gets a jump as a result of some factor other than a change in
cumulative number of smuggling cases controlled, that is another input which can be added to eq.
(72) as follows:

R=-— meBdt—i-EB:—KmMB—FEB. (73a)
There can also be an exogenous shock in cumulative number of smuggling cases controlled other
than the feedback of cost.
9.2 Solution of the Model-Panel B with a Smuggling Control Policy
Expressions from egs. (11a), (18),and (23) respectively along with 747 = 0 are as follows:
dR(t)

S8 K, W(t),
dt 5(t)

Wa(t) = —KqR(t),
Wm — _Ks (Cc - R) ’

and

Wpg(t) = Wi, (t) — Wy(t),

if no exogenous demand or supply shock happens. W, (¢) is number of smuggling cases controlled.
Combining the above expressions together, we can write:

Wm(t) = —Kyp [Cp(t) - R(t)] — K [CC(t) - R(t)] ’ (73)

where the p and ¢ subscripts denote the private and the public sector respectively. Now, combining
the above expressions together, we can write:

AR e () — Wa(t)]

dt
= — Ky [-K {C.(t) — R(t)} + KqR(t)]
= — K [-K,Ce(t) + (Ks + Kg)R(1)] .
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Rearranging the above expression gives:

dR;lit) + Km<Ks + Kd)R(t) = KmKsCC(t)' <74)

The Routh-Hurwitz stability criterion (which provides a necessary and sufficient condition for
stability of a linear dynamical system) for the above differential equation’s stability is K, (K +
K4) > 0; and as K,,,K;, and K, are all defined as positive numbers, this criterion holds. This
ensures that, away from a given initial equilibrium, every adjustment mechanism will lead to another
equilibrium.

Suppose government reduces the per smuggling case controlled cost of the public service provider
by B, say through provision of some funds to buy an advanced technology (such as a scanner at
the ports) for smuggling control, the above equation can be written as:

dR(t
di) + K (Ks + Kg)R(t) = —K,,, K B. (75)
The solution is given by the following expression:
KB KB
- _ s s —[Km (Ks+Ka)lt
M=k k) T K KD | (76)
R(0) = 0 (the initial condition), and R(o0) = — ( Kljj?(d) (the final steady state equilibrium value).

In response to a policy, the per smuggling case controlled cost dynamics depends on the parameters
K, Ky, K,,, and B.

9.3 A Dynamic Optimal Smuggling Control Policy-Panel B

After a smuggling control policy, there are efficiency gains in post policy equilibrium in comparison
with the initial /pre-policy equilibrium. However, there are also some efficiency losses during the
adjustment period of smuggling control market until new equilibrium arrives. As soon as smuggling
control policy is implemented, supply of public service expands, whereas the demand remains the
same at the initial per unit cost, pushing the smuggling control market out of equilibrium. Now the
adjustment of per unit cost begins to equalize the supply and demand to bring the new smuggling
control market equilibrium. The post policy equilibrium cost is a function of demand and supply
elasticities. From the previous section, change in supply as a result of a smuggling control policy
is as follows:

Win(0) = =K [Cc(0) — R(0)] = KB, (77)
as R(0) = 0.

As a result of smuggling control policy, supply of public service goes up by K;B. As demand does
not change, therefore, cumulative number of smuggling cases controlled also goes up by K;B. Now
the market is out of equilibrium, and the market forces push the smuggling control market toward a
new equilibrium through the movement in per unit cost. As the per unit cost changes, the demand
and supply of public service also change through feedback. If cumulative number of smuggling cases
controlled goes up, it indicates a higher supply than demand and vice versa. There is no efficiency
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loss if smuggling control market is in equilibrium, and demand and supply are same. If market

is out of equilibrium, either supply or demand is excessive at that point in time. Therefore, the

total efficiency loss during the adjustment of smuggling control market is a sum of the differences
in supply and demand at all points in time. Total efficiency loss for a smuggling control policy can

be expressed as:

0 00
BL = / Wi (c0)dt + / (Wi (£) — Wa(t)] dt
- / Win(00)dt + Mp(t)

Eq. (73a) states the following:

R(t) = —KnmMgp(t) + Eg.

By imposing the initial conditions, we can determine the value of Ep as follows:

R(0) = —K,,Mp(0) + Eg,
0= —K,K.B+ Eg,
Ep = K, K,B.

After plugging in the above expression in eq. (73a), it transforms to

R(t) = —K,,Mp(t) + K, K;B, or
1

MB(t) = *Ki [R(t) - KmKsB] .

With Smuggling Control Policy Cost Constraint:

According to eq. (23), public service supply change due to change in per unit cost is:

Wm(t) = —Kj [Cc(t> - R<t)] .

It can also be written as:

wnm(t) - wzm(o) =—K; [Cc(t) - R(t)] s

(78)

where w;,(0) is the initial public service supply, and wy,(t) is the new supply after government
exercises smuggling control policy. W, (t) = wpm(t) — win(0), as Wy, (t) is a deviation variable,
i.e., deviation from the initial steady state equilibrium value. The smuggling control policy cost

(SCPC) can be expressed as:

36



SCPC = B [wim(0) + K, {B + R(t)}]. (79)

Our problem of minimising efficiency loss subject to smuggling control policy cost constraint is as
follows:

mBi)nEL s.t. SCPC < Gp.

G p is the government’s cost for exercising smuggling control policy. The choice variable is smuggling
control policy, i.e., B, and the constraint is binding at t = 0. The Lagrangian for the above problem
can be written as follows:

0
L= / Win(00)dt + Mp(t) + A\ [Gp — B [wim(0) + Ky {B + R(t)}]]

0

—00

1 [ KB K,B
- |- +
Km (Ks +Kd) (Ks +Kd)

K.B K.B
A Gp = B |wim(0) + K, | B — —2¢ s [KMKﬁK@]t}H
e |en 8w 0) + K {B - e e

e~ UKn (et Kl _ KmKsB]

0
B / K KB 1 [ KB KB
( (

dt — +
Ks—l-Kd) (Ks—i-Kd)

— —Km(Ks+Ealt _ ¢ K B
Ko+ K9 K ¢ mits

—00

K.B K.B
A Gp = B |wim(0) + K, | B — —2¢ s [Km(KﬁKd)]t}”
e @8 wn0) K {B - e e

The first order condition with respect to B leads to the following:

0

KK, 1 K K, Ko (Kot K
_rsrd e — | + Em(KstKalt g K,
/ (Ks + Kg) Km[ (K, + Kq) | (Kot Kg)©

— 00

- [wim(O) + K, {B -

KB KB kol
(Ko + Ka) | (K, + Kg)

KS KS — (K (Ks+ K
~ABK, |1 - n K (Kot Ka)lt| _ o
[ (K, + Kq) | (Kot Kag)©

Rearranging this, we get:
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0

/ ﬂdt b [— = + K e KmKrKa)lt _ ¢ ¢,
(Ks + Kg) Kn | (Ks+Ky)  (Ks+ Ky)

K K
— ZABKS 1 _ S _|_ d _[KTVL(K5+Kd)]t
[ (K. +Kao) (Ko +Ka)*
= )\wim(O),
or
0
) KK, 1 |__ K K —[Km(Ks+Kg)t _
Awim (0) — |:/ (Ks-&-f(id)dt_ Km [ (Ks+Ka) + (Ks+Ka)© o) KmKS}
B=— =0 - - (80)
DN, (1~ ke + gy e o Bl
The derivative with respect to ), is as follows:
KB KB
— B |wim(0) + K § B— —— e Km (KKt | =, 1
Gn = B [on(0) + K\ B~ Gt + e e o

Putting eq. (80) into (81), we get:

Gp =
0
KK, K, K, K (K
Mavion (0) = {/ (KS+I?d)dt o ﬁ [_(KerKd) T wAr)© [ (Kot Kt KmKs}
—00

K, K (K.
20K, [1 T ®oARy T ®tRDE (Ko (K +Kd)]t]

K K
+K 01— S+ - [KW(KﬁKW}
{ (Ks+ Ka) (K +Kd)e

KSK K5 KS - m s
Awim (0) — [/ Tyt~ K%n [_ Ko+Ka) T (Kt Ko © [Em (Ks+Ka)lt _ KmKs}

Ks K —|fAm s
INK, [1 e +Kd)]t]

or 4X\?QpGp = —2X2w? ,(0) 4+ 2 Wi (0)Jp + N2w?,(0) 4+ J3 — 2 w;, (0)p,
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K K
h =K, |1—- 5 s —[Km (Ks+Kg)lt
where QB [ (K5+Kd)+(K5+Kd)€ ,

0
Jg = /(K‘*Kddt 1 [_ Ky + Ks e Km(Ks+Ka)lt _ KmKs] _

Ks+ Ky) K, (Ks+ Ky) (Ks+ Ky)

—00

or
{w?,(0) +4QpGp} X\* — J§ = 0.

JB
\/szm(O) +4QpGp

) is a positive number because when GG g increases, the minimum efficiency loss also increases. From
eq. (80):

A\ =

_ )\wim (0) —J B
2\Qp
By replacing A with its value in the above expression, we get:

B= (82)

wim (0)JB .
\/w?m(0)+4QBGB
2QBJB ’
w?, (0)+4Q5G B

wim(O) — \/w?m(()) +4QBGpR
2QB '

The second order condition for minimization can be checked as follows:

JB
B=

B=-

L=JgB+ )\ [GB — B(wim(O) + QBB)] .

Now we write the Bordered Hessian matrix of the Lagrange function as:

B 0 wim(o) +2QpB
_ —2QpBJ.
wim(0) + 2QBB NG (3?—45303

The determinant of the above matrix is negative as — (win,(0) + 2Q3B)*> < 0, and hence the
efficiency loss got minimized.
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9.4 Dynamic Problem of Public Service Provider

The public service provider maximizes present discounted value of future stream of net benefits of
public service in a dynamic setting, and the present value at time zero is as follows:

V(0) = [ [Uec(c) — sa(malc,eq))] e tdt, (84)

oy

w denotes the discount rate. c(t) is the control variable, and my(t) is the state variable. The
maximization problem can be written as

MazV(0)
{c®)}

subject to the constraints that

ma(t) = my(c(t),ealc(t), z4))e(t) + m o(c(t), ealc(t), za)) €4y (c(t), za)é(t) (state equation, de-
scribing how the state variable changes with time; z4 are exogenous factors),

mA(0) = m4s (initial condition),

ma(t) > 0 (non-negativity constraint on state variable),

—sa(ma(c,eq))]e @t

o%g

m4(oo) free (terminal condition).
The current-value Hamiltonian for this case is

H= Ud(c(t))—sa(ma(c(t), ealc(t), z4)))+pa(t)é(t) my; (e(t), eale(t), z;4)) +miyo(c(t), ea(e(t), 2a))x
eAl(C(t)’ ZA) (85)

Now the maximizing conditions are as follows:
(1) ¢*(t) maximizes H for all : 98 — 0,
.. . o OH
(1) pa — qu = T dmao
(i) ma* = a H_ (this Just gives back the state equation),
(1v) thm wal(t ) A(t)e”®t = 0 (the transversality condition).
— 00

The first two conditions are as follows:

O = VL) — salmalel®), eale(t),za))) § (- ealel®): 20

Al

e, ealelt), ) + mua(elt) ealc

Fpa(t)elt) * | mg, (c(t), ealc(t), 2a))ela (c(t), 2a) +miagy(c(t), eale
alel0):ea(clt), ) (e(0), 2a)

= 0. (86)

~—
_l’_
l\D
—~
Q
—~
~~
~—
('b
b
—~
Q
—~
~~
~
N
=
~—
~—
*
—

and

pia = i = = = h(ma(elt), ealel®). 2)) (87)
In equilibrium, ¢(t) = 0, and the expression % boils down to the following:
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ULelt) - <hlmaelt) a(e(t) za))) { " ealet) 200 bl calclth 2= 4,

If supply curve shifts to the right, then the number of public service providers is higher at the
existing smuggling control rate, and the term ¢y(ma(c(t), ea(c(t),z4))) is higher at the exist-
ing smuggling control rate at that time. The term multiplying <;(ma(c(t), ea(c(t), z4))), ie.,
m/yy (c(t),ealc(t), za)) +m/yy(c(t), ealc(t), za))e'y; (c(t), za) is a function of smuggling control rate
and has not changed as the smuggling control rate is the same as before. Therefore, the public
service provider now faces the following inequality at the existing smuggling control rate:

OH

— < 0.
8c<

The public service unit must decrease the smuggling control rate for satisfying the dynamic op-
timization condition after the shock. This implies that there is a negative relationship between
cumulative number of public service units in society and the smuggling control rate. If the rate of
supply of units in society is equal to the demand rate, the number of units is in equilibrium. If a
difference of a finite magnitude comes into force between the supply and demand rates, and the
public and the private sector do not react to a change in the smuggling control rate caused by a
difference in the supply and demand rates, the smuggling control rate will continue changing until
the saturation point of the society comes. The behavior of public service unit can be depicted by
the following formulation:

Crime control rate change < change in cumulative number of public service units.
C = smuggling control rate change.
Ma =ma — mas = change in cumulative number of units,
ma = cumulative number of units at time t,
mas = cumulative number of units in steady state equilibrium.
dmg  d(ima—mas) dMy

Input — output = - _
npub T output = =y di dt

or Ma = [ (input — output) dt.
Smuggling control rate change o [ (supply rate — demand rate) dt, or
C = —K.[ (supply rate — demand rate) dt,

K, is the constant of proportionality; supply and demand rates are number of public service
providers per unit time. When (supply rate — demand rate) is positive, C' is negative, and hence a
negative sign, i.e., the smuggling control rate goes down. Rearranging the above expression gives:

C
[ (supply rate — demand rate) dt = % O

C
[ (wa; — wAp) dt = K
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w4 = supply rate,
w40 = demand rate,

K. = dimensional constant.

In the initial steady state equilibrium at ¢ = 0, supply rate = demand rate, and eq. (41) can be
written as

f (wais — wags) dt = 0. (89)

Due to the condition of the steady state equilibrium, the subscript s has been added. In the steady
state, C' = 0, and subtracting eq. (42) from eq. (41) leads to:

[ (wai —wais) dt — [ (wao — wAps) dt = e

, Or

v

C

where wa; — wa;s = Wa; = change in supply rate,

wag — WAgs = Wag = change in demand rate.

The capital letters denote the deviation variables, i.e., deviation from the initial equilibrium. C, W4;
and Wy are all deviation variables, and their initial values are zero. Eq. (43) can be rearranged
as:

C = —KCfWAdt = —K.My, (91)
where Wy = Wy — Wyg. If C gets affected by an input other than M4, then an input must be
added to the right hand side of eq. (44) which changes to the following:

C = —chWAdt-i-EA: —K.Ms+ E4. (92a)

M4 can also get an exogenous input other than the feedback of the smuggling control rate.

9.5 Public Sector/Supplier of Public Service Units

As a supplier of public service units to control smuggling, the public sector maximizes the present
discounted value of the future stream of net benefits, and their present value at time zero is as
follows:

V(0) = [ [Upr (npr) — spr(c(npr))] €777t (92)

Upr (npr) is social benefit and an increasing function of number of public service units, the higher
the number, the higher the social benefit. ¢,.(c(np-)) is cost to society for establishment of public
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service units, the higher the smuggling control rate, the higher is the cost. The cost curve with
respect to smuggling control rate is concave downward, i.e., decreasing in slope.

rpr denotes the discount rate. n,.(t) is the control variable, and c(t) is the state variable. The
maximization problem can be written as

o0

Maz V(0) = [ [Upr (npr) — pr(c (npr)] e~ dt,
{npr(6)} 0

subject to the constraints that:

c(t) = (npr (t))npr (t) (state equation, describing how the state variable changes with time),

¢(0) = ¢5 (initial condition),

c(t) > 0 (non-negativity constraint on state variable),

¢(oc0) free (terminal condition).

The current-value Hamiltonian for this case is

H = Upr (npr(t)) = spr(c (npr (1)) + p(t) ¢ (npr (£)) 720 (2) - (93)
Now the maximizing conditions are as follows:
. " . 7 . OH __
() npy*(t) maximizes {I for all ¢: ;= 05
(12) ppr — T'prHpr = _66%7
(iii) ¢ = ;TI;IT (this just gives back the state equation),

(1v) tlim ppr (t)c(t)e™" = 0 (the transversality condition).
—00

The first two conditions are as follows:

oH p

S = Upe (g (8) = (e g () € (0) + 1 8) € e () () =0, (90
and
Hior — Torttgr = — 0 = 6 (¢ (e (1)) (95)

In equilibrium, 7y, (t) = 0, and the expression E)BT[; boils down to the following:

Upr (pr(£)) = s (¢ (- (1)) € (mpr (£)) = 0.

If smuggling control rate goes up, the term ¢,.(c(n,- (t))) goes down, and the public sector now
faces the following inequality:

OH
onypy

> 0.

The number of public service units due to public sector’s efforts will go up to satisfy the dynamic
optimization problem of the public sector. If change in number of public service units is proportional
to a change in smuggling control rate, i.e., C, or linearization of the supply curve around the steady
state equilibrium leads to the following;:
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Wpr(t) = KprC(), (96)

where W),(t) is change in number of public service units with respect to initial steady state equi-
librium value. As it is a deviation variable, i.e., deviation from the steady state, it has a zero
initial value. There is a time lag between the change in smuggling control rate and the change
in number of public service units, therefore, a dead time element needs to be incorporated in the
above expression which results in the following:

Wor(t) = KprC(t — 7a1)- (97)

9.6 Private Sector/Demander of Public Service Units

Both public and private sectors in a society demand public service units to control smuggling in
society. However, we just present the private sector as a demander to economize on typing space.
The total demand is a sum of both public and private demand. In this section, we present the role
of the private sector as a demander of public service units to control smuggling. As a demander,
the private sector maximizes the present discounted value of future stream of net benefits, and their
present value at time zero is as follows:

V(0) = [ [Upu (npu) — spulc (npu))] €72 dt, (98)

where Up, (npy) is the private sector benefit increasing in number of public service units to control
smuggling and concave downward. ¢p,(c(ny,)) is the cost to the private sector, the higher the
smuggling control rate, the higher is the cost. The cost curve with respect to smuggling control
rate is concave upward, i.e., increasing in slope.

rpu denotes the discount rate. mnp,(t) is the control variable,and c(t) is the state variable. The
maximization problem can be written as

oo

Maz V(0) = [ [Upu (npu) — spulc (npu))] e~ "7"dt,
{npu(®)} 0

subject to the constraints that:

c(t) = ¢ (npu (t))npu () (state equation, describing how the state variable changes with time),

¢(0) = ¢4 (initial condition),

c(t) > 0 (non-negativity constraint on state variable),

¢(00) free (terminal condition).

The current-value Hamiltonian for this case is

H = Upu (npu(t)) = spu(c (npu (1)) + ppu(t) ¢ (npu (£))10pu (t) (99)
Now the maximizing conditions are as follows:
() npy,*(t) maximizes I{ for all t: ai% =0,
(”) ,U/};m - rpg,upu = _837157
0H

(iii) ¢* = Brion (this just gives back the state equation),
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(1v) tlim ppu(t)c(t)e et = 0 (the transversality condition).
—00

The first two conditions are as follows:

OH "

o = U (1pul8) = (e (s () € (s (8) + 1) (s () () =0 (100
and
i~ Tt =~ = (e (e () (101)

In equilibrium, 7y, (t) = 0, and the expression % boils down to the following:

Upu (npu(t)) = Spu (e (pu (1)) € (npu (1)) = 0.
If smuggling control rate goes up, the term ¢}, (c (npu (t))) goes up, and the private sector now faces
the following inequality:
OH
Onpy

< 0.

The number of public service units demanded by private sector will go down to satisfy the dynamic
optimization problem of the private sector. If change in number of public service units demanded
by the private sector is proportional to a change in smuggling control rate, i.e., C, or linearization
of the demand curve around the steady state equilibrium leads to the following:

Wpu(t) = Kpu [e (t) = C(t)] = —Kpun(t), (102)

where €(t) = e — es; e is a reference smuggling control rate with respect to which variation in
smuggling control rate is considered by the private sector for decision making. It is a parameter
which may vary over time or remain fixed for a while. W), (t) is the change in number of public
service units with respect to the initial steady state equilibrium value. As it is a deviation variable,
i.e., deviation from the steady state, it has a zero initial value. There is a time lag between the
change in smuggling control rate and the change in number of public service units demanded by
the private sector, therefore, a dead time element needs to be incorporated in the above expression
which results in the following:

Wpu(t) = _Kpun(t - 7—cl2)~ (103)

9.7 Solution of the Model-Panel A with a Smuggling Control Policy

The model is solved for the simplest case when 741 = 749 = 0. For solution of more complex cases,
please see appendix. From eq. (44a), (49), and (55), we have the following expressions respectively:
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acC
dt
Wor(t) = KprC( ),
Wpu(t) = Kpu [e (t) — C(1)],
Wal(t) = Wl( ) — Wpu(t)v
D(t) + Wir(t) = Wpu(2).
where D(t) = Wa;(t) — Wao(t).

= —K.Wal(t),

In the absence of an exogenous shock in number of public service units, D(t) = 0. A policy from
panel A must be synchronized with that from panel B, i.e., the supply and demand curves should be
moving in the same direction in both panels. In this section, we just present an example on how an
optimal policy can be framed from panel A when the demand curve shifts, however, this has to be in
line with the policy from panel B as they cannot be treated as independent of each other. Suppose
the government adopts a policy (such as a media campaign to create awareness about smuggling,
and simultaneously increasing the smuggling control rate) where demand of public service units
gets a shift in the upward direction, i.e.,

Wpu(t) = Kpu [A = C(1)],
where A is the size of the policy. This implies that

@ =-K, [Wpr(s) — Wpu(t)]

dt

The above expression can be written as

dCC’hE) + Ko(Kpr + Kpu)C(t) = K Ky A. (104)
According to the Routh—Hurwitz stability criterion, the necessary and sufficient condition for sta-
bility of the above differential equation is K.(Kp, + Kp,) > 0, which holds as K., K, and K, are
all defined to be positive. This condition ensures that starting from an initial condition away from
an initial equilibrium every adjustment mechanism will lead to another equilibrium.
In order to solve the above differential equation, we proceed as follows:

The characteristic function of the differential equation is as follows:

2+ Ke(Kpr + Kpu) = 0.

The characteristic function has a single root given by:

— K (Kpr + Kpy).
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Thus the complementary solution is

Cc(t) — 0267[KC(KPT+KPH)R.

The particular solution has the form

Thus the solution has the form

C(t) — Cl + 026_[KC(KPT‘+KPU)]t_ (105)

The constant C is determined by substitution into the differential equation as follows:

— Ko (Kpp+ K ) Coe B ot Koty 16 (K 4 K, ) O K o (Kt Ky ) Coe ™ e o+ Kot — ¢ )¢ A,

Ky A
Kpr + Kpu '

Cs is determined by the initial condition as follows:

C =

K, A
__Tphutt Cy = A,
Kpr + Kpy

KA
Kpr + Kpy
K, A

Kpr + Kpu.

C(0) =

Cy=A—-

Substituting the values of Cq and Cs in eq. (?7?), we get:

C(t) = Kot Kord (et syl (106)
Kpr + Kpu Kpr + Kpu

When ¢t = 0, C(0) = A (the initial condition), and when ¢ = oo, C(c0) = % (the final steady

state equilibrium value).

9.8 A Dynamic Optimal Smuggling Control Policy-Panel A

The social damage due to inadequate/excessive smuggling control units includes the damage in the
initial equilibrium, i.e., before the adoption of a smuggling control policy, plus the damage during
the adjustment process from initial equilibrium to the final. After government adopts a policy to
enhance/reduce the number of public service units, it shifts either the supply or the demand curve,
e.g., it shifts the demand curve upward by a magnitude depending upon the size of the policy, which
is taken as A in the solution of the model with a smuggling control policy. The smuggling control
rate then adjusts over time to bring the new equilibrium rate which is higher than the previous
equilibrium smuggling control rate and lower than that which existed at the time the policy was
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implemented depending on the elasticity of supply and demand curves. An excessive number of
public service units in society implies that the number is higher on the supply curve than that on
the demand curve, and a shortage in their number implies the opposite. When the number on the
supply and the demand curve becomes equal, the new equilibrium has arrived. When the number
is different on supply and demand curve, that difference is the social damage at that point in time.
Furthermore, the number of smuggling control units in society was lower (in this example) in the
previous equilibrium, which is also social damage in equilibrium. If we sum up either the number
of excessive units on the supply curve or their number on the demand curve short of supply curve,
we get the total social damage in terms of number of units as follows:

0
SD = Ma(t) + / W (00)dt. (107)

From eq. (102), the change in number of smuggling control units due to change in smuggling control
rate after adoption of smuggling control policy is as under:

Wpu(t) = Kpu [A—=C()],

or Wnpu(t) — Wipu(0) = Kpy [A — C(2)],
where w;p, (0) is the initial number of smuggling control units and wyy,(t) is the new number after
implementation of smuggling control policy as Wp,(t) is a deviation variable, i.e., deviation from

the initial equilibrium value. An increase in number of smuggling control units per unit time is as
follows:

INS = A[wipu(0) + Kpu {A — C(1)}]. (108)

If we want to minimize the social damage subject to the constraint that an increase in number of
smuggling cases controlled per unit time is greater than or equal to G 4 (change in number of smuggling cases contr:
our problem is as follows:

mjnSD st. INS>Gy <: dMB> .

dt
The choice variable is A, i.e., an initial upward jump in the smuggling control rate chosen by
government to shift the demand curve, and the constraint is binding. Lagrangian for the above
problem is given below:

0
L= Ma(t) + / Wi (00)dt + N [Ga — A wipu(0) + Kpu {A — C(1)}]].

From eq. (44a), we have:

The value of F4 can be found by imposing the initial conditions as follows:
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C(0) = —K Ma(0) + Eq,
A= —K.K,.C(0)+ E,
Ey=A[l+ KK,

This implies that

Ma(t) = —Ki C(t) — A{1 + KK, ).

Therefore, the Lagrangian can now be written as:

0

1
L= e [C(t) — A{1+ K.Kp,}] + /Wm(oo)dt + A [Ga — Awipy(0) + Kpy {A — C(1)}]]
1 Kp, A KprA (Kt Kp)lt
- K. Bt fpu)lt b — A{14+ K K
K. [{Kpr+Kpu+Kpr+Kpue o {1+ Kekpr}
0
K, A K, A
" — A | Wipy Ky, d A— pU B pr —[Ke(Kpr+Kpu)lt .
+ /Wp (OO)dt—i-)\[GA |:wp (0) + K, { Ky + Ko Kpr—i-Kpue pr+Kp

The first order condition with respect to A is as follows:

b H Kpu By
Ke |\ Epr + Epu ' Epr + Kpa

K, A K, A
_ )\ i K w A _ pu _ pr —[KC(KPT“‘Kpu)}t
[w pu(0) + K { Kor + Kpu Kyt Ko

— MK, {1 - Kpu - Kpr e[Kc(Kpr+Kpu)]t} ’
Kpr + Kpu  Kpr + Kpy

6_[KC<KW+KW} 1+ KCKPT}}

which implies that

1 Kpu Kpr (Kt K )}t} }
= + e Koot Bplt | _ 11 4 e g
KC |:{ KPT + Kpu KPT + Kp“ { ¢ pr}

K K
CONAK,, 1 —tew  Bpr e—[Kc<Kpr+Kpu>1t}
e { KpT + Kpu Kpr + Kpu

= )\wipu(O).

or

—Kpu Kpr _
Moig0) — - |{ 5 — o e U 4 {1 4 Ky

_ __Kpu _ Kpr —[Ke(Kpr+Kpu)lt
zAKpu{l e et )

A— (109)
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The first order condition of the Lagrangian with respect to A is as follows:

K, A K, A
G — A |wipy(0) + Kpy L A — pu — pr —[Ke(Kpr+Kpu)lt L1 — . 110
A |:/U} pu( )+ y { Kp’r‘ 4 Kpu Kpr T Kpue ( )

After substituting the value of A from eq. (109) into (110), the later becomes as follows:

—Kpu Ky _
A (0) — 7= H T [Kc(Kpr+Kpu)]t} F {1+ KCKW}]

GA = wipu(O)
Kpu Kpr _
_2)\Kpu {1 - K;m"'pru - Kpr":Kpue [KC(KPTJFKPM)R}
# i {1 = e Bttt
KPT + KPU KPT + Kpu

—Kpu Kpr —_
Noig0) — - [{ a5 — o e U {1 4 K|

_ __Kpu  Kpr —[Ke(Kpr+Kpu)]t
2)\Kpu{1 ot — e (Ko + K

or AN’QaG A = 2X°w;,, (0) — 2 wipu(0)J4 — Aw},, (0) = J3 + 2Awipy(0)J 4,

*

K K
where Q4 = — K {1 - pe__ pr e—[Kc<Kpr+Kpu>]t} 7
P Kpr+Kpy Kpr + Ky,
1 -K K
J - pu o pr —[KC(KPT+Kpu)]t 1 K K . .
4 KC [{Kpr+Kpu Kpr+Kpue +{ * ¢ p}

This implies that
{w},(0) —4QAGA} \* — J5 =0,

Ja
\/wz'qu(O) —4QaG

A must be positive as the social damage increases with an increase in G 4.
Eq. (109) can also be written as

A:

. Awipu(O) — JA
A= YT (111)

Plugging the value of A into eq. (111) leads to:

wipu (0) JA
M V03, (0)-4QaCa
- 2QaJa ’
\/wgpu(o)%QAGA

e Wipy (0) — \/w?pu(o) - 4QAGA.
2Q 4

— J4

(112)

The second order condition for minimization is checked as follows:
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0
L=JsA+ /Wm(oo)dt + A [Ga — Alwipu(0) — Q4A]].
The Bordered Hessian matrix of the Lagrange function is as follows:

0 ’wipu(()) — QQAA

BH = iou(0) — 2Q 4. A 2QaJa ,
U)P ( ) QA \/w?pu(o)*ﬁlQAGA

which has a negative determinant as — (wipu(0) — 2Q4A)* < 0, therefore the social damage is
minimized.

9.9 General Solution of Model-Panel A

Figure 4 depicts a dynamic smuggling control model after joining together the blocks of inputs and
outputs for various agents. Laplace transform is a convenient tool for solving differential equations.
After Laplace transform, Figure 4 gets transformed to Figure 5. Let us first evaluate the transfer
function relating C(s) to Wi(s) in Figure 5 (the part marked as A) as follows:

We have the following equations relating inputs to outputs for various blocks in A assuming that
e(s) =0:

Cls) = —%.W(s),

Wpu(s) = =Kpue™*72C(s),
Wg(s) = Wi(s) — Wpu(s).
We can solve the above equations simultaneously for C(s) in terms of Wi(s) as follows:
C(s) = =25 Wils) = Win ()]
s
O(s) = =22 [Wi(5) + Ky *72C(s)]
KoK e K.

C(s) |1+ — . |= f?Wl(s),

C(s) —-K,

Wi(s) s+ K Kpye s’

Using the above expression to reduce part A in Figure 5 to one block and shifting Wy(s) in backward

direction, results in Figure 6, from which we can find the overall transfer function for D(s). We
have the following equations:

K,
C(S) T + KCKpue—srdg
where D(s) = W;(s) — Wy(s),
Wpr(s) = Kpre ¥ C(s).

[D(s) + Wyr(s)],
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We can solve for C(s) in terms of D(s) as follows:

-K

C6) = TR Ry D) + W),
K .

C(S) - s + Kcsz(:’*S‘nn [D(S) + ij”e B dlc(s)] ’

K. Kp.e 571 -K
C(s) [14+ —= pr¢ = = D(s),
s+ -[(12-[(19116_87—d2 s+ KcKpue—Ssz

_KC

C(s s+KcKpye *7d2

D(s) 1+ KcKpre ®Td1 ’

)
) K Kpre™?Tdl
s+KcKpye™°7d2
5) _ —Ke (113)
) s+ K Kpe 572 + K Kpe 5T’

K., Kpy, Ky, 741 and 74 are all positive numbers and the smuggling control rate depends on
these five empirical parameters. Useful results and conclusions can be drawn by inversion and
solution of eq. (113). If inversion of eq. (113) is to be done by partial fractions, then the following
approximation has to be made:

e TPl —Ts. (114)
Second better approximation is:
_ 1—(7/2)s
T 115
‘ 1+ (7/2)s (115)

A third approximation (better than the above two) is as follows:

l—7s/247%5%/12
T 14 7s/2+7252/12°

6—7’8

(116)

Eq. (114) gives a crude approximation. One could possibly choose either eq. (115) (which is
simpler) or (116) (which is laborious but more accurate). If D(t) = A, a step input, i.e., an
exogenous shift in either the number of public service units demanded, and/or a shift in supply,
then after Laplace transform

Using the final value theorem of Laplace transform we get:

—A

O(00) =
(00) = 1k,

(117)

C(00) = C(t) oo -

Eq. (115) can be rewritten as:
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N2—TS
T 2478

Using this approximation, eq. (113) can be written as:

—TSs

C(s) -K.
DO st Kl (3522) + Koo (3572)
C(S) —K. (2+8Td1) (2+87’d2)

D(S) - S (2 + Sle) (2 + Sng) + KcKpu (2 + Sle) (2 — Sng) + KCKpT (2 — Sle) (2 + STd2> ’

—K {ta17a2s* + 2 (11 + Ta2) s + 4}

{ Ta1Ta2s® + 2 (Tar + Ta2) 8% + 4s + Ko Kpy { —Ta17a28* + 2 (Ta1 — 7a2) 5 + 4} ] 7
+KcKpT {_Td17d252 + 2 (Td2 — le) s+ 4}

—Ke {ta17a28* + 2 (a1 + Ta2) s + 4}

TarTa2s + 2 (T + Ta2) — KeKpuTarTaz — KeKprTarTaz) 2+ .
[QKcKpu (le - Td?) + QKCKPT' (Td2 - le) + 4] s+ 4KcKpu + 4KcKpr

The denominator of the above expression can be written as:

as® + bs® + ¢s + d,

where

a = Td1Td2,

b=2(1y + 7a2) — Ketarma2(Kpu + Kpr),
c=2[K. (a1 — Ta2) (Kpu — Kpr) + 2],

d = 4K (Kpu + Kp).

This implies that

C(s) —Kc{as® +2(ta1 +7a2) s +4}
D(s) as® +bs?> +cs+d )

(118)

The roots of the denominator of eq. (118) depict the qualitative response of the smuggling control

rate, therefore it will be convenient (for future reference) to write it as follows:

as® 4+ bs®> +cs+d = 0. (119)

Now let us discuss the dimensions of the parameters involved. 74; and 749 and have the dimensions

of time.

53



Dimensions of K. = (Dimensions of C)/(time x Dimensions of Wy4)

_ Number of new smuggling cases controlled

time X No. of new public service units
Dimensions of Kp, = (Dimensions of Wpy,)/(Dimensions of C)

_ No. of new public service units demanded

~ Number of new smuggling cases controlled’
Dimensions of K, = (Dimensions of Wpy,)/(Dimensions of C)

No. of new public service units supplied

~ Number of nmew smuggling cases controlled’

Therefore K K, and K. K, have dimensions of 1/time. Using these facts, we can write: a has
dimensions of time?; b has dimensions of time; ¢ is dimensionless and d has dimensions of 1/time.
We can see that eq. (119) is dimensionally consistent (as s has dimensions of 1/time).

Method to Solve eq. (96):

Let a step input of magnitude A is given to D, then

D(s) =

é (120)

Putting this in eq. (118), we get:

C(S) _ —AK, {a32+2(7d1+7d2)s+4} (121)
B s(as® + bs? + cs + d) '

The parameters K., K., Ky, 741 and 742 are to be estimated empirically. This gives the values
of a, b, ¢ and d. Find roots of eq. (119) and invert eq. (121) to time function of C' by using partial
fractions and table of Laplace transform. Using the Final Value Theorem of Laplace transform on
eq. (121), we get:

4
C(o0) = —AK, x 7 (122)
Using the value of d = 4K (K, + K,r), we get:
—A
R 12
Ce) = g (123)

We get the same C(c0) from eq. (121) as that from eq. (113). Similarly using the Initial Value
Theorem of Laplace transform on eq. (121), we get:

C(0) = 0. (124)

The qualitative nature of the solution C(t) is dependent on location of roots of the denomina-
tor of C(s) in the complex plane. Please look at Figure 7 in which several roots are located.
Table 1 gives the form of the terms in the expression for C(t) corresponding to these roots.
X1,X2,...,Y1,Y2,..... are all positive.
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An optimal policy minimizing the social damage in terms of excessive/inadequate number of public
service units in initial equilibrium, as well as the social loss in terms of excessive or inadequate
number on dynamic adjustment path (when number of public service units demanded is not equal
to supply) before arriving at final equilibrium, subject to a certain increase in number of smuggling
cases controlled per unit time can be derived on a case by case basis.

In equilibrium, the area under the demand curve is the social benefit in terms of number of smuggling
cases controlled per unit time. For estimating an optimal policy, the parameters K., Ky, Kpy, Ta1
and 749 need to be estimated. The values of K’s can be estimated in the same manner as demand
and supply elasticities. Time lags 747 and 749 can also be estimated through various techniques.
As the optimal policy is a function of these parameters, Delta method can be used for confidence
interval.
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Figure 1: Theoretical concept of smuggling control model.
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Figure 2: When is linearity a reasonable assumption?

58



c@

A Demand
Smuggl-
ing l
Control
Rate

<« Supply

Figure 3: Theoretical concept of smuggling control model in panel A.
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Figure 4: A dynamic optimal smuggling control model for panel A.
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Figure 5: Dynamic optimal smuggling control model for panel A after Laplace Transform.
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Figure 6: Smuggling control model in panel A after solution of block A in figure 5.
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Figure 7: Location of roots in a complex plane corresponding to Table 1.

Table 1:
S. No Roots Terms in P(t) for t = 0 Description of Response
1 Al [ Bounded non-cyclic
2 A2, A2* e ¥ (C,cos Y, + C, sinY,1r) Bounded cyclic
3 A3 A3* C,cosY;r +C,smYst Cyclic (constant amplitude)
4 A4, A4* e ¥(C,cos Y, 1+ C, sinY,1) Unbounded cyclic
5 AS Ce Unbounded non-cyclic
6 A6 C, Constant
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