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Estimating the R-Star in the US: A Score-Driven
State-Space Model with Time-Varying Volatility

Persistence

Tibor Pál Giuseppe Storti∗

Università degli Studi di Salerno, DISES

Abstract

This paper analyses the dynamics of the natural rate of interest (r-star) in
the US using a score-driven state-space model within the Laubach–Williams
structural framework. Compared to standard score-driven specifications,
the proposed model enhances flexibility in variance adjustment by assign-
ing time-varying weights to both the conditional likelihood score and the
inertia coefficient in the volatility updating equations. The improved state
dependence of volatility dynamics effectively accounts for sudden shifts in
volatility persistence induced by highly volatile unexpected events. In addi-
tion, allowing time variation in the IS and Phillips curve relationships enables
the analysis of structural changes in the US economy that are relevant to
monetary policy. The results indicate that the advanced models improve
the precision of r-star estimates by responding more effectively to changes in
macroeconomic conditions.

keywords: r-star, state-space, Kalman filter, score-driven models

1 Introduction

Due to the unusual magnitude of economic disturbances generated by the Global
Financial Crisis (GFC) and the COVID-19 pandemic, potential non-linearities in
macro variables have come back into the spotlight. Considering the macroeco-
nomic relevance of the natural rate of interest or r-star and the recent development
of the statistical toolkit of time-varying parameter (TVP) models, it is surprising
that empirical methodologies employed for its estimation mostly remained unal-
tered since the seminal work of Laubach and Williams (2003). We fill this gap
by making the system matrices in the Laubach-Williams methodology (LW, there-
after) time-varying, based on the score-driven state-space framework developed
by Delle Monache et al. (2021). In addition, to address model instability due to
extraordinary transitory shocks, we propose an extension of the accelerating gen-
eralised autoregressive score model (aGAS) of Blasques et al. (2019), in which the
volatility dynamics become fully state-dependent in a multivariate setting.

∗Giuseppe Storti acknowledges financial support from the PRIN 2022 grantMethodological and
computational issues in large-scale time series models for economics and finance (20223725WE)
- D53D 2300610 0006 - Measure 4-Component 2-Investment 1.1
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The natural rate of interest is an essential macroeconomic benchmark for in-
vestors and central banks as it provides an estimate for the real short-term interest
rate that keeps the inflation rate constant. Therefore, its vital role lies in its infor-
mation content about the position of the actual real interest rate compared to its
natural counterpart. More specifically, when the actual real rate is above (below)
the r-star, the economy operates under (above) its potential level, implying deceler-
ation (acceleration) of the inflation rate. Nevertheless, the natural rate of interest
is an unobserved variable, a feature that has motivated various methodological ap-
proaches and led to considerable estimation uncertainty since the concept was first
proposed by Wicksell (1936).

Recognising the low-frequency and time-varying nature of macroeconomic un-
observables made the Kalman filter (Kalman, 1960) the optimal choice for data-
driven estimation of latent variables, i.e. Staiger et al. (1996); Gordon (1998), and
Laubach (2001). By identifying the natural rate of interest through economic the-
ory in a semi-structural framework, the most prevailing approach to its real-time
estimation became the LW methodology, where the Kalman filter extracts the per-
manent or highly persistent changes in the real short-term interest rate consistent
with a stable inflation rate. While the LW framework provides a coherent way
to study the unobservable components of the model, the initial study found the
r-star estimates to be highly imprecise and prone to substantial real-time measure-
ment error (Laubach and Williams, 2003). Despite the uncertainty around model
estimations, the original approach has been applied in numerous studies for dif-
ferent economies and with various extensions (i.e., Garnier and Wilhelmsen, 2009;
Holston et al., 2017; Krustev, 2019). However, the global financial crisis (GFC)
drew attention to the potential instability in the underlying New Keynesian (NK)
structural relationships, casting doubt on the static slope of the model framing IS
and Phillips curves. For example, the study of Ball and Mazumder (2011) suggests
altering inflation dynamics in the post-GFC interval. Also, Inoue et al. (2022)
find a substantial change in the slope of the Phillips curve since 1980. While the
related quantitative results are not inclusive and remain without unanimous con-
sensus, most of the studies reject the time-invariant nature of the NK structural
relationships.

Concerns about macro non-linearities culminated with the onset of the COVID-
19 pandemic. Extremely volatile episodes generated by exogenous events rendered
the LW static volatility model less capable of capturing low-frequency changes in
the unobservables. As a response, Holston et al. (2023) introduced a macroecono-
metric adjustment to the existing model, exclusively applied to the interval affected
by the pandemic. While the amended model effectively handles the pandemic-
related extreme volatility, the implemented restrictions and the ad-hoc nature of
the adjustment limit its universal and real-time applicability.

We address the above issues and estimate the r-star in the US by making the
disturbance volatilities and the structural relationships in the LW framework time-
varying, governed by the conditional score of the likelihood function. The proposed
model is an extension of the class of score-driven state-space models introduced by
Delle Monache et al. (2021), incorporating a modified version of the accelerating
GAS (aGAS) of Blasques et al. (2019). We coin the new type of aGAS as augmented
accelerating GAS (aaGAS), where, in addition to the time-varying weight of the
conditional likelihood score, the autoregressive coefficient can become time-varying
as well, making the volatility dynamics fully state-dependent. To perform a thor-
ough assessment of the estimation uncertainty, we combine the inferential setup of
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Blasques et al. (2016), where only parameter uncertainty is considered, with a sim-
ulation procedure based on the methodology proposed by Hamilton (1986), which
allows us to incorporate the impact of filter uncertainty, an aspect particularly
relevant to unobservable component models. The results show that the proposed
methodological improvements provide a more effective way to disentangle transi-
tory and permanent shocks, resulting in a more accurate estimation of the state
variables. Finally, relying on a purely statistical, data-driven approach, the model
is expected to handle and identify unexpected future volatility shocks without the
need for major ad hoc econometric adjustments, thus providing a valid alternative
empirical approach for the real-time estimation of the natural rate of interest.

The paper is structured as follows. Section 2 presents the econometric frame-
work by first introducing the structure of the time-varying parameter model in
Section 2.1, followed by the description of the baseline score-driven state-space
model in Section 2.2. In Section 2.3, we extend the framework by introducing
an augmented accelerating score-driven approach for time-varying volatility per-
sistences. Section 3 then outlines the empirical analysis, beginning with the data
description in Section 3.1, followed by the model specification and estimation de-
tails in Section 3.2. The parameter estimates are discussed in Section 3.3 while
Section 3.4 and 3.5 report the estimated time-varying volatilities and the dynamic
IS and Phillips curves, respectively. Section 3.6 focuses on the estimated state
variables by exploring the r-star and the output gap estimates. Finally, Section 4
concludes the paper.

2 The Econometric Framework

2.1 The structure of the time-varying parameter model

In line with the standard LW approach, moving from the classical definition of
r-star as the real interest rate consistent with zero output gap and stable inflation,
the econometric identification of the natural rate of interest is achieved through two
structural relationships associated with the above definition. Specifically, the in-
tertemporal IS dynamics mechanically connect the r-star to the output gap, which,
in turn, is closely linked to the inflation rate dictated by the Phillips curve relation-
ship. Accordingly, the following measurement equations drive the model dynamics
and provide theoretical support for the econometric identification of the natural
rate of interest:

ỹt = a1ỹt−1 + a2ỹt−2 +
aỹ,t
2

2∑
j=1

(
rt−j − r∗t−j

)
+ εỹ,t εỹ,t ∼ N (0, σỹ,t) (1)

πt = b1πt−1 + (1 − b1)πt−2,4 + bπ,tỹt−1 + επ,t επ,t ∼ N (0, σπ,t) (2)

where, similar to Holston et al. (2017) (HLW, thereafter), rt and r∗t denote the
real federal funds rate and its natural level r-star, respectively, πt is the consumer
price inflation rate, πt−2,4 is the average of the second to fourth lags of the inflation
rate. The system of equations (1)-(2) represents the NK intertemporal IS and the
Phillips curve relationships based on the HLW specification with a departure for
their respective slope parameters, aỹ,t and bπ,t, which become time-varying in the
present model. In the IS equation, the output gap series ỹt = 100 · (yt − y∗t ),
the percentage difference between the actual (log-transformed) output yt and its
natural level y∗t , is generated by its lagged values, a moving average of the lagged
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r-star adjusted real-funds rate and a Gaussian White Noise (GWN) error. In the
Phillips curve equation, the inflation dynamics, πt, are governed by past inflation
rates, the lagged output gap, ỹt, and a GWN error process.

The presence of the two stochastic terms, εỹ,t and επ,t, plays a key role in
disentangling transitory shocks from structural persistent shocks which affect the
dynamics of the state variables. Moreover, it is well known that changing economic
conditions are likely to lead to volatility clustering in the dynamics of macro-
variables, such as inflation and output. If not properly modelled, this feature
can contaminate the estimates of the state variables and, hence, the structural
components of the observed variables. Therefore, we depart from the typical static
LW specification with regard to the standard deviations of the disturbances, εỹ,t
and επ,t, by allowing for time variation in their volatilities, σỹ,t and σπ,t.

We then define r-star based on the HLW specification. According to the neo-
classical growth model, the steady-state real one-period interest rate is given by

r∗ =
1

σ
gc + θ

where σ represents the intertemporal elasticity of substitution in consumption,
gc denotes the growth rate of per capita consumption, and θ is the rate of time
preference. This relationship leads us to the standard monetary DSGE models,
where r∗ given in Eq. (3) provides an effective method for determining the intercept
in the applicable reduced form interest rate rules (i.e., Taylor, 1993).

Given the above theoretical linkage and assuming a unit elasticity of substitu-
tion σ as in HLW, the r-star is then determined by

r∗t = gt + zt (3)

where gt is the trend growth rate of the natural rate of output and zt captures
other determinants of the natural rate of interest, such as households’ rate of time
preference.

Having defined the r-star, we finally introduce the system of transition equations
governing the dynamics of the latent variables gt and zt and of the potential output
y∗t as

y∗t = y∗t−1 + gt−1 + εy∗,t εy∗,t ∼ N (0, σy∗,t), (4)

zt = zt−1 + εz,t εz,t ∼ N (0, σz), (5)

gt = gt−1 + εg,t εg,t ∼ N (0, σg). (6)

The transition of the potential output, y∗t , follows a random walk, with a
stochastic drift term given by the lagged trend growth rate, gt−1. The variable zt,
which captures any persistent shocks to the r-star that are not captured by gt, also
follows a random walk similar to the trend growth rate. Again, this configuration
is comparable to that in HLW, with one important exception being the volatility of
the potential output, σy∗,t, which is assumed to be time-varying, thus completing
the dynamic specification of the time-varying signal-to-noise ratio σ2

y∗,t/σ
2
ỹ,t. As will

be shown later, the signal-to-noise ratio is a central pillar in the identification of
persistent shocks in our setting. Accurate identification of its dynamics is expected
to improve the performance of the Kalman filter procedure used for inference on
the latent state variables.

The parameters that are allowed to evolve in our modelling framework are
collected in the time-varying parameter (TVP) vector

λt = (σỹ,t, σπ,t, σy∗,t, aỹ,t, bπ,t)
′,
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where

σi,t = exp (σ̄i,t), i = {ỹ, π, y∗}, aỹ,t = − exp(āỹ,t), bπ,t = exp
(
b̄π,t

)
.

The remaining static parameters are included in the vector

θs = (a1, a2, b1, σg, σz)
′, σi = exp (σ̄i) , i = {g, z}.

To model the dynamics of the time-varying parameters, we adopt a score-driven
approach implying that λt is a function of past information available at time (t−1),
that is λt = λ(It−1). The derivation of the score-driven recursions for modelling
the dynamics of the elements of λt is addressed in the next Section 2.2.

2.2 The baseline score-driven conditionally Gaussian State-
Space model

Because of their flexibility, score-driven models such as the generalised autoregres-
sive score (GAS) model (Creal et al., 2013) or, referring to the same concept, the
dynamic conditional score (DCS) model (Harvey, 2013), have become a popular
choice for introducing time-varying parameters in parametric time series models.
GAS models can be seen as a class of observation-driven models in which the con-
ditional scaled score of the likelihood function drives the parameter dynamics. The
reliance on the full probability density conditional on past information, rather than
on specific moments, makes the use of score-driven models particularly attractive.

Leveraging the feasibility of the approach in a multivariate Gaussian setting,
Delle Monache et al. (2021) proposed the score-driven state-space model (SSM),
where the time variation in the system matrices is modelled following a score-driven
approach. An attractive reason for extending the standard linear SSM in a score-
driven framework is that it provides a viable strategy for dealing with dynamic
parameter restrictions, which are often required by identification based on economic
theory. In this respect, the score-driven SSM framework provides a flexible and
tractable approach to make the volatilities and NK structural relationships time-
varying in the LW framework.

Before introducing the score-based updating mechanism for the time-varying
parameters, it is helpful to first cast in matrix state-space form the structural
framework described in Section 2.1. Specifically, the corresponding state-space
model (Harvey, 1990) is expressed as follows.

yt = Γtut + Ztαt + εt εt ∼ N (0,Ht) (7)

αt = Tαt−1 + ηt ηt ∼ N (0,Qt) (8)

where yt is the observation vector collecting the contemporaneous endogenous vari-
ables, αt and ut are the vectors of state and input variables, respectively, T is the
state transition matrix, Zt is the matrix of regression parameters linking yt to the
latent states, Γt plays the same role for the observed input covariates, Ht is the
variance and covariance matrix of the observation error εt, Qt is the variance and
covariance matrix of the system error ηt. Formally, the model components and
system matrices are defined as follows.

yt =
[
yt, πt

]′
,

ut =
[
yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4

]′
,

αt =
[
y∗t , y∗t−1, y∗t−2, gt, gt−1, gt−2, zt, zt−1, zt−2

]′
,
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Zt =

[
1 −a1 −a2 0 −2aỹ,t −2aỹ,t 0 −aỹ,t/2 −aỹ,t/2
0 −bπ,t 0 0 0 0 0 0 0

]
,

Γt =

[
a1 a2 aỹ,t/2 aỹ,t/2 0 0
bπ,t 0 0 0 b1 1 − b1

]
, Ht =

[
σỹ,t 0
0 σπ,t

]
,

T =



1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


, Qt =



σy∗,t 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 σg 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 σz 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.

It is worth noting again that, unlike HLW, in our framework, the system ma-
trices Zt, Γt, Ht and Qt are allowed to be time-varying. Furthermore, without
affecting their stochastic nature, the assumed dynamic structure of the vector of
time-varying parameters λt implies that these matrices are known conditionally
on past information It−1. Therefore, the resulting state-space model, similar to
the one introduced by Delle Monache et al. (2021), is conditionally Gaussian, a
property that allows us to construct the likelihood function in the usual predic-
tion error decomposition form as in Eq. 9 and use the standard Kalman filter
(KF) recursions for optimal state estimation, thus retaining the simplicity of the
classical linear Gaussian state space framework. Also, letting the system matrices
Zt, Γt, Ht and Qt change over time, while still assuming they are non-stochastic
given the past, is a practical way to introduce nonlinearities into the state-space
model. In fact, assuming that the parameters are determined by past observations,
a feature that is compatible with the score-driven methodology, conditional on the
past: i) the system variables, observation and state vectors are Gaussian, ii) the
observation and transition equations remain linear with respect to the state vector.
Nevertheless, these relationships are unconditionally non-linear.

As in the case of time-invariant linear Gaussian state-space models, the model
parameters θ are estimated by maximising a Gaussian log-likelihood in its predic-
tion error decomposition form, given by

ℓt = log p(yt|It−1, θ) ∝ −1

2

(
log |Ft| + ν ′tF

−1
t|t−1νt

)
(9)

where the variables involved in the computation of the likelihood function, namely,
the prediction error νt|t−1 and its variance and covariance matrix Ft, along with the
conditional mean of the state vector αt and its mean squared error (MSE) matrix
Pt|t, are estimated recursively in the KF. Formally, the prediction equations of the
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KF are given by

αt|t−1 = Tαt−1|t−1 (αt|It−1) ∼ N (αt|t−1, Pt|t−1)

Pt|t−1 = TPt−1|t−1T
′ +Qt

yt|t−1 = Ztαt|t−1 + Γtut (yt|It−1) ∼ N (Ztαt|t−1 + Γtut, Ft)

νt|t−1 = yt − yt|t−1

Ft|t−1 = ZtPt|t−1Z
′
t +Ht

while the filtering equations are

αt|t = αt|t−1 +Ktνt

Pt|t = Pt|t−1 −KtZtPt|t−1 = (I −KtZt)Pt|t−1

Kt = Pt|t−1Z
′
tF

−1
t|t−1

where Kt is known as the Kalman gain matrix. As will be demonstrated, the
score-driven model allows for high flexibility in updating the elements of the gain
matrix, enhancing the ability to allocate the information content embedded in the
prediction errors across the state variables. In contrast, in the static-parameter
model, these elements converge to a steady-state value with limited time variation,
which hampers its efficiency in assigning appropriate weights to the state vector.

Constructing the model in a conditionally Gaussian form facilitates the use of
KF to estimate the latent variables. However, it leaves the nontrivial challenge of
jointly estimating both the state and the time-varying system matrices, a problem
addressed by Delle Monache et al. (2021) using a score-driven approach. The score-
driven framework is easily incorporated into the conditional Gaussian state space
model by augmenting the KF recursions with a set of additional recursions that
track the dynamics of the time-varying coefficients.

Following Creal et al. (2013) and Harvey (2013), the equation for the score-
driven updating of the TVP vector λt takes the form

λt+1 = ωλ + Aλλt + Bλst , st = Sλ,tuλ,t, (10)

where

ωλ =
[
ωλ,ỹ, ωλ,π, ωλ,y∗ , 0, 0

]′
,

Aλ = diag
([

aλ,σỹ
, aλ,σπ , aλ,σy∗ , aλ,y∗ , aλ,π

])
,

Bλ = diag
([

bλ,σỹ
, bλ,σπ , bλ,σy∗ , bλ,y∗ , bλ,π

])
.

The vector st is the gradient of the likelihood function uλ,t scaled by the matrix
square root of the inverse of the information matrix Sλ,t

1

uλ,t =
∂ log p(yt | λt; θ)

∂λt
, Sλ,t = −Et

(
∂2ℓt
∂ft∂f ′

t

)− 1
2

= I− 1
2

t .

The gradient and the information matrix are computed analytically in parallel with
the KF recursion as

uλ,t =
1

2
Ḟt(Ft ⊗ Ft)

−1vec(νtν
′
t − Ft) − 2V̇tF

−1
t νt (11)

1To improve numerical stability, we replace Sλ,t with its smoothed version S̃λ,t = (1−κ)Sλ,t+

κS̃λ,t−1, where the smoothing parameter κ is estimated jointly with the other model parameters
through ML.
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It =
1

2
Ḟt(Ft ⊗ Ft)

−1Ḟt + 2V̇tF
−1
t V̇t (12)

where V̇t = ∂νt/∂λt and Ḟt = ∂vec(Ft)/∂λt measure the sensitivity of the prediction
error νt and its variance Ft with respect to λt. The Jacobian matrices involved in
the computation of V̇t and Ḟt are derived following the approach in Delle Monache
et al. (2021). However, it should be noted that, compared to their specification,
the observation equation in our model includes an additional regression term, Γtut.
This modification affects the derivation of V̇t, which must be adjusted accordingly
to account for the contribution of Γt. The nonlinear mappings between the TVP
vector λt and the system matrices, along with the corresponding Jacobians utilised
by the score-driven filter, are reported in Appendix B.

In our implementation, in order to limit the proliferation of model parameters,
we have assumed the matrices Aλ and Bλ to be diagonal. The diagonal elements
of the matrix Bλ (bλ,i) determine how sensitive the TVP vector is to the score st.
Regarding the matrix Aλ, its diagonal elements (aλ,i) contribute to the degree of
persistence of the time-varying parameters by measuring the speed at which the
parameter reverts to its long-run level in a shock-free framework. In other words,
the diagonal elements of Aλ determine the inertia of the information embedded
in the prediction error up to time t − 1. As discussed in the following section,
the above interpretation of the two weighting matrices plays a crucial role in the
context of the present study.

Also, since the time variation of the slope parameters is assumed to follow a
random walk in the IS and Phillips curve equations, we have imposed ωλ,i = 0 and
aλ,i = 1 in the updating equations for aỹ,t, bπ,t. The vector of static parameters
driving the dynamics of the TVP vector λt is then given by

θλ = {ωλ,i,Aλ,i,Bλ,i}, i = {σỹ, σπ, σy∗ , aỹ, bπ}.

The total vector of model parameters to be estimated maximising the log-likelihood
in Eq. 9 is θ = (θ′

s,θ
′
λ)′, which includes the previously introduced vector of static

parameters θs and the vector of TVP-related coefficients θλ.

2.3 An augmented accelerating score-driven framework for
TVP updating

The GAS framework allows for score-driven TVPs but relies on the assumption
that the dynamic law governing their evolution is time-invariant. However, chang-
ing economic conditions and state dependencies, which typically characterise many
economic phenomena, can cause the features of the variation pattern to evolve.
Furthermore, the flexibility of GAS models is limited by the assumption that the
TVPs are linearly dependent on past score values. Blasques et al. (2019) recog-
nised and addressed such difficulties and proposed the accelerating GAS (aGAS)
model, which assigns a time-varying weight to the score in the parameter updating
equation.

In particular, the aGAS model includes an additional updating equation, where
the first-order autocorrelation of the conditional scores determines the weight of
the score for updating the dynamic parameters. When recent score innovations
have the same sign (positive first-order autocorrelation), the adjustment of the
current TVP needs to accelerate faster than in a period when these innovations
have mixed signs (negative first-order autocorrelation). Accordingly, the updating
procedure will accelerate (decelerate) when a set of consecutive innovations has the
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same (different) signs. As a result, the aGAS provides an intuitive way to make
the speed of TVP adjustment adaptive, thus improving the local fit of the model.
In their analysis, Blasques et al. (2019) find that this mechanism is well suited
for capturing sudden volatility shifts, adapting the volatility dynamics much faster
than in the standard GARCH model. In addition, they find that in the presence
of outliers, the application of the aGAS approach in GARCH-type models can
mitigate the adverse effect of tail events by attenuating the impact of the outliers
faster.

Considering the above aspects in the present study, the large transitory shocks
experienced during the COVID-19 pandemic provide a striking example of rapid
shifts in volatility dynamics. As Holston et al. (2023) report, the standardised aux-
iliary residuals of the output gap display severe divergences from their pre-pandemic
level of standard deviation due to the economic shutdowns and re-openings caused
by the exogenous shocks. Consistent with a procedure testing the presence of out-
liers in terms of auxiliary residuals proposed by Harvey and Koopman (1992) and
Creal et al. (1999), this observation confirms that the estimated output gap has
been heavily affected by the pandemic-induced extreme observations.

Since the main objective in estimating the r-star is to properly disentangle
transitory disturbances from permanent or highly persistent shocks using the KF,
it is crucial to model volatility persistence adequately. Volatility directly influences
the elements of the Kalman gain matrix, which determines the weight assigned to
the information content of prediction errors in the state estimation process. As
suggested by time series evidence, highly persistent changes in real GDP growth,
labour productivity growth, and real interest rate are prone to be mistaken for
volatile transitory shocks (Holston et al., 2017). Therefore, maximum likelihood
(ML) estimates of the standard deviations in the observation equation are possibly
contaminated by persistent changes. As a result, the standard deviations of the
state innovations are likely to be biased towards zero when estimated by maximum
likelihood, which is the so-called “pile-up problem” mentioned by Stock (1994).

To overcome these problems, we propose implementing an aGAS model, which
provides a flexible approach to identifying transitory shocks through adaptive mod-
elling of volatility persistence. As mentioned above, this task is achieved by as-
signing a time-varying weight to the conditional score. Furthermore, to enhance
the flexibility of the aGAS modelling approach, we consider a variant of the model
originally proposed by Blasques et al. (2019) where, in the updating mechanism,
the autoregressive coefficient associated with the lagged volatility is also allowed
to be time-varying. Since this coefficient determines the extent to which current
volatility depends on its past values and thus governs its inertia, it plays a promi-
nent role in determining the persistence of volatility clustering over time. This
modified version of accelerating GAS will be referred to as augmented accelerating
GAS (aaGAS).

In the aaGAS model, the standard score-driven recursion for updating the vec-
tor of TVP takes the form

λt+1 = ωλ + Aλ,tλt + Bλ,tst , st = Sλ,tuλ,t, (13)

where the persistence parameters, given by the diagonal elements of Aλ,t (aλ,t) and
Bλ,t (bλ,t), become time-varying. The aGAS model is obtained as a special case set-
ting Aλ,t = Aλ. In our framework, considering the extreme shifts in the volatility
of the output gap disturbances during the COVID-19 pandemic, we have decided
to enhance the baseline score-driven model presented in Section 2.2 by introducing
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an aaGAS update only for the standard deviation of the observation noise in the IS
curve equation. To keep the model parsimonious and, therefore, confine the dimen-
sion of the TVP-related static parameter vector, the weight parameters associated
with the other elements of the TVP vector remain time-invariant, leading to the
following modified configuration for the Aλ,t and Bλ,t matrices in Eq. (13)

Aλ,t = diag
([

aλ,σỹ ,t , aλ,σπ , aλ,σy∗ , aλ,y∗ , aλ,π

])
Bλ,t = diag

([
bλ,σỹ ,t , bλ,σπ , bλ,σy∗ , bλ,y∗ , bλ,π

])
where the variation in aλ,σỹ ,t and bλ,σỹ ,t (boxed) is modelled by the aaGAS specifi-
cation. For simplicity, we will hereafter denote these as aλ,t and bλ,t, respectively.

In particular, following Blasques et al. (2019), the weighting for the i-th com-
ponent of the score innovation is accomplished as

bλ,t = j(ft+1; θ) , ft+1 = ωf + afft + bfsf,t (14)

where j(·) denotes a logistic function that characterises how the additional updating
equation governs the time variation in bλ,t. The time-varying ft+1 follows a first-
order autoregressive process with intercept ωf , AR coefficient af , weight parameter
bf , and innovation term sf,t, which is given by

sf,t = Cf,tuf,t , uf,t =
∂ log p(yt | λt; θ)

∂ft
∝ uλ,tuλ,t−1, (15)

where Cf,t is a function of the scaling factors Sλ,t and Sλ,t−1 introduced earlier.
More precisely, since the aaGAS update is applied exclusively to the first ele-

ment of the TVP vector, we consider only the first diagonal element of the scaling
matrices Sλ,t and Sλ,t−1, such that:

Cf,t = [Sλ,t]11 · [Sλ,t−1]11,

where
[Sλ,t]11 = ([It]11)

− 1
2

denotes the square root of the inverse of the first diagonal element of the time
t information matrix. This scalar scaling term ensures that only the uncertainty
related to the output gap volatility enters the aaGAS update so that the current
and lagged scores are scaled by their corresponding marginal Fisher information.

To complete the local dependence model of volatility persistence in Eq. (13),
we introduce aλ,t given as

aλ,t = k(gt+1; θ) , gt+1 = ωg + aggt + bgsg,t , sg,t = [Sλ,t]11 · ug,t, (16)

where the link function and the structure of the updating equation are analogous
to Eq. (14), with the innovation term ug,t, as shown in Appendix A under the
assumption ∂λt−1/∂ft = 0, defined as

ug,t =
∂ log p(yt | λt; θ)

∂gt
∝ uλ,tλt−1. (17)

Therefore, Eq. (17) reveals that when the weighting coefficient in the score-
driven updating equation becomes time-varying, it is proportional to the product
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of the current conditional score and the lagged realisation of the time-varying pa-
rameter itself, thus relating to the first-order cross-correlation between these vari-
ables. One may interpret this result within the present context as follows: a sharp
change in the conditional score materialised by a large shock, such as an event
associated with the COVID-19 pandemic, implies a sudden downward shift in the
volatility persistence. Therefore, the model is expected to identify large transi-
tory shocks more effectively by putting less weight on the AR coefficient of the
parameter updating equation.

3 Empirical analysis

This section presents the results of an empirical application of the models intro-
duced in Section 2 to US data. First, Section 3.1 and Section 3.2 provide brief
descriptions of the dataset used for the analysis and the estimation strategy, re-
spectively, while Section 3.3 presents the estimation results, Section 3.4 focuses
on the estimated time-varying volatilities, the estimated dynamic IS and Phillips
curves are presented in Section 3.5, and finally Section 3.6 reports and discusses
the empirical results on the estimation of the r-star and the output gap.

3.1 The data

The dataset used in this study is the same as that in Holston (2017), but has been
extended to cover the period up to 2024 Q4. Therefore, for a brief overview, we
report only the summary of the variables in Table 1. A detailed description of
the variables can be found in the Data Appendix of HLW. Further details and the
quarterly updated database are available on the website of the Federal Reserve
Bank of New York (https://www.newyorkfed.org/research/policy/rstar).

Table 1: Variable Definitions

Variable Description

Inflation Annualised quarterly growth rate of core PCE inflation
Inflation expectations Four quarter moving average of past inflation
Short-term interest rate Annualised nominal federal funds rate
Output Logarithm of real GDP

3.2 Model specification and estimation

We estimate two variants of the baseline TVP conditionally Gaussian state-space
model, each employing a different score-driven framework to govern the dynamics
of the TVP vector. First, we estimate the model with the standard GAS updating
structure; then, we consider the model incorporating the augmented accelerating
scheme (aaGAS) for the volatility of the output gap innovations. The model log-
likelihood in Eq. 9 is evaluated by the KF, augmented with the score-driven recur-
sions needed to update the time-varying parameters present in the system matrices.
Estimation of the vector of model parameters θ, including those kept time-invariant
within the system matrices (θs) and the TVP-related ones (θλ), is carried out by
numerically maximising the log-likelihood function with respect to θ = (θs, θλ).
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Confidence intervals for the elements of the TVP vector λt and the state esti-
mates are constructed by integrating the simulation-based inferential techniques
of Blasques et al. (2016) and Hamilton (1986) to account for both parameter and
filter uncertainty. More specifically, in addition to generating parameter vectors
from a multivariate normal distribution, with mean and variance-covariance ma-
trix respectively given by the ML estimate of the static parameter vector θ̂ and its
robust variance-covariance matrix estimate, we simultaneously draw model-based
random trajectories of the state vector. As prior for the initial state, we assume
a multivariate normal distribution with the mean and variance-covariance matrix
given by the smoothed estimates of the initial state and its variance-covariance
matrix, respectively. Therefore, the confidence intervals constructed from the sim-
ulated sequences of parameter and state vectors obtained using the Kalman filter
with the TVP updating algorithm capture both filtering and parameter estima-
tion uncertainty. In addition, to assess the overall precision of the state variable
estimates and facilitate comparison with the HLW model, we compute their asso-
ciated standard errors following the methodology introduced by Hamilton (1986).
In what follows, we report standard errors and the 68% confidence intervals based
on 5000 simulations.

3.3 Parameter estimates

Before turning to the visual representation of the estimated dynamic parameters
and state variables, Table 2 presents a first summary of the estimation results. In
addition to the score-driven models, the table also reports the estimation results for
the COVID-adjusted version of the benchmark HLW model discussed by Holston
et al. (2023). All models consider the period from 1960 Q1 to 2024 Q4, covering
the full data set available at the time of writing.

The top panel of the table reports the parameter estimates for the static pa-
rameters in θs, (a1, a2, b1, σg, σz), along with their robust standard errors. For both
score-driven specifications, the estimated values are broadly in line with the HLW
estimates, except for the standard deviations of the trend growth rate and the
z-factor innovations, σg and σz, which are estimated to be lower under the score-
driven models. At this point, it is worth noting that we slightly depart from the
related HLW procedure, where the Stock and Watson (1998) median unbiased es-
timator (MUE) is used due to the pile-up problem discussed in Section 2.3. Our
choice aligns with Buncic (2024), who estimates σg and σz with ML and finds lit-
tle evidence for the pile-up problem. As the estimated parameters suggest, this
finding is also supported by our ML estimates, probably due to the improved iden-
tification of transitory shocks facilitated by time-varying volatilities. Concerning
the estimation of the TVP vector, in order to enable the comparison with HLW,
we summarise the elements of λt in terms of their sample averages in the bottom
panel of the table. Specifically, we find that the mean values of σỹ, σπ and σy∗
are consistent with the corresponding HLW estimates. Regarding the two slope
parameters, aỹ and bπ, the former, associated with the IS curve, is well aligned
with the HLW estimate. In contrast, the sample average of the latter, correspond-
ing to the Phillips curve, is half the value reported by HLW when using the GAS
specifications.2

Turning to the assessment of uncertainty in the state variables, the lower panel

2The slope parameter of the Phillips curve estimated under the original LW configuration is
closer to the sample average of our estimates, i.e., 0.047 over the same estimation interval.
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Table 2: Model estimation results

Parameter HLW standard GAS aaGAS

Static [θs]

a1 1.417 1.514 1.544
[0.103] [0.097] [0.027]

a2 -0.483 -0.545 -0.578
[0.105] [0.084] [0.035]

b1 0.689 0.617 0.618
[0.041] [0.079] [0.074]

σg 0.137 0.128 0.080
[0.005] [0.001]

σz 0.113 0.056 0.045
[0.022] [0.001]

σr∗ =
√

σ2
g + σ2

z 0.188 0.139 0.092

Time Varying [λt]

aỹ -0.068 -0.054 -0.057
[0.017]

bπ 0.080 0.040 0.040
[0.026]

σỹ 0.437 0.386 0.391
[0.094]

σπ 0.791 0.753 0.739
[0.027]

σy∗ 0.503 0.511 0.515
[0.077]

S.E. (sample averages)

r∗ 1.207 0.760 0.700
g 0.407 0.400 0.309
y∗ 1.520 2.023 1.809
z 1.137 0.644 0.627

S.E. (final observations)

r∗ 1.595 1.073 0.910
g 0.583 0.642 0.452
y∗ 2.090 2.878 2.084
z 1.484 0.860 0.789

Log-Likelihood -600.70 -570.44 -565.81
AIC 1235.4 1174.89 1173.62

Note: Robust standard errors (S.E.) are reported in parentheses. σg is expressed at an annual
rate. The values for the time-varying counterparts of σỹ, σπ, σy∗ , aỹ and bπ under the GAS
and aaGAS model correspond to their sample averages. Standard errors for σg and σz under the
HLW model are not reported, as these are implied parameters. Specifically, they are computed
as σg = λgσy∗ and σz =

λzσỹ

aỹ
, where λg and λz are obtained from a preliminary ML estimation.

of Table 2 compares the standard errors obtained across the models under consid-
eration. Focusing first on potential output, the sample average standard errors in
the GAS models are higher than in the HLW model, indicating somewhat greater
estimation uncertainty on average. However, the difference is only marginal in the
aaGAS model. As for the final observation, while a similar degree of difference
remains in the standard GAS model, the aaGAS model yields a nearly identical
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standard error, suggesting that it is not the onset of the COVID-19 pandemic
which drives the full-sample divergence from the HLW model in the potential out-
put estimation uncertainty.3 Most importantly, the sample average standard error
of the r-star in the aaGAS model is 0.7 percentage points, which is nearly half
the magnitude observed in the HLW model, highlighting a substantial reduction in
uncertainty of the natural rate estimate when the full information set is utilised.
A comparable gain in precision is also evident in the standard errors of the fi-
nal observation, reflecting lower uncertainty in the real-time state estimates of the
score-driven models. It should be noted that the random walk component, z, ac-
counts for the largest improvement in the precision of r-star estimates and is the
main contributor to the estimation uncertainty of the natural rate of interest re-
ported under all models and for both the sample average and final observation
estimates.4

Overall, the log-likelihood and the information criteria values confirm that the
score-driven framework significantly improves the model fit, where the aaGAS
model slightly outperforms the standard GAS model.

The additional static parameters governing the score-driven updates, collected
in the vector θλ, are reported in Table 3. Most parameters are significant at the
10% level in both score-driven models. The most notable exception is given by the
score weight associated with the output gap standard deviation, bλ,σỹ

, indicating
some uncertainty in the identification of the dynamics of the underlying coefficient
in the standard GAS model. As aλ,σỹ

and bλ,σỹ
are modelled as time-varying in

the aaGAS framework, we report the time averages of the estimated coefficients to
allow comparison with the level of the corresponding GAS estimates.

3.4 Time-varying volatilities

In this section, we compare the estimates of time-varying volatilities obtained by
the GAS and aaGAS approaches.

First, Figure 1 shows the evolution of the parameters governing the state-
dependent persistence of the output-gap volatility within the aaGAS setting. The
time-varying AR coefficient aλ,t exhibits large movements during the analysed pe-
riod. Notably, the dynamics of aλ,t appear to be correlated with those of the
output as the sharp declines in the coefficient coincide with the US recessionary
periods characterised by plummeting US output. In general, it can be observed
that aλ,t decreases proportionally to the magnitude of output shocks. These drops
are regularly followed by a slow recovery as economic disruptions dissipate. This
behaviour is particularly pronounced during the COVID-19 pandemic, reflecting
highly volatile economic activity. During the same period, the parameter bλ,t,
which measures the weight of score innovations, is characterised by a sharp in-
crease after an initial decrease. This variation enables a quicker adjustment to the
new level of volatility. Consequently, the lower level of aλ,t implies that the overall
persistence of the output gap during the COVID period is predominantly driven
by the score innovations rather than by the inertial component of its dynamics.

3We find that the standard errors of potential output generated by the aaGAS model are,
on average, similar to those obtained from the original Laubach and Williams (2003) model
configuration with the COVID-related modification introduced by Holston et al. (2023), and
lower for the final observation, which reports 1.8 and 2.5 percentage points, respectively.

4We note that the gains in the estimation precision are similar or even greater when comparing
the standard errors of the r-star and its components obtained by our models with those by the
Laubach and Williams (2003) specification.
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Table 3: TVP Related Parameter Estimates

Parameter standard GAS aaGAS Parameter aaGAS

aλ,σỹ
0.826 0.463 af,σỹ

0.837

[0.053] [0.016]
aλ,σπ 0.900 0.898 bf,σỹ

0.006

[0.050] [0.042] [0.002]
aλ,σy∗ 0.838 0.740 ωf,σỹ

0.490

[0.145] [0.009] [0.005]
bλ,σỹ

0.498 0.440 ag,σỹ 0.845

[0.268] [0.026]
bλ,σπ 0.142 0.139 bg,σỹ 0.030

[0.032] [0.031] [0.001]
bλ,σy∗ 0.275 0.221 ωg,σỹ 0.464

[0.096] [0.011] [0.074]
bλ,ỹ 0.118 0.078

[0.116] [0.016]
bλ,π 0.006 0.003

[0.008] [0.004]
ωλ,σỹ

0.719 0.366

[0.345] [0.047]
ωλ,σπ 0.945 0.940

[0.036] [0.027]
ωλ,σy∗ 0.804 0.708

[0.368] [0.013]
κ 0.014 0.036

[0.007] [0.004]

Note: Robust standard errors are reported in parentheses. The values for the time-varying
counterpart of aλ,σỹ and bλ,σỹ under the aaGAS model correspond to their sample averages.

Figure 1: Dynamic persistence parameters of the output gap noise volatility estimated by the
aaGAS (solid line) and standard GAS (dashed line) specifications. The left-hand side panel
displays the inertia coefficient aλ,t, the right-hand side panel shows the weight of the score inno-
vations bλ,t.

Next, Figures 2 and 3 show the time plots of the output gap and potential output
volatilities, respectively, comparing the time-varying volatility dynamics returned
by the score-driven models (GAS and aaGAS) with the volatility level fitted by
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Figure 2: The solid blue lines show the output gap time-varying volatilities estimated by the
standard GAS (left) and augmented-accelerating GAS update (right). The red dashed lines dis-
play the HLW estimates adjusted in the COVID-19 pandemic by the HLW (2023) methodology.
Shaded vertical areas indicate US recessions as dated by the National Bureau of Economic Re-
search (NBER).

the COVID-adjusted HLW model. The latter assumes a constant volatility level
except for the ad hoc adjustment characterising the COVID-19 period.

For the output gap, as shown in Figure 2, the aaGAS and GAS approaches pro-
duce volatility patterns that differ substantially during the COVID-19 pandemic.
While the standard GAS specification does not capture the shock induced by pan-
demic restrictions, the aaGAS model estimates notably higher volatility, consistent
with the definition of a transitory shock. Over the long run, the HLW constant
estimate interpolates the score-driven volatilities while, during the COVID period,
it lies between the GAS and aaGAS estimates.

Figure 3: Potential output time-varying volatilities estimated by the standard GAS (left) and
augmented-accelerating GAS update (right). The red dashed lines show the time-invariant coun-
terparts estimated by HLW. Shaded vertical areas indicate U.S. recessions as dated by the Na-
tional Bureau of Economic Research (NBER).

Introducing fully state-dependent persistence in output gap volatility does not
limit its impact to a single parameter. This is evident in Figure 3, which shows the
difference between the conditional volatility estimates of potential output obtained
from the two score-driven models. While the standard GAS update allows the
pandemic-related innovations to affect the signal, the aaGAS updating mechanism
mitigates the impact of these shocks on state volatility by downweighting the as-
sociated scores through Eq. 11 and Eq. 12. This behaviour is better understood
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when considering that the pandemic-specific trajectories in the volatility dynamics
result in a different evolution of the signal-to-noise ratio - that is, the ratio of output
gap to potential output volatility - a critical factor in estimating the state through
the KF. As shown in the bottom panel on the left-hand side of Figure 4, when
the model is estimated by the standard GAS model, the ratio rises sharply due to
the COVID-19 pandemic shocks, considerably affecting the path of the potential
output. In contrast, as will be shown in Section 3.6, the aaGAS model discounts
the weights on the same shocks in the KF through the signal-to-noise ratio (bottom
panel on the right-hand side of Figure 4), thus minimising the impact of transitory
shocks on the state variable and leaving the potential output nearly unaffected.
In addition, the bottom-right panel shows that, while the estimated trajectories
obtained from the aaGAS and the HLW estimates follow a broadly similar pattern,
their timing differs slightly when compared. It should be noted that the delayed
response of the latter results from a COVID-related modelling choice by Holston
et al. (2023), which allows the underlying output gap volatility to vary annually,
but only starting in the second quarter of 2020, despite the U.S. economy having
already been affected by the COVID shock in the first quarter of 2020.

Figure 4: The solid blue lines show the signal-to-noise ratio (output gap volatility to poten-
tial output volatility) estimated by the standard GAS (left-hand side column) and augmented-
accelerating GAS update (right-hand side column) in the pre-pandemic interval (upper panels)
and from 2018 onward (bottom panels). The red dashed lines display the HLW estimates adjusted
in the COVID-19 pandemic by the HLW (2023) methodology. Shaded vertical areas indicate U.S.
recessions as dated by the National Bureau of Economic Research (NBER).

To conclude the section, Figure 5 depicts the volatility dynamics of the inflation,
which agrees with the major inflationary events.5 The 1970s hikes align with the

5Since the estimation of this time-varying parameter largely coincides in the two models, only
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Figure 5: Inflation volatility estimated by the aaGAS model. The coloured bands denote
the 68% confidence interval corresponding both for filtering and parameter uncertainty. The
red dashed lines show the time-invariant inflation volatility estimated by HLW (2017). Shaded
vertical areas indicate U.S. recessions as dated by the National Bureau of Economic Research
(NBER).

oil shocks and energy crisis, setting off a trend of high inflation in the US. It was
not until the middle of the 1980s that the high inflation volatilities petered out,
due to the Volcker monetary tightening. This period of low volatility, known as the
’Great Moderation’, came to an end with the GFC, when the standard deviation of
inflation increased sharply. Lastly, the COVID-19 pandemic-induced inflationary
shocks, followed by the disruption in the energy market in 2023, are also reflected
in the evolution of the Phillips curve-related standard deviation.

3.5 Dynamic IS and Phillips curves

This section evaluates the dynamics of the parameters that drive the IS and Phillips
curve structural relationships. As the evolution of the two time-varying parameters
in the two score-driven models considered takes a comparable path, only the results
obtained by estimating the aaGAS model are reported.

Figure 6 displays the dynamics of the IS and Phillips curve slope parameters over
the analysed interval, respectively. Specifically, aỹ,t corresponds to the output gap
sensitivity to changes in the real interest rate gap, and bπ,t determines the linkage
between the output gap and the inflation rate. While a causal interpretation of
the endogenous relationships requires the identification of the individual structural
shocks, the main linkages can be summarised as follows. When the real funds rate
is above (below) the natural rate of interest, the positive (negative) real rate gap
reduces (increases) economic activity. The resulting lower (higher) output gap is,
in turn, associated with deflationary (inflationary) conditions.

The evolution of the IS slope parameter in the left-hand side panel confirms that
the relationship between the real interest rate gap and the output gap underwent
considerable structural changes over the analysed interval. Specifically, until the
economic recovery from the 1990s recession, the IS slope appears unstable and rel-
atively steep. However, in line with the unfolding Great Moderation, characterised
by downward shifts in economic volatility and consolidating monetary policy, the

the aaGAS estimates are presented.
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Figure 6: Dynamic slopes of the IS curve (left-hand side) and Phillips curve (right-hand side)
based on simulation output. The red dashed line shows the time-invariant slope of the IS curve
estimated by HLW (2017). The Phillips curve slope parameter estimated by HLW (2017) as 0.08
is not displayed to improve readability. The solid blue line corresponds to the 50th percentile of
the simulated parameter. Shaded vertical areas indicate U.S. recessions as dated by the National
Bureau of Economic Research (NBER).

slope gradually became flatter, reaching its current relatively stabilised level after
the Great Recession.

Although the Phillips curve slope dynamics in the right-hand side panel follow a
downward trend, the median of the simulated parameter path remains confined to a
narrow range due to the low weight placed on its score innovation, bλ,π, as reported
in Table 3. This finding suggests that the relationship between the output gap and
the inflation rate has been relatively stable in the analysed interval, consistent with
studies reporting small or no significant change in the slope of the Phillips curve in
recent decades (i.e., Hazell et al., 2022). Nevertheless, the asymmetrical widening
of the confidence bands over the last two decades makes it difficult to rule out the
flattening Phillips curve hypothesis.

3.6 The r-star and the output gap

To open the discussion, we compare the output gap dynamics around the COVID
pandemic obtained by the two GAS specifications discussed in Section 3.4 with
those implied by the HLW estimates. As Figure 7 illustrates, the output gap
filtered state trajectories under the two score-driven models diverge markedly from
the onset of the COVID-19 pandemic. Interestingly, from this point onward, the
median realisation of the simulated state under the standard GAS model deviates
from its filtered counterpart, resulting in more comparable simulated paths across
the considered models. However, consistently with the significance of the weighting
parameters related to the standard deviation of the output gap reported in Table
3, the narrower confidence band, with the closer alignment between the simulated
and filtered states, under the aaGAS model suggest that introducing time-varying
persistence in output gap volatility substantially improves both the precision and
the real-time reliability of the estimates.

While the aaGAS output gap exhibits the expected behaviour as the COVID-
19 pandemic evolves, the decline in its magnitude differs markedly from that esti-
mated by HLW. Figure 8 presents the distinct estimates of the underlying states
that, by definition, give rise to the observed dynamics. Notably, the natural rate
of output moderately declines in all considered models following the initial impact

19



Figure 7: Estimations of the output gap around the COVID pandemic using the model with
standard GAS (left-hand side) and augmented-accelerating GAS (aaGAS) update (right-hand
side). The coloured bands denote the 68% confidence interval accounting for both filtering and
parameter uncertainty. The thin solid blue line indicates the 50th percentile of the simulated
states, while the thick blue line shows the real-time filtered estimates. Shaded vertical areas
indicate U.S. recessions as dated by the National Bureau of Economic Research (NBER).

of the pandemic, but diverges noticeably thereafter. While the y-star estimated
by the standard GAS and HLW models falls more sharply in 2020 Q2, the former
rebounds significantly, whereas the latter continues along a shifted trend as the eco-
nomic impact of the pandemic unfolds. In contrast, the aaGAS model interprets
the pandemic-related shocks as transitory, resulting in a potential output estimate
that follows a moderately shifted trend with a milder slope. Given the primary
objective of the Kalman filter in this study, the substantial shift in the standard
GAS and HLW state estimate appears difficult to reconcile with the typically per-
sistent nature of potential output. In contrast, the aaGAS scenario, which shows a
trend with a moderate downward shift, with increased uncertainty around the out-
put gap, aligns more closely with the somewhat neutralising forces on productivity
experienced after the initial shock of the COVID-19 pandemic.6

Figure 8: Estimation of the potential output by different models around the COVID-19 pan-
demic.

6For example, Bloom et al. (2025) find little lasting impact on aggregate total factor produc-
tivity with significant heterogeneity across firms and sectors in the US. Similarly, Fernald and Li
(2022) report a relatively modest decline in potential output in the post-COVID interval, driven
by offsetting effects across different channels.
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Figure 9: Output gap 50th percentile simulation projection by the aaGAS model with the
corresponding confidence band and the benchmark HLW filtered estimate. Shaded vertical areas
indicate U.S. recessions as dated by the National Bureau of Economic Research (NBER).

Looking at the output gap over the full interval, Figure 9 reveals that the
declines in output gap at the aaGAS model are generally deeper than the HLW
estimations. The fall in the output gap is especially pronounced following the Vol-
cker shock, which proceeds with a slower rebound than the HLW estimation. This
mismatch arises from the higher potential output the score-driven model gives,
likely reflecting its muted sensitivity to transitory shocks consistent with the struc-
tural assumption. These characteristics suggest that models with time-varying
volatilities improve the effectiveness of filtering out temporary disturbances when
estimating state variables. In addition, the resulting asymmetry, which, except for
the high-inflation trend episodes in the 1960s and 1970s and the post-COVID pe-
riod, dominates the analysed interval, is somewhat compatible with the “plucking
model” by Friedman (1993), where the economy fluctuates under its full potential
ceiling.7

Turning to the central interest of the study, Figure 10 displays the r-star esti-
mated by the aaGAS specification with a confidence interval accounting for both
parameter and filtering uncertainty.8 As the plot displays, the natural rate of in-
terest follows a descending trend through the analysed interval and, as shown in
Figure 11, its real-time estimate is characterised by a relatively lower variability
than the corresponding HLW estimate. Most importantly, the decline during the
GFC is less pronounced in our estimation and, even afterwards, tends to stay in a
higher range than the HLW estimate. The distinct trajectory of the aaGAS r-star,
as shown by the two-sided estimates in Figure 11, becomes even more evident when
comparing its smoothed values given by the KF recursion using the full information
set. Nevertheless, considering the ongoing debate about the current location of the
r-star, the most intriguing finding is perhaps the observed divergence in the trends
of the two real-time estimates.

As Figure 12 shows, the primary source of the estimation discrepancy is the
fundamentally different paths of the “other factors” component, zt. While the
descent in zt estimated by HLW accelerates in the post-pandemic interval, it shows

7The plucking framework has been studied recently both theoretically (Suah, 2024) and em-
pirically (Dupraz et al., 2019).

8Except for the potential output, we report only the state estimations of aaGAS as these
results are robust over the two specifications.
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Figure 10: Simulation results for the natural rate of interest using the augmented-accelerating
GAS (aaGAS) model. The coloured bands denote the 68% confidence interval corresponding both
for filtering and parameter uncertainty. Shaded vertical areas indicate U.S. recessions as dated
by the National Bureau of Economic Research (NBER).

Figure 11: The solid blue line represents the filtered (one-sided) estimates of r-star using
the aaGAS model, while the red dashed line shows the corresponding estimates from the HLW
approach. The solid green line depicts the smoothed (two-sided) estimates of the natural rate of
interest under the aaGAS specification, and the green dashed line shows the smoothed estimates
based on the HLW model. Shaded areas indicate U.S. recessions as dated by the National Bureau
of Economic Research (NBER).

limited variation in our output. Notably, the two estimates depart significantly
after the GFC, with a widening divergence over the rest of the interval. In contrast,
as Figure 13 shows, the other determinant of the r-star, the trend growth rate, is
characterised by substantially narrower confidence bands and, except for the post-
GFC interval, a closer match with the HLW estimate. Overall, these observations,
in line with the associated standard errors reported in Table 2, make it evident
that most of the uncertainty surrounding the r-star and its higher trajectory over
the past two decades relative to the HLW results stems from the estimation of
the z-factor. At the same time, as previously discussed, the notably lower standard
errors confirm that our models provide a more precise estimation of the zt compared
to HLW, which largely accounts for the reduced uncertainty of our natural rate of
interest estimates.
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Figure 12: Estimation of the “other factors” component (zt) by the model with augmented-
accelerating GAS (aaGAS) update and with HLW 2023 configuration. The coloured bands denote
the 68% confidence interval corresponding both for filtering and parameter uncertainty. Vertical
shadows indicate recessions as identified by the National Bureau of Economic Research (NBER).

Figure 13: Estimation of the trend growth rate by the model with augmented-accelerating GAS
(aaGAS) update and by HLW (2017). The coloured bands denote the 68% confidence interval
corresponding both for filtering and parameter uncertainty. Vertical shadows indicate recessions
as identified by the National Bureau of Economic Research (NBER).

As discussed before, the key component in the KF algorithm is the Kalman gain
matrix, which assigns weights to the prediction errors, determining the latent state.
Therefore, it is instructive to examine the evolution of its elements to understand
how the score-driven framework influences the estimation via this instrument. We
collect the main elements of the Kalman gain matrix in Figure 14, which shows
how the weight of the information content in the IS curve (left-hand side column)
and the Phillips curve equation (right-hand side column) are allocated through the
Kalman filter recursion. While the weights associated with the potential output
(upper two panels), and thus determining the output gap, oscillate around the
weight obtained from the HLW model, the rest of the panels show a different
picture. In particular, the bottom panels in Figure 14 show that the Kalman gains
related to the z-factor differ considerably between the two models. Specifically,
apart from the periods affected by the COVID-related adjustments, the Kalman
gains obtained from the HLW model are consistently higher than those from the
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Figure 14: Kalman gains (Kt) associated with different structural equations and state variables.
The panels display, from left to right and top to bottom: (1) Kalman gain associated with the
potential output and IS equation, (2) Kalman gain associated with the potential output and
Phillips curve, (3) Kalman gain associated with the trend growth rate and IS equation, (4)
Kalman gain associated with the trend growth rate and inflation dynamics, (5) Kalman gain for
the z-factor and IS relation, and (6) Kalman gain for the z-factor and Phillips curve equation.

aaGAS specification. Altogether, the high flexibility provided by the score-driven
setup, as opposed to the relatively rigid and larger weights obtained from the
static parameter model for the two components of the r-star, gt and zt, led to our
higher and generally more stable natural rate of interest estimates over the past
two decades, materializing primarily through the estimation of the z-factors.

4 Conclusions

Determining the natural rate of interest has been an inspiring subject of academic
discourse since the concept was first introduced over a century ago. The present
study contributes to this line of research by making the parameters of the Laubach-
Williams semi-structural model time-varying, with their dynamics being governed
by the conditional likelihood score. In addition, motivated by the econometric
challenges initiated by the pandemic, we introduced an augmented accelerating
version of the GAS (aaGAS) updating mechanism.

The output gap estimated by the aaGAS suggests that the modified model ef-
fectively handles large volatility shifts due to extreme events. Furthermore, the
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higher estimate of potential output relative to HLW suggests that the proposed
models are more efficient at disentangling transitory and highly persistent shocks,
providing some support for Milton Friedman’s ”plucking model”. Regarding the
time-varying structural relationships, the IS slope was highly unstable until the
beginning of the Great Moderation, gradually flattening during this period and
stabilising at a low level after the Great Recession. As for the Phillips curve, while
we find little evidence of time variation in its slope parameter, the pronounced
downside uncertainty in the simulated parameter limits any decisive conclusions
regarding the stability of the slope over the past decades. Most importantly, the
r-star estimates exhibit substantially higher precision and reduced variability, along
with a flatter downward trend over the analysed interval compared to the bench-
mark HLW model. In addition, we find that the primary source of the recent
divergence in the trajectories and the uncertainty surrounding the natural rate of
interest lies in the estimation of the “other factors”, z. These state estimates not
only deviate substantially from those of HLW but also account for most of the
improvement in r-star estimation precision, explaining the higher natural rate of
interest—ranging between 1.5% and 2%—observed over the past two decades. Fur-
thermore, the current upward trend in both the filtered and smoothed estimates,
in contrast to HLW model output, indicates that the natural rate of interest has
already passed its historically low level.

Given the high uncertainty and the ambiguous definition of the z-factor, future
research could focus on improving its refined identification and developing more
precise specifications. Moreover, considering the low-frequency nature of current
estimations and the delayed availability of relevant data, a model that utilizes
higher-frequency data and proxy variables could offer a more timely and accurate
assessment.

In summary, the lower variability of the r-star estimate, along with the reduced
standard errors of the underlying state estimates, implies that the proposed mod-
els are more adaptable to sudden changes in the economic environment and, thus,
more effective at identifying transitory shocks than the standard LW methodol-
ogy. Based on a purely statistical, data-driven approach, the GAS (score-driven)
models, therefore, provide a valid empirical alternative for estimating the natu-
ral rate of interest in real-time, demonstrating a clear advantage in estimation
precision. In addition, the aaGAS specification further improves the precision of
the r-star estimate, alleviating a long-standing limitation of models based on the
LW methodology. Moreover, in light of the occurrence of extreme events in both
macroeconomic and financial contexts, the aaGAS offers a viable extension of the
standard GAS framework to more adequately model volatility persistence.
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Appendix

A. Time-Varying AR Update in the aaGAS

Assuming ∂λt−1/∂ft = 0,
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∂ log(p)

∂gt
=

∂ log(p)

∂λt

∂λt
∂gt

= uλ,t
∂λt
∂gt

= uλ,t

(
bλ,t−1

∂λt−1

∂gt
aλ,t

∂sλ,t−1

∂gt

)
= uλ,t

(
∂bλ,t−1

∂gt
λt−1

)
∝ uλ,tλt−1,

where

ug,t =
∂ log p(yt | λt; θ)

∂gt
∝ uλ,tλt−1.

B. Additional derivations and matrix representation of the
estimated models

The time-varying parameters collected in λt are governed by the score-driven
framework outlined in Section 2.3, where the components in Eq. 13 are specified
as:

ωλ =
[
ωỹ, ωπ, ωy∗ , 0, 0

]′
,

Aλ = diag
([

aσỹ
, aσπ , aσy∗ , ay∗ , aπ

])
,

Bλ = diag
([

bσỹ
, bσπ , bσy∗ , by∗ , bπ

])
where, in the aaGAS model, the parameter aσỹ

and bσỹ
becomes time-varying

governed by Eq. 16.
Time variation in the input matrix Γ evolves through the equation

vec(Γt) = S0,Γ + S1,Γψ(S2,Γλt),

where the components take the following forms:

vec(Γt) =



a1
bπ,t
a2
0

aỹ,t/2
0

aỹ,t/2
0
0
b1
0

(1 − b1)



, S0,Γ =



a1
0
a2
0
0
0
0
0
0
b1
0

(1 − b1)



, S1,Γ =



0 0 0
0 1 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



,
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ψΓ =

aỹ,t/2bπ,t
aỹ,t/2

 , S2,Γ =

[
0 0 0 1 0
0 0 0 0 1

]
.

The Jacobian matrix is:

Γ̇t = S1,ΓΨ̇Γ,tS2,Γ,

where

Ψ̇Γ,t =
∂ψ(S2,Γλt)

∂λ′t
=
∂ψΓ,t(S2,Γλt)

∂(S2,Γλt)′
∂(S2,Γλt)

∂λ′t
=

aỹ,t/2 0
0 bπ,t

aỹ,t/2 0

 .

Time variation in the system matrix Z evolves through the equation

vec(Zt) = S0,Z + S1,Zψ(S2,Zλt),

where

vec(Zt) =



1
0

−a1
−bπ,t
−a2

0
0
0

−aỹ,t · 2
0

−aỹ,t · 2
0
0
0

−aỹ,t/2
0

−aỹ,t/2
0



, SZ,0 =



1
0

−a1
0

−a2
0
0
0
0
0
0
0
0
0
0
0
0
0



, SZ,1 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0



,

ψZ =


−aỹ,t · 2
−bπ,t

−aỹ,t · 2
−aỹ,t/2
−aỹ,t/2

 , SZ,2 =

[
0 0 0 1 0
0 0 0 0 1

]
.

The Jacobian matrix is:
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Żt = S1,ZΨ̇Z,tS2,Z ,

Ψ̇Z,t =
∂ψ(S2,Zλt)

∂λ′t
=
∂ψZ,t(S2,Zλt)

∂(S2,Zλt)′
∂(S2,Zλt)

∂λ′t
=


−aỹ,t · 2 0

0 −bπ,t
−aỹ,t · 2 0
−aỹ,t/2 0
−aỹ,t/2 0

 .

Time variation in the system matrix H is defined as

vec(Ht) = S0,H + S1,HψH(S2,Hλt),

where

vec(Ht) =


σỹ,t
0
0
σπ,t

 , S0,H =


0
0
0
0

 , S1,H =


1 0
0 0
0 0
0 1

 ,

ψH =

[
σỹ,t
σπ,t

]
, S2,H =

[
1 0 0 0 0
0 1 0 0 0

]
.

The Jacobian matrix is:

Ḣt = S1,HΨ̇H,tS2,H ,

Ψ̇H,t =
∂ψ(S2,Hλt)

∂λ′t
=
∂ψH,t(S2,Hλt)

∂(S2,Hλt)′
∂(S2,Hλt)

∂λ′t
=

[
σỹ,t 0
0 σπ,t

]
.

Time variation in the system matrix Q follows as

vec(Qt) = S0,Q + S1,QψQ(S2,Qλt),

where

vec(Qt) =


σy∗,t

0(29×1)

σg
0(29×1)

σz
0(20×1)

 , S0,Q =


0(30×1)

σg
0(29×1)

σz
0(20×1)

 , S1,Q =

[
1

0(80×1)

]
,
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ψQ =
[
σy∗,t

]
, S2,Q =

[
0 0 1 0 0

]
.

The Jacobian matrix is:

Q̇t = S1,QΨ̇Q,tS2,Q,

Ψ̇Q,t =
∂ψ(S2,Qλt)

∂λ′t
=
∂ψQ,t(S2,Qλt)

∂(S2,Qλt)′
∂(S2,Qλt)

∂λ′t
= σy∗,t.

The Jacobian associated with the prediction errors takes the form:

V̇t =
∂vt
∂λ′t

=

[
∂vt

∂vec(Zt)′
∂vec(Zt)

∂λ′t
+
∂vt
∂α′

t

∂αt

∂λ′t
+

∂vt
∂vec(Γt)′

∂vec(Γt)

∂λ′t

]

= −
[
(α′

t ⊗ In)
∂ vec(Zt)

∂λ′t
+ Zt ⊗

∂αt

∂λ′t
+ (u′t ⊗ In)

∂ vec(Γt)

∂λ′t

]

= −
[
(α′

t ⊗ In)Żt + (u′t ⊗ In)Γ̇t

]
, n = 2.
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