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ABSTRACT

Despite being an emerging economy, Peru has achieved superior post-pandemic disinflation compared
to major developed economies, making its regional inflation dynamics globally instructive for
monetary policy design. This study investigates Lima’s suitability as Peru’s inflation-targeting
anchor by analyzing regional spillovers across nine economic regions using monthly CPI data
(2002-2024). Employing both Diebold-Yilmaz time-domain and Baruník-Křehlík frequency-domain
frameworks, we quantify the direction, magnitude, and persistence of inflation transmission. Results
reveal strong regional interdependence (73.60% total spillover index) with Lima as the dominant
net transmitter (23.94 percentage points). However, frequency decomposition uncovers striking
cyclical heterogeneity: Lima receives short-run shocks from food-producing regions but dominates
long-run transmission (44.70% vs. 28.99% frequency spillover index). Rolling-window analysis
during COVID-19 shows temporary spillover disruption (connectivity declining from 75% to 68%)
followed by recovery during 2022’s inflationary surge. Robustness checks across specifications,
granular city-level data, and three-band frequency segmentation confirm Lima’s structural centrality
at lower frequencies. These findings validate the Central Reserve Bank’s Lima-centered approach
for long-run targeting while revealing asymmetric frequency-dependent spillovers. The presence of
short-run regional shocks suggests integrating upstream agricultural signals could enhance near-term
forecasting and policy responsiveness.

Keywords Inflation spillovers · Regional inflation dynamics · Frequency-domain analysis · Diebold-Yilmaz
methodology · Baruník-Křehlík framework
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1 Introduction

In the architecture of modern monetary policy, few central banks face as complex a challenge as maintaining price sta-
bility across economically diverse regions while operating under constraints imposed by geographical heterogeneity and
structural asymmetries. Peru’s Central Reserve Bank (BCRP) exemplifies this challenge, having achieved remarkable
success in inflation targeting despite governing an economy characterized by pronounced regional disparities, partial
financial dollarization, and center-periphery dynamics that fundamentally shape how monetary policy transmits across
space and time.

Since adopting full-fledged inflation targeting in 2002, the BCRP has garnered international recognition for its monetary
policy credibility and institutional excellence. Governor Julio Velarde has received prestigious accolades including
Central Banker of the Year from The Banker (2015, 2020, 2022), Best Central Banker from Global Finance (2015,
2016), and Central Bank Governor of the Year from LatinFinance (2016). These honors reflect not merely institutional
recognition but empirical success: Peru has achieved the lowest average inflation (2.6 percent annually since 2001)
and highest growth rate (5.8 percent between 2005-2014) among the five largest Latin American inflation-targeting
countries, despite facing similar external shocks and structural challenges. Most remarkably, Peru’s post-pandemic
disinflation has outperformed major developed economies—successfully reducing inflation from 8.66% in January
2023 to precisely 2.0% by December 2024, achieving the center of its target range while the United States struggled
with 2.9% inflation, Japan reached 3.6%, the eurozone averaged 2.4%, and the OECD collectively remained at 4.5%.
This exceptional performance demonstrates that Peru, an emerging economy, has achieved superior monetary policy
transmission and expectation anchoring compared to advanced economies with decades more experience in inflation
targeting—making the analysis of Peru’s regional inflation dynamics not merely academically interesting, but globally
instructive for monetary policy design.

However, this policy success rests on a foundational choice that distinguishes Peru from most modern central banks:
the BCRP anchors its inflation-targeting framework to Lima’s Consumer Price Index rather than a nationally aggregated
measure. This operational decision-uncommon among contemporary central banks-raises fundamental questions
about regional representativeness, spatial equity in monetary policy transmission, and the empirical justification for
center-based inflation targeting in economically heterogeneous countries.

The study of inflation spillovers has evolved significantly over the past two decades, moving from static correlation-
based approaches to dynamic, directional, and frequency-sensitive frameworks. A major methodological leap came with
Diebold and Yilmaz (2009, 2012), who introduced a spillover index based on forecast error variance decompositions
from vector autoregressions. Building on this foundation, Baruník and Křehlík (2018) extended the approach into the
frequency domain, enabling decomposition of spillovers across different time horizons-particularly relevant for inflation
analysis, as it distinguishes between short-term volatility and long-term persistence.

Empirical applications of these methods to inflation spillover analysis have expanded rapidly, yet they remain heavily
skewed toward advanced economies (Elsayed et al., 2021; Jordan, 2016; Pham and Sala, 2022; Tiwari et al., 2019;
Wen et al., 2021).2 This geographic bias represents a significant gap, given that emerging economies often face more
complex spillover dynamics due to greater exposure to external shocks and more pronounced regional heterogeneity.

At the subnational level, research remains remarkably limited despite its obvious policy relevance. Çakır (2023) uses the
Diebold-Yilmaz framework on Turkey’s regional data, while Istiak et al. (2021) pioneer the frequency-domain approach
for the G7. Despite Peru’s prominence in inflation-targeting success stories, regional inflation spillovers within the
country remain underexplored. Winkelried and Gutierrez (2015) emphasize Lima’s central role in shaping national
inflation trends, but their analysis does not employ modern spillover methodologies or assess the frequency-dependent
nature of regional transmission.

This study addresses the critical gap by applying complementary spillover methodologies to monthly CPI data from
2002 to 2024 across Peru’s nine economic regions. We employ both the time-domain Diebold-Yilmaz (DY) approach
and the frequency-domain Baruník-Křehlík (BK) framework to investigate: (1) the direction and magnitude of inflation
spillovers across regions; (2) how spillover patterns vary across cyclical frequencies; and (3) how spillover dynamics
have evolved over time, particularly during crisis periods.

Our comprehensive analysis yields several striking findings. The time-domain analysis reveals substantial regional
interdependence (73.60% total spillover index) with Lima as the dominant net transmitter (23.94 percentage points).
However, the frequency decomposition uncovers a more nuanced picture: Lima functions as a net recipient of short-run
shocks from food-producing regions but dominates as a transmitter over longer horizons (44.70% vs. 28.99% frequency

2These connectedness methodologies have also seen wide application across diverse fields: commodity-market integration (Lucey
et al., 2014; Batten et al., 2015); global business-cycle dynamics (Diebold and Yilmaz, 2015); oil-price and policy-uncertainty
spillovers (Antonakakis et al., 2014).
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spillover index). Rolling-window analysis during COVID-19 shows temporary spillover disruption followed by recovery
during 2022’s inflationary surge, demonstrating both vulnerability and resilience of transmission mechanisms.

These findings provide strong empirical validation for the BCRP’s continued use of Lima’s CPI as the primary
inflation-targeting anchor, given Lima’s structural dominance in long-run spillovers-as reflected in its role in anchoring
inflation expectations (Quineche et al., 2024). However, the frequency-domain results suggest concrete improvements
to forecasting methodology by integrating upstream agricultural signals from food-producing regions, which could
enhance near-term projection accuracy. The COVID-19 analysis suggests the need for adaptive policy responses during
crisis periods when normal transmission channels may be disrupted.

While focused on Peru, this research addresses broader questions relevant to emerging economies worldwide. The
methodology provides a general framework for analyzing regional inflation dynamics in spatially diverse economies.
Countries like Brazil, India, South Africa, and Mexico face similar challenges in designing monetary policy for
economically heterogeneous regions (Ndou and Gumata, 2017; de Guzmán and Salas, 2023; Bhoi et al., 2020; Colunga-
Ramos and Cepeda, 2023). The findings also contribute to theoretical understanding of monetary policy transmission,
suggesting that optimal policy design should account for both short-run supply-side shocks from peripheral regions and
long-run demand-side transmission from economic centers.

This research provides the first comprehensive analysis of regional inflation spillovers in Peru using modern spillover
methodologies, validates the empirical foundation of the BCRP’s Lima-centered inflation targeting framework, and
offers a generalizable approach for analyzing subnational monetary transmission in emerging economies globally.

The remainder of this paper unfolds as follows. Section 2 introduces the regional inflation dataset and aggregation
methodology. Section 3 presents the empirical methodology, explaining both the time-domain and frequency-domain
spillover frameworks. Section 4 reports and interprets the empirical findings, including static spillover patterns, dynamic
evolution, and robustness checks. Section 5 concludes with detailed policy implications for the BCRP and broader
lessons for regional inflation management in emerging economies.

2 Regional Inflations

This study employs monthly Consumer Price Index (CPI) data with base December 2021=100 for Peru’s 25 largest
cities, published by the National Institute of Statistics and Informatics (INEI), spanning January 2002 to December
2024. To ensure temporal consistency, we retroactively extended the December 2021 base backward by applying
monthly percentage changes from the previous 2009-based index, creating a unified 23-year time series that captures
both structural changes and cyclical variations in regional price dynamics.

Following the established framework of Winkelried and Gutierrez (2015), we adopt the economic classification of
Peruvian cities into nine economic regions proposed by Gonzales de Olarte (2003). This classification, summarized in
Table 1, is grounded in both historical considerations-as regions comprise contiguous departments with shared cultural
and administrative legacies-and economic factors, including market articulation, trade integration, and production
specialization. The nine-region framework effectively captures Peru’s economic geography, from Lima’s urban
concentration to the Amazon’s resource extraction, the coast’s agricultural production, and the highlands’ mining
activities.

To construct regional price indices, we employ a weighted additive approach where each city’s CPI is weighted
according to its respective share in national consumption patterns.3 The aggregated regional CPI is calculated as:

CPIr,t =

∑
i∈r wi · CPIi,t∑

i∈r wi
, (1)

where CPIr,t denotes the Consumer Price Index for region r at time t, wi is the weight of department i within region
r, and CPIi,t is the Consumer Price Index of department i at time t. This weighting scheme ensures that regional
inflation measures accurately reflect the relative economic importance of each city within its region while maintaining
consistency with national inflation calculations.

Based on the regional Consumer Price Indices, monthly inflation for region r at time t is computed as:

xr,t = 100× (log CPIr,t − log CPIr,t−1) . (2)
3Although INEI updated the CPI base to December 2021=100 and now publishes indices using this new base, the revised

expenditure weights by department are not publicly available. As a result, regional aggregation continues to rely on the weights from
the 2009 base.
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Table 1: Economic regions in Perú
Region Cities (weights)

1 Lima (66.02)
2 Piura (2.01), Tumbes (0.56)
3 Chiclayo (2.55), Cajamarca (1.14), Chachapoyas (0.14)
4 Trujillo (4.60), Chimbote (2.05), Huaraz (0.58)
5 Ica (1.31), Ayacucho (0.70), Huancavelica (0.19)
6 Arequipa (4.94), Moquegua (0.30), Tacna (1.55), Puno (0.76)
7 Huánuco (0.81), Cerro de Pasco (0.34), Huancayo (1.91)
8 Abancay (0.34), Cusco (2.72), Puerto Maldonado (0.48)
9 Iquitos (1.99), Moyobamba (0.64), Pucallpa (1.30)

Notes: Classification of Peruvian Departments into 9 economic regions, following Gonzales de Olarte (2003, p. 41). Numbers in
parentheses indicate the weights used for national inflation calculations by INEI.The weights reflect the national expenditure
shares utilized in computing inflation using the 2009 base year.

This log-difference specification provides several analytical advantages: it yields approximately percentage changes for
small variations, ensures stationarity properties essential for spillover analysis, and facilitates direct comparison across
regions with different price levels.

Figure 1 illustrates monthly inflation across Peru’s nine economic regions, revealing both striking synchronization and
notable heterogeneity in regional price dynamics. Despite considerable differences in volatility and amplitude across
regions, the time series exhibit a remarkably synchronized pattern, indicating the influence of shared macroeconomic
and structural factors on regional price formation. This co-movement provides preliminary evidence of substantial
spillover effects that our formal analysis will quantify.

Three major inflationary episodes, highlighted in Figure 1, demonstrate how external shocks propagate through Peru’s
regional system:

• The 2007-2009 Global Commodity Boom: The first major episode coincided with the global commodity price
surge, which drove up food and energy costs worldwide. In Peru, this translated to synchronized inflation
increases across all regions, with food-producing areas (Regions 3 and 7) experiencing particularly pronounced
spikes that subsequently transmitted to other regions. This episode illustrates how global supply shocks can
amplify regional disparities before eventually synchronizing national inflation dynamics (Moreno, 2009).

• The 2017 Coastal El Niño Event: The sharp but short-lived spike in March 2017 aligns with the Coastal El
Niño phenomenon, which severely disrupted transportation and logistics networks in northern and central
Peru. This event provides a natural experiment in regional shock transmission: the initially localized supply
disruptions in coastal regions rapidly propagated inland through supply chain linkages, leading to temporary
but significant price pressures across the national economy (Yglesias-González et al., 2023). The rapid
diffusion and subsequent normalization demonstrate both the vulnerability and resilience of Peru’s regional
price system.

• The 2021-2023 Pandemic and Geopolitical Inflation: The most recent episode reflects the complex interaction
of pandemic-related supply chain disruptions and elevated international food and energy costs stemming from
the Russia-Ukraine conflict. Unlike previous episodes that originated domestically or affected specific sectors,
this global shock simultaneously impacted all regions through multiple transmission channels: supply chain
fragmentation, energy price pass-through, and exchange rate depreciation (Banco Central de Reserva del
Perú, 2023). The synchronized response across regions, despite varying degrees of international integration,
underscores the increasing interconnectedness of Peru’s regional economies.

The observed temporal co-movement of regional inflation—particularly pronounced during major inflationary
episodes—provides compelling preliminary evidence of meaningful domestic spillovers. Simple correlation analysis,
shown in Table 2, reveals that all regional inflation series are positively correlated, with an average correlation of 0.59
across all regional pairs. These correlations, while substantial, vary meaningfully across region pairs, suggesting that
spillover effects are neither uniform nor complete, motivating the need for directional spillover analysis.

Summary statistics reported in Table 3 reveal important heterogeneity in regional inflation characteristics. Lima (Region
1) exhibits the lowest level of inflation volatility (standard deviation of 0.33), despite its central role, consistent with its
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Table 2: Correlation matrix
Lima Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9

Lima 1.000
Region 2 0.699*** 1.000
Region 3 0.750*** 0.764*** 1.000
Region 4 0.754*** 0.777*** 0.762*** 1.000
Region 5 0.734*** 0.613*** 0.673*** 0.709*** 1.000
Region 6 0.578*** 0.535*** 0.554*** 0.579*** 0.596*** 1.000
Region 7 0.713*** 0.605*** 0.690*** 0.709*** 0.713*** 0.602*** 1.000
Region 8 0.376*** 0.319*** 0.411*** 0.425*** 0.499*** 0.662*** 0.569*** 1.000
Region 9 0.584*** 0.595*** 0.618*** 0.579*** 0.612*** 0.441*** 0.559*** 0.369*** 1.000

Note: This table reports the correlation coefficients of regional inflation rates along with their statistical significance: *** denotes
significance at the 1% level, ** at the 5% level, and * at the 10% level.

diversified economic base and sophisticated distribution networks. In contrast, regions such as Region 2 (0.52), Region
4 (0.48), and Region 8 (0.48) show higher volatility, likely reflecting greater exposure to agricultural supply disruptions,
seasonal demand fluctuations, and localized logistical constraints. In terms of distributional shape, Lima also displays
the lowest excess kurtosis (0.80), suggesting relatively stable inflation dynamics. By comparison, most other regions
exhibit more pronounced kurtosis, especially Regions 2 and 3 (2.78 and 2.30, respectively), both agricultural producers.
These values indicate a higher frequency of extreme inflation realizations, consistent with the presence of price spikes
in food-related sectors.

The presence of occasional extreme values-particularly in agricultural and resource-dependent regions-motivates our
choice of spillover methodologies that can accommodate non-normal distributions and capture directional transmission
effects. The combination of strong co-movement with persistent regional heterogeneity suggests a complex spillover
structure where some regions consistently transmit shocks while others primarily receive them-precisely the type of
asymmetric relationship that modern spillover indices are designed to quantify.

Finally, Table 3 also presents the results of the Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests
applied to the monthly regional inflation series. In all cases, the null hypothesis of nonstationarity is rejected. These
results justify the use of a generalized VAR framework to compute spillover indices following DY and BK approaches.

Table 3: Summary statistics
Lima Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9

Mean 0.254 0.296 0.280 0.282 0.318 0.298 0.286 0.296 0.254
Std. Dev. 0.331 0.521 0.436 0.484 0.383 0.449 0.338 0.478 0.414
Skewness 0.580 0.808 0.538 0.304 0.358 -0.047 0.739 0.434 0.705
Kurtosis 0.800 2.781 2.299 1.531 1.559 3.627 1.110 2.085 2.486
ADF -3.655*** -3.368** -3.590*** -3.999*** -3.416** -4.209*** -2.978** -3.564*** -3.456**
PP -13.017*** -12.493*** -12.005*** -13.647*** -12.638*** -10.062*** -11.041*** -10.643*** -11.621***

Notes: The table reports the test statistics from the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests. For
the ADF test, the lag length was selected based on the t-statistic criterion. *** denotes significance at the 1% level, ** at the 5%
level, and * at the 10% level.

To quantify these interregional linkages formally and identify the directional transmission of inflationary shocks, we
apply spillover indices derived from forecast-error variance decompositions. The analytical framework for this analysis
is presented in Section 3, followed by comprehensive empirical results in Section 4 .
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Figure 1: Monthly regional inflations

3 Empirical Methodology

3.1 Time-Domain Spillover Estimation: Diebold-Yilmaz Approach

To quantify inflation spillovers among Peru’s economic regions, this study applies the time-domain framework
introduced by Diebold and Yilmaz (2012), which enables dynamic connectedness estimation among multiple time
series through generalized forecast error variance decomposition (GFEVD) of a vector autoregressive (VAR) model.

Let xt = (x1t, x2t, . . . , xnt)
′ be an n-dimensional vector of monthly inflation rates across the nine economic regions,

modeled as a VAR(p) process:

Φ(L)xt = εt, (3)

where Φ(L) is a matrix lag polynomial of order p, and εt is a vector of serially uncorrelated shocks. Assuming
stationarity, this can be rewritten in moving average form:

xt = Ψ(L)εt, (4)

where Ψ(L) captures the dynamic responses of the system to shocks over time. Connectedness is estimated using
GFEVD, which computes the proportion of forecast error variance of region j attributable to shocks in region k over
horizon H:

θ
(H)
jk = GFEVD contribution from region k to region j. (5)

Because shocks are not orthogonalized, rows may not sum to unity; thus, we normalize each element as:

θ̃
(H)
jk =

θ
(H)
jk∑n

k=1 θ
(H)
jk

. (6)

The Total Spillover Index (TSI) is defined as:

6
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TSI(H) = 100×
∑

j ̸=k θ̃
(H)
jk∑

j,k θ̃
(H)
jk

, (7)

representing the percentage of system-wide forecast variance attributable to cross-regional shocks. Directional spillovers
are computed to identify net transmitters and receivers:

Spillovers TO region j =
∑
k ̸=j

θ̃
(H)
jk , (8)

Spillovers FROM region j =
∑
k ̸=j

θ̃
(H)
kj , (9)

NET Spillover for region j = FROM − TO. (10)

We also compute the NET pairwise spillovers to captures the directional influence that region j exerts on region k (and
vice versa) in net terms. This measure is computed as:

NET pairwise spillover between j and k =
θ̃
(H)
jk − θ̃

(H)
kj

n
(11)

To capture time variation in spillover intensity, the GFEVD is computed using a rolling window of fixed length (e.g.,
150 months), enabling analysis of evolving patterns over Peru’s inflation dynamics between 2002 and 2024.

This framework allows a rigorous evaluation of Lima’s role as a transmitter or receiver of inflationary shocks, providing
empirical insight into its suitability as the Central Reserve Bank of Peru’s operational benchmark.

3.2 Frequency-Domain Spillover Estimation: Baruník-Krehlík Approach

To complement the time-domain analysis, this study adopts the frequency-domain connectedness framework proposed
by Baruník and Křehlík (2018), which allows for the decomposition of inflation spillovers across different frequency
bands. This method distinguishes between short-term fluctuations and long-run persistence in spillover dynamics—an
essential feature for analyzing the transmission of inflation from Lima to other Peruvian regions.

Let xt denote the n-dimensional vector of monthly inflation rates across Peru’s nine economic regions. Assuming a
stationary VAR representation, the process admits a moving average form:

xt =

∞∑
h=0

Ψhεt−h, (12)

where Ψh are impulse response matrices and εt is a vector of serially uncorrelated shocks. Applying the Fourier
transform yields the frequency response function:

Ψ(e−iω) =

∞∑
h=0

Ψhe
−iωh, (13)

which captures how inflation shocks transmit across frequencies ω ∈ (−π, π).

The generalized causation spectrum, which quantifies the share of variance in region j due to shocks in region k at
frequency ω, is computed as:

fjk(ω) =

∣∣∣(Ψ(e−iω)ΣΨ∗(eiω)
)
jk

∣∣∣2
(Ψ(e−iω)ΣΨ∗(eiω))jj

, (14)

where Σ is the covariance matrix of innovations and ∗ denotes the complex conjugate transpose.
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The spillover within a given frequency band d = (ωa, ωb) is calculated by integrating the causation spectrum, weighted
by the power of region j at that frequency:

θ
(d)
jk =

1

2π

∫ ωb

ωa

γj(ω)fjk(ω) dω, (15)

where γj(ω) is the spectral density of region j. Normalization yields the relative contribution:

θ̃
(d)
jk =

θ
(d)
jk∑n

k=1 θ
(d)
jk

. (16)

The frequency-specific spillover index (FSI) is given by:

FSI(d) = 100×
∑

j ̸=k θ̃
(d)
jk∑

j,k θ̃
(d)
jk

, (17)

capturing the share of cross-regional inflation variance on the band d. Similar to the time-domain approach, directional
spillovers are also constructed on the frequency band d.

For this study, we divide the spectrum into two bands:(π, π/3), which captures short-term movements; and (π/3, 0),
which reflects longer-term interactions. Rolling-window estimation is used to trace spillover dynamics over time,
revealing Lima’s changing role as an inflation transmitter or receiver. This dual-frequency approach provides deeper
insight into Lima’s influence on both immediate and persistent regional inflation movements—informing the assessment
of its validity as the Central Reserve Bank’s operational benchmark.

4 Empirical Results

4.1 Time domain spillovers

To explore the interconnectedness of regional inflation dynamics across Peru’s economic landscape, we begin by
applying the time-domain spillover framework introduced by Diebold and Yilmaz (2012). This methodology is
implemented in both static and dynamic forms: the static version provides a comprehensive full-sample overview of
inflation spillover patterns and regional hierarchies, while the dynamic specification employs a rolling-window approach
to trace the temporal evolution of regional connectedness through major economic episodes and structural changes.

4.1.1 Static Inflation Spillovers Architecture

We commence our empirical analysis by examining the static properties of inflation spillovers across Peru’s nine
economic regions using a vector autoregressive (VAR) model with one lag and a three-month forecast horizon. The lag
specification is selected using the Bayesian Information Criterion (BIC) to balance model parsimony with adequate
dynamic representation, while the three-month horizon captures medium-term spillover effects relevant for monetary
policy decision-making.

Table 4 presents the comprehensive inflation spillover matrix, where each element quantifies the proportion of forecast
error variance of inflation in region i (row) attributable to shocks originating in region j(column). Diagonal entries
capture own-region contributions to forecast variance, representing the degree of regional inflation autonomy, while
off-diagonal values measure cross-regional spillovers that constitute the core of our analysis. The FROM column
reports the total share of forecast error variance in each region explained by shocks from all other regions, effectively
measuring each region’s exposure to external influences. Conversely, the TO row reflects the total spillovers transmitted
by each region to the rest of the system, quantifying each region’s systemic influence. The NET measure-defined as
the difference between TO and FROM-provides the crucial indicator of whether a region is a net transmitter (positive
values) or net recipient (negative values) of inflationary shocks. Finally, the Total Spillover Index (TSI) summarizes the
overall share of forecast error variance attributable to cross-regional spillovers, serving as a global measure of inflation
interdependence.

To assess statistical significance, we implement a bootstrap procedure with 5,000 replications following Patton (2013)
and Fousekis and Tzaferi (2021). Wald-type test statistics are computed under the null hypothesis of zero spillovers,
with the test statistic defined as Θ = (RΦ̂)′(RVΦ̂R

′)−1(RΦ̂), where R denotes the restriction matrix, Φ̂ is the vector

8
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Table 4: Time domain spillovers
Lima Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 FROM

Lima 23.51 10.43 11.89 12.35 12.46 8.14 11.71 2.87 6.65 76.49***
Region 2 12.69 24.04 13.47 13.46 8.78 8.27 9.24 2.67 7.38 75.96***
Region 3 14.13 13.12 21.82 12.31 9.52 7.68 10.24 4.09 7.07 78.18***
Region 4 14.77 13.10 12.26 21.52 10.42 7.73 11.21 3.14 5.84 78.48***
Region 5 15.05 8.49 9.13 10.95 23.87 8.67 11.43 5.23 7.18 76.13***
Region 6 10.37 8.61 7.46 8.70 9.47 31.63 9.40 11.06 3.30 68.37***
Region 7 14.05 8.58 10.64 10.98 11.25 8.19 24.50 5.83 5.97 75.50***
Region 8 7.64 4.10 5.32 6.18 8.12 15.12 12.30 38.07 3.15 61.93***
Region 9 11.74 9.64 8.62 8.91 10.94 8.31 8.84 4.41 28.59 71.41***

TO 100.43*** 76.06*** 78.80*** 83.84*** 80.97*** 72.13*** 84.37*** 39.30*** 46.54***
NET 23.94*** 0.10 0.62 5.36 4.84 3.76 8.87*** -22.62*** -24.87*** TSI = 73.60***

Note: This table reports the static time domain spillovers across regions of Peru. For the TSI, TO, FROM and NET spillover
measures, we report statistical significance: *** significant at the 1% level, ** at the 5% level, and * at the 10% level.

of point estimates, and VΦ̂ is the bootstrap variance-covariance matrix. This rigorous statistical framework enables
formal inference for the TSI, FROM, TO, and NET measures, providing confidence in our spillover estimates.

The TSI, estimated at 73.60% and statistically significant at the 1% level, reveals that nearly three-quarters of inflation
forecast error variance across Peru’s regions can be attributed to cross-regional shocks. This extraordinarily high level
of interconnectedness indicates that regional inflation dynamics are fundamentally interdependent rather than driven
primarily by local idiosyncratic factors. The magnitude of this interconnectedness exceeds that typically observed in
international spillover studies, suggesting that subnational regions within Peru are more tightly integrated than many
sovereign economies.

The directional spillover analysis reveals a pronounced hierarchy in regional influence that fundamentally shapes
Peru’s inflation landscape. Lima emerges as the overwhelmingly dominant transmitter of inflationary shocks, with
TO spillovers of 100.43 percentage points-statistically significant at the 1% level and substantially exceeding all other
regions. This dominance reflects Lima’s role as Peru’s economic epicenter, concentrating 66.02% of national inflation
weight and serving as the primary hub for financial markets, import distribution, and policy transmission.

Following Lima in transmission strength, Regions 7 (Huánuco, Cerro de Pasco, Huancayo) and 4 (Trujillo, Chimbote,
Huaraz) exhibit significant spillover transmission with TO values of 84.37 and 83.84 percentage points, respectively.
Region 7’s influence likely stems from its role as a major agricultural and mining center that supplies both Lima and
other regions, while Region 4’s industrial base and coastal location position it as a secondary distribution hub. In stark
contrast, Regions 8 (tourism and mining in the south) and 9 (Amazon regions) contribute minimal spillovers to the
system, with TO values of only 39.30 and 46.54 percentage points, reflecting their peripheral economic positions.

The FROM spillover estimates reveal relatively uniform exposure to external shocks across regions, with most regions
showing FROM values between 68% and 78%. This homogeneity suggests that while transmission capacity varies
dramatically across regions, vulnerability to external spillovers is more evenly distributed. The slight variation that does
exist shows Regions 8 and 6 as somewhat less exposed (61.93% and 68.37% respectively), possibly reflecting their
greater economic isolation or specialized sectoral focus.

The NET spillover measures reveal stark asymmetries in regional roles within Peru’s inflation transmission network.
Lima stands out as the dominant net transmitter with a statistically significant NET spillover of 23.94 percentage
points-a magnitude that exceeds the combined net transmission of all other positive NET regions. This extraordinary
centrality confirms Lima’s structural role as the primary source of systematic inflation pressures throughout Peru’s
regional system.

Region 7 emerges as the only other statistically significant net transmitter (8.87 percentage points), reflecting its
important role as an agricultural and mining hub that influences food and commodity prices nationwide. Several
regions (2, 3, 4, 5, and 6) show small positive or near-zero NET spillovers that are not statistically significant, indicating
balanced transmission-reception roles.

On the receiving side, Regions 8 and 9 emerge as significant net recipients with NET spillovers of -22.62 and -24.87
percentage points, respectively, both statistically significant at the 1% level. These regions’ consistent absorption of
external shocks without corresponding transmission capacity underscores their peripheral status in Peru’s economic
geography. Region 8’s net reception likely reflects its tourism-dependent economy’s vulnerability to external conditions,
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while Region 9’s Amazonian location creates dependence on supply chains from other regions without generating
reciprocal influence.

Table 5 presents pairwise net spillovers, computed as the difference between bidirectional spillovers for each region
pair. This granular analysis reveals that Lima transmits net shocks to all other regions without exception, with the
entire Lima column showing positive and statistically significant values. Lima’s most pronounced bilateral influence
occurs with Region 9 (5.09 percentage points) and Region 8 (4.76 percentage points), both significant at the 1% level,
demonstrating Lima’s particular importance for Peru’s most peripheral regions that lack alternative inflation anchors.

The bilateral analysis confirms that Regions 8 and 9 are systematically positioned as net recipients across most regional
pairs. Their rows contain predominantly positive and significant entries, indicating consistent exposure to spillovers
from other regions without reciprocal transmission capacity. This pattern reinforces their structural role as inflation
absorbers within Peru’s regional network.

Table 5: Time domain pairwise net spillovers

Lima Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9

Lima -
Region 2 2.26*** -
Region 3 2.25** -0.35 -
Region 4 2.42*** -0.36 -0.05 -
Region 5 2.59*** -0.29 -0.39 0.53 -
Region 6 2.22** 0.34 -0.22 0.96 0.80 -
Region 7 2.34*** -0.66 0.40 -0.23 -0.18 -1.21 -
Region 8 4.76*** 1.43* 1.23 3.04*** 2.89* 4.06* 6.47*** -
Region 9 5.09*** 2.26** 1.55 3.07*** 3.76*** 5.01*** 2.88*** 1.25 -

Note: This table reports the time domain pairwise net spillovers and its statistical significance: *** significant at the 1% level, ** at
the 5% level, and * at the 10% level.

4.1.2 Dynamic Inflation Spillovers: Rolling-Window Analysis

To examine the temporal evolution of spillover relationships and assess their stability across different economic episodes,
we implement a rolling-window estimation procedure following Diebold and Yilmaz (2012). Spillover indicators are
computed using one-lag VAR and three-month forecast horizon with a rolling window of 150 observations, enabling
analysis of evolving patterns from May 2014 through December 2024. We construct 95% confidence intervals using a
pivot bootstrap procedure with 5,000 simulations following Choi and Shin (2020), providing formal statistical inference
for time-varying spillover dynamics.

Figure 2 illustrates the evolution of the Total Spillover Index across the sample period, revealing significant temporal
variation around a high baseline level of interconnectedness. Over the sample period (May 2014-December 2024), the
TSI fluctuates between 67.81% and 75.95%, indicating persistently high regional interdependence with meaningful
cyclical variation. This range demonstrates that while Peru’s regions remain fundamentally interconnected, the intensity
of spillover relationships responds systematically to economic conditions and external shocks.

Between May 2014 and February 2020, the TSI remained relatively stable within a narrow band of 73.31% to 75.95%,
suggesting robust baseline interconnectedness during normal economic conditions. This stability indicates that Peru’s
regional inflation transmission mechanisms operated consistently during the pre-pandemic period, providing a reliable
foundation for monetary policy transmission.

The most dramatic evolution in spillover connectivity coincides with Peru’s COVID-19 response, beginning with a
sharp decline from March 2021 and reaching a trough of 67.81% in June 2021. This substantial drop in regional
connectivity-a decline of over 8 percentage points from pre-pandemic levels-coincides with Peru’s implementation
of one of Latin America’s most stringent lockdown regimes. Peru declared a national state of emergency on March
15,2020, enforcing strict mobility restrictions that severely limited interregional travel and economic activity, with a
second nationwide lockdown introduced in January 2021.

The spillover disruption reflects the breakdown of normal economic transmission channels during the pandemic. Peru’s
GDP contracted by 11.1% in 2020—the largest annual decline since 1989—reflecting a breakdown in normal economic
transmission channels during the pandemic. Nearly all regions experienced significant downturns, with Moquegua
showing relative resilience due to sustained mining activity. The most severely affected regions included Pasco (-50.7%),
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Madre de Dios (-42.8%), and Arequipa (-32.7%), illustrating how the pandemic created asymmetric regional impacts
that temporarily decoupled normal spillover relationships.

From the second half of 2021 onward, the TSI exhibits a gradual but sustained recovery, rising from 67.81% in June
2021 to 74.40% in December 2022. This recovery trajectory closely tracks Peru’s economic rebound and the progressive
relaxation of mobility restrictions throughout 2021, with complete removal of all restrictions by February 2022. The
spillover recovery demonstrates the resilience of Peru’s underlying regional economic linkages once normal economic
activity resumed.

Beginning in January 2023, the TSI resumed a downward trajectory, falling to 71.74% by June 2023 and remaining
stable thereafter between 71.20% and 72.43% through December 2024. This decline and subsequent stabilization
occurred alongside a marked deceleration in national inflation, which fell from 8.55% in 2022-the highest since 1996-to
3.38% in 2023 and further to 1.90% in 2024. Notably, the TSI levels during 2023-2024 remain below pre-pandemic
levels, suggesting a potential structural shift in regional transmission mechanisms or a new equilibrium in spillover
relationships.

These time-varying dynamics in regional inflation spillovers engage with recent findings in the literature on inflation
connectedness. Pham and Sala (2022), using data from G7 economies and Spain, show that volatility spillovers
tend to intensify during periods of macroeconomic turmoil. By contrast, our results reveal a significant drop in
Peru’s TSI following nationwide mobility restrictions, suggesting that regional fragmentation in emerging economies
may temporarily disrupt transmission channels. Meanwhile, Alqaralleh et al. (2025) find that inflation spillovers
are significantly stronger during high-inflation regimes in European economies, consistent with our observation of
heightened regional connectedness in 2022 when domestic inflation peaked, followed by a decline as national inflation
returned to its target range in 2023–2024.

Figure 3 depicts the time-varying behavior of directional spillovers TO all other regions for each Peruvian region,
revealing distinct patterns in regional influence over time. Lima consistently maintains its position as the dominant
transmitter throughout the sample period, with its TO spillovers showing an upward trend that becomes particularly
pronounced after 2021. This intensification in Lima’s transmission capacity during the post-pandemic recovery
underscores its growing systemic importance in Peru’s regional inflation network.

In contrast, Regions 8 and 9 consistently rank as the least influential transmitters, with their spillover indices remaining
relatively low and stable over time. This persistent pattern confirms their structural role as spillover recipients rather
than transmitters, maintaining their peripheral status throughout various economic cycles.

A notable structural shift appears in Region 6 (Arequipa, Moquegua, Tacna, Puno), which experiences a marked decline
in its TO spillover index around 2020 that persists thereafter. This discontinuity may reflect fundamental changes in the
region’s economic structure or integration patterns, possibly linked to mining sector developments or trade relationship
shifts.

Figure 4 illustrates the dynamics of spillovers FROM all other regions, showing relatively more homogeneous patterns
across regions compared to the TO dynamics. The FROM indicators remain relatively stable over time for most regions,
suggesting that while transmission capacity varies significantly across regions and time, vulnerability to external
spillovers exhibits greater stability.

Figure 2: Dynamic total spillover index in the time domain

Note: This figure displays the evolution of the Total Spillover Index (TSI) over time, estimated using a rolling window
of 150 observations. The dashed lines represent the 95% confidence interval obtained via pivot bootstrap simulations,
following the methodology of Choi and Shin (2020).
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Figure 3: Dynamic spillovers TO all others in the time domain

Note: This figure displays the evolution of TO directional spillovers over time, estimated using a rolling window of 150 observations. The dashed lines represent the 95%
confidence interval obtained via pivot bootstrap simulations, following the methodology of Choi and Shin (2020).

Figure 4: Dynamic spillovers FROM all others in the time domain

Note: This figure displays the evolution of FROM directional spillovers over time, estimated using a rolling window of 150 observations. The dashed lines represent the 95%
confidence interval obtained via pivot bootstrap simulations, following the methodology of Choi and Shin (2020).

Figure 5 presents the evolution of NET inflation spillovers across regions, providing crucial insights for monetary policy
design. Consistent with static results, Lima emerges as the dominant net transmitter throughout the entire sample period,
with its net spillover index exhibiting a clear upward trajectory and particularly pronounced increases following the
COVID-19 pandemic. This strengthening trend suggests that Lima’s role as Peru’s inflation anchor has intensified over
time, providing empirical support for the BCRP’s continued reliance on Lima’s CPI.

Regions 8 and 9 consistently appear as net receivers throughout most of the sample, with negative net spillover indices
persisting across different economic conditions. This stability in their recipient roles underscores the importance
of considering regional spillover effects when designing monetary policy, as these regions systematically absorb
inflationary pressures generated elsewhere in the system.

For the remaining regions, no consistent dominance as net transmitters or receivers emerges over time, indicating
relatively balanced positions in terms of inflation transmission and reception. This pattern suggests that most regions
play dual roles as both sources and destinations of spillover effects, contributing to the overall interconnectedness of
Peru’s regional inflation system.

These dynamic spillover patterns provide essential insights for monetary policy implementation, demonstrating
that while the fundamental structure of regional relationships remains stable, the intensity of transmission varies
meaningfully with economic conditions. The COVID-19 episode, in particular, illustrates both the vulnerability of
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spillover mechanisms to severe external shocks and their capacity for recovery once normal economic conditions are
restored.

Figure 5: Dynamic NET spillovers in the time domain

Note: This figure displays the evolution of NET directional spillovers over time, estimated using a rolling window of 150 observations. The dashed lines represent the 95%
confidence interval obtained via pivot bootstrap simulations, following the methodology of Choi and Shin (2020).

4.2 Frequency-domain spillovers

To complement the time-domain analysis and provide deeper insights into the cyclical nature of regional inflation
transmission, we employ the frequency-domain connectedness framework developed by Baruník and Křehlík (2018).
This spectral approach enables decomposition of spillovers across different cyclical horizons, distinguishing between
short-term fluctuations driven by transitory supply shocks and long-term persistence reflecting structural economic
relationships—a distinction crucial for understanding the temporal architecture of Peru’s regional inflation dynamics
and designing optimal monetary policy responses. Specifically, we partition the spectrum into two distinct bands:
the first, (π, π/3), captures short-term movements, while the second, (π/3, 0), reflects longer-term interactions.4
The short-run band (π, π/3) corresponds to cyclical behaviors with periodicities ranging from 2 to 6 months.5 The
complementary band (π/3, 0) encompasses lower-frequency components with periodicities exceeding 6 months,
allowing us to isolate medium- and long-run fluctuations associated with persistent inflation behavior.6 As with the
Diebold–Yilmaz framework, we conduct both static and time-varying estimations using a rolling-window approach.

4In the frequency-domain analysis of real-valued time series, the spectral density is symmetric around zero. Specifically: (i)
negative frequencies (from −π to 0) provide no additional information beyond what is captured by the positive frequencies (from
0 to π); and (ii) this symmetry derives from the property that the Fourier transform of a real-valued signal satisfies the complex
conjugate relationship S(−ω) = S(ω). As a result, bands such as (π, π/3) and (π/3, 0) implicitly reference only the positive
half of the spectrum, with the understanding that the negative side is its mirror image. While many empirical implementations of
Baruník and Křehlík (2018) adopt a two-band structure to delineate transitory and persistent dynamics, the framework itself allows
for arbitrarily refined spectral segmentation. This flexibility enables richer characterizations of cyclical behavior, including the
identification of medium-term regimes—an extension we incorporate in our frequency decomposition.

5This mapping arises from the angular frequency–period relationship T = 2π/ω, which links angular frequency ω (in radians
per time unit) to the cycle length T . At the upper boundary, ω = π yields T = 2 months—the shortest detectable cycle under
the Nyquist limit for discrete monthly data. Frequencies exceeding π radians/sample are subject to aliasing and cannot be reliably
interpreted. At the lower boundary, ω = π/3 corresponds to T = 6 months, marking the upper edge of high-frequency variation.
Accordingly, the interval (π, π/3) captures short-term inflation dynamics with periodicities between 2 and 6 months, while cycles
shorter than 2 months are excluded by construction. Tiwari et al. (2019) adopt a spectral decomposition into the bands (π, π/4) and
(π/4, 0), which they associate with horizons of up to four months and beyond, respectively. Although our frequency band structure
mirrors theirs formally, the interpretation of π/4 as implying a four-month cycle is inconsistent with the standard frequency–period
identity. Specifically, ω = π/4 corresponds to a cycle length of eight months. This discrepancy likely reflects a textual simplification
rather than a methodological flaw, as their framework remains structurally compatible with established spectral analysis.

6Following Martins and Verona (2021), who partition inflation dynamics into frequency bands to distinguish between transitory
and structural patterns, we adopt (π, π/3) as the short-run interval to enhance the separation between high-frequency shocks
and deeper, persistent trends. Martins and Verona argue that energy inflation and temporary supply disruptions dominate this
high-frequency range, while cycles beyond 6 months increasingly reflect underlying structural forces—supporting the use of a
6-month threshold as a more precise delineation of short-run inflation behavior.
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4.2.1 Static Inflation Spillovers

We begin by presenting the static results, which summarize the spillover patterns across frequency bands over the full
sample period. Table 6 reports the estimated inflation spillovers across regional units, derived from the frequency-
domain connectedness framework. In line with the time-domain analysis, and following Patton (2013) and Fousekis
and Tzaferi (2021), we evaluate the statistical significance of the spillover measures using a Wald-type test. The test
statistic is computed based on a covariance matrix constructed from 5,000 bootstrap replications.

As a first result, the frequency-specific spillover index (FSI) in the long-run band is markedly higher (44.70) than
in the short-run band (28.99), indicating that inflation interdependence across regions is more pronounced at lower
frequencies. This suggests that persistent, structural forces—rather than short-lived shocks—are the primary drivers of
inflation spillovers within the Peruvian economy.

In the high-frequency band, the spillover architecture reveals a markedly different pattern from both the time-domain
results and our conventional understanding of Lima’s role. Most strikingly, Lima does not exhibit statistically significant
net spillover transmission in the short-run spectrum (NET=-3.24, significant at 10% level as a net recipient), contrasting
sharply with its dominance in aggregate time-domain analysis. Instead, Regions 3 (Chiclayo, Cajamarca, Chachapoyas)
and 7 (Huánuco, Cerro de Pasco, Huancayo) emerge as the primary short-run transmitters, with statistically significant
NET spillovers of 6.51 and 4.89 percentage points, respectively. This pattern reflects these regions’ roles as key
contributors of agricultural staples and mining outputs that fuel short-run price dynamics across the national inflation
network. Region 8 emerges as a significant net recipient in the short-run band (NET=-5.37, significant at 5% level),
consistent with its tourism-dependent economy’s vulnerability to external price shocks without corresponding capacity
to influence other regions’ price dynamics over immediate horizons. The relatively balanced spillover relationships
among other regions suggest that short-run inflation transmission exhibits greater symmetry and bidirectional flows
compared to the hierarchical structure observed at longer horizons.

The long-run frequency band reveals a dramatically different spillover configuration that closely mirrors the time-
domain findings. Lima reemerges as the overwhelmingly dominant net transmitter with a NET spillover of 27.23
percentage points-statistically significant at the 1% level and representing the largest regional influence in the entire
frequency decomposition. This long-run dominance reflects Lima’s structural role in Peru’s economy: monetary policy
transmission originates from the capital’s financial markets, aggregate demand pressures emanate from its concentrated
economic activity, and macroeconomic shocks diffuse outward through established commercial and financial networks.
The magnitude of Lima’s long-run transmission (TO = 65.70 percentage points) substantially exceeds its short-run
influence (TO = 34.81 percentage points), demonstrating that Lima’s systemic importance materializes primarily through
persistent, structural channels rather than immediate supply relationships. This finding has profound implications
for monetary policy design, suggesting that while Lima may be vulnerable to short-term supply shocks from other
regions, its role as an inflation anchor operates primarily through long-term expectation formation and structural price
determination.

Regions 8 and 9 maintain their roles as significant net recipients in the long-run band, with NET spillovers of -17.07 and
-24.29 percentage points, respectively, both statistically significant. However, their long-run absorption of spillovers
occurs through different mechanisms than short-run reception: rather than immediate supply chain vulnerabilities,
their long-run recipient status reflects structural economic dependence on price trends determined in Lima and other
economic centers, transmitted through wage indexation, service pricing, and gradual adjustment of local price levels to
national trends.

The frequency decomposition reveals several regions that fundamentally change their spillover roles across cyclical
horizons, providing insights into the complex temporal structure of regional inflation transmission. Region 3 transforms
from a significant shortrun transmitter (NET = 6.51) to a modest long-run recipient (NET = -6.02), illustrating
how agricultural regions can drive immediate price pressures while remaining structurally dependent on broader
economic trends for sustained inflation dynamics. Region 6 (Arequipa, Moquegua, Tacna, Puno) exhibits the opposite
transformation: relatively passive in short-run dynamics (NET = -4.62) but emerging as a moderate longrun transmitter
(NET= 8.80). This pattern likely reflects the region’s mining and industrial base, which influences long-term price trends
through investment cycles and commodity market integration while remaining less influential in immediate supply
chain dynamics. These role reversals across frequencies demonstrate the importance of frequency-domain analysis
for understanding regional monetary transmission. Traditional time-domain approaches aggregate these contrasting
dynamics, potentially obscuring the distinct mechanisms through which different regions influence national inflation at
various temporal horizons.

The pairwise net spillovers across frequencies, presented in Table 7, broadly reflect the aggregate transmission patterns
discussed earlier, while providing a more granular view of bilateral inflation dynamics across distinct cyclical horizons.
In the short-run band, spillover relationships remain relatively balanced and bidirectional among most regional pairs.
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Notably, Lima registers statistically significant net spillovers from multiple regions, including Regions 3, 4, and 7.
These short-run transmissions likely reflect direct supply chain linkages—such as harvest variability, weather-induced
production shocks, logistical bottlenecks, and commodity price volatility—that quickly propagate through retail markets.
This pattern reinforces Lima’s role as a short-run recipient of supply-driven price pressures originating in upstream
producing regions.

The long-run bilateral relationships reveal a markedly hierarchical structure with Lima transmitting significant net
spillovers to nearly all other regions. Lima’s bilateral influence is particularly pronounced with peripheral regions: 4.91
percentage points to Region 9 and 4.19 percentage points to Region 8, both statistically significant. This systematic
pattern demonstrates that Lima’s structural influence operates through persistent, broad-based transmission to all regions
rather than concentrated effects on specific regional partners.

Table 6: Frequency domain spillovers

Lima Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 FROM

Short run: Bands (π - π
3 )

Lima 11.85 5.74 6.41 6.69 5.53 2.99 6.50 1.07 3.11 38.04***
Region 2 5.34 12.59 7.02 7.22 3.84 3.02 4.80 1.09 3.11 35.43***
Region 3 4.82 5.57 10.48 5.21 3.05 2.03 4.26 0.95 2.64 28.55***
Region 4 5.80 6.33 5.80 11.57 4.31 2.70 5.16 1.24 2.70 34.06***
Region 5 5.17 3.73 3.61 4.54 10.88 2.53 4.39 1.38 3.13 28.47***
Region 6 3.64 3.88 3.03 3.61 3.26 12.45 3.25 4.05 2.17 26.89***
Region 7 5.01 4.18 4.43 4.87 3.99 2.43 10.10 1.57 2.77 29.25***
Region 8 1.70 1.63 1.35 1.85 1.96 4.93 2.67 15.66 1.78 17.87***
Region 9 3.31 3.40 3.41 3.09 3.28 1.62 3.12 1.14 13.37 22.38***

TO 34.81*** 34.47*** 35.06*** 37.07*** 29.22*** 22.26*** 34.14*** 12.50*** 21.42***
NET -3.24 -0.96 6.51*** 3.01 0.75 -4.62 4.89* -5.37** -0.96 FSI = 28.99***

Long run: Bands ( π3 - 0)

Lima 11.64 4.67 5.46 5.65 6.93 5.21 5.20 1.83 3.52 38.47***
Region 2 7.35 11.42 6.44 6.23 4.95 5.31 4.43 1.59 4.26 40.55***
Region 3 9.31 7.50 11.26 7.07 6.50 5.76 5.98 3.20 4.39 49.71***
Region 4 8.97 6.74 6.44 9.92 6.12 5.08 6.04 1.93 3.13 44.45***
Region 5 9.87 4.71 5.51 6.40 12.93 6.23 7.06 3.93 4.01 47.72***
Region 6 6.72 4.69 4.44 5.07 6.23 19.11 6.21 7.07 1.13 41.56***
Region 7 9.03 4.33 6.19 6.08 7.29 5.83 14.36 4.40 3.14 46.29***
Region 8 6.02 2.40 4.03 4.34 6.24 10.10 9.87 22.15 1.32 44.32***
Region 9 8.43 6.20 5.19 5.81 7.69 6.84 5.72 3.31 15.06 49.19***

TO 65.70*** 41.24*** 43.69*** 46.65*** 51.94*** 50.36*** 50.51*** 27.25*** 24.91***
NET 27.23*** 0.69 -6.02 2.21 4.23 8.80 4.23 -17.07** -24.29*** FSI = 44.70***

Note: This table reports the spillovers in the frequency domain. For the FSI, TO, FROM and NET spillovers measures, we report its
statistical significance: *** significant at the 1% level, ** at the 5% level, and * at the 10% level.

4.2.2 Dynamic Inflation Spillovers: Rolling-Window Analysis

To examine the temporal evolution of frequency-specific spillovers, we implement rolling-window estimation using
150-observation windows with bootstrap confidence intervals. For each window, connectedness measures are computed
separately for the short-run (π, π

3 ) and long-run (π3 , 0) frequency bands. Confidence intervals at the 95% level are
constructed via pivot bootstrap with 5,000 replications, following the procedure outlined by Choi and Shin (2020).
Figure 6 displays the dynamic evolution of frequency-specific spillover indices, confirming that the FSI remains
substantially higher at longer horizons throughout the sample period while revealing important cyclical variations in
both frequency bands.

The short-run FSI exhibits notable within-sample variation, following an upward trajectory from May 2014 to February
2020 (rising from 25.64% to 34.41%) that intensifies following COVID-19 mobility restrictions, peaking at 37.48%
in June 2021. This increase in short-run connectedness during the pandemic likely reflects synchronized retail price
adjustments triggered by supply chain fragmentation, panic purchasing behavior, and logistical disruptions affecting
agricultural product flows from producing regions to urban markets.

The intensification of short-run spillovers during crisis periods demonstrates how supply chain vulnerabilities can
temporarily amplify immediate price transmission relationships. Food staples like potatoes, onions, and legumes faced
transportation constraints and irregular distribution, causing retail markets across regions-particularly Lima-to respond
in unison to supply disruptions, thereby strengthening short-term comovements in inflation.
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Table 7: Frequency domain pairwise net spillovers

Lima Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9

Short run: Bands (π - π
3

)

Lima -
Region 2 -0.40 -
Region 3 -1.59*** -1.44*** -
Region 4 -0.89* -0.88* 0.59 -
Region 5 -0.36 -0.10 0.56* 0.22 -
Region 6 0.65 0.86 1.00** 0.91* 0.73* -
Region 7 -1.48*** -0.62 0.16 -0.29 -0.40 -0.82* -
Region 8 0.63 0.54 0.40 0.60* 0.58 0.88 1.10*** -
Region 9 0.20 0.29 0.77 0.39 0.15 -0.55 0.35 -0.64 -

Long run: Bands (π
3

- 0)

Lima -
Region 2 2.68*** -
Region 3 3.85*** 1.06 -
Region 4 3.31*** 0.51 -0.63 -
Region 5 2.94*** -0.24 -1.00 0.28 -
Region 6 1.52 -0.62 -1.32 -0.01 0.00 -
Region 7 3.83*** -0.10 0.21 0.04 0.23 -0.38 -
Region 8 4.19*** 0.81 0.83 2.41** 2.31 3.03 5.47*** -
Region 9 4.91*** 1.94* 0.80 2.68*** 3.67*** 5.71*** 2.58** 1.99* -

Note: This table reports the frequency domain pairwise net spillovers and its statistical significance: *** significant at the 1% level,
** at the 5% level, and * at the 10% level.

The long-run FSI follows a distinct evolutionary pattern that more closely mirrors the time-domain results. Between May
2014 and February 2020, long-term connectedness remained relatively stable between 43.11% and 48.35%. However,
following COVID-19 mobility restrictions, the long-run index declined sharply to 30.36% in June 2021, reflecting
temporary weakening of structural inflation linkages as regional economies underwent asynchronous adjustments to
pandemic shocks.

The breakdown of long-run spillovers during the pandemic reflects disruption of fundamental transmission mechanisms:
inter-regional labor mobility declined, investment linkages weakened, and financial market integration temporarily
fragmented. The subsequent recovery to 42.57% by April 2022 coincides with the 2022 inflationary surge driven by
global commodity shocks, exchange rate pass-through, and nationwide monetary responses-macroeconomic pressures
that reactivated structural spillover mechanisms.

Having established the contrasting evolution of aggregate spillover intensity across frequencies, we now turn to the di-
rectional dynamics underlying these patterns. Specifically, we examine how individual regions contribute to and receive
inflationary pressures over time, and whether these roles differ across cyclical horizons. This disaggregated analysis
offers a more nuanced view of inflation transmission mechanisms, highlighting both symmetrical and asymmetrical
relationships across Peru’s regional landscape.

Figures 7 and 8 illustrate the evolution of TO spillovers across frequency bands, revealing distinct temporal patterns.
Lima’s short-term transmission capacity remains relatively stable and consistently below its long-term influence
throughout the sample period. In contrast, Lima’s long-run TO spillovers exhibit a clear upward trend, particularly
pronounced following the pandemic, reinforcing its growing structural centrality in Peru’s inflation network. Regions 8
and 9 consistently display the lowest TO values across both frequency bands and throughout time, confirming their
persistent peripheral status regardless of cyclical horizon. However, their spillover reception patterns (Figures B1
and B2 in appendix) show greater stability in the long-run band, suggesting that while their immediate supply chain
vulnerabilities may fluctuate, their structural dependence on external price determination remains consistent.

The NET spillover profile highlights the transmission asymmetries observed in the TO analysis, summarizing each
region’s net position over time. As shown in Figures 9 and 10, which depict short- and long-term NET dynamics,
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Figure 6: Dynamic frequency spillover index in the frequency domain

Note: This figure displays the evolution of the Frequency Spillover Index (FSI) over time, decomposed across different frequency bands , estimated using the BK methodology
(Baruník and Křehlík, 2018). The analysis is based on a rolling window of 150 observations. Panel A shows short-term connectedness, corresponding to the frequency band
(π, π

3
), while Panel B shows long-term connectedness, associated with the band (π

3
, 0). The dashed lines represent 95% confidence intervals obtained through 5,000 pivot

bootstrap simulations, following the methodology of Choi and Shin (2020).

respectively, short-run values remain relatively stable across all regions, with no clear evidence of sustained net
transmitters or receivers. Lima does not exhibit a dominant short-run net position, and overall dynamics at high
frequencies appear comparatively symmetric across regions. In contrast, long-term NET spillovers reveal stronger
cross-regional variation. Lima emerges as the primary net transmitter of inflation, with a noticeable upward trend in its
long-run NET values over the sample period. Conversely, Regions 8 and 9 consistently register negative long-term NET
values, underscoring their role as structural net recipients of inflationary pressures.

The dynamic frequency-domain analysis provides crucial insights for monetary policy implementation during different
phases of economic cycles. The temporary intensification of short-run spillovers during crisis periods suggests that
immediate policy responses should account for amplified supply chain transmission, while the resilience of long-run
structural relationships validates Lima’s continued role as a reliable inflation anchor during normal economic conditions.

The contrasting behavior of spillovers across frequencies during the 2022 inflationary episode-where long-run connect-
edness strengthened while short-run spillovers moderated—demonstrates that different temporal horizons of spillover
relationships respond distinctly to various types of economic shocks. This frequency-dependent responsiveness un-
derscores the value of the spectral approach for understanding the complex temporal architecture of regional inflation
transmission and designing horizonspecific policy responses.

Figure 7: Dynamic TO spillovers to all others in the short run

Note: This figure shows the short-term TO spillovers (π, π
3

), estimated using the BK methodology (Baruník and Křehlík, 2018). Results are based on a rolling window of 150
observations. Dashed lines indicate 95% confidence intervals from 5,000 pivot bootstrap simulations (Choi and Shin, 2020).
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Figure 8: Dynamic TO spillovers to all others in the long run

Note: This figure shows the long-term TO spillovers ( π
3
, 0), estimated using the BK methodology (Baruník and Křehlík, 2018). Results are based on a rolling window of 150

observations. Dashed lines indicate 95% confidence intervals from 5,000 pivot bootstrap simulations (Choi and Shin, 2020).

Figure 9: Dynamic NET spillovers in the short run

Note: This figure shows the short run NET spillovers (π, π
3

), estimated using the BK methodology (Baruník and Křehlík, 2018). Results are based on a rolling window of 150
observations. Dashed lines indicate 95% confidence intervals from 5,000 pivot bootstrap simulations (Choi and Shin, 2020).

Figure 10: Dynamic NET spillovers in the long run

Note: This figure shows the long-term NET spillovers ( π
3
, 0), estimated using the BK methodology (Baruník and Křehlík, 2018). Results are based on a rolling window of 150

observations. Dashed lines indicate 95% confidence intervals from 5,000 pivot bootstrap simulations (Choi and Shin, 2020).
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4.3 Robustness Analysis

To ensure the reliability and generalizability of our spillover findings, we conduct an extensive robustness analysis
that systematically examines the sensitivity of our results across multiple dimensions. Our robustness framework
tests the stability of regional spillover patterns under alternative model specifications, temporal aggregations, spatial
classifications, and methodological approaches, providing comprehensive validation of our core empirical findings.
This multi-faceted approach is essential given the policy importance of our results for Peru’s monetary framework and
their potential applicability to other emerging economies with similar regional heterogeneity.

Our comprehensive robustness analysis demonstrates remarkable stability in Peru’s regional inflation spillover architec-
ture across the multiple dimensions of sensitivity testing we have conducted. Key findings prove robust to: alternative
model specifications (forecast horizons, lag lengths), granular city-level analysis, and varying frequency decompositions
(two-band vs. three-band).

Most importantly, the core policy-relevant findings remain consistent across all robustness checks: Lima’s structural
dominance as a long-run inflation transmitter, the frequency-dependent nature of regional spillover relationships, and the
persistent peripheral status of remote regions in Peru’s spillover network. This robustness provides strong confidence
in the policy recommendations derived from our analysis and suggests broad applicability of our methodological
framework to other emerging economies with similar regional heterogeneity.

The stability of our findings across diverse specifications also validates the economic interpretations underlying our
results: Lima’s dominance reflects genuine structural centrality in Peru’s economy rather than statistical artifacts, while
the frequency-dependent spillover patterns capture real differences between supply-chain transmission (short-run) and
monetary policy transmission (long-run) mechanisms. This robustness strengthens the case for continued reliance on
Lima’s CPI as Peru’s inflation-targeting anchor while supporting enhanced attention to frequency-specific regional
dynamics in monetary policy implementation.

4.3.1 Time-Domain Robustness Checks

Sensitivity to Model Specification Parameters

We begin by assessing the robustness of time-domain spillover estimates to key methodological choices that could
potentially influence our conclusions. Following the approaches of Diebold and Yilmaz (2012), we systematically vary
forecast horizons and lag lengths while monitoring the stability of regional spillover rankings and magnitudes.

Table A1 reports the sensitivity of spillover measures to forecast horizon variations, with horizons ranging from H = 1
to H = 12 months while maintaining a fixed lag length of L = 1. Each cell presents the median value across horizons,
with minimum and maximum values in brackets to illustrate the range of variation. The results demonstrate remarkable
stability in regional spillover hierarchies: Lima consistently emerges as the dominant net transmitter across all forecast
horizons, with median NET spillovers of 23.99 percentage points and a narrow range of 11.78 to 24.00 percentage
points.

Similarly, Regions 8 and 9 maintain their roles as significant net recipients across all horizons, with relatively narrow
ranges around their median values (-22.44 and -25.24 respectively). This consistency demonstrates that our key findings
about regional transmission hierarchies are not artifacts of specific forecast horizon choices but reflect robust structural
relationships in Peru’s regional inflation network.

Table A2 examines sensitivity to VAR lag length specifications, varying from L = 1 to L = 6 while holding the
forecast horizon constant at H = 3. The results confirm the robustness of our spillover rankings, with Lima’s median
NET spillover of 20.00 percentage points remaining substantially above all other regions across all lag specifications.
The stability of these patterns suggests that our findings capture genuine economic relationships rather than statistical
artifacts of particular model specifications.

Dynamic Robustness Assessment

To assess the stability of our dynamic spillover estimates, we implement rolling-window analysis across forecast
horizons H = 1 to H = 12. Figure B3 illustrates the evolution of NET spillovers, with the solid black line denoting
the median trajectory across horizons and the shaded area capturing the full range between minimum and maximum
estimates.

Lima’s dynamic NET spillover evolution shows remarkable consistency, with the median closely tracking the upper
bound throughout the sample period. This pattern reflects Lima’s persistently strong transmission role across different
forecast horizons. Notably, Lima’s spillover intensity increases with horizon length, as evidenced by the lower bound
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(corresponding to H = 1 and H = 2) remaining substantially below the median. This horizon-dependent strengthening
provides empirical support for our frequency-domain analysis, which explicitly demonstrates Lima’s greater influence
at longer cyclical periods.

Figures B4 and B5 present additional robustness checks examining sensitivity to lag length specifications (L = 1 to
L = 6) and rolling window sizes (100, 150, and 200 observations), respectively. Figure B4 illustrates the evolution of
NET spillovers, with the solid black line denoting the median trajectory across lag specifications and the shaded area
capturing the full range between minimum and maximum estimates. Across all variations, the fundamental pattern
persists: Lima maintains its dominant net transmitter role, while Regions 8 and 9 consistently appear as net recipients.
The stability of these relationships across diverse specifications reinforces confidence in our core empirical findings.

City-Level Granular Analysis

As a comprehensive robustness check, we re-estimate spillover measures using monthly inflation data from Peru’s
25 largest cities individually, rather than the nine regional aggregates employed in our main analysis. This granular
approach tests whether our findings are sensitive to the spatial aggregation scheme and provides validation using the
finest available geographic resolution.

Table A3 presents the city-level spillover results, revealing a total spillover index of 73.68%—virtually identical to our
regional aggregate finding of 73.60%.7 This remarkable consistency demonstrates that our aggregation methodology
preserves the essential spillover structure present in the underlying city-level data. Lima emerges as the dominant net
transmitter at the city level with a NET spillover of 54.96 percentage points-even more pronounced than in regional
analysis, confirming its central role in Peru’s spatial inflation network.

Cities corresponding to our peripheral regions (Iquitos, Puerto Maldonado) exhibit the largest negative NET spillovers
(-40.00 and -36.18 percentage points), while cities in food-producing regions (Chiclayo, Huancayo) show significant
positive transmission. These patterns align precisely with our regional findings, validating both our aggregation
methodology and our economic interpretations of regional spillover roles.

4.3.2 Frequency Domain Approach

Alternative Frequency Band Specifications

To ensure our frequency-domain results are not dependent on the specific two-band decomposition employed in our
main analysis, we implement a three-band specification following Istiak et al. (2021). This refined decomposition
distinguishes between short-term (π, π/3), medium-term (π/3, π/12), and long-term (π/12, 0) dynamics, corresponding
approximately to 2-6 months, 6-24 months, and 24+ months respectively.

Table A4 presents the three-band decomposition results, confirming and refining our main frequency-domain findings.
In the short-term band, Lima appears as a statistically significant net recipient (NET = -3.24, p<0.10), consistent with
our two-band analysis. However, the three-band decomposition reveals that Lima’s transformation to dominance occurs
primarily in the medium-term band (NET = 16.76, p<0.01), with continued strong transmission in the long-term band
(NET = 10.48, p<0 .01).

This three-band analysis provides crucial insights into the temporal structure of Lima’s influence: its dominance emerges
most strongly in the medium-term band (6-24 months), corresponding to monetary policy transmission cycles and
business cycle frequencies. The persistence of significant transmission into the longest band (24+ months) confirms
Lima’s role in long-term inflation anchor formation and structural price determination.

Regions 8 and 9 maintain negative NET spillovers across all three bands, with particularly pronounced medium-
term reception (-10.20 and -14.36 percentage points), suggesting that their structural dependence on external price
determination operates most strongly at business cycle frequencies.

City-Level Frequency Analysis

We extend our frequency-domain robustness analysis to the city level, implementing the Baruník-Křehlík methodology
on all 25 cities for both short-run and long-run bands. Tables 10 and 11 present selected results, confirming our regional
frequency patterns at the finest spatial resolution.8

In the short-run band (Table A5), Lima shows a modest positive NET spillover (3.14) that is not statistically significant,
while cities in agricultural regions (Chiclayo: 10.24, Huancayo: 3.30) exhibit stronger short-run transmission. This

7Estimation is based on a VAR model with one lag and a forecast horizon of three months.
8Estimation uses a VAR model with one lag and a forecast horizon of three months.
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pattern aligns with our regional finding that food-producing areas drive immediate price pressures that subsequently
affect Lima.

In the long-run band (Table A6), Lima’s dominance becomes overwhelming with a NET spillover of 47.87 percentage
points (p<0.01)—substantially larger than any other city. Cities corresponding to peripheral regions (Iquitos: -34.20,
Puerto Maldonado: -23.93) maintain their recipient roles, while secondary urban centers (Arequipa, Trujillo) show
modest transmission capacity.

Dynamic Frequency Robustness

Figure B6 presents the dynamic evolution of NET spillovers across our three-band frequency decomposition, confirming
the temporal stability of frequency-dependent regional roles. Lima consistently displays negative NET spillovers in the
short-term band throughout the sample period, while maintaining positive and generally increasing NET spillovers
in both medium- and long-term bands. This temporal consistency across the entire sample period demonstrates that
the frequency-dependent spillover patterns are structural features of Peru’s regional economy rather than temporary
phenomena.

5 Conclusions and Policy Implications

This study provides robust empirical evidence on the regional architecture of inflation spillovers in Peru, documenting
pronounced asymmetries in how inflationary shocks propagate across the country’s nine economic regions. Using both
time-domain (Diebold-Yilmaz) and frequency-domain (Baruník-Křehlík) methodologies on monthly CPI data from
2002-2024, we establish that Lima consistently emerges as the dominant net transmitter of inflationary shocks (net
spillover of 23.94 percentage points), while peripheral regions like Regions 8 and 9 serve as persistent net recipients
(net spillovers of -22.62 and -24.87 , respectively).

Our frequency decomposition reveals a striking dual role for Lima in Peru’s inflation transmission network. In the short
run (2-6 months), Lima functions primarily as a net recipient of inflationary shocks, particularly from food-producing
regions (Regions 3 and 7), reflecting its dependence on regional supply chains for essential goods. However, over longer
horizons (6+ months), Lima consistently emerges as the dominant transmitter, with the longrun frequency-specific
spillover index (FSI) reaching 44.70% compared to only 28.99% in the short run. This temporal asymmetry underscores
how structural economic forces-monetary policy transmission, aggregate demand dynamics, and macroeconomic
fundamentals-mainly originate from the capital and propagate outward over extended periods.

The dynamic evolution of spillovers during COVID-19 mobility restrictions and the 2022 inflationary surge provides
crucial insights into crisis management. Short-run spillovers intensified during logistical fragmentation, while long-run
spillovers declined and later recovered, illustrating how structural transmission mechanisms can be temporarily disrupted
before being reactivated by common macroeconomic pressures. Lima’s long-run net spillovers displayed a persistent
upward trend, reinforcing its growing centrality in national inflation dynamics.

These findings provide strong empirical validation for the BCRP’s continued use of Lima’s CPI as the primary inflation-
targeting anchor. Lima’s structural dominance in long-run spillovers (net spillover of 27.23 percentage points in the
long-run frequency band) confirms its suitability as a credible benchmark for national price stability objectives and
substantiates the Central Reserve Bank’s reliance on Lima’s CPI for anchoring inflation expectations. The robustness of
these patterns across alternative specifications, spatial aggregation levels, and frequency segmentations demonstrates
the reliability of Lima’s centrality for operational policy analysis.

However, the frequency-domain analysis suggests concrete enhancements to current policy practice. The BCRP should
integrate geographically disaggregated signals from foodproducing regions (Regions 3 and 7) into near-term inflation
forecasts. Monthly monitoring systems for agricultural price developments, supply chain tracking mechanisms linking
regional disruptions to anticipated Lima price pressures, and weather-indexed forecasting models incorporating climate
shocks represent actionable improvements to current forecasting frameworks.

For persistently vulnerable regions (Regions 8 and 9), which consistently absorb long-run inflationary pressures without
effective transmission capabilities, targeted stabilization measures merit consideration. Early warning systems linked
to Lima’s inflation dynamics could enhance regional policy responsiveness. Additionally, our COVID-19 analysis
reveals that structural spillover mechanisms can be temporarily disrupted during severe shocks, suggesting the need
for adaptive policy responses that account for temporary breakdowns in normal transmission channels, including
contingency forecasting models and flexible targeting approaches during crisis periods.

From a theoretical perspective, our findings extend understanding of monetary policy transmission in spatially heteroge-
neous economies. The documented frequency-dependent spillovers challenge traditional models that assume uniform
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policy transmission, suggesting that optimal monetary policy should account for both short-run supply-side shocks from
peripheral regions and long-run demand-side transmission from economic centers. This dual-frequency framework
provides a more sophisticated foundation for understanding monetary policy effectiveness across space and time, with
broader applicability to other emerging economies facing similar center-periphery dynamics.

The methodology developed here-combining time-domain and frequency-domain spillover analysis-offers a generaliz-
able framework for analyzing regional inflation dynamics in spatially diverse economies. Countries like Brazil, India,
South Africa, and Mexico face comparable challenges in designing monetary policy for economically heterogeneous
regions, and the analytical tools demonstrated here provide practical approaches for addressing these challenges. The
frequency-domain extension proves particularly valuable for distinguishing between transitory supply shocks and
persistent structural transmission, a distinction crucial for policy design in emerging economies with pronounced
regional diversity.

Looking forward, future research should develop time-varying parameter models that endogenously determine optimal
regional weights in inflation targeting frameworks, particularly during structural breaks or crisis periods. Cross-country
applications of our methodology could establish generalizable principles for regional inflation management, while
real-time spillover indices could inform monthly policy decisions through machine learning approaches processing
high-frequency regional price data. The intersection of regional inflation spillovers with financial stability concerns
represents another promising avenue for investigation.

In synthesis, Lima’s dual role as short-run recipient and long-run transmitter of inflation provides a robust empirical
foundation for Peru’s monetary policy framework that balances national coherence with regional heterogeneity. The
Central Reserve Bank of Peru should maintain its Lima-centered inflation targeting approach while enhancing regional
monitoring capabilities and crisis preparedness mechanisms. As Peru’s economy continues evolving, the frequency-
sensitive spillover framework developed here offers both immediate operational value and a durable foundation for
adapting monetary policy to changing regional dynamics while preserving long-run price stability objectives. Most
importantly, our findings demonstrate that effective inflation targeting in spatially heterogeneous economies requires
moving beyond simple aggregate measures to understand the complex, frequency-dependent relationships that govern
how price pressures propagate across regions and time horizons.
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Appendix A Supplementary Tables

Table A1: Sensitivity of time domain spillovers to the forecast horizon

Region TO FROM NET

Lima 100.5 76.51 23.99
[88.03, 100.51] [76.25, 76.51] [11.78, 24]

Region 2 75.72 75.99 -0.27
[75.71, 80.5] [74.75, 75.99] [-0.27, 5.75]

Region 3 78.75 78.26 0.48
[78.74, 81] [74.95, 78.27] [0.48, 6.05]

Region 4 83.72 78.51 5.21
[83.72, 87.56] [76.15, 78.51] [5.21, 11.4]

Region 5 81.16 76.19 4.97
[74.94, 81.16] [73.13, 76.19] [1.81, 4.97]

Region 6 72.62 68.44 4.18
[61.29, 72.63] [67.92, 68.44] [-6.62, 4.19]

Region 7 84.65 75.53 9.11
[81.5, 84.65] [74.59, 75.54] [6.91, 9.12]

Region 8 39.74 62.19 -22.44
[32.96, 39.75] [54.13, 62.19] [-22.86, -21.18]

Region 9 46.33 71.57 -25.24
[46.32, 48.8] [64.71, 71.57] [-25.25, -15.91]

TSI 73.69
[70.73, 73.69]

Note: This table shows the sensitivity of time domain spillovers to the forecast horizon (h = 1 to 12). Each cell reports the median
value, with minimum and maximum across horizons in brackets. The lag of the VAR model is L=1, that was chosen by the BIC
criterium.
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Table A2: Sensitivity analysis of time domain spillovers with respect to VAR lag length

Region TO FROM NET

Lima 96.67 76.55 20
[94.85, 100.43] [75.82, 76.97] [19.03, 23.94]

Region 2 76.6 75.61 1.19
[76.06, 78.03] [74.62, 76.24] [0.1, 2.99]

Region 3 79.72 77.78 2.01
[78.14, 80.54] [76.65, 78.35] [0.62, 3.18]

Region 4 85.56 78.09 7.85
[83.84, 87.12] [76.72, 78.64] [5.36, 9.47]

Region 5 80.93 75.98 4.81
[77.62, 82.34] [75.08, 76.64] [2.45, 5.7]

Region 6 71.63 68.48 2.8
[67.59, 72.13] [67.18, 68.9] [0.41, 3.76]

Region 7 84.5 75.43 8.83
[83.78, 84.69] [74.83, 75.86] [8.46, 9.87]

Region 8 39.98 64.86 -24.83
[37.52, 41.55] [61.93, 65.99] [-26.97, -22.62]

Region 9 47.53 70.4 -22.68
[45.37, 49.18] [68.78, 71.41] [-24.87, -21.2]

TSI 73.68
[72.89, 74.14]

Note: Each cell reports the median value of the time domain spillover measure across different lag lengths, with the minimum and
maximum in brackets. Spillovers are computed using a forecast horizon of h = 3, varying the lag length of the VAR model from
L = 1 to L = 6.
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Table A3: Time domain spillovers by cities

City TO FROM NET

Abancay 71.8*** 81.78*** -9.95
Arequipa 75.73*** 79.17*** -3.44
Ayacucho 86.14*** 82.63*** 3.51
Cajamarca 56.93*** 80.81*** -23.88***
Cerro de Pasco 100.32*** 85.47*** 14.85**
Chachapoyas 59.39*** 83.13*** -23.75***
Chiclayo 102.58*** 86.35*** 16.22**
Chimbote 89.98*** 85.17*** 4.81
Cusco 72.52*** 79.61*** -7.09
Huancavelica 78.48*** 81.55*** -3.07
Huancayo 114.64*** 83.15*** 31.49***
Huánuco 82.07*** 84.64*** -2.58
Huaraz 104.22*** 85.70*** 18.52**
Ica 87.45*** 83.58*** 3.87
Iquitos 33.65*** 73.65*** -40.00***
Lima 141.91*** 86.95*** 54.96***
Moquegua 99.35*** 83.00*** 16.36*
Moyobamba 56.45*** 82.66*** -26.21***
Piura 95.17*** 85.16*** 10.01
Pucallpa 62.95*** 77.61*** -14.66
Puerto Maldonado 27.92*** 64.10*** -36.18***
Puno 60.87*** 76.65*** -15.78*
Tacna 115.94*** 81.57*** 34.36***
Trujillo 94.55*** 85.58*** 8.97
Tumbes 70.88*** 82.24*** -11.36

TSI 73.68***

Note: This table reports the time domain spillovers across cities of Peru. For the TSI, TO, FROM and NET spillover measures, we
report statistical significance: *** significant at the 1% level, ** at the 5% level, and * at the 10% level.
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Table A4: Frequency domain spillovers in the short, medium and long run

Lima Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 FROM

Short run: Bands (π - π
3 )

Lima 11.85 5.74 6.41 6.69 5.53 2.99 6.50 1.07 3.11 38.04***
Region 2 5.34 12.59 7.02 7.22 3.84 3.02 4.80 1.09 3.11 35.43***
Region 3 4.82 5.57 10.48 5.21 3.05 2.03 4.26 0.95 2.64 28.55***
Region 4 5.80 6.33 5.80 11.57 4.31 2.70 5.16 1.24 2.70 34.06***
Region 5 5.17 3.73 3.61 4.54 10.88 2.53 4.39 1.38 3.13 28.47***
Region 6 3.64 3.88 3.03 3.61 3.26 12.45 3.25 4.05 2.17 26.89***
Region 7 5.01 4.18 4.43 4.87 3.99 2.43 10.10 1.57 2.77 29.25***
Region 8 1.70 1.63 1.35 1.85 1.96 4.93 2.67 15.66 1.78 17.87***
Region 9 3.31 3.40 3.41 3.09 3.28 1.62 3.12 1.14 13.37 22.38***

TO 34.81*** 34.47*** 35.06*** 37.07*** 29.22*** 22.26*** 34.14*** 12.50*** 21.42***
NET -3.24* -0.96 6.51*** 3.01 0.75 -4.62 4.89* -5.37** -0.96 FSI = 28.99***

Medium run: Bands ( π3 - π
12 )

Lima 7.89 3.22 3.73 3.83 4.60 3.33 3.53 1.15 2.48 25.86***
Region 2 4.99 7.93 4.49 4.30 3.31 3.42 3.09 1.04 2.96 27.60***
Region 3 6.04 5.07 7.58 4.67 4.15 3.58 3.87 1.98 3.02 32.38***
Region 4 6.04 4.67 4.41 6.85 4.06 3.27 4.11 1.23 2.19 29.98***
Region 5 6.41 3.20 3.59 4.20 8.46 3.90 4.50 2.41 2.80 31.02***
Region 6 4.34 3.25 2.85 3.33 3.99 12.64 3.85 4.41 0.90 26.92***
Region 7 5.72 2.95 3.95 3.91 4.55 3.59 9.09 2.58 2.20 29.46***
Region 8 3.60 1.62 2.39 2.65 3.73 6.33 5.78 13.83 0.96 27.07***
Region 9 5.48 4.17 3.42 3.81 4.95 4.28 3.71 2.07 10.58 31.89***

TO 42.62*** 28.16*** 28.83*** 30.69*** 33.34*** 31.70*** 32.43*** 16.87*** 17.52***
NET 16.76*** 0.56 -3.55 0.72 2.32 4.79 2.97 -10.20*** -14.36*** FSI = 29.13***

Long run: Bands ( π
12 - 0)

Lima 3.75 1.45 1.73 1.82 2.32 1.87 1.68 0.68 1.04 12.60***
Region 2 2.36 3.49 1.96 1.93 1.64 1.89 1.34 0.54 1.30 12.96***
Region 3 3.27 2.43 3.67 2.40 2.35 2.18 2.11 1.22 1.37 17.34***
Region 4 2.92 2.07 2.03 3.07 2.06 1.81 1.93 0.70 0.94 14.47***
Region 5 3.46 1.51 1.91 2.20 4.47 2.33 2.56 1.52 1.21 16.70***
Region 6 2.38 1.44 1.59 1.75 2.24 6.47 2.37 2.66 0.23 14.64***
Region 7 3.31 1.38 2.24 2.17 2.74 2.24 5.27 1.81 0.94 16.83***
Region 8 2.41 0.78 1.64 1.69 2.51 3.77 4.09 8.32 0.35 17.24***
Region 9 2.95 2.04 1.76 2.00 2.74 2.57 2.01 1.24 4.47 17.31***

TO 23.08*** 13.09*** 14.86*** 15.96*** 18.61*** 18.65*** 18.08*** 10.38*** 7.38***
NET 10.48*** 0.13 -2.47 1.49 1.91 4.01 1.25 -6.87** -9.93*** FSI = 15.57***

Note: This table reports the spillovers in the frequency domain. For the FSI, TO, FROM and NET spillovers measures, we report its
statistical significance: *** significant at the 1% level, ** at the 5% level, and * at the 10% level.
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Table A5: Frequency domain spillovers across cities: short run (π-π3 )

City TO FROM NET

Abancay 27.49*** 27.63*** -0.14
Arequipa 26.62*** 30.07*** -3.45
Ayacucho 31.27*** 34.04*** -2.76
Cajamarca 29.23*** 31.73*** -2.50
Cerro de Pasco 42.86*** 27.73*** 15.14***
Chachapoyas 26.76*** 23.69*** 3.07
Chiclayo 44.27*** 34.03*** 10.24***
Chimbote 44.04*** 41.22*** 2.83
Cusco 24.51*** 26.47*** -1.96
Huancavelica 33.19*** 39.83*** -6.63
Huancayo 36.07*** 32.77*** 3.30
Huánuco 44.29*** 36.15*** 8.14**
Huaraz 45.34*** 35.08*** 10.26**
Ica 29.78*** 30.74*** -0.96
Iquitos 17.82*** 24.05*** -6.23
Lima 51.12*** 43.97*** 3.14
Moquegua 35.53*** 35.16*** 0.37
Moyobamba 27.61*** 28.64*** -1.03
Piura 45.90*** 42.10*** 3.81
Pucallpa 21.87*** 32.78*** -10.92***
Puerto Maldonado 9.59*** 22.13*** -12.54***
Puno 18.90*** 22.96*** -4.06
Tacna 31.60*** 43.14*** -11.54***
Trujillo 42.91*** 39.71*** 3.21
Tumbes 35.72*** 38.51*** -2.79

FSI 32.97***

Note: This table reports the spillovers in the frequency domain across cities in the short run (π-π
3

). For the FSI, TO, FROM and NET
spillovers measures, we report its statistical significance: *** significant at the 1% level, ** at the 5% level, and * at the 10% level.
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Table A6: Frequency domain spillovers across cities: long run (π3 -0)

City TO FROM NET

Abancay 44.88*** 54.39*** -9.51
Arequipa 49.09*** 49.19*** -0.10**
Ayacucho 55.52*** 48.71*** 6.80
Cajamarca 27.53*** 49.19*** -21.65*
Cerro de Pasco 57.82*** 57.92*** -0.09
Chachapoyas 32.71*** 59.62*** -26.91**
Chiclayo 58.41*** 52.38*** 6.02**
Chimbote 45.77*** 44.01*** 1.76
Cusco 48.84*** 53.36*** -4.51**
Huancavelica 45.59*** 41.82*** 3.78
Huancayo 79.44*** 50.49*** 28.95**
Huánuco 37.62*** 48.62*** -11.01
Huaraz 59.39*** 50.73*** 8.65
Ica 58.19*** 52.90*** 5.29
Iquitos 15.69*** 49.88*** -34.20***
Lima 90.87*** 43.00*** 47.87***
Moquegua 63.68*** 47.91*** 15.76
Moyobamba 28.64*** 54.14*** -25.50***
Piura 48.54*** 43.08*** 5.46
Pucallpa 40.97*** 44.97*** -4.00
Puerto Maldonado 18.66*** 42.59*** -23.93**
Puno 42.71*** 54.25*** -11.54
Tacna 84.87*** 38.52*** 46.35***
Trujillo 51.23*** 45.92*** 5.31
Tumbes 34.74*** 43.79*** -9.05

FSI 48.86***

Note: This table reports the spillovers in the frequency domain across cities in the long run (π
3

-0). For the FSI, TO, FROM and NET
spillovers measures, we report its statistical significance: *** significant at the 1% level, ** at the 5% level, and * at the 10% level.
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Appendix B Supplementary Figures

Figure B1: Dynamic FROM spillovers to all others in the short run

Note: This figure shows the short-term FROM spillovers (π, π
3

), estimated using the BK methodology (Baruník and Křehlík, 2018). Results are based on a rolling window of 150
observations. Dashed lines indicate 95% confidence intervals from 5,000 pivot bootstrap simulations (Choi and Shin, 2020).

Figure B2: Dynamic FROM spillovers to all others in the long run

Note: This figure shows the long-term FROM spillovers ( π
3
, 0), estimated using the BK methodology (Baruník and Křehlík, 2018). Results are based on a rolling window of 150

observations. Dashed lines indicate 95% confidence intervals from 5,000 pivot bootstrap simulations (Choi and Shin, 2020).
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Figure B3: Robustness of Dynamic NET Spillovers to Forecast Horizon

Note: This figure shows the evolution of net inflation spillovers across regions using the Diebold and Yilmaz (2012) methodology. Estimates are based on a fixed lag length 1 and a
rolling window of 150 observations, while the forecast horizon H varies from 1 to 12. The solid black line represents the median net spillover across horizons, and the shaded area
reflects the range between the minimum and maximum values.

Figure B4: Robustness of Dynamic NET Spillovers to Lag Length

Note: This figure displays the evolution of net inflation spillovers across regions using the Diebold and Yilmaz (2012) methodology. Estimates are based on a fixed forecast horizon
H = 3 and a rolling window of 150 observations, while the lag length varies from 1 to 6 to assess the robustness of results to alternative lag specifications.
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Figure B5: Robustness of Dynamic NET Spillovers to Rolling Window Size

Note: This figure displays the evolution of net inflation spillovers across regions using the Diebold and Yilmaz (2012) methodology. Estimates are based on a fixed forecast horizon
of 3 and a lag length of 1, while the rolling window size varies across 100, 150, and 200 observations.

Figure B6: Dynamic NET spillovers in the short, medium and long run

Note: This figure shows the short-term NET spillovers (π, π
3

), medium-term NET spillovers ( π
3
, π
12

) and long-term NET spillovers ( π
12

, 0), estimated using the BK
methodology (Baruník and Křehlík, 2018). Results are based on a rolling window of 150 observations.
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