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Abstract
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crime control market from initial to final equilibrium after a shock in order to formulate an
optimal crime control policy. Furthermore, number of public service units and crime control
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1 Introduction

When a society is undergoing changes, i.e., cultural, political, and socioeconomic, etc., laws change

and may bring certain behaviors under the definition and treatment of a crime, and similarly

may free society regarding some behaviors which might have been considered as criminal activities

before. Through bringing certain behaviors under the definition and treatment of a crime, a society

tends to reduce the anticipated damage. The state tends to reduce the individual liberties after

weighing the costs and benefits of those liberties as being potentially harmful to others. State also

plays a role in creating public awareness through sharing and presenting data regarding certain

activities as causing harm to others. Public reaction to certain activities leads the state to consider

the use of law in providing an incentive mechanism to public to behave in a certain manner and

shape social norms.

Existing literature does not capture effi ciency losses on the dynamic adjustment path of crime

control market from initial to final equilibrium after a shock in order to formulate an optimal

crime control policy. Furthermore, number of public service units and crime control rate are major

determinants of crimes controlled in a society, and a policy without taking into consideration

such vital determinants cannot ensure adjustment of number of crimes controlled as a result of

cost movement in desired time, which may lead to extra effi ciency losses than those envisaged

during policy formulation for an optimal level of crime control in a society. This article designs

a comprehensive optimal crime control policy mechanism by modeling a three dimensional crime

control system in society capturing number of public service units, crime control rate, and cost,

while taking into account effi ciency losses during adjustment of crime control market, crime control

rate and number of public service units in addition to those which result due to movements from

initial to final equilbriums.

Research on crime has been pretty extensive, and a lot of theories have been in field from the

perspective of sociolgy, biology, economics of crime, etc. Danziger and Wheeler (1975) focuses

on the process by which relative welfare comparisons produce one type of conflict—crime. It is

hypothesized that shifts toward a greater degree of inequality in the distribution of income and

increases in the absolute level of income when the distribution is constant are both accompanied

by more crime. Rubin (1978) presents the economic theory of crime as an application of the labor

market theory to criminal behavior. Burton Jr and Cullen (1992) attempts to identify issues that

allow for a test of strain theory, and prompts criminologists to explore the potentially criminogeists

effects of circumstances leading to stress. Benson, Kim and Rasmussen (1994) estimates the impact

of deterrence according to theory that deterrence created by police affects crime rate. Bowles and

Garoupa (1997) extends model of crime by Becker by allowing for collusion between the criminal

and an arresting offi cer where the cost is borne by police. Agnew (1999) relies on Agnew’s general
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strain theory to explain differences in crime rates across community. Van Winden and Ash (2012)

takes into account the behavioral approach, which proposes a decision model comprising cognitive

and emotional decision systems. Antonaccio, Smith and Gostjev (2015) confirms that additional

clarifications of the concept of anomic strain may be promising. Dippel and Poyker (2019) shows

through an empirical study that the private prisons have an impact on criminal sentencing that

public ones do not. Bacher-Hicks, Billings and Deming (2019) estimates the net impact of school

discipline on student achievement, educational attainment and adult criminal activity. Using data

from the New York City Police Department’s Stop-and-Frisk program, Lehrer and Lepage (2020)

evaluates the impact of a specific terrorist attack threat from Al Qaeda on policing behavior in

New York City. Chassang, Del Carpio, Kapon et al. (2020) studies the extent to which divide-

and-conquer enforcement strategies can help select a high compliance equilibrium in the presence

of realistic compliance frictions. Devi and Fryer Jr (2020) provides an empirical examination of

the impact of federal and state "Pattern-or-Practice" investigations on crime and policing. For

investigations that were not preceded by "viral" incidents of deadly force, investigations, on average,

led to a statistically significant reduction in homicides and total crime. In stark contrast, all

investigations that were preceded by "viral" incidents of deadly force have led to a large and

statistically significant increase in homicides and total crime.

A comprehensive optimal crime control policy mechanism has been designed by modeling a three

dimensional crime control system after bifurcating it into two dimensional panels. In one panel,

public service (in terms of number of crimes controlled) and cost of per unit crime controlled is

considered (this is a traditional price-quantity panel for depicting supply and demand in a market);

whereas, in the other panel, number of public service units and crime control rate are considered.

The model in the first panel is based on a market for public service in terms of number of crimes

controlled. Four market agents exist in the market, i.e., public sector/government as a supplier of

service, consumer of service, government in the role of deciding the cost charged to the private sector

for crime control through taxes (tax policy maker) and allocation of budget to the public offi ces

for crime control, and government for exercising crime control policy. The government influences

the cost through its roles as a tax policy maker/budget allocator and that of exercising the crime

control policy, however, takes the cost as given in the role of a service supplier. For the model in

the other panel, there are three types of infinitely-lived agents: public and private sectors which

demand a certain number of public service units against each crime control rate, a representative

—or a unit mass of—public service units who control crime, and public sector as one entity who

supplies certain number of public service units against each crime control rate.

In order to capture a bigger picture of the crime control system in society, we present dynamics

and equilibria in panels A and B of figure 1. In order to formulate an optimal crime control policy,

the government needs to devise policies for both panels, i.e., A and B. For panel B, this paper
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develops a dynamic crime control model, and based on that, derives an optimal crime control

policy by minimizing the effi ciency loss, i.e., excessive or inadequate crime control public service

in the final equilibrium as compared to the initial one, i.e., before the implementation of the crime

control policy; as well as during the adjustment of the crime control public service system subject

to the government’s crime control policy cost constraint. The results from panel B decide the

constraint in panel A, i.e., an increase/decrease in number of crimes controlled per unit time. For

panel A, this paper develops a theory and designs a dynamical model for an optimal number of

public service units (a unit can be defined as a cop, a police station, an investigator, or a group of

investigators, etc.) and the crime control rate in society based on that theory. For panel A, the

optimality is in the sense of having maximum gains possible, i.e., minimizing the social damage in

terms of inadequate/excessive number of public service units in initial equilibrium; as well as the

social loss in terms of excessive or inadequate number of units on the dynamic adjustment path

before arriving at the final equilibrium, subject to a certain increase/decrease in number of crimes

controlled per unit time (obtained by deriving an optimal policy for panel B). As soon as a policy

to change the number of public service units and crime control rate is adopted, it does not lead

to an equilibrium immediately, and rather the number of public service units follow a dynamic

adjustment path to come to a point where the number of units demanded in society becomes equal

to the number supplied due to both public and private sector’s efforts. This paper considers the

social damage in the initial equilibrium as well as on the dynamic adjustment path from initial to

the final equilibrium after implementation of a panel A policy to find an optimal policy, i.e., to

minimize the social damage subject to a certain increase/decrease in number of crimes controlled

per unit time.

The natural course of occurrence of panel A, and panel B, and hence equilibria in both panels is

simultaneous. There are a certain number of public service units to control crime in a society and

they control crime at a certain rate, i.e., the upward sloping curve in panel A; and the areas of

rectangles by drawing perpendiculars from points on the supply curve in panel A to x, and y-axes

correspond to the horizontal coordinates or abscissas on the supply curve in panel B. Similarly,

society desires/demands a certain number of public service units to control crime against a crime

control rate, i.e., the downward sloping curve in panel A; and the areas of rectangles by drawing

perpendiculars from points on the demand curve of society in panel A to x, and y-axes correspond to

the abscissas on the demand curve in panel B. The demand and supply of public service measured

in terms of number of crimes controlled determines the cost per unit crime controlled in panel

B. However, for the government’s policy formulation, the government has a cost constraint which

must be satisfied for an optimal level of crimes controlled in society, therefore, the natural order for

an optimal policy formulation for the government is to find an optimal level of number of crimes

controlled subject to the cost constraint, and then for an optimal control to keep the number at the
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optimal level, devise a policy for an optimal number of public service units and the crime control

rate subject to the constraint determined by the optimal policy in panel B, i.e., the change in

number of crimes controlled per unit time. For panel B, the existing literature on crime control

policy does not take into consideration the effi ciency losses/gains on the dynamic adjustment path

as well as the final equilibrium in comparison with the initial equilibrium in the crime control

system. When the government exercises a crime control policy, the government’s cost as a supplier

of public service jumps to the pre-policy cost plus the per crime control cost incurred as a result

of the policy, which affects the public service supply in society and disrupts the supply-demand

equilibrium. Supply and demand of public service measured as the number of crimes controlled

along with the cost adjust over time to bring final equilibrium. The adjustment mechanism of cost

is based on the premise that when the crime control system goes out of equilibrium due to crime

control policy, the consumers and suppliers of public service do not have coordinated decisions at

the current cost. While deriving an optimal crime control policy, it is important to have effi ciency

considerations both during the adjustment of the system as well as in the final equilibrium as

compared to the initial one. For panel B, a dynamic crime control model has been developed and

based on that, an optimal crime control policy has been derived by minimizing the effi ciency loss,

i.e., excessive or inadequate public service in the final equilibrium as compared to the initial one,

i.e., before the implementation of the crime control policy; as well as during the adjustment of the

demand and supply subject to the government’s crime control policy cost constraint.

The remainder of this paper is organized as follows: Section 2 presents the model for panel B.

Section 3 solves the model for a crime control policy for panel B. Section 4 presents a dynamic

optimal crime control policy for panel B. Section 5 demonstrates how individual components of

panel A are joined together to form a dynamic crime control model for panel A. Section 6 provides

a solution to model A with a crime control policy. Section 7 derives a dynamic optimal crime

control policy for panel A. Section 8 presents the summary of findings and conclusion. Appendix

provides the detailed mathematical steps in derivations in the text.

2 The Model-Panel B

The model is based on a market for public service in terms of number of crimes controlled. Suppose

that the market is in equilibrium in the initial condition. Four market agents exist in the market,

i.e., public sector/government as a supplier of service, consumer of service, government in the role

of deciding the cost charged to the private sector for crime control through taxes (tax policy maker)

and allocation of budget to the public offi ces for crime control, and government for exercising crime

control policy. The government influences the cost through its roles as a tax policy maker/budget

allocator and that of exercising the crime control policy, however, takes the cost as given in the role

of a service supplier. If the number of crimes controlled changes due to an exogenous shock, the cost
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cannot jump on its own to bring the public service market in a new equilibrium. Government as a

tax policy maker changes the cost/taxes in the public interest to bring the new equilibrium after

making the cost follow an adjustment path. In the final equilibrium, it is optimal for tax policy

maker to stay put and not to change the cost/taxes further. Supplier of public service receives cost

of crime control from another wing of government which relies on tax collection; the tax policy

makers keep track of the supply and demand of crime control public service and raise/lower the

cost to bring the public service market in equilibrium. The supplier of public service maximizes the

public benefit; the tax policy maker maximizes the public benefit as a difference of the public utility

due to crime control, and the cost of provision of public service through tax collection subject to the

constraints; the consumer maximizes the profit/benefit/utility depending on the type of consumer,

i.e., whether the consumer cares more about valuables, security of life, etc.

The mechanism regarding the cost/taxes adjustment is contingent upon the premise that at the

current cost, suppliers’ and consumers’ decisions are not coordinated when an exogenous shock

happens to the public service market and pushes it out of equilibrium. Let us consider the following

example as an illustration of the working of this market: A public service market is in equilibrium as

a starting point/initial condition. An exogenous positive supply shock will result into an expansion

of number of crimes controlled as the new total supply does not match the demand of consumers at

the current cost, which will be reflected into an increase in cumulative number of crimes controlled.

The tax policy maker will reduce the tax rate so that the public service supplier finds it optimal to

supply a lower level of public service in terms of number of crimes controlled. A final equilibrum

will eventually result with a higher number of crimes controlled and a lower cost/tax rate than

those in the initial equilibrium. The equilibrium is defined as follows:

(i) The supplier of public service maximizes the public utility/benefit; the consumer maximizes the

profit/benefit/utility; and the tax policy maker maximizes the public benefit as a difference of the

public utility due to crime control, and the cost of provision of public service through tax collection

subject to the constraints as mentioned in Section 2 in detail.

(ii) The demand of number of crimes controlled equals the supply when the public service market

is in equilibrium, and the cumulative number of crimes controlled does not change.

Section 3 mentions the Routh—Hurwitz stability criterion, i.e., the necessary and suffi cient equi-

librium condition for a linear dynamical system. The tax policy maker is a price taker (takes the

cost/tax rate as given) under public service market equilibrium. In an out of equilibrium scenario of

the market, the tax policy maker has an incentive to change the cost/tax rate during the adjustment

process until the new equilibrium arrives, where the tax policy maker again becomes a price taker.

When government exercises a crime control policy, the cost/tax rate adjusts rather than jumping

to a new value and gradually brings the new equilibrium. The basis of the adjustment of cost/tax

rate is endogenous decision making by public sector/government, the consumer of public service,
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and the tax policy maker as follows: When public service market is in equilibrium, the number of

crimes controlled is equal to the number demanded in each time period. If government exercises

an expansionary public service policy, i.e., increases the number of crimes controlled, a wedge is

created between the number controlled and the number demanded. If it was possible for the sup-

pliers of public service and the tax policy makers change the service supply and the cost/tax rate

immediately; and the tax policy makers had known the new demand and supply patterns after the

change in the cost/tax rate, the tax policy makers would set a tax rate such that the public benefit

minus their cost through taxes would get maximized and the public service market would clear.

This information, however, is not known to the tax policy makers, therefore, they change the tax

rate based on their best guess/estimates about the new market scenario, which drives the market to

the new equilibrium. When the tax policy maker decreases the cost/tax rate, the supplier supplies

a lower quantity of service than before. The tax policy maker will keep decreasing the tax rate

until the new equilibrium arrives about which they get an idea through the continuously decreasing

number of crimes until eventually a new equilibrium arrives with some effi ciency losses during the

adjustment. The over employment of resources available with the public service provider/supplier

to control number of crimes excessive of the number demanded is the effi ciency loss as a result of

a crime control policy during the adjustment of the market, and the total loss is equal to the sum

of the one during the adjustment period plus/minus the loss/gain in final equilibrium.

Mathematically speaking, the first order derivatives of the objective functions of all agents have

been taken to maximize their objectives, and the individual equations are solved simultaneously

to get a mathematical expression for their collective response. An assumption for simplification

is that the final equilibrium is not too off from the pre-policy equilibrium; this implies that an

assumption regarding linearization of demand and supply schedules is reasonable. Figure 2 depicts

that linearization is a reasonable assumption for movement of an equilibrium from point a to b,

however, it does not seem to be reasonable to assume linearity of supply curve when the equilibrium

moves from point a to c, for which a non-linear dynamical system (beyond the scope of this paper)

needs to be considered.

2.1 Tax Policy Maker/Budget Allocator (TPM/BA)

Tax policy maker/budget allocator decides the cost of per unit crime controlled after evaluating

the existing scenario of demand, and supply of public service, and allocate budget to the public

offi ces to supply public service to control crime. TPM/BA maintain data on cumulative number

of uncontrolled crime, i.e., whether the number is increasing, decreasing or staying constant. If the

cumulative number of uncontrolled crime does not vary, the public service market is in equilibrium,

as neither supply nor demand changes. If the cumulative number of uncontrolled crime is rising,

there must be a higher demand from the private sector to control more crimes than before. Similarly,
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if the number of uncontrolled crime is decreasing, the supply must be higher than the demand. The

cumulative number of uncontrolled crime in a public service market is analgous to an inventory

between supply and demand in a goods market. If the rate of supply and demand is the same, the

inventory does not change. If inventory changes, that implies either a change in the supply rate,

demand rate or both (different rates).

When the service supply gets a shift to the right while demand stays the same, the supply of service

is higher than demand and the cost goes down in the new equilibrium. In the same manner, when

the public service demand to control crime shifts to the right while supply stays the same, the

cost goes up in the new equilibrium. This implies that summation of differences of supply and

demand, i.e., Σ(supply − demand) is inversely related to cost change, ceteris peribus. If demand

of public service as well as supply both shift in a manner that Σ(supply − demand) stays the

same, the cost will also not change. The demand and the supply shocks are unified by the term

Σ(supply−demand), as both are in fact just affecting this Σ. To depict the model mathematically,

the problem of TPM/BA has been considered as follows:

2.1.1 Short-run Problem

In this section, the short-run problem (which means the TPM/BA’s objective is myopic and is not

doing dynamic optimization) of TPM/BA is considered as follows:

Π = Ur(r)− ςB(mB(r, eB)), (1)

where

Π = net social benefit,

Ur(r) = social benefit due to public service of crime control,

r = cost,

mB = cumulative no. of crimes controlled = Σ(supply−demand), which is just (supply−demand)

for one time period.

eB = factors influencing mB other than cost including the budget allocated to the public service

providers which might be different from the cost charged to the private sector in terms of taxes.

ςB(mB(r, eB)) = social cost to control crime as a function of mB (increasing in mB).

Taking the derivative of eq. (1) with respect to cost, we get:

U ′r(r)− ς ′B(mB(r, eB))m′B1(r, eB) = 0. (2)

If the supply curve shifts to the right on account of a decreased cost per unit crime controlled to the

public service providers, say due to an improved computerized database of criminals, the number

of crimes controlled is no more in equilibrium. As the number of crimes controlled is higher than
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before at the current value of r, the term ς ′B(mB(r, eB)) is higher at the existing r for TPM/BA.

As the term, m′B1(r, eB) is a function of r, therefore, it is the same as before because the value of

r has not yet changed. The implication is that at the existing value of r, the TPM/BA now faces

the following inequality:

∂Π

∂r
= U ′r(r)− ς ′B(mB(r, eB))m′B1(r, eB) < 0, (3)

which implies that in order to have an extra crime controlled, the TPM/BA must decrease the

cost to the private sector in the form of taxes after supply shock to satisfy the net social benefit

maximization condition. Now the short term gains accrued from a reduced marginal cost are being

reaped by the public service provider, as the marginal cost of public service has decreased but their

market cost is the same as before until changed by the TPM/BA in the next budget allocation. A

plot of net social benefit maximizing pairs of mB and the respective cost is a downward sloping

curve with cost on the y-axis and mB on the x-axis. The concept is analogous to demand and

supply curves.

2.1.2 Dynamic Problem

This section discusses the dynamic problem of TPM/BA. Present discounted value of future stream

of net social benefits are maximized in a dynamic environment, and the present value at time zero

is given below:

V (0) =
∞∫
0

[Ur(r)− ςB(mB(r, eB))] e−σtdt, (4)

σ denotes the discount rate. r(t) is the control variable and mB(t) the state variable. Maximization

problem is as follows:

Max
{r(t)}

V (0) =
∞∫
0

[Ur(r)− ςB(mB(r, eB))] e−σtdt,

subject to the constraints that
.

mB(t) = m′B1(r(t), eB(r(t), zB))
.
r(t) + m′B2(r(t), eB(r(t), zB))e′B1(r(t), zB)

.
r(t) (state equation, de-

scribing how the state variable changes with time; zB are exogenous factors),

mB(0) = mBs (initial condition),

mB(t) ≥ 0 (non-negativity constraint on state variable),

mB(∞) free (terminal condition).

The current-value Hamiltonian is as follows:
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H̃ = Ur(r (t))−ςB(mB(r(t), eB(r(t), zB)))+µB(t)
.
r(t)

[
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

]
.

(5)

Now the maximizing conditions are as follows:

(i) r∗(t) maximizes H̃ for all t: ∂H̃
∂r = 0,

(ii)
.
µB − σµB = − ∂H̃

∂mB
,

(iii)
.

mB
∗

= ∂H̃
∂µB

(this just gives back the state equation),

(iv) lim
t→∞

µB(t)mB(t)e−σt = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂r
= 0, (6)

and

.
µB − σµB = − ∂H̃

∂mB
= ς ′B(mB(r(t), eB(r(t), zB))). (7)

In equilibrium,
.
r(t) = 0, and the expression ∂H̃

∂r boils down to the following (see appendix):

U ′r(r (t))− ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

}
= 0.

If supply curve shifts to the right, then the number of crimes controlled is higher at the existing cost,

and the term ς ′B(mB(r(t), eB(r(t), zB))) is higher at the existing cost at that time. The term multi-

plying ς ′B(mB(r(t), eB(r(t), zB))), i.e., m′B1(r(t), eB(r(t), zB))+m′B2(r(t), eB(r(t), zB))e′B1(r(t), zB)

is a function of cost and has not changed as the cost is the same as before. Therefore, the TPM/BA

now faces the following inequality at the existing cost:

∂H̃

∂r
< 0.

The TPM/BA must decrease the cost for satisfying the net social benefit optimization condition

after the shock. This implies that there is a negative relationship between the cumulative number of

crimes controlled in society and the cost. If the rate of supply of public service in terms of number

of crimes controlled is equal to the demand rate, the number of crimes controlled is in equilibrium.

If a difference of a finite magnitude comes into force between the supply and demand rates, and

the public and the private sector do not react to a change in the cost caused by a difference in

the supply and demand rates, the cost will continue changing until the saturation point of society

comes. The response of TPM/BA can be depicted by the following formulation:
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Cost rate change ∝ change in cumulative no. of controlled crime.

R = cost rate change.

MB = mB −mBs = change in cumulative no. of controlled crime,

mB = cumulative no. of controlled crime at time t,

mBs = cumulative no. of controlled crime in steady state equilibrium.

Input − output =
dmB

dt
=
d(mB −mBs)

dt
=
dMB

dt
,

or MB =
∫

(input − output) dt.

Cost rate change ∝
∫

(supply rate − demand rate) dt, or

R = −Km

∫
(supply rate − demand rate) dt,

whereKm is the proportionality constant. A negative sign indicates that when (supply rate − demand rate)

is positive, R is negative, i.e., the cost decreases. The above expression can also be written as:

∫
(supply rate − demand rate) dt = − R

Km
, or

∫
(wBi − wB0) dt = − R

Km
, (8)

wBi = supply rate,

wB0 = demand rate,

Km = dimensional constant.

When t = 0, supply rate = demand rate, i.e., public service market is in equilibrium and eq. (8)

can be expressed as:

∫
(wBis − wB0s) dt = 0. (9)

The subscript s denotes steady state equilibrium and R = 0 in steady state. Subtracting eq. (9)

from eq. (8), we get:

∫
(wBi − wBis) dt−

∫
(wB0 − wB0s) dt = − R

Km
, or

∫
(WBi −WB0) dt = − R

Km
, (10)
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where wBi − wBis = WBi = change in supply rate,

wB0 − wB0s = WB0 = change in demand rate.

R, WBi and WB0 are deviation variables, i.e., deviation from steady state equilibrium and have

zero initial values. Eq. (10) can also be expressed as:

R = −Km

∫
WBdt = −KmMB, (11)

where WB = WBi − WB0. If R gets a jump as a result of some factor other than a change in

cumulative number of crimes controlled, that is another input which can be added to eq. (11) as

follows:

R = −Km

∫
WBdt+ EB = −KmMB + EB. (11a)

There can also be an exogenous shock in cumulative number of crimes controlled other than the

feedback of cost.

2.2 Private Sector/Consumer of Public Service

The private sector/people living in a society maximize the present discounted value of the future

stream of net benefits, and their present value at time zero is as follows:

V (0) =
∞∫
0

[Zp (np(t))− ςp(r (np (t)))] e−rptdt. (12)

Zp (np) is a concave downward (decreasing in slope) increasing function of the number of crimes

controlled, the higher the number, the higher the private sector’s utility. ςp(r (np)) is the cost to

the private sector for consumption of public service to control crime, the higher the number of

crimes controlled, the higher is the cost. The cost curve with respect to r(t) is concave upward,

i.e., increasing in slope.

rp denotes the discount rate. np(t) is the control variable, and r(t) is the state variable. The

maximization problem can be written as

Max
{np(t)}

V (0) =
∞∫
0

[Zp (np(t))− ςp(r (np (t)))] e−rptdt,

subject to the constraints that:
.
r(t) = r′(np (t))

.
np (t) (state equation, describing how the state variable changes with time),

r(0) = rs (initial condition),

r(t) ≥ 0 (non-negativity constraint on state variable),
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r(∞) free (terminal condition).

The current-value Hamiltonian for this case is

H̃ = Zp (np(t))− ςp(r (np (t))) + µp(t) r
′(np (t))

.
np (t) . (13)

Now the maximizing conditions are as follows:

(i) np
∗(t) maximizes H̃ for all t: ∂H̃

∂np
= 0,

(ii)
.
µp − rpµp = −∂H̃

∂r ,

(iii)
.
r
∗

= ∂H̃
∂µp

(this just gives back the state equation),

(iv) lim
t→∞

µp(t)r(t)e
−rpt = 0 (the transversality condition).

The first two conditions can be expressed as follows:

∂H̃

∂np
= Z ′p (np(t))− ς ′p(r (np (t))) r′ (np (t)) + µp(t) r

′′
(np (t))

.
np (t) = 0. (14)

and

.
µp − rpµp = −∂H̃

∂r
= ς ′p(r (np (t))). (15)

In equilibrium,
.
np (t) = 0, and the expression ∂H̃

∂np
boils down to the following:

Z ′p (np(t))− ς ′p(r (np (t))) r′ (np (t)) = 0.

If r(t) goes up, the term ς ′p(r (np (t))) goes up, and the private sector now faces the following

inequality:

∂H̃

∂np
< 0. (16)

The demand of private sector regarding number of crimes to be controlled goes down to satisfy

the dynamic optimization problem of the private sector. If change in demand of private sector is

proportional to a change in per unit cost i.e., R, or linearization of the demand curve around the

steady state equilibrium leads to the following:

Wd(t) = −KdR(t), (17)

where Wd(t) is change in demand of the private sector with respect to the initial steady state

equilibrium value. As it is a deviation variable, i.e., deviation from the steady state, it has a zero

initial value. There is a time lag between the change in cost of per unit crime controlled and

change in demand of number of crimes to be controlled, therefore, a dead time element needs to be

incorporated in the above expression which results in the following:
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Wd(t) = −KdR(t− τd1). (18)

2.3 Public Service Provider/Supplier

Although there are a variety of public/private service providers to control crime, such as journalists,

security guards, etc., however, we limit our focus to public authorities, such as police. Public

authorities maximize the present discounted value of future stream of net benefits for society, and

the present value at time zero is as follows:

V (0) =
∞∫
0

[Zc (nc(t))− ςc(r (nc(t)))] e
−rctdt. (19)

Zc (nc(t)) is the public service benefit for society, and increasing in number of crimes controlled, i.e.,

nc(t). ςc(r (nc(t))) is the public service cost to society, the higher the number of crimes controlled,

the higher is the cost. The cost curve with respect to r(t) is concave downward, i.e., decreasing in

slope.

rc denotes the discount rate. nc(t) is the control variable, and r(t) is the state variable. The

maximization problem is as follows:

Max
{r(t)}

V (0) =
∞∫
0

[Zc (nc(t))− ςc(r (nc(t)))] e
−rctdt,

subject to the constraints that:
.
r(t) = r′(nc (t))

.
nc(t) (state equation which describes how the state variable changes with time),

r(0) = rs (initial condition),

r(t) ≥ 0 (non-negativity constraint on state variable), and

r(∞) free (terminal condition).

The current-value Hamiltonian is expressed as follows:

H̃ = Zc (nc(t))− ςc(r (nc(t))) + µc(t)r
′(nc(t))

.
nc(t). (20)

The maximizing conditions can be expressed in the following form:

(i) nc
∗(t) maximizes H̃ for all t: ∂H̃

∂nc
= 0,

(ii)
.
µc − rcµc = −∂H̃

∂r ,

(iii)
.
r
∗

= ∂H̃
∂µc

(this just gives back the state equation), and

(iv) lim
t→∞

µc(t)r(t)e
−rct = 0 (the transversality condition).

The first two conditions can be expressed as follows:

∂H̃

∂nc
= Z ′c (nc(t))− ς ′c(r (nc(t))) r

′ (nc (t)) + µc(t) r
′′
(nc (t))

.
nc (t) = 0. (21)
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and

.
µc − rcµc = −∂H̃

∂r
= ς ′c(r (nc (t))). (22)

In equilibrium
.
nc (t) = 0, and the expression ∂H̃

∂nc
boils down to the following:

Z ′c (nc(t))− ς ′c(r (nc(t))) r
′ (nc (t)) .

If r(t) goes up, the term ς ′c(r (nc (t))) goes down, and the public service provider faces the following

inequality:

Z ′c (nc(t))− ς ′c(r (nc(t))) r
′ (nc (t)) > 0.

The number of crimes controlled by the public service provider will go up to satisfy the dynamic

optimization problem. If the change in the number of crimes controlled by the public service

provider is proportional to a change in r(t), i.e., R, or linearization of the supply curve around the

steady state equilibrium leads to the following:

Wm = −Ks (Cc −R) = −Ksε(t), (23)

where Cc is the change in the cost of public service provider per unit crime controlled, which

might get affected due to various factors in society. The decision to change the number of crimes

controlled depends on the difference of R, and Cc. Ks is the proportionality constant;Wm, Cc and R

are deviation variables. There is a time lag between the change in cost of per unit crime controlled

and change in number of crimes controlled by the public service provider, therefore, a dead time

element needs to be incorporated in the above expression which results in the following:

Wm = −Ksε(t− τd2).

3 Solution of the Model-Panel B with a Crime Control Policy

Expressions from eqs. (11a), (18),and (23) respectively along with τd1 = 0 are as follows:

dR(t)

dt
= −KmWB(t),

Wd(t) = −KdR(t),

Wm = −Ks (Cc −R) ,

and
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WB(t) = Wm(t)−Wd(t),

if no exogenous demand or supply shock happens. Wm(t) is number of crimes controlled. Combining

the above expressions together, we can write:

dR(t)

dt
= −Km [Wm(t)−Wd(t)]

= −Km [−Ks {Cc(t)−R(t)}+KdR(t)]

= −Km [−KsCc(t) + (Ks +Kd)R(t)] .

Rearranging the above expression gives:

dR(t)

dt
+Km(Ks +Kd)R(t) = KmKsCc(t). (24)

The Routh-Hurwitz stability criterion (which provides a necessary and suffi cient condition for

stability of a linear dynamical system) for the above differential equation’s stability is Km(Ks +

Kd) > 0; and as Km,Ks, and Kd are all defined as positive numbers, this criterion holds. This

ensures that, away from a given initial equilibrium, every adjustment mechanism will lead to another

equilibrium.

Suppose government reduces the per crime controlled cost of the public service provider by B,

say through provision of some funds to buy an advanced technology for crime control, the above

equation can be written as:

dR(t)

dt
+Km(Ks +Kd)R(t) = −KmKsB. (25)

The solution is given by the following expression:

R(t) = − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t. (26)

R(0) = 0 (the initial condition), and R(∞) = − KsB
(Ks+Kd)

(the final steady state equilibrium value).

In response to a policy, the per unit crime controlled cost dynamics depends on the parameters

Ks,Kd, Km and B.

4 A Dynamic Optimal Crime Control Policy-Panel B

After a crime control policy, there are effi ciency gains in post policy equilibrium in comparison

with the initial/pre-policy equilibrium. However, there are also some effi ciency losses during the

adjustment period of crime control market until new equilibrium arrives. As soon as crime control
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policy is implemented, supply of public service expands, whereas the demand remains the same at

the initial per unit cost, pushing the crime control market out of equilibrium. Now the adjustment

of per unit cost begins to equalize the supply and demand to bring the new crime control market

equilibrium. The post policy equilibrium cost is a function of demand and supply elasticities. From

the previous section, change in supply as a result of a crime control policy is as follows:

Wm(0) = −Ks [Cc(0)−R(0)] = KsB, (27)

as R(0) = 0.

As a result of crime control policy, supply of public service goes up by KsB. As demand does not

change, therefore, cumulative number of crimes controlled also goes up by KsB. Now the market is

out of equilibrium, and the market forces push the crime control market toward a new equilibrium

through the movement in per unit cost. As the per unit cost changes, the demand and supply of

public service also change through feedback. If cumulative number of crime controlled goes up, it

indicates a higher supply than demand and vice versa. There is no effi ciency loss if crime control

market is in equilibrium, and demand and supply are same. If market is out of equilibrium, either

supply or demand is excessive at that point in time. Therefore, the total effi ciency loss during the

adjustment of crime control market is a sum of the differences in supply and demand at all points

in time. Total effi ciency loss for a crime control policy can be expressed as:

EL =

0∫
−∞

Wm(∞)dt+

∞∫
0

[Wm(t)−Wd(t)] dt

=

0∫
−∞

Wm(∞)dt+MB(t). (28)

With Crime Control Policy Cost Constraint:

According to eq. (23), public service supply change due to change in per unit cost is:

Wm(t) = −Ks [Cc(t)−R(t)] .

It can also be written as:

wnm(t)− wim(0) = −Ks [Cc(t)−R(t)] ,

where wim(0) is the initial public service supply, and wnm(t) is the new supply after government

exercises crime control policy. Wm(t) = wnm(t) − wim(0), as Wm(t) is a deviation variable, i.e.,
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deviation from the initial steady state equilibrium value. The crime control policy cost (CCPC)

can be expressed as:

CCPC = B [wim(0) +Ks {B +R(t)}] . (29)

Our problem of minimising effi ciency loss subject to crime control policy cost constraint is as follows:

min
B

EL s.t. CCPC ≤ GB.

GB is the government’s cost for exercising crime control policy. The choice variable is crime control

policy, i.e., B, and the constraint is binding at t = 0. The Lagrangian for the above problem can

be written as follows:

L =

0∫
−∞

Wm(∞)dt+MB(t) + λ [GB −B [wim(0) +Ks {B +R(t)}]]

=

0∫
−∞

[
KsB −

K2
sB

(Ks +Kd)

]
dt

− 1

Km

[
− KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t −KmKsB

]
+ λ

[
GB −B

[
wim(0) +Ks

{
B − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t

}]]

=

0∫
−∞

KsKdB

(Ks +Kd)
dt− 1

Km

[
− KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t −KmKsB

]

+ λ

[
GB −B

[
wim(0) +Ks

{
B − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t

}]]
.

The first order condition with respect to B leads to the following:

B = −

λwim(0)−

 0∫
−∞

KsKd
(Ks+Kd)

dt− 1
Km

[
− Ks
(Ks+Kd)

+ Ks
(Ks+Kd)

e−[Km(Ks+Kd)]t −KmKs

]
2λKs

[
1− Ks

(Ks+Kd)
+ Ks

(Ks+Kd)
e−[Km(Ks+Kd)]t

] . (30)

The derivative with respect to λ, is as follows:

GB −B
[
wim(0) +Ks

{
B − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t

}]
= 0. (31)

Putting eq. (30) into (31), we get:

17



λ =
JB√

w2im(0) + 4QBGB

.

where QB = Ks

[
1− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t

]
,

JB =

0∫
−∞

KsKd

(Ks +Kd)
dt− 1

Km

[
− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t −KmKs

]
.

λ is a positive number because when GB increases, the minimum effi ciency loss also increases. From

eq. (30):

B = −λwim(0)− JB
2λQB

. (32)

By replacing λ with its value in the above expression, we get:

B = −
wim(0)−

√
w2im(0) + 4QBGB

2QB
. (33)

The second order condition for minimization has been checked (see appendix). Suppose that the

government has $1000 available to be spent as crime control policy cost. The initial value of number

of crimes controlled is 100, and the value of each one of the variables, Km, Ks and Kd is equal to

one. After plugging in these values in eq. (33), we get:

B = −100−
√

10000 + 4000

2
= 9.161,

where QB = 1−0.333+0.333e−3t, and at t = 0, QB = 1. The crime control policy cost is CCPC =

B [wim(0) +QBB] = 1000. Therefore the optimal crime control policy is that the government

provides an extra remuneration of $9.161 per crime controlled to public service provider.

An interesting question would be whether it was possible for the government to follow a policy such

that all adjustments could be made instantaneously, such that market clearing was never an issue;

and the answer is that it could have been possible only if the government would instantaneously fix

the cost and the number of crimes controlled at the new equilibrium values, i.e., after the public

service market had cleared as a result of the policy change. For this, the government would have to

know the exact equilibrium point, as well as the exact patterns of supply and demand of number

of crimes controlled, which seems impracticable.
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5 The Model-Panel A

Theoretical arguments are built upon Figure 3, where the y-axis represents the crime control rate,

i.e., number of crimes controlled per public service unit, and the x-axis, represents the number of

public service units per unit time in society. The upward sloping supply curve represents total

number of public service units in society due to efforts of public sector. If number of crimes

controlled per public service unit is higher, the public sector has an incentive to invest more in

public service units as their objective is to maximize social benefit. The downward sloping demand

curve shows the relationship between crime control rate and demand of number of public service

units. As crime control rate goes up, demand of number of public service units decreases. The point

where both curves intersect is an equilibrium point representing the equilibrium crime control rate

and number of public service units in society. At a crime control rate, where demand of number of

public service units is higher than supply, the crime control rate will increase until the number of

public service units on both curves equal. Similarly, at a crime control rate where supply is higher

than demand, the crime control rate will go down until the equilibrium arrives.

Let us assume that number of public service units on supply curve equals the number on demand

curve and there is an equilibrium crime control rate. There are three types of infinitely-lived agents:

public and private sectors which demand a certain number of public service units against each crime

control rate, a representative —or a unit mass of—public service units who control crime, and public

sector as one entity who supplies certain number of public service units against each crime control

rate. The mechanism for adjustment of crime control rate is based on lack of coordination between

agents in society regarding supply and demand of number of public service units at existing crime

control rate when either supply or demand curve shifts and pushes the crime control rate and the

number of public service units out of equilibrium. Suppose that number of public service units are

in equilibrium, and an upward shift in the demand curve increases the number of public service

units on demand curve at the existing crime control rate. Now, the number of public service units

on demand curve are greater than their number on supply curve. Public service providers will

increase crime control rate, and public sector will find it optimal to have a higher number of public

service units in new equilibrium. This will result in a higher crime control rate, and a higher

number of public service units when new equilibrium arrives. The equilibrium is defined as follows:

(i) Private sector as consumer of public service maximize their benefit, public service providers

maximize the net benefit of public service for society, and the public sector maximizes the social

benefit, subject to the constraints they face (mentioned in their individual dynamic optimization

problems in Section 5).

(ii) The number of public service units on upward sloping supply curve equals the number on

downward sloping demand curve, and the crime control rate does not change during equilibrium.
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The conditions for existence of equilibrium (Routh—Hurwitz stability criterion, which provides a

necessary and suffi cient condition for the stability of a linear dynamical system) are mentioned in

Section 6.

The crime control rate is given for both private and public sector as consumer and supplier of public

service units respectively. Public service provider does not have an incentive to change crime control

rate during equilibrium. They have an incentive to change crime control rate only during the state

of disequilibrium. The government formulates and implements a policy to increase/decrease number

of public service units in society, either by increasing or decreasing the public supply or demand;

or by influencing the private sector demand. A new equilibrium does not result instantaneously

as soon as the policy gets implemented, and rather the crime control rate, and number of public

service providers adjust over time to lead to a new equilibrium. The adjustment takes place as a

result of an endogenous decision making by agents to maximize their objective functions subject

to constraints, i.e., both the public and private sector in their roles regarding supply and demand

and public service providers. There is some social damage during the adjustment process, which

is defined as the sum of too many or too few public service providers. The total social damage

includes the damage during the adjustment process as well as that in the initial equilibrium. This

is the total loss for the purpose of minimizing it subject to constraints. There might still be some

social damage in the final equilibrium, however, that is not part of the objective function which

needs to be minimized as that cannot be improved upon due to constraints.

In order to derive the results mathematically, the objectives of the agents have been maximized

subject to their respective constraints through the first order conditions, which are solved simul-

taneously to get the collective outcome of their decisions. An important assumption is that after

the implementation of the policy to have an optimal number of public service providers, the new

equilibrium arrived at is not too off the equilibrium in the initial state. On account of this, the

linearization of supply and demand curves seems reasonable.

5.1 Public Service Provider

A public service provider controls crimes. A state of equilibrium implies that demand of number of

public service providers in society equals supply. Any change in number of public service provider

is on account of a change in supply, demand or both due to private sector, government or both at

a different rate.

The link between number of public service providers, supply, and demand can be illustrated as

follows: When demand curve shifts to the right, while supply stays the same, the cumulative

number of public service provider is unable to meet new societal demand at the existing crime

control rate, and the crime control rate goes up to equalize demand and supply in new equilibrium.

If supply curve shifts rightwards, whereas the demand does not shift, cumulative number of public
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service provider goes up at the existing crime control rate, therefore crime control rate goes down in

new equilibrium. This discussion implies that there exists a negative relationship between change

in cumulative number of public service providers and change in crime control rate. The horizontal

axis in Figure 3 reflects the rate of supply and demand both by private and public sectors, and not

the cumulative number of public service providers in society. Supply and demand rates are flow

variables, whereas cumulative number of public service providers is a stock variable.

The following mechanism is involved in bringing about such changes: Suppose that the number

of public service providers demanded is in equilibrium with the supply, and the crime control rate

stays the same over time. Now suppose that the demand curve does not shift whereas the supply

curve shifts to the right due to a decrease in the marginal cost of having another unit of public

service provider by public sector. As the number of provider units increases, the crime control rate

decreases, and the feedback of private sector is to increase their demand of public service providers

along the demand curve. The adjustment path to the new equilibrium is dependent on the direction

of shock and how public service providers react to that shock. In order to depict the behavior of the

public service provider mathematically, let us consider the utility/benefit maximization problem of

public service provider as follows:

5.1.1 Short Run Problem

The short run problem of public service provider is myopic in the sense that no dynamic optimization

is being done on their part. A discrete analog is a one period problem, and the objective is to make

the intuition clear and simple so that author is ready to grasp the more complicated dynamic

problem in next section. The objective function of public service provider is as follows:

Θ = Uc(c)− ςA(mA(c, eA)), (34)

where

Θ = net benefit of public service for society,

Uc(c) = benefit of public service as a positive function of crime control rate,

c = number of crimes controlled per public service provider (crime control rate in a dynamic

setting),

mA = cumulative number of public service providers in society = Σ(supply − demand), which is

just (supply − demand) for one time period.

eA = other factors which affect the total number of public service providers in society,

ςA(mA(c, eA)) = cost as a function of total number of public service providers in society (increasing

in number).

The first order condition of Θ with respect to c is as follows:
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U ′c(c)− ς ′A(mA(c, eA))m′A1(c, eA) = 0. (35)

If supply curve shifts to the right, say on account of a decreased cost to public sector for establishing

a public service provider unit, the number of public service providers is no more in equilibrium. As

number of units is higher than before at the current value of c, the term ς ′A(mA(c, eA)) is higher at

the existing c. As the term, m′A1(c, eA) is a function of c, therefore, it is the same as before because

the value of c has not yet changed. The implication is that at the existing value of c, the public

service provider now faces the following inequality:

∂Θ

∂c
= U ′c(c)− ς ′A(mA(c, eA))m′A1(c, eA) < 0, (36)

which implies that the public service provider chooses to decrease crime control rate to satisfy the

condition of maximization of net benefit for society after the supply shock. If various net benefit

maximizing pairs of values of cumulative number of public service providers and the respective

crime control rate chosen by public service provider are plotted together, a downward sloping curve

results with number of units on x-axis, and the crime control rate on y-axis.

5.1.2 Dynamic Problem

The public service provider maximizes present discounted value of future stream of net benefits of

public service in a dynamic setting, and the present value at time zero is as follows:

V (0) =
∞∫
0

[Uc(c)− ςA(mA(c, eA))] e−$tdt, (37)

$ denotes the discount rate. c(t) is the control variable, and mA(t) is the state variable. The

maximization problem can be written as

Max
{c(t)}

V (0) =
∞∫
0

[Uc(c)− ςA(mA(c, eA))] e−$tdt,

subject to the constraints that
.
mA(t) = m

′
A1(c(t), eA(c(t), zA))

.
c(t) + m

′
A2(c(t), eA(c(t), zA)) e

′
A1(c(t), zA)

.
c(t) (state equation, de-

scribing how the state variable changes with time; zA are exogenous factors),

mA(0) = mAs (initial condition),

mA(t) ≥ 0 (non-negativity constraint on state variable),

mA(∞) free (terminal condition).

The current-value Hamiltonian for this case is
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H̃ = Uc(c(t))−ςA(mA(c(t), eA(c(t), zA)))+µA(t)
.
c(t)

[
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

]
.

(38)

Now the maximizing conditions are as follows:

(i) c∗(t) maximizes H̃ for all t: ∂H̃
∂c = 0,

(ii)
.
µA −$µA = − ∂H̃

∂mA
,

(iii)
.
mA
∗

= ∂H̃
∂µA

(this just gives back the state equation),

(iv) lim
t→∞

µA(t)mA(t)e−$t = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂c
= U ′c(c(t))− ς ′A(mA(c(t), eA(c(t), zA)))

{
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

}

+ µA(t)
.
c(t) ∗

 m
′′
A11(c(t), eA(c(t), zA)) +m

′′
A12(c(t), eA(c(t), zA))e′A1(c(t), zA)+

m
′′
A21(c(t), eA(c(t), zA))e′A1(c(t), zA) +m′′A22(c(t), eA(c(t), zA))e′2A1(c(t), zA)+

m′A2(c(t), eA(c(t), zA))e
′′
11(c(t), zA)


= 0. (39)

and

.
µA −$µA = − ∂H̃

∂mA
= ς ′A(mA(c(t), eA(c(t), zA))). (40)

In equilibrium,
.
c(t) = 0, and the expression ∂H̃

∂c boils down to the following:

U ′c(c(t))− ς ′A(mA(c(t), eA(c(t), zA)))

{
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

}
= 0.

If supply curve shifts to the right, then the number of public service providers is higher at the exist-

ing crime control rate, and the term ς ′A(mA(c(t), eA(c(t), zA))) is higher at the existing crime control

rate at that time. The term multiplying ς ′A(mA(c(t), eA(c(t), zA))), i.e., m′A1(c(t), eA(c(t), zA)) +

m′A2(c(t), eA(c(t), zA))e′A1(c(t), zA) is a function of crime control rate and has not changed as the

crime control rate is the same as before. Therefore, the public service provider now faces the

following inequality at the existing crime control rate:

∂H̃

∂c
< 0.

The public service unit must decrease the crime control rate for satisfying the dynamic optimization

condition after the shock. This implies that there is a negative relationship between cumulative
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number of public service units in society and the crime control rate. If the rate of supply of units

in society is equal to the demand rate, the number of units is in equilibrium. If a difference of a

finite magnitude comes into force between the supply and demand rates, and the public and the

private sector do not react to a change in the crime control rate caused by a difference in the supply

and demand rates, the crime control rate will continue changing until the saturation point of the

society comes. The behavior of public service unit can be depicted by the following formulation:

Crime control rate change ∝ change in cumulative number of public service units.

C = crime control rate change.

MA = mA −mAs = change in cumulative number of units,

mA = cumulative number of units at time t,

mAs = cumulative number of units in steady state equilibrium.

Input − output =
dmA

dt
=
d(mA −mAs)

dt
=
dMA

dt
,

or MA =
∫

(input − output) dt.

Crime control rate change ∝
∫

(supply rate − demand rate) dt, or

C = −Kc

∫
(supply rate − demand rate) dt,

Kc is the constant of proportionality; supply and demand rates are number of public service

providers per unit time. When (supply rate − demand rate) is positive, C is negative, and hence a

negative sign, i.e., the crime control rate goes down. Rearranging the above expression gives:

∫
(supply rate − demand rate) dt = − C

Kc
, or

∫
(wAi − wA0) dt = − C

Kc
, (41)

wAi = supply rate,

wA0 = demand rate,

Kc = dimensional constant.

In the initial steady state equilibrium at t = 0, supply rate = demand rate, and eq. (41) can be

written as

∫
(wAis − wA0s) dt = 0. (42)
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Due to the condition of the steady state equilibrium, the subscript s has been added. In the steady

state, C = 0, and subtracting eq. (42) from eq. (41) leads to:

∫
(wAi − wAis) dt−

∫
(wA0 − wA0s) dt = − C

Kc
, or

∫
(WAi −WA0) dt = − C

Kc
, (43)

where wAi − wAis = WAi = change in supply rate,

wA0 − wA0s = WA0 = change in demand rate.

The capital letters denote the deviation variables, i.e., deviation from the initial equilibrium. C, WAi

and WA0 are all deviation variables, and their initial values are zero. Eq. (43) can be rearranged

as:

C = −Kc

∫
WAdt = −KcMA, (44)

where WA = WAi −WA0. If C gets affected by an input other than MA, then an input must be

added to the right hand side of eq. (44) which changes to the following:

C = −Kc

∫
WAdt+ EA = −KcMA + EA. (44a)

MA can also get an exogenous input other than the feedback of the crime control rate.

5.2 Public Sector/Supplier of Public Service Units

As a supplier of public service units to control crime, the public sector maximizes the present

discounted value of the future stream of net benefits, and their present value at time zero is as

follows:

V (0) =
∞∫
0

[Upr (npr)− ςpr(c (npr))] e
−rprtdt. (45)

Upr (npr) is social benefit and an increasing function of number of public service units, the higher

the number, the higher the social benefit. ςpr(c (npr)) is cost to society for establishment of public

service units, the higher the crime control rate, the higher is the cost. The cost curve with respect

to crime control rate is concave downward, i.e., decreasing in slope.

rpr denotes the discount rate. npr(t) is the control variable, and c(t) is the state variable. The

maximization problem can be written as
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Max
{npr(t)}

V (0) =
∞∫
0

[Upr (npr)− ςpr(c (npr))] e
−rprtdt,

subject to the constraints that:
.
c(t) = c′(npr (t))

.
npr (t) (state equation, describing how the state variable changes with time),

c(0) = cs (initial condition),

c(t) ≥ 0 (non-negativity constraint on state variable),

c(∞) free (terminal condition).

The current-value Hamiltonian for this case is

H̃ = Upr (npr(t))− ςpr(c (npr (t))) + µ(t) c′(npr (t))
.
npr (t) . (46)

Now the maximizing conditions are as follows:

(i) npr
∗(t) maximizes H̃ for all t: ∂H̃

∂npr
= 0,

(ii)
.
µpr − rprµpr = −∂H̃

∂c ,

(iii)
.
c
∗

= ∂H̃
∂µpr

(this just gives back the state equation),

(iv) lim
t→∞

µpr(t)c(t)e
−rprt = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂npr
= U ′pr (npr(t))− ς ′pr(c (npr (t))) c′ (npr (t)) + µpr(t) c

′′
(npr (t))

.
npr (t) = 0, (47)

and

.
µpr − rprµpr = −∂H̃

∂c
= ς ′pr(c (npr (t))). (48)

In equilibrium,
.
npr (t) = 0, and the expression ∂H̃

∂npr
boils down to the following:

U ′pr (npr(t))− ς ′pr(c (npr (t))) c′ (npr (t)) = 0.

If crime control rate goes up, the term ς ′pr(c (npr (t))) goes down, and the public sector now faces

the following inequality:

∂H̃

∂npr
> 0.

The number of public service units due to public sector’s efforts will go up to satisfy the dynamic

optimization problem of the public sector. If change in number of public service units is proportional

to a change in crime control rate, i.e., C, or linearization of the supply curve around the steady

state equilibrium leads to the following:
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Wpr(t) = KprC(t), (49)

where Wpr(t) is change in number of public service units with respect to initial steady state equi-

librium value. As it is a deviation variable, i.e., deviation from the steady state, it has a zero initial

value. There is a time lag between the change in crime control rate and the change in number of

public service units, therefore, a dead time element needs to be incorporated in the above expression

which results in the following:

Wpr(t) = KprC(t− τd1). (50)

5.3 Private Sector/Demander of Public Service Units

Both public and private sectors in a society demand public service units to control crime in society.

However, we just present the private sector as a demander to economize on typing space. The total

demand is a sum of both public and private demand. In this section, we present the role of the

private sector as a demander of public service units to control crime. As a demander, the private

sector maximizes the present discounted value of future stream of net benefits, and their present

value at time zero is as follows:

V (0) =
∞∫
0

[Upu (npu)− ςpu(c (npu))] e−rputdt, (51)

where Upu (npu) is the private sector benefit increasing in number of public service units to control

crime and concave downward. ςpu(c (npu)) is the cost to the private sector, the higher the crime

control rate, the higher is the cost. The cost curve with respect to crime control rate is concave

upward, i.e., increasing in slope.

rpu denotes the discount rate. npu(t) is the control variable,and c(t) is the state variable. The

maximization problem can be written as

Max
{npu(t)}

V (0) =
∞∫
0

[Upu (npu)− ςpu(c (npu))] e−rputdt,

subject to the constraints that:
.
c(t) = c′(npu (t))

.
npu (t) (state equation, describing how the state variable changes with time),

c(0) = cs (initial condition),

c(t) ≥ 0 (non-negativity constraint on state variable),

c(∞) free (terminal condition).

The current-value Hamiltonian for this case is

H̃ = Upu (npu(t))− ςpu(c (npu (t))) + µpu(t) c′(npu (t))
.
npu (t) . (52)
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Now the maximizing conditions are as follows:

(i) npu
∗(t) maximizes H̃ for all t: ∂H̃

∂npu
= 0,

(ii)
.
µpu − rpuµpu = −∂H̃

∂c ,

(iii)
.
c
∗

= ∂H̃
∂µpu

(this just gives back the state equation),

(iv) lim
t→∞

µpu(t)c(t)e−rput = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂npu
= U ′pu (npu(t))− ς ′pu(c (npu (t))) c′ (npu (t)) + µpu(t) c

′′
(npu (t))

.
npu (t) = 0. (53)

and

.
µpu − rpuµpu = −∂H̃

∂c
= ς ′pu(c (npu (t))). (54)

In equilibrium,
.
npu (t) = 0, and the expression ∂H̃

∂npu
boils down to the following:

U ′pu (npu(t))− ς ′pu(c (npu (t))) c′ (npu (t)) = 0.

If crime control rate goes up, the term ς ′pu(c (npu (t))) goes up, and the private sector now faces the

following inequality:

∂H̃

∂npu
< 0.

The number of public service units demanded by private sector will go down to satisfy the dynamic

optimization problem of the private sector. If change in number of public service units demanded

by the private sector is proportional to a change in crime control rate, i.e., C, or linearization of

the demand curve around the steady state equilibrium leads to the following:

Wpu(t) = Kpu [ε (t)− C(t)] = −Kpuη(t), (55)

where ε (t) = e− es; e is a reference crime control rate with respect to which the variation in crime
control rate is considered by the private sector for decision making. It is a parameter which may

vary over time or remain fixed for a while. Wpu(t) is the change in number of public service units

with respect to the initial steady state equilibrium value. As it is a deviation variable, i.e., deviation

from the steady state, it has a zero initial value. There is a time lag between the change in crime

control rate and the change in number of public service units demanded by the private sector,

therefore, a dead time element needs to be incorporated in the above expression which results in

the following:

Wpu(t) = −Kpuη(t− τd2). (56)

28



6 Solution of the Model-Panel A with a Crime Control Policy

The model is solved for the simplest case when τd1 = τd2 = 0. For solution of more complex cases,

please see appendix. From eq. (44a), (49), and (55), we have the following expressions respectively:

dC

dt
= −KcWA(t),

Wpr(t) = KprC(t),

Wpu(t) = Kpu [ε (t)− C(t)] ,

WA(t) = W1(t)−Wpu(t),

= D(t) +Wpr(t)−Wpu(t).

where D(t) = WAi(t)−WA0(t).

In the absence of an exogenous shock in number of public service units, D(t) = 0. A policy from

panel A must be synchronized with that from panel B, i.e., the supply and demand curves should

be moving in the same direction in both panels. In this section, we just present an example on

how an optimal policy can be framed from panel A when the demand curve shifts, however, this

has to be in line with the policy from panel B as they cannot be treated as independent of each

other. Suppose the government adopts a policy (such as a media campaign to create awareness

about certain types of crimes, and simultaneously increasing the crime control rate) where demand

of public service units gets a shift in the upward direction, i.e.,

Wpu(t) = Kpu [A− C(t)] ,

where A is the size of the policy. This implies that

dC(t)

dt
= −Kc [Wpr(s)−Wpu(t)]

= −Kc [KprC (t)−KpuA+KpuC(t)]

= −Kc [−KpuA+ (Kpr +Kpu)C(t)] .

The above expression can be written as

dC(t)

dt
+Kc(Kpr +Kpu)C(t) = KcKpuA. (57)

According to the Routh—Hurwitz stability criterion, the necessary and suffi cient condition for sta-

bility of the above differential equation is Kc(Kpr +Kpu) > 0, which holds as Kc, Kpr and Kpu are

all defined to be positive. This condition ensures that starting from an initial condition away from

an initial equilibrium every adjustment mechanism will lead to another equilibrium.

29



In order to solve the above differential equation, we proceed as follows:

The characteristic function of the differential equation is as follows:

x+Kc(Kpr +Kpu) = 0.

The characteristic function has a single root given by:

x = −Kc(Kpr +Kpu).

Thus the complementary solution is

Cc(t) = C2e
−[Kc(Kpr+Kpu)]t.

The particular solution has the form

Cp(t) = C1.

Thus the solution has the form

C(t) = C1 + C2e
−[Kc(Kpr+Kpu)]t. (58)

The constant C1 is determined by substitution into the differential equation as follows:

−Kc(Kpr+Kpu)C2e
−[Kc(Kpr+Kpu)]t+Kc(Kpr+Kpu)C1+Kc(Kpr+Kpu)C2e

−[Kc(Kpr+Kpu)]t = KcKpuA,

C1 =
KpuA

Kpr +Kpu
.

C2 is determined by the initial condition as follows:

C(0) =
KpuA

Kpr +Kpu
+ C2 = A,

C2 = A− KpuA

Kpr +Kpu

=
KprA

Kpr +Kpu
.

Substituting the values of C1 and C2 in eq. (58), we get:

C(t) =
KpuA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t. (59)

When t = 0, C(0) = A (the initial condition), and when t =∞, C(∞) =
KpuA

Kpr+Kpu
(the final steady

state equilibrium value).
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7 A Dynamic Optimal Crime Control Policy-Panel A

The social damage due to inadequate/excessive crime control units includes the damage in the

initial equilibrium, i.e., before the adoption of a crime control policy, plus the damage during

the adjustment process from initial equilibrium to the final. After government adopts a policy

to enhance/reduce the number of public service units, it shifts either the supply or the demand

curve, e.g., it shifts the demand curve upward by a magnitude depending upon the size of the

policy, which is taken as A in the solution of the model with a crime control policy. The crime

control rate then adjusts over time to bring the new equilibrium rate which is higher than the

previous equilibrium crime control rate and lower than that which existed at the time the policy

was implemented depending on the elasticity of supply and demand curves. An excessive number

of public service units in society implies that the number is higher on the supply curve than that

on the demand curve, and a shortage in their number implies the opposite. When the number

on the supply and the demand curve becomes equal, the new equilibrium has arrived. When the

number is different on supply and demand curve, that difference is the social damage at that point

in time. Furthermore, the number of crime control units in society was lower (in this example)

in the previous equilibrium, which is also social damage in equilibrium. If we sum up either the

number of excessive units on the supply curve or their number on the demand curve short of supply

curve, we get the total social damage in terms of number of units as follows:

SD = MA(t) +

0∫
−∞

Wpr(∞)dt. (60)

From eq. (55), the change in number of crime control units due to change in crime control rate

after adoption of crime control policy is as under:

Wpu(t) = Kpu [A− C(t)] ,

or wnpu(t)− wipu(0) = Kpu [A− C(t)] ,

where wipu(0) is the initial number of crime control units and wnpu(t) is the new number after the

implementation of crime control policy as Wpu(t) is a deviation variable, i.e., deviation from the

initial equilibrium value. An increase in number of crimes controlled per unit time is as follows:

INC = A [wipu(0) +Kpu {A− C(t)}] . (61)

If we want to minimize the social damage subject to the constraint that an increase in number of

crimes controlled per unit time is greater than or equal toGA
(
change in number of crimes controlled per unit time = dMB

dt

)
,

our problem is as follows:

31



min
A
SD s.t. INC ≥ GA

(
=
dMB

dt

)
.

The choice variable is A, i.e., an initial upward jump in the crime control rate chosen by government

to shift the demand curve, and the constraint is binding. Lagrangian for the above problem is given

below:

L = MA(t) +

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0) +Kpu {A− C(t)}]] .

From eq. (44a), we have:

C(t) = −KcMA + EA.

The value of EA can be found by imposing the initial conditions as follows:

C(0) = −KcMA(0) + EA,

A = −KcKprC(0) + EA,

EA = A [1 +KcKpr] .

This implies that

MA(t) = − 1

Kc
[C(t)−A {1 +KcKpr}] .

Therefore, the Lagrangian can now be written as:

L = − 1

Kc
[C(t)−A {1 +KcKpr}] +

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0) +Kpu {A− C(t)}]]

= − 1

Kc

[{
KpuA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
−A {1 +KcKpr}

]

+

0∫
−∞

Wpr(∞)dt+ λ

[
GA −A

[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]]
.

The first order condition with respect to A is as follows:

A =
λwipu(0)− 1

Kc

[{
−Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
−2λKpu

{
1− Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

} . (62)
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The first order condition of the Lagrangian with respect to λ is as follows:

GA −A
[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]
= 0. (63)

After substituting the value of A from eq. (62) into (63), the later becomes as follows:

λ =
JA√

w2ipu(0)− 4QAGA
.

λ must be positive as the social damage increases with an increase in GA.

where QA = −Kpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
,

JA =
1

Kc

[{
−Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
.

Eq. (62) can also be written as

A =
λwipu(0)− JA

2λQA
. (64)

Plugging the value of λ into eq. (64) leads to:

A =
wipu(0)−

√
w2ipu(0)− 4QAGA

2QA
. (65)

A is a policy in a dynamical setting for an optimal number of crime control units. The second order

condition for minimization is checked (see appendix). An interesting question would be whether

it was possible for the government to follow a policy such that all adjustments could be made

instantaneously, such that market clearing was never an issue; and the answer is that it could

have been possible only if the government would instantaneously fix the crime control rate and the

number of public service units at the new equilibrium values after the policy change. For this, the

government would have to know the exact equilibrium point, as well as the exact patterns of supply

and demand of number of public service units, which seems impracticable.

8 Conclusion

When the government exercises a crime control policy for panel B, government’s supply curve

shifts downward/upward, which affects the number of crimes controlled and pushes crime control

market out of equilibrium. Supply and demand of public service in terms of number of crimes

controlled along with the cost adjust over time to lead to the final equilibrium. There are effi ciency

losses/gains on the dynamic adjustment path as well as in final equilibrium in comparison with the
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initial equilibrium. The effi ciency losses during the adjustment process must also be accounted for

while formulating an optimal crime control policy. Eq (33) gives a policy for an optimal number

of crimes controlled considering the demand and supply adjustment over time. The expressions

are a function of the slopes of demand, supply and cumulative number (a function of supply and

demand) curves as well as the initial pre-policy equilibrium number of crimes controlled.

For panel A, crime control rate depends on the parameters Kc, Kpr, Kpu, τd1 and τd2. For given

values (estimated through data) of these parameters, we can predict how the crime control rate will

change over time, as a result of an exogenous shock resulting in the shift of either the supply, demand

or both curves. Figure 3 depicts how a shift in the supply, demand or both curves determines the

crime control rate and the number of crime control units in society. An optimal policy (which

shifts either the supply, demand or both curves) which minimizes the social damage in terms of

inadequate number of crime control/public service units in the initial equilibrium as well as the

social loss on dynamic adjustment path (when the number of units is not in equilibrium) subject

to a certain increase in number of crimes controlled per unit time can be derived on a case by case

basis. In equilibrium, the area under the demand curve is the social benefit in terms of number of

crimes controlled per unit time.

9 Appendix:

9.1 Dynamic Problem of the Tax Policy Maker/Budget Allocator (TPM/BA)

This section discusses the dynamic problem of TPM/BA. Present discounted value of future stream
of net social benefits are maximized in a dynamic environment, and the present value at time zero
is given below:

V (0) =
∞∫
0

[Ur(r)− ςB(mB(r, eB))] e−σtdt, (66)

σ denotes the discount rate. r(t) is the control variable and mB(t) the state variable. Maximization
problem is as follows:

Max
{r(t)}

V (0) =
∞∫
0

[Ur(r)− ςB(mB(r, eB))] e−σtdt,

subject to the constraints that
.

mB(t) = m′B1(r(t), eB(r(t), zB))
.
r(t) + m′B2(r(t), eB(r(t), zB))e′B1(r(t), zB)

.
r(t) (state equation, de-

scribing how the state variable changes with time; zB are exogenous factors),
mB(0) = mBs (initial condition),
mB(t) ≥ 0 (non-negativity constraint on state variable),
mB(∞) free (terminal condition).
The current-value Hamiltonian is as follows:
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H̃ = Ur(r (t))−ςB(mB(r(t), eB(r(t), zB)))+µB(t)
.
r(t)

[
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

]
.

(67)
Now the maximizing conditions are as follows:
(i) r∗(t) maximizes H̃ for all t: ∂H̃

∂r = 0,

(ii)
.
µB − σµB = − ∂H̃

∂mB
,

(iii)
.

mB
∗

= ∂H̃
∂µB

(this just gives back the state equation),
(iv) lim

t→∞
µB(t)mB(t)e−σt = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂r
= U

′
r(r (t))− ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

}

+ µB(t)
.
r(t) ∗

 m′′B11(r(t), eB(r(t), zB)) +m′′B12(r(t), eB(r(t), zB))e′B1(r(t), zB)+
m′′B21(r(t), eB(r(t), zB))e′B1(r(t), zB) +m′′B22(r(t), eB(r(t), zB))e′2B1(r(t), zB)+

m′B2(r(t), eB(r(t), zB))e′′B11(r(t), zB)


= 0, (68)

and

.
µB − σµB = − ∂H̃

∂mB
= ς ′B(mB(r(t), eB(r(t), zB))). (69)

In equilibrium,
.
r(t) = 0, and the expression ∂H̃

∂r boils down to the following:

U ′r(r (t))− ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

}
= 0.

If supply curve shifts to the right, then the number of crimes controlled is higher at the existing cost,
and the term ς ′B(mB(r(t), eB(r(t), zB))) is higher at the existing cost at that time. The term multi-
plying ς ′B(mB(r(t), eB(r(t), zB))), i.e., m′B1(r(t), eB(r(t), zB))+m′B2(r(t), eB(r(t), zB))e′B1(r(t), zB)

is a function of cost and has not changed as the cost is the same as before. Therefore, the TPM/BA
now faces the following inequality at the existing cost:

∂H̃

∂r
= U

′
r(r (t))− ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

}

+ µB(t)
.
r(t) ∗

 m′′B11(r(t), eB(r(t), zB)) +m′′B12(r(t), eB(r(t), zB))e′B1(r(t), zB)+
m′′B21(r(t), eB(r(t), zB))e′B1(r(t), zB) +m′′B22(r(t), eB(r(t), zB))e′2B1(r(t), zB)+

m′B2(r(t), eB(r(t), zB))e′′B11(r(t), zB)


< 0,
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The TPM/BA must decrease the cost for satisfying the net social benefit optimization condition
after the shock. This implies that there is a negative relationship between the cumulative number of
crimes controlled in society and the cost. If the rate of supply of public service in terms of number
of crimes controlled is equal to the demand rate, the number of crimes controlled is in equilibrium.
If a difference of a finite magnitude comes into force between the supply and demand rates, and
the public and the private sector do not react to a change in the cost caused by a difference in
the supply and demand rates, the cost will continue changing until the saturation point of society
comes. The response of TPM/BA can be depicted by the following formulation:

Cost rate change ∝ change in cumulative no. of controlled crime.
R = cost rate change.

MB = mB −mBs = change in cumulative no. of controlled crime,

mB = cumulative no. of controlled crime at time t,

mBs = cumulative no. of controlled crime in steady state equilibrium.

Input − output =
dmB

dt
=
d(mB −mBs)

dt
=
dMB

dt
,

or MB =
∫

(input − output) dt.
Cost rate change ∝

∫
(supply rate − demand rate) dt, or

R = −Km

∫
(supply rate − demand rate) dt,

whereKm is the proportionality constant. A negative sign indicates that when (supply rate − demand rate)

is positive, R is negative, i.e., the cost decreases. The above expression can also be written as:

∫
(supply rate − demand rate) dt = − R

Km
, or

∫
(wBi − wB0) dt = − R

Km
, (70)

wBi = supply rate,

wB0 = demand rate,

Km = dimensional constant.

When t = 0, supply rate = demand rate, i.e., public service market is in equilibrium and eq. (70)

can be expressed as: ∫
(wBis − wB0s) dt = 0. (71)

The subscript s denotes steady state equilibrium and R = 0 in steady state. Subtracting eq. (71)

from eq. (70), we get:

∫
(wBi − wBis) dt−

∫
(wB0 − wB0s) dt = − R

Km
, or
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∫
(WBi −WB0) dt = − R

Km
, (72)

where wBi − wBis = WBi = change in supply rate,

wB0 − wB0s = WB0 = change in demand rate.

R, WBi and WB0 are deviation variables, i.e., deviation from steady state equilibrium and have
zero initial values. Eq. (72) can also be expressed as:

R = −Km

∫
WBdt = −KmMB, (73)

where WB = WBi − WB0. If R gets a jump as a result of some factor other than a change in
cumulative number of crimes controlled, that is another input which can be added to eq. (73) as
follows:

R = −Km

∫
WBdt+ EB = −KmMB + EB. (73a)

There can also be an exogenous shock in cumulative number of crimes controlled other than the
feedback of cost.

9.2 Solution of the Model-Panel B with a Crime Control Policy

Expressions from eqs. (11a), (18),and (23) respectively along with τd1 = 0 are as follows:

dR(t)

dt
= −KmWB(t),

Wd(t) = −KdR(t),

Wm = −Ks (Cc −R) ,

and

WB(t) = Wm(t)−Wd(t),

if no exogenous demand or supply shock happens. Wm(t) is number of crimes controlled. Combining
the above expressions together, we can write:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] , (74)

where the p and c subscripts denote the private and the public sector respectively. Now, combining
the above expressions together, we can write:

dR(t)

dt
= −Km [Wm(t)−Wd(t)]

= −Km [−Ks {Cc(t)−R(t)}+KdR(t)]

= −Km [−KsCc(t) + (Ks +Kd)R(t)] .
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Rearranging the above expression gives:

dR(t)

dt
+Km(Ks +Kd)R(t) = KmKsCc(t). (75)

The Routh-Hurwitz stability criterion (which provides a necessary and suffi cient condition for
stability of a linear dynamical system) for the above differential equation’s stability is Km(Ks +

Kd) > 0; and as Km,Ks, and Kd are all defined as positive numbers, this criterion holds. This
ensures that, away from a given initial equilibrium, every adjustment mechanism will lead to another
equilibrium.
Suppose government reduces the per crime controlled cost of the public service provider by B,
say through provision of some funds to buy an advanced technology for crime control, the above
equation can be written as:

dR(t)

dt
+Km(Ks +Kd)R(t) = −KmKsB. (76)

The solution is given by the following expression:

R(t) = − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t. (77)

R(0) = 0 (the initial condition), and R(∞) = − KsB
(Ks+Kd)

(the final steady state equilibrium value).
In response to a policy, the per unit crime controlled cost dynamics depends on the parameters
Ks,Kd, Km and B.

9.3 A Dynamic Optimal Crime Control Policy-Panel B

After a crime control policy, there are effi ciency gains in post policy equilibrium in comparison
with the initial/pre-policy equilibrium. However, there are also some effi ciency losses during the
adjustment period of crime control market until new equilibrium arrives. As soon as crime control
policy is implemented, supply of public service expands, whereas the demand remains the same at
the initial per unit cost, pushing the crime control market out of equilibrium. Now the adjustment
of per unit cost begins to equalize the supply and demand to bring the new crime control market
equilibrium. The post policy equilibrium cost is a function of demand and supply elasticities. From
the previous section, change in supply as a result of a crime control policy is as follows:

Wm(0) = −Ks [Cc(0)−R(0)] = KsB, (78)

as R(0) = 0.

As a result of crime control policy, supply of public service goes up by KsB. As demand does not
change, therefore, cumulative number of crimes controlled also goes up by KsB. Now the market is
out of equilibrium, and the market forces push the crime control market toward a new equilibrium
through the movement in per unit cost. As the per unit cost changes, the demand and supply of
public service also change through feedback. If cumulative number of crime controlled goes up, it
indicates a higher supply than demand and vice versa. There is no effi ciency loss if crime control
market is in equilibrium, and demand and supply are same. If market is out of equilibrium, either
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supply or demand is excessive at that point in time. Therefore, the total effi ciency loss during the
adjustment of crime control market is a sum of the differences in supply and demand at all points
in time. Total effi ciency loss for a crime control policy can be expressed as:

EL =

0∫
−∞

Wm(∞)dt+

∞∫
0

[Wm(t)−Wd(t)] dt

=

0∫
−∞

Wm(∞)dt+MB(t). (79)

Eq. (73a) states the following:

R(t) = −KmMB(t) + EB.

By imposing the initial conditions, we can determine the value of EB as follows:

R(0) = −KmMB(0) + EB,

0 = −KmKsB + EB,

EB = KmKsB.

After plugging in the above expression in eq. (73a), it transforms to

R(t) = −KmMB(t) +KmKsB, or

MB(t) = − 1

Km
[R(t)−KmKsB] .

With Crime Control Policy Cost Constraint:
According to eq. (23), public service supply change due to change in per unit cost is:

Wm(t) = −Ks [Cc(t)−R(t)] .

It can also be written as:

wnm(t)− wim(0) = −Ks [Cc(t)−R(t)] ,

where wim(0) is the initial public service supply, and wnm(t) is the new supply after government
exercises crime control policy. Wm(t) = wnm(t) − wim(0), as Wm(t) is a deviation variable, i.e.,
deviation from the initial steady state equilibrium value. The crime control policy cost (CCPC)

can be expressed as:

CCPC = B [wim(0) +Ks {B +R(t)}] . (80)

Our problem of minimising effi ciency loss subject to crime control policy cost constraint is as follows:
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min
B

EL s.t. CCPC ≤ GB.

GB is the government’s cost for exercising crime control policy. The choice variable is crime control
policy, i.e., B, and the constraint is binding at t = 0. The Lagrangian for the above problem can
be written as follows:

L =

0∫
−∞

Wm(∞)dt+MB(t) + λ [GB −B [wim(0) +Ks {B +R(t)}]]

=

0∫
−∞

[
KsB −

K2
sB

(Ks +Kd)

]
dt

− 1

Km

[
− KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t −KmKsB

]
+ λ

[
GB −B

[
wim(0) +Ks

{
B − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t

}]]

=

0∫
−∞

KsKdB

(Ks +Kd)
dt− 1

Km

[
− KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t −KmKsB

]

+ λ

[
GB −B

[
wim(0) +Ks

{
B − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t

}]]
.

The first order condition with respect to B leads to the following:

0∫
−∞

KsKd

(Ks +Kd)
dt− 1

Km

[
− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t −KmKs

]

− λ
[
wim(0) +Ks

{
B − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t

}]

−λBKs

[
1− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t

]
= 0.

Rearranging this, we get:

0∫
−∞

KsKd

(Ks +Kd)
dt− 1

Km

[
− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t −KmKs

]

− 2λBKs

[
1− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t

]

= λwim(0),
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or

B = −

λwim(0)−

 0∫
−∞

KsKd
(Ks+Kd)

dt− 1
Km

[
− Ks
(Ks+Kd)

+ Ks
(Ks+Kd)

e−[Km(Ks+Kd)]t −KmKs

]
2λKs

[
1− Ks

(Ks+Kd)
+ Ks

(Ks+Kd)
e−[Km(Ks+Kd)]t

] . (81)

The derivative with respect to λ, is as follows:

GB −B
[
wim(0) +Ks

{
B − KsB

(Ks +Kd)
+

KsB

(Ks +Kd)
e−[Km(Ks+Kd)]t

}]
= 0. (82)

Putting eq. (81) into (82), we get:

GB =

−wim(0).

λwim(0)−

 0∫
−∞

KsKd
(Ks+Kd)

dt− 1
Km

[
− Ks
(Ks+Kd)

+ Ks
(Ks+Kd)

e−[Km(Ks+Kd)]t −KmKs

]
2λKs

[
1− Ks

(Ks+Kd)
+ Ks

(Ks+Kd)
e−[Km(Ks+Kd)]t

]
+Ks

{
1− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t

}

∗


−

λwim(0)−

 0∫
−∞

KsKd
(Ks+Kd)

dt− 1
Km

[
− Ks
(Ks+Kd)

+ Ks
(Ks+Kd)

e−[Km(Ks+Kd)]t −KmKs

]
2λKs

[
1− Ks

(Ks+Kd)
+ Ks

(Ks+Kd)
e−[Km(Ks+Kd)]t

]


2

,

or 4λ2QBGB = −2λ2w2im(0) + 2λwim(0)JB + λ2w2im(0) + J2B − 2λwim(0)JB,

where QB = Ks

[
1− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t

]
,

JB =

0∫
−∞

KsKd

(Ks +Kd)
dt− 1

Km

[
− Ks

(Ks +Kd)
+

Ks

(Ks +Kd)
e−[Km(Ks+Kd)]t −KmKs

]
.

or {
w2im(0) + 4QBGB

}
λ2 − J2B = 0.
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λ =
JB√

w2im(0) + 4QBGB

.

λ is a positive number because when GB increases, the minimum effi ciency loss also increases. From
eq. (81):

B = −λwim(0)− JB
2λQB

. (83)

By replacing λ with its value in the above expression, we get:

B = −
wim(0)JB√

w2im(0)+4QBGB
− JB

2QBJB√
w2im(0)+4QBGB

,

B = −
wim(0)−

√
w2im(0) + 4QBGB

2QB
. (84)

The second order condition for minimization can be checked as follows:

L = JBB + λ [GB −B (wim(0) +QBB)] .

Now we write the Bordered Hessian matrix of the Lagrange function as:

BH =

[
0 wim(0) + 2QBB

wim(0) + 2QBB
−2QBJB√

w2im(0)+4QBGB

]
.

The determinant of the above matrix is negative as − (wim(0) + 2QBB)2 < 0, and hence the
effi ciency loss got minimized.

9.4 A Dynamic Optimal Crime Control Policy-Panel A

The social damage due to inadequate/excessive crime control units includes the damage in the
initial equilibrium, i.e., before the adoption of a crime control policy, plus the damage during
the adjustment process from initial equilibrium to the final. After government adopts a policy
to enhance/reduce the number of public service units, it shifts either the supply or the demand
curve, e.g., it shifts the demand curve upward by a magnitude depending upon the size of the
policy, which is taken as A in the solution of the model with a crime control policy. The crime
control rate then adjusts over time to bring the new equilibrium rate which is higher than the
previous equilibrium crime control rate and lower than that which existed at the time the policy
was implemented depending on the elasticity of supply and demand curves. An excessive number
of public service units in society implies that the number is higher on the supply curve than that
on the demand curve, and a shortage in their number implies the opposite. When the number
on the supply and the demand curve becomes equal, the new equilibrium has arrived. When the
number is different on supply and demand curve, that difference is the social damage at that point
in time. Furthermore, the number of crime control units in society was lower (in this example)
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in the previous equilibrium, which is also social damage in equilibrium. If we sum up either the
number of excessive units on the supply curve or their number on the demand curve short of supply
curve, we get the total social damage in terms of number of units as follows:

SD = MA(t) +

0∫
−∞

Wpr(∞)dt. (85)

From eq. (??), the change in number of crime control units due to change in crime control rate
after adoption of crime control policy is as under:

Wpu(t) = Kpu [A− C(t)] ,

or wnpu(t)− wipu(0) = Kpu [A− C(t)] ,

where wipu(0) is the initial number of crime control units and wnpu(t) is the new number after the
implementation of crime control policy as Wpu(t) is a deviation variable, i.e., deviation from the
initial equilibrium value. An increase in number of crime control units per unit time is as follows:

INC = A [wipu(0) +Kpu {A− C(t)}] . (86)

If we want to minimize the social damage subject to the constraint that an increase in number of

crimes controlled per unit time is greater than or equal toGA
(
change in number of crimes controlled per unit time = dMB

dt

)
,

our problem is as follows:

min
A
SD s.t. INC ≥ GA

(
=
dMB

dt

)
.

The choice variable is A, i.e., an initial upward jump in the crime control rate chosen by government
to shift the demand curve, and the constraint is binding. Lagrangian for the above problem is given
below:

L = MA(t) +

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0) +Kpu {A− C(t)}]] .

From eq. (44a), we have:

C(t) = −KcMA + EA.

The value of EA can be found by imposing the initial conditions as follows:

C(0) = −KcMA(0) + EA,

A = −KcKprC(0) + EA,

EA = A [1 +KcKpr] .

This implies that
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MA(t) = − 1

Kc
[C(t)−A {1 +KcKpr}] .

Therefore, the Lagrangian can now be written as:

L = − 1

Kc
[C(t)−A {1 +KcKpr}] +

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0) +Kpu {A− C(t)}]]

= − 1

Kc

[{
KpuA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
−A {1 +KcKpr}

]

+

0∫
−∞

Wpr(∞)dt+ λ

[
GA −A

[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]]
.

The first order condition with respect to A is as follows:

− 1

Kc

[{
Kpu

Kpr +Kpu
+

Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
− {1 +KcKpr}

]
− λ

[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]
− λAKpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
,

which implies that

− 1

Kc

[{
Kpu

Kpr +Kpu
+

Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
− {1 +KcKpr}

]
− 2λAKpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}

= λwipu(0).

or

A =
λwipu(0)− 1

Kc

[{
−Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
−2λKpu

{
1− Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

} . (87)

The first order condition of the Lagrangian with respect to λ is as follows:

GA −A
[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]
= 0. (88)

After substituting the value of A from eq. (87) into (88), the later becomes as follows:
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GA = wipu(0).
λwipu(0)− 1

Kc

[{
−Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
−2λKpu

{
1− Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+Kpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}

∗

λwipu(0)− 1
Kc

[{
−Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
−2λKpu

{
1− Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
2 .

or 4λ2QAGA = 2λ2w2ipu(0)− 2λwipu(0)JA − λ2w2ipu(0)− J2A + 2λwipu(0)JA,

where QA = −Kpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
,

JA =
1

Kc

[{
−Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
.

This implies that {
w2ipu(0)− 4QAGA

}
λ2 − J2A = 0,

λ =
JA√

w2ipu(0)− 4QAGA
.

λ must be positive as the social damage increases with an increase in GA.
Eq. (87) can also be written as

A =
λwipu(0)− JA

2λQA
. (89)

Plugging the value of λ into eq. (89) leads to:

A =

wipu(0)JA√
w2ipu(0)−4QAGA

− JA

2QAJA√
w2ipu(0)−4QAGA

,

A =
wipu(0)−

√
w2ipu(0)− 4QAGA

2QA
. (90)

The second order condition for minimization is checked as follows:

L = JAA+

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0)−QAA]] .

The Bordered Hessian matrix of the Lagrange function is as follows:
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BH =

 0 wipu(0)− 2QAA

wipu(0)− 2QAA
2QAJA√

w2ipu(0)−4QAGA

 ,
which has a negative determinant as − (wipu(0)− 2QAA)2 < 0, therefore the social damage is
minimized.

10 General Solution of Model-Panel A

Figure 4 depicts a dynamic crime control model after joining together the blocks of inputs and
outputs for various agents. Laplace transform is a convenient tool for solving differential equations.
After Laplace transform, Figure 4 gets transformed to Figure 5. Let us first evaluate the transfer
function relating C(s) to W1(s) in Figure 5 (the part marked as A) as follows:
We have the following equations relating inputs to outputs for various blocks in A assuming that
ε(s) = 0:

C(s) = −Kc

s
.W (s),

Wpu(s) = −Kpue
−sτd2C(s),

WB(s) = W1(s)−Wpu(s).

We can solve the above equations simultaneously for C(s) in terms of W1(s) as follows:

C(s) = −Kc

s
[W1(s)−Wpu(s)] ,

C(s) = −Kc

s

[
W1(s) +Kpue

−sτd2C(s)
]
,

C(s)

[
1 +

KcKpue
−sτd2

s

]
= −Kc

s
W1(s),

C(s)

W1(s)
=

−Kc

s+KcKpue−sτd2
.

Using the above expression to reduce part A in Figure 5 to one block and shiftingW0(s) in backward
direction, results in Figure 6, from which we can find the overall transfer function for D(s). We
have the following equations:

C(s) =
−Kc

s+KcKpue−sτd2
[D(s) +Wpr(s)] ,

where D(s) = Wi(s)−W0(s),

Wpr(s) = Kpre
−sτd1C(s).

We can solve for C(s) in terms of D(s) as follows:
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C(s) =
−Kc

s+KcKpue−sτd2
[D(s) +Wpr(s)] ,

C(s) =
−Kc

s+KcKpue−sτd2

[
D(s) +Kpre

−sτd1C(s)
]
,

C(s)

[
1 +

KcKpre
−sτd1

s+KcKpue−sτd2

]
=

−Kc

s+KcKpue−sτd2
D(s),

C(s)

D(s)
=

−Kc
s+KcKpue−sτd2

1 +
KcKpre−sτd1

s+KcKpue−sτd2

,

C(s)

D(s)
=

−Kc

s+KcKpue−sτd2 +KcKpre−sτd1
. (91)

Kc, Kpu, Kpr, τd1 and τd2 are all positive numbers and the crime control rate depends on these five
empirical parameters. Useful results and conclusions can be drawn by inversion and solution of eq.
(91). If inversion of eq. (91) is to be done by partial fractions, then the following approximation
has to be made:

e−τs ≈ 1− τs. (92)

Second better approximation is:

e−τs ≈ 1− (τ/2)s

1 + (τ/2)s
. (93)

A third approximation (better than the above two) is as follows:

e−τs ≈ 1− τs/2 + τ2s2/12

1 + τs/2 + τ2s2/12
. (94)

Eq. (92) gives a crude approximation. One could possibly choose either eq. (93) (which is simpler)
or (94) (which is laborious but more accurate). If D(t) = A, a step input, i.e., an exogenous shift
in either the number of public service units demanded, and/or a shift in supply, then after Laplace
transform

D(s) =
A

s
.

Using the final value theorem of Laplace transform we get:

C(∞) =
−A

Kpu +Kpr
, (95)

C(∞) = C(t) |t=∞ .

Eq. (93) can be rewritten as:

e−τs ≈ 2− τs
2 + τs

.
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Using this approximation, eq. (91) can be written as:

C(s)

D(s)
=

−Kc

s+KcKpu

(
2−sτd2
2+sτd2

)
+KcKpr

(
2−sτd1
2+sτd1

) ,
C(s)

D(s)
=

−Kc (2 + sτd1) (2 + sτd2)

s (2 + sτd1) (2 + sτd2) +KcKpu (2 + sτd1) (2− sτd2) +KcKpr (2− sτd1) (2 + sτd2)
,

=
−Kc

{
τd1τd2s

2 + 2 (τd1 + τd2) s+ 4
}[

τd1τd2s
3 + 2 (τd1 + τd2) s

2 + 4s+KcKpu

{
−τd1τd2s2 + 2 (τd1 − τd2) s+ 4

}
+KcKpr

{
−τd1τd2s2 + 2 (τd2 − τd1) s+ 4

} ] ,

=
−Kc

{
τd1τd2s

2 + 2 (τd1 + τd2) s+ 4
}[

τd1τd2s
3 + [2 (τd1 + τd2)−KcKpuτd1τd2 −KcKprτd1τd2] s

2+
[2KcKpu (τd1 − τd2) + 2KcKpr (τd2 − τd1) + 4] s+ 4KcKpu + 4KcKpr

] .
The denominator of the above expression can be written as:

as3 + bs2 + cs+ d,

where

a = τd1τd2,

b = 2 (τd1 + τd2)−Kcτd1τd2(Kpu +Kpr),

c = 2 [Kc (τd1 − τd2) (Kpu −Kpr) + 2] ,

d = 4Kc(Kpu +Kpr).

This implies that

C(s)

D(s)
=
−Kc

{
as2 + 2 (τd1 + τd2) s+ 4

}
as3 + bs2 + cs+ d

. (96)

The roots of the denominator of eq. (96) depict the qualitative response of the crime control rate,
therefore it will be convenient (for future reference) to write it as follows:

as3 + bs2 + cs+ d = 0. (97)

Now let us discuss the dimensions of the parameters involved. τd1 and τd2 and have the dimensions
of time.
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Dimensions of Kc = (Dimensions of C)/(time×Dimensions of WA)

=
Number of new crimes controlled

time×No. of new public service units
Dimensions of Kpu = (Dimensions of Wpu)/(Dimensions of C)

=
No. of new public service units demanded

Number of new crimes controlled
,

Dimensions of Kpr = (Dimensions of Wpr)/(Dimensions of C)

=
No. of new public service units supplied
Number of new crimes controlled

.

Therefore KcKpu and KcKpr have dimensions of 1/time. Using these facts, we can write: a has
dimensions of time2; b has dimensions of time; c is dimensionless and d has dimensions of 1/time.
We can see that eq. (97) is dimensionally consistent (as s has dimensions of 1/time).
Method to Solve eq. (96):
Let a step input of magnitude A is given to D, then

D(s) =
A

s
. (98)

Putting this in eq. (96), we get:

C(s) =
−AKc

{
as2 + 2 (τd1 + τd2) s+ 4

}
s(as3 + bs2 + cs+ d)

. (99)

The parameters Kc, Kpr, Kpu, τd1 and τd2 are to be estimated empirically. This gives the values
of a, b, c and d. Find roots of eq. (97) and invert eq. (99) to time function of C by using partial
fractions and table of Laplace transform. Using the Final Value Theorem of Laplace transform on
eq. (99), we get:

C(∞) = −AKc ×
4

d
. (100)

Using the value of d = 4Kc(Kpu +Kpr), we get:

C(∞) =
−A

Kpu +Kpr
. (101)

We get the same C(∞) from eq. (99) as that from eq. (91). Similarly using the Initial Value
Theorem of Laplace transform on eq. (99), we get:

C(0) = 0. (102)

The qualitative nature of the solution C(t) is dependent on location of roots of the denomina-
tor of C(s) in the complex plane. Please look at Figure 7 in which several roots are located.
Table 1 gives the form of the terms in the expression for C(t) corresponding to these roots.
X1, X2, . . . ., Y 1, Y 2, . . . .. are all positive.
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An optimal policy minimizing the social damage in terms of excessive/inadequate number of public
service units in initial equilibrium, as well as the social loss in terms of excessive or inadequate
number on dynamic adjustment path (when number of public service units demanded is not equal
to supply) before arriving at final equilibrium, subject to a certain increase in number of crimes
controlled per unit time can be derived on a case by case basis.
In equilibrium, the area under the demand curve is the social benefit in terms of number of crimes
controlled per unit time. For estimating an optimal policy, the parameters Kc, Kpr, Kpu, τd1 and
τd2 need to be estimated. The values of K ′s can be estimated in the same manner as demand and
supply elasticities. Time lags τd1 and τd2 can also be estimated through various techniques. As the
optimal policy is a function of these parameters, Delta method can be used for confidence interval.
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Figure 1: Theoretical concept of crime control model.
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Figure 2: When is linearity a reasonable assumption?

Figure 3: Theoretical concept of crime control model in panel A.
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Figure 4: A dynamic optimal crime control model for panel A.

Figure 5: A dynamic crime control model for panel A after Laplace Transform.
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Figure 6: Crime control model in panel A after solution of block A in figure 5.
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Figure 7: Location of roots in a complex plane corresponding to Table 1.
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