
MPRA
Munich Personal RePEc Archive

Nonlinear Macroeconomic Granger
Causality: An ANN Input Occlusion
Approach on MSSA-Denoised Data

Bahaa Aly, Tarek

26 July 2025

Online at https://mpra.ub.uni-muenchen.de/125453/
MPRA Paper No. 125453, posted 01 Aug 2025 14:41 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/125453/


  
 

 

 

 

 

Nonlinear Macroeconomic Granger Causality: An ANN Input Occlusion Approach on MSSA-Denoised 

Data 

 

Tarek Bahaa Aly 

 

 

 

 

 

 

 

 

 

 

 

Author Note  

Tarek Bahaa Aly, PhD, Independent Researcher. 

Cairo, Egypt 

ORCID ID: 0009-0001-1380-2630 

Correspondence concerning this article should be addressed to Tarek Bahaa Aly, email: 

tarekbahaaaly@gmail.com 

  

mailto:tarekbahaaaly@gmail.com


2 
 

Nonlinear Macroeconomic Granger Causality: An ANN Input Occlusion Approach on MSSA-Denoised 

Data 

 

Abstract   

This paper introduced a novel methodology for measuring nonlinear Granger causality in 

macroeconomic time series by combining Multivariate Singular Spectrum Analysis (MSSA) for data 

denoising with Artificial Neural Network (ANN) input occlusion for causal inference. We applied this 

framework to five countries, analyzing key macro-financial variables, including yield curve latent factors, 

equity indices, exchange rates, inflation, GDP, and policy rates. MSSA enhanced data quality by 

maximizing signal-to-noise ratios while preserving structural patterns, resulting in more stable ΔMSE 

values and reduced error variability. ANNs were trained on MSSA-denoised data to predict each target 

variable using lagged inputs, with input occlusion evaluating the marginal predictive contribution of each 

input to derive causality p-values. This approach outperformed traditional VAR-based Granger causality 

tests, identifying 38 significant causal relationships compared to 24 for VAR. Cross-country analysis of 

variables revealed differences in transmission mechanisms, monetary policy effectiveness, and growth-

inflation dynamics. Notably, feature importance rankings showed that policy rates and stock market 

indices predominantly drove macroeconomic outcomes across countries, underscoring their critical role 

in economic dynamics. These findings demonstrated that combining MSSA and ANN input occlusion 

offered a robust framework for analyzing nonlinear causality in complex macroeconomic systems. 

 

 

Keywords: Nonlinear Granger causality, Input Occlusion, Multiple Singular Spectrum Analysis, p-

values 
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Nonlinear Macroeconomic Granger Causality: An ANN Input Occlusion Approach on MSSA-Denoised 

Data 

 

1. Introduction  

This study examined the complex interactions among key macroeconomic variables such as yield 

curve factors (LEVEL, SLOPE, CURVATURE), stock market indices (EQUITY), foreign exchange rates (FX), 

central bank policy rates (POLRATE), GDP growth rates (GDP), and inflation rates (INF), across five 

countries: United States (US), United Kingdom (UK), Egypt (EGP), Mexico (MEX), and South Africa (SAF). 

Macroeconomic systems are inherently nonlinear, with intricate relationships that linear models, such 

as traditional Granger causality, often fail to capture. These models struggle to account for the noisy 

nature of economic data, which can obscure underlying causal patterns and limit the accuracy of 

economic forecasts. To address these challenges, we proposed an innovative methodology that 

combined Multivariate Singular Spectrum Analysis (MSSA) for denoising with Artificial Neural Network 

(ANN)-based input occlusion to assess nonlinear Granger causality, providing a robust framework for 

economic dynamics. 

MSSA decomposed time series into trend, seasonal, and noise components, enhancing signal 

clarity by filtering out irregularities. The denoised data was then analyzed using an ANN framework, 

where input occlusion systematically masked predictor variables to quantify their causal impact on 

target variables. This approach leveraged the flexibility of ANNs to model complex, nonlinear 

relationships and the interpretability of occlusion to isolate causal effects. By combining these 

techniques, our study filled a critical gap in the literature, to the best of our knowledge, no prior work 

has integrated MSSA denoising with ANN-based input occlusion for macroeconomic causality analysis. 

By applying this method across multiple countries, we demonstrated that our approach detected a 

richer and more economically meaningful set of causal structures than traditional linear methods, 

highlighting the critical role of denoising and model interpretability in modern macroeconomic analysis. 

 

2. Literature Review 

This literature review examined Granger causality testing, and input occlusion methods. We first 

surveyed linear and nonlinear Granger causality applications in macroeconomic forecasting, highlighting 

their strengths and limitations. Next, we discussed the critical need for denoising macroeconomic data. 

Finally, we explored input occlusion techniques, from computer vision, and their potential adaptation 

for nonlinear Granger causality in the context of economic analysis. By systematically evaluating these 
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connected methodologies, we identified a significant gap in academic literature that was filled by our 

study. 

Several studies demonstrated the application of linear Granger causality to macroeconomic 

linkages. Plihal (2016) identified the stock market as a predictor for industrial production and interest 

rates. Shareef & Shijin (2017) employed Granger causality alongside impulse response and variance 

decomposition to analyze Indian yield curve factors and macro variables. Coroneo et al. (2016) reported 

US economic growth Granger causing yield curve factors. Similarly, Jammazi et al. (2017) found 

bidirectional causality between the US 10-year Treasury yield and the stock market. Ahmed et al. (2017) 

applied the same techniques in Pakistan, concluding that interest rates Granger cause stock market 

movements. These studies relied on linear Granger causality, potentially overlooking complex nonlinear 

interactions inherent in economic systems. Recognizing the limitations of linear models in capturing 

complex dynamics, researchers increasingly moved towards nonlinear Granger causality methods.  

The adoption, by academic scholars, of nonlinear causality methods addressed potential 

oversights of linear models. Papagiannopoulou et al. (2017) employed a kernel-based Granger causality 

framework to investigate climate vegetation interactions, uncovering feedback mechanisms that linear 

tests would have missed. Karagianni & Pempetzoglou (2009) applied Hiemstra-Jones nonlinear Granger 

causality to Turkish defense spending and economic growth, finding that defense spending only Granger 

caused growth in the nonlinear case, contradicting their linear results. Quaye et al. (2023) used wavelet 

based nonlinear Granger causality within an interconnectedness framework to analyze FDI and 

sustainable development, revealing bidirectional causality that linear tests failed to detect. Similarly, 

Hamid & Jena (2020) applied the Diks-Panchenko non-parametric test to India’s FDI and growth 

relationship, finding no linear causality but significant nonlinear effects, suggesting that traditional 

methods underestimated these linkages. Rahimi et al. (2017) adopted a rolling-window nonlinear 

Granger causality approach to study short-term and long-term US interest rates, demonstrating that the 

relationship evolved over time, a behavior that static linear models cannot capture.  

Macroeconomic data are inherently noisy, distorting causal inference and necessitating robust 

denoising techniques. Singular Spectrum Analysis (SSA) and its multivariate extension (MSSA) have 

proven effective for this purpose, as demonstrated by Hassani (2007), who extracted business cycle 

signals from noisy U.S. industrial production data using SSA to isolate trend, seasonal, and irregular 

components. Building on denoised data, input occlusion methods, originally developed for computer 

vision, have emerged as tools for interpreting complex models. Zeiler and Fergus (2014) pioneered 

occlusion by systematically masking image regions to identify critical features in CNNs, while Ancona et 
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al. (2018) later formalized gradient-based attribution variants. Frequently applied to image data, the 

technique could also be extended to other types of inputs. Ismail et al. (2020) benchmarked occlusion 

in time series, revealing sensitivity to noise and lag specification. Though applied in image hierarchies 

(Khormuji & Rostami, 2022) and structured vision tasks like face parsing (Qiu et al., 2024), these 

methods remain largely untested in macroeconomics. From that standpoint, there is an academic 

literature gap on the integration of input occlusion with ANN-based nonlinear Granger causality on 

MSSA-denoised macroeconomic data to interpret causal p-values. 

This literature review revealed that while nonlinear Granger causality and denoising methods 

have been separately applied to macroeconomic data, and while input occlusion has proven valuable in 

other domains, no existing study combined these approaches. This represented a critical methodological 

gap, as macroeconomic systems benefit from approaches that can simultaneously handle their noisy 

nature and nonlinear relationships. Our proposed integration of MSSA denoising, ANN-based nonlinear 

Granger causality, and adapted input occlusion method offered an innovative solution that would 

capture complex economic relationships. 

 

3. Research Methodology 

3.1. Data Sources 

We conducted our analysis based on monthly data from 2006 until 2019. Our period of study 

captured different economic cycles, and the mortgage crisis in 2008-2009, as well as the European 

recession in 2012-2013. All observations that we have gathered were on a monthly basis, except for the 

GDP growth rates that were on a quarterly basis. Hence, we transformed the GDP frequency from 

monthly to quarterly using Cubic Splines, as they performed well in the GDP monthly transformation 

performed by Kaya (2013). The FX was modeled in terms of direct exchange rate, showing how much 

one unit of home currency was worth in foreign currency ($). The correlation matrix of standardized 

returns was used when computing the PCA on the different yield curves, and the first three latent 

factors were extracted for each studied country. 

3.2. MSSA for Data Denoising 

3.2.1. MSSA Algorithm  

MSSA, an extension of Singular Spectrum Analysis (SSA) for multivariate time series, breaks 

down each variable into trend, seasonal, and noise components (Golyandina et al., 2001; Hassani, 2007). 

The process involved several steps: First, each time series was transformed into a matrix called a 

trajectory matrix, by selecting a window length, which determined how many data points were grouped 
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together to form rows of the matrix. The trajectory matrix was then broken down using a Singular Value 

Decomposition (SVD), splitting the matrix into components that represented different patterns in the 

data, such as trends or seasonal cycles, ranked by their contributions. Afterwards, the components were 

categorized into three groups: trend, seasonal patterns, and noise. The number of components selected 

ensured that a sufficient portion of the data’s structure was captured. Finally, the selected trend and 

seasonal components were combined to create a denoised version of the time series. 

3.2.2. Parameter Optimization 

We tested multiple window lengths (24, 36, 48, and 60 months), variance thresholds (80%, 85%, 

and 90% of the data’s structure), and number of components (from 2 to 14). For each variable, we 

selected the combination of parameters that maximized a scoring metric balancing two measures: 

Signal-to-Noise Ratio (SNR) and Mean Absolute Deviation (MAD). 

SNR measured how much of the denoised signal’s strength (its variability) was preserved 

compared to the noise’s strength (the variability of the residuals, i.e., the difference between the 

original and denoised series). A higher SNR, measured in decibels (dB), indicated better denoising. On 

the other hand, MAD measured the average absolute difference between the original and denoised 

series, reflecting the amount of noise removed. A lower MAD indicated better noise reduction. The 

scoring metric was defined as SNR minus 0.1 times scaled MAD, prioritizing high SNR while penalizing 

excessive residuals. The MSSA-denoised data was used as input for the ANN input occlusion Granger 

causality analysis to compute the p-values. 

3.3. ANN Input Occlusion for Nonlinear Granger Causality P-Values 

The proposed method extended traditional Granger causality by capturing nonlinear 

relationships through ANN modeling and assessing causality via input occlusion, following 

methodologies adapted from studies in machine learning interpretability (Zeiler & Fergus, 2014; Ancona 

et al., 2018). Based on the MSSA denoised data, all variables were standardized using the z-score 

method, apart from the yield curve factors that were already normalized. 

3.3.1. Architecture and Training 

For each target variable, a separate ANN model was constructed to predict its value based on 

lagged values of all other variables. The input data was structured to include 12 lagged time steps for 

each predictor variable. The ANN architecture consisted of an input layer, one hidden layer with 32 

neurons using the hyperbolic tangent (tanh) activation function, and a linear output layer to predict the 

target variable. Layer normalization was applied after the hidden layer to stabilize training and improve 

convergence, and an L2 regularization with a strength of 0.01 was used. Weights were initialized using a 
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random normal distribution with a standard deviation of 0.05 to ensure consistent starting conditions. 

Each model was trained for 300 epochs using the Adam optimizer with a learning rate of 0.001 and a 

gradient clipping norm of 1.0. The mean squared error (MSE) was used as the loss function. To ensure 

optimal model performance, the weights yielding the lowest MSE during training were saved and 

restored for subsequent occlusion analysis.  

3.3.2. Causality Assessment 

For each target variable, the trained ANN model was used to compute a baseline MSE using the 

full input data. Then, for each predictor variable, a random subset of its lagged values (between 1 and 12 

lags) was occluded by setting the corresponding input values to zero. This occlusion was repeated 100 

times with different random lag combinations to generate a distribution of MSE differences (ΔMSE) 

compared to the baseline (ΔMSE = Occluded MSE - Baseline MSE). The ΔMSE reflected the increase in 

prediction error when the predictor’s information was removed, indicating its causal influence on the 

target variable. Unique occlusion patterns were enforced by tracking and excluding repeated lag 

combinations. The statistical significance of the ΔMSE was evaluated using a one-sided t-test, testing 

whether the mean ΔMSE was significantly greater than zero, indicating that the occluded predictor 

contributed to predicting the target variable. The resulting p-values represented the nonlinear Granger 

causality, with lower p-values suggesting stronger causal relationships. This methodology leveraged the 

flexibility of ANNs to model complex, nonlinear dynamics, while using occlusion to isolate the causal 

impact of individual predictors, providing a robust framework for Granger causality analysis in 

macroeconomic time series. 

3.4. Feature Importance Analysis 

To evaluate the relative importance of each predictor variable in the nonlinear Granger causality 

framework, a feature importance analysis was conducted based on the mean ΔMSE obtained from the 

ANN input occlusion process. This approach quantified the contribution of each predictor variable to the 

prediction of a target variable by assessing the increase in prediction error when the predictor’s lagged 

values are occluded, building on methodologies for feature attribution in neural networks (Lundberg & 

Lee, 2017).  

For each target variable and its corresponding predictor variables, the mean ΔMSE was 

calculated by averaging the ΔMSE values across all occlusion iterations. A higher mean ΔMSE indicated a 

greater increase in prediction error when the predictor was occluded, suggesting that the predictor has 

a stronger influence on the target variable’s prediction. This approach was consistent with feature 

importance methods that measured the impact of altering input features on model performance 



8 
 

(Ribeiro et al., 2016). To facilitate the interpretation, the predictor variables were ranked within each 

target variable group based on their mean ΔMSE values, with the highest mean ΔMSE assigned the rank 

of 1, indicating the most important predictor, and so forth. This method offered a robust measure of 

feature importance that accounted for the variability introduced by random occlusion patterns, 

enhancing the interpretability of the ANN-based causality analysis (Tank et al., 2022). 

4. Results 

4.1. MSSA Denoised Data Results 

4.1.1. Comparison between Raw Vs MSSA Data 

 

Figure 4.1 Raw Data vs MSSA Data 

Figure 4.1 illustrated each variable raw data vs MSSA denoised data for the US country as an 

example. We concluded that the LEVEL raw data exhibited more erratic fluctuations and less structural 

form. Its MSSA revealed smoother long-term trends, suggesting clearer identification of business cycles. 

Additionally, the SLOPE and CURVATURE showed substantial short-term noise in raw form, especially 

during volatile financial periods (e.g., 2008 crisis). Their MSSA significantly reduced this high-frequency 

variation, enhancing trend–cycle decomposition. The raw EQUITY displayed high volatility with 

occasional spikes due to market shocks. Its MSSA preserved long-run growth trends while smoothing out 

short-run fluctuations, revealing cyclical patterns more effectively. The FX raw series included several 

sharp deviations, while its MSSA processed series showed smoother transitions, making underlying 

patterns and regime shifts more distinct. As a policy-driven variable, POLRATE is stepwise in nature with 

abrupt changes, its MSSA retained the core structure but allowed for better visualization of regime 
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durations and transitions. Raw GDP and INF data were relatively smooth but still contained noise that 

may obscure nonlinear dependencies. Their MSSA series offered a clearer representation of economic 

cycles and inflation dynamics. 

4.1.2. MSSA Data Impact on Input Occlusion ΔMSE 

Table 4.1 ΔMSE Comparison: Raw Data vs MSSA Data 

Metric Raw Data MSSA Denoised Data 

Mean 0.13 0.070 

Variance 0.25 0.10 

Skewness 1.82 1.12 

F-statistic 2.4 

p-value 0.00% 

 

We calculated in table 4.1 the descriptive statistics of the ΔMSE when the input occlusion was 

performed on raw data and MSSA denoised data for the US as an example. The mean was calculated by 

taking all ΔMSE values across all variables (from all occlusion experiments) and computed their 

arithmetic average. The mean of the ΔMSE values across all variables for the raw data was 0.13 and for 

the MSSA denoised data it was 0.07.  

 

The variance of the ΔMSE values across all variables was also calculated in order to show how 

volatile or stable the ΔMSE responses were across repetitions and variables. The variance of the ΔMSE 

values across all variables for the raw data was 0.25 and for the MSSA denoised data it was 0.10. 

 

The skewness was also calculated in order to measure the asymmetry in the distributions, or the 

presence of outliers or long tails. The MSSA denoised data was less skewed equal to 1.12, vs a skew of 

1.82 for raw data. 

 

The MSSA-denoised data led to significantly more stable ΔMSE values with a lower mean (better 

average model performance), a lower variance, and a lower skewness (less distortion from extreme 

errors). 
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Additionally, we calculated the F-Test (equivalent to approx. 2.4) for variance comparison 

between both ΔMSEs, by dividing the variance on raw data by the variance of MSSA data, resulting in a 

p-value=0%. Since the p-value < 0.05, we rejected H0 that the variances were equal. Thus, the variance 

of the ΔMSE on the MSSA denoised data was significantly lower than it was on raw data. 

 

4.1.3. Combined MSSA Parameters Results 

4.1.3.1. Variables Analysis 

Table 4.2 MSSA Parameters per Variable 

Variable Most Frequent Window Length Avg Explained Variance Avg Components Avg SNR 

POLRATE 24 0.9618 2 16.5605 

GDP 24 0.9412 3.4 15.4953 

FX 24 0.9402 2.8 14.4035 

EQUITY 24 0.9483 2.4 13.972 

INF 24, 36 0.923 5.8 12.1246 

CURVATURE 24 0.7881 14 7.5281 

SLOPE 24 0.7658 14 6.2606 

LEVEL 24 0.7539 14 6.0219 

 

Table 4.2 illustrated the most frequent window length per variable, alongside average explained 

variance, components, and SNR, calculated across the five countries (US, UK, EGP, MEX, SAF). Variables 

were ordered by denoising quality (best to worst).  

1. POLRATE:  

o Denoising Quality: Most Frequent Window Length = 24, Avg. Explained Variance = 

0.9618, Avg. Components = 2.0, Avg. SNR = 16.5605. Best denoising, with the highest 

SNR, fewest components selected, and highest explained variance, indicating 

exceptional noise removal and signal preservation. MSSA effectively filtered noise while 

retaining nearly all signal. 

o Smoothness and Behavior: POLRATE MSSA curves were extremely smooth, capturing 

step-like policy rate changes (e.g., 2008–2009 rate cuts, post-2020 low rates) with 

minimal noise. Raw series were stable with discrete shifts, closely mirrored by MSSA, 

ensuring clear trend isolation. 

2. GDP:  

o Denoising Quality: Most Frequent Window Length = 24, Avg. Explained Variance = 

0.9412, Avg. Components = 3.4, Avg. SNR = 15.4953. Strong denoising, with high SNR, 
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few components selected, and high explained variance, indicating effective noise 

removal and robust signal retention. MSSA isolated growth trends efficiently. 

o Smoothness and Behavior: GDP MSSA curves were smooth, capturing GDP growth 

trends and business cycles (e.g., pre-2008 growth, 2008–2009 recession dips, post-2020 

recovery) while filtering minor fluctuations. Raw series showed periodic shocks, 

smoothed by MSSA. 

3. FX:  

o Denoising Quality: Most Frequent Window Length = 24, Avg. Explained Variance = 

0.9402, Avg. Components = 2.8, Avg. SNR = 14.4035. Strong denoising, with high SNR, 

few components selected, and high explained variance, indicating effective noise 

filtering and signal preservation. MSSA handled exchange rate complexity well. 

o Smoothness and Behavior: FX MSSA curves were very smooth, capturing exchange rate 

trends (e.g., pre-2008 stability, 2008–2009 crisis volatility, post-2020 fluctuations) with 

minimal short-term noise. Raw series showed moderate volatility, smoothed by MSSA. 

4. EQUITY:  

o Denoising Quality: Most Frequent Window Length = 24, Avg. Explained Variance = 

0.9483, Avg. Components = 2.4, Avg. SNR = 13.9720. Strong denoising, with high SNR, 

few components selected, and high explained variance, indicating effective noise 

removal and signal retention. MSSA isolated equity market trends robustly. 

o Smoothness and Behavior: EQUITY MSSA curves were highly smooth, capturing 

bull/bear market trends (e.g., pre-2008 growth, 2008–2009 crash, post-2020 recovery) 

while filtering monthly volatility. Raw series were highly volatile, with MSSA 

emphasizing major movements. 

5. INF:  

o Denoising Quality: Most Frequent Window Length = 24, 36 (tie), Avg. Explained 

Variance = 0.9230, Avg. Components = 5.8, Avg. SNR = 12.1246. Good denoising, with 

moderate SNR and more components selected, balancing noise removal and signal 

retention. MSSA effectively handled inflation’s complex dynamics. 

o Smoothness and Behavior: INF MSSA curves were moderately smooth, capturing 

inflation trends (e.g., pre-2008 stability, post-2020 spikes) with some retained cyclicality. 

Raw series showed moderate fluctuations, smoothed by MSSA. 

6. CURVATURE:  

o Denoising Quality: Most Frequent Window Length = 24, Avg. Explained Variance = 

0.7881, Avg. Components = 14.0, Avg. SNR = 7.5281. Moderate denoising, with higher 

SNR than LEVEL/SLOPE but many components selected, balancing noise removal and 
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retention of yield curve dynamics. Lower explained variance suggested potential signal 

loss. 

o Smoothness and Behavior: CURVATURE MSSA curves were moderately smooth, 

capturing yield curve curvature trends (e.g., humps or troughs) with reduced short-term 

volatility. Raw series showed frequent fluctuations, with MSSA emphasizing cyclical 

patterns. 

7. SLOPE:  

o Denoising Quality: Most Frequent Window Length = 24, Avg. Explained Variance = 

0.7658, Avg. Components = 14.0, Avg. SNR = 6.2606. Weak denoising, with lowest SNR, 

high components selected, and low explained variance, indicated noise retention or 

signal alteration. MSSA was able to moderately capture SLOPE’s complex dynamics. 

o Smoothness and Behavior: SLOPE MSSA curves were less smooth, retaining cyclical 

yield curve shifts (e.g., steepening/flattening). Raw series were volatile, with MSSA 

smoothing minor fluctuations but preserving short-term cycles. 

8. LEVEL:  

o Denoising Quality: Most Frequent Window Length = 24, Avg. Explained Variance = 

0.7539, Avg. Components = 14.0, Avg. SNR = 6.0219. Weakest denoising, with low SNR 

and high component count, suggested retention of complex yield curve dynamics or 

residual noise. Low explained variance indicated potential signal loss. 

o Smoothness and Behavior: LEVEL MSSA curves were moderately smooth, capturing 

long-term yield curve trends (e.g., rate increases post-2008) but retaining cyclical 

fluctuations due to many components selected. Raw series showed volatile bond market 

shifts, with MSSA smoothing short-term noise. 

4.1.3.2. MSSA Results Summary and Implications 

MSSA denoising was most effective for POLRATE, GDP, FX, and EQUITY, with high SNR, few 

components, and high explained variance, producing smooth curves that captured trends and cycles 

(e.g., 2008–2009 crises, post-2020 recovery). INF showed good denoising with moderately smooth 

curves, though, its higher components count (5.8) reflected country-specific inflation complexity. LEVEL, 

SLOPE, and CURVATURE exhibited weaker denoising due to high components and lower SNR, with less 

smooth curves retaining cyclicality. UK excelled in denoising, followed by US, SAF, EGP, and MEX, 

reflecting differences in economic data stability. For nonlinear Granger causality analysis, MSSA-

denoised POLRATE, GDP, FX, and EQUITY were highly suitable. 

4.2. Stability of P-Values on MSSA-Denoised Data 
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Table 4.3 illustrated in the appendix p-values of nonlinear Granger causality tests for pairwise 

relationships among the eight macroeconomic variables derived from raw data across 100, 200, 300, 

400, and 1000 iterations with those from denoised data using MSSA at 100 iterations. The objective was 

to evaluate the stability and convergence of p-values. 

For raw data, p-values exhibited rapid convergence, typically stabilizing by 200–300 iterations. 

Across most variable pairs, p-values either remained consistently significant or non-significant after 200 

iterations, with minimal changes observed at higher iterations (400 and 1000). This suggested that for 

raw data 200–300 iterations were generally sufficient for p-values to converge to stable values, whether 

significant or not. In contrast, p-values calculated on MSSA-denoised data at 100 iterations 

demonstrated remarkable stability. For most variable pairs, these p-values closely aligned with the 

converged p-values from raw data at 300–1000 iterations, indicating that MSSA denoising enabled faster 

convergence. The results highlighted the superior efficiency of MSSA-denoised data in nonlinear 

Granger causality analysis. While raw data p-values stabilized by 200–300 iterations, MSSA-denoised p-

values achieved equivalent significance at 100 iterations. This stability was attributed to MSSA’s ability 

to filter out noise, enabling the ANN to focus on underlying causal signals. The consistency between 

MSSA p-values and converged raw data p-values validated the denoising approach, as it did not change 

the causal relationships but enhanced their detection. The findings had implications for econometric 

modeling, suggesting that MSSA preprocessing can reduce computational demands without sacrificing 

accuracy.  

4.3. Comparison between ANN Occlusion and VAR P-Values 

Illustrated in table 4.4 in the appendix p-values from both, ANN-based tests on MSSA data, and 

VAR on the same MSSA data for the US. Based on a statistical significance at p < 0.05, we detected 38 

significant relationships for the ANN p-values, compared to only 24 for the VAR p-values, which 

supported the argument that ANN was superior in this context, particularly for capturing nonlinear 

dynamics. Key potential reasons include the nonlinear sensitivity of the ANN, which VAR’s framework 

often misses due to its reliance on linear assumptions. Additionally, another potential reason could be 

the MSSA denoising efficiency that enhanced ANN’s ability to focus on underlying nonlinear signals, 

yielding highly significant p-values.  

On the other hand, and unexpectedly, VAR detected 7 significant causalities that ANN did not, 

which could have been caused by the MSSA emphasizing linear components, making them detectable by 

VAR but not by ANN, or may be that the MSSA over-denoising could have suppressed nonlinear signals 
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critical for ANN. Additionally, the VAR’s lag structure could have also captured specific linear temporal 

dependencies missed by ANN. 

Finally, ANN outperformed VAR in detecting causal relationships, identifying 38 significant pairs 

compared to VAR’s 24 at a 5% significance level, due to its sensitivity to nonlinear dynamics and MSSA’s 

denoising benefits. However, VAR’s unique detection of 7 significant causalities that ANN did not, 

highlighted its relevance for linear relationships, suggesting that ANN was not universally superior.  

4.4. ANN Granger Causality P-Values & Feature Importance Analysis 

In this section, we evaluated both the p-values and feature importance rankings to identify 

general trends, cross-country patterns, and economic implications for all variables and all countries.  

4.4.1. Causality for the LEVEL 

Table 4.5 ANN P-Values & Feature Importance for the LEVEL 

4.5.a ANN P-Values Y Variable: LEVEL   4.5.b Feature Importance Y Variable: LEVEL  
X Variable US UK EGP MEX SAF  US UK EGP MEX SAF 

SLOPE 0.00% 0.00% 0.00% 0.00% 0.00%  POLRATE CURVATURE SLOPE INF CURVATURE 

CURVATURE 0.00% 0.00% 0.00% 0.00% 0.00%  INF FX POLRATE GDP EQUITY 

EQUITY 0.00% 0.00% 0.00% 0.00% 0.00%  CURVATURE INF GDP POLRATE GDP 

FX 0.00% 0.00% 0.00% 0.00% 0.00%  EQUITY SLOPE FX EQUITY INF 

POLRATE 0.00% 0.00% 0.00% 0.00% 0.00%  GDP POLRATE CURVATURE CURVATURE SLOPE 

GDP 0.00% 0.00% 0.00% 0.00% 0.00%  FX GDP INF FX FX 

INF 0.00% 0.00% 0.00% 0.00% 0.00%  SLOPE EQUITY EQUITY SLOPE POLRATE 

 

As it is illustrated in table 4.5.a all variables had statistically significant nonlinear predictive 

effects on the LEVEL in each country, implying that the LEVEL was a highly endogenous variable. The 

LEVEL seemed to be strongly affected by its yield curve own factors, SLOPE and CURVATURE for all 

countries, similar to Sowmya & Prasanna (2018) findings, each highly ranked in the UK, EGP, and SAF, as 

illustrated in table 4.5.b. The EQUITY had a significant impact in SAF (ranking 2 in SAF), and moderate in 

the US and MEX (4 in US, 4 in MEX). As one would economically expect, a rally in the EQUITY would 

cause an increase in wealth, which would cause a rise in spending and inflation. Thus, higher inflationary 

expectations eventually cause a rise in the LEVEL (Rudebusch & Wu, 2004; Ang and Piazzesi, 2003; 

Diebold et al., 2006). The FX had a significant impact in the UK (ranking 2 in UK), and moderate in EGP 

(ranking 4 in EGP). In fact, an appreciation of the FX is due to a higher demand in the country’s currency, 

signaling higher investments inflows and a growing economy, which will lead to a rise in the LEVEL. The 

POLRATE had a significant impact in the US, EGP and MEX (ranking 1 in US, 2 in EGP, 3 in MEX). 

According to academic literature, the monetary policy could affect the whole yield curve, not just the 

short rate, which is evidence of a strong monetary policy transmission mechanism, and conform to the 

Expectation Hypothesis (Rhodes & Aazim, 2011; Sowmya & Prasanna, 2018). Thus, the US, EGP, and 
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MEX had an efficient transmission mechanism. Consistent with academic literature, economic growth 

led to higher inflationary pressures that triggered a rise in the Level, prompting the central bank to hike 

its policy rate, the INF had a significant impact on the LEVEL in MEX, US, and the UK (ranking 1 in MEX, 2 

in US, 3 in UK), compared to the GDP’s significant impact in MEX, EGP and SAF (ranking 2 in MEX, 3 in 

SAF, 3 in EGP). Thus, countries like the US and the UK were more focused on taming inflation, while 

others like EGP and SAF were more focused on growth, compared to MEX who had a balanced approach 

towards inflation and growth.  

4.4.2. Causality for the SLOPE 

Table 4.6 ANN P-Values & Feature Importance for the SLOPE 

4.6.a ANN P-Values Y Variable: SLOPE   4.6.b Feature Importance Y Variable: SLOPE  
X Variable US UK EGP MEX SAF  US UK EGP MEX SAF 

LEVEL 100.00% 99.98% 100.00% 100.00% 100.00%  POLRATE GDP POLRATE GDP EQUITY 

CURVATURE 0.00% 0.00% 0.00% 0.00% 0.00%  EQUITY EQUITY EQUITY INF GDP 

EQUITY 0.00% 0.00% 0.00% 0.00% 0.00%  GDP POLRATE INF EQUITY INF 

FX 0.00% 0.00% 0.00% 0.00% 0.00%  CURVATURE INF GDP FX FX 

POLRATE 0.00% 0.00% 0.00% 0.00% 0.00%  INF FX FX CURVATURE CURVATURE 

GDP 0.00% 0.00% 0.00% 0.00% 0.00%  FX CURVATURE CURVATURE POLRATE POLRATE 

INF 0.00% 0.00% 0.00% 0.00% 0.00%  LEVEL LEVEL LEVEL LEVEL LEVEL 

 

With the exception of the LEVEL, all variables Granger caused the SLOPE, as it is illustrated in 

table 4.6.a. The CURVATURE had a moderate to low impact on the LEVEL in most countries suggesting 

that it did not strongly drive changes in yield curve steepness. As it is illustrated in table 4.6.b the 

EQUITY had a high importance for the SLOPE for all countries (ranking 2 in US, 2 in UK, 2 in EGP, 3 in 

MEX, 1 in SAF), suggesting that the stock market performance consistently influenced yield curve 

steepness. Since the stock market was considered a leading indicator for economic growth, it caused the 

SLOPE to change, announcing an upcoming growth or recession. The FX had a moderate to low impact 

on the SLOPE, as the monetary policy relationship with foreign exchange rates differed based on the 

country’s currency system (Dilmaghani & Tehranchian, 2015). Moreover, the POLRATE had a high impact 

on the SLOPE in the US, EGP, and UK (ranking 1 in US, 1 in EGP, 3 in UK), highlighting the ability of these 

countries’ central banks to change the yield curve slope. Chirinos-Leañez & Pagliacci (2015) found out 

that the short end of the yield curve responded promptly to the monetary policy. In fact, during 

unstable economic conditions, the monetary policy impact was significant towards the short end of the 

yield curve (Aazim, 2011). In addition, INF ranked highly in MEX and EGP (2 in MEX, 3 in EGP), reflecting 

their sensitivity to inflationary pressures, which steepened the yield curve. Indicating that economic 

growth influenced the SLOPE through expectations of future economic activity, the GDP had high 

importance in the US, UK, MEX and SAF (ranking 3 in US, 1 in UK, 4 in EGP, 1 in MEX, 2 in SAF).  
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4.4.3. Causality for the CURVATURE 

Table 4.7 ANN P-Values & Feature Importance for the CURVATURE 

4.7.a ANN P-Values Y Variable: CURVATURE   4.7.b Feature Importance Y Variable: CURVATURE  
X Variable US UK EGP MEX SAF  US UK EGP MEX SAF 

LEVEL 100.00% 100.00% 100.00% 100.00% 100.00%  EQUITY FX POLRATE EQUITY FX 

CURVATURE 100.00% 100.00% 100.00% 100.00% 100.00%  GDP POLRATE FX FX EQUITY 

EQUITY 0.00% 0.00% 0.00% 0.00% 0.00%  POLRATE EQUITY EQUITY GDP POLRATE 

FX 0.00% 0.00% 0.00% 0.00% 0.00%  FX GDP INF POLRATE GDP 

POLRATE 0.00% 0.00% 0.00% 0.00% 0.00%  INF INF GDP INF INF 

GDP 0.00% 0.00% 0.00% 0.00% 0.00%  SLOPE SLOPE SLOPE SLOPE SLOPE 

INF 0.00% 0.00% 0.00% 0.00% 0.00%  LEVEL LEVEL LEVEL LEVEL LEVEL 

 

As it is illustrated in table 4.7.a the CURVATURE was Granger caused by most variables, except 

the LEVEL and SLOPE. The EQUITY had a high importance for the CURVATURE in all countries (ranking 1 

in US, 3 in UK, 3 in EGP, 1 in MEX, 2 in SAF), underscoring its role in shaping yield curve curvatures and 

twists. In addition, the FX had also a significant impact on the CURVATURE in most countries (ranking 1 

in UK, 2 in EGP, 2 in MEX, 1 in SAF). Furthermore, the POLRATE had a significant role and ranked highly 

in four countries (3 in US, 2 in UK, 1 in EGP, 3 in SAF), reflecting monetary policy’s influence on yield 

curve curvature through short-term rate adjustments, with EGP’s POLRATE showing the strongest effect 

on the CURVATURE due to its managed monetary framework, while MEX’s moderate effect suggested 

that other factors like EQUITY or FX dominated. On the other hand, the GDP ranked highly in only the US 

and MEX (2 in US, 3 in MEX), reflecting a strong role in these countries, suggesting that economic growth 

influenced yield curve twists in these countries, making these markets vulnerable to growth shocks. 

Finally, the INF had a low impact on the CURVATURE in most countries.  

4.4.4. Causality for the EQUITY 

Table 4.8 ANN P-Values & Feature Importance for the EQUITY 

4.8.a ANN P-Values Y Variable: EQUITY   4.8.b Feature Importance Y Variable: EQUITY  
X Variable US UK EGP MEX SAF  US UK EGP MEX SAF 

LEVEL 100.00% 100.00% 100.00% 100.00% 100.00%  POLRATE POLRATE INF FX FX 

CURVATURE 100.00% 100.00% 100.00% 100.00% 100.00%  GDP INF POLRATE POLRATE POLRATE 

EQUITY 100.00% 100.00% 100.00% 100.00% 100.00%  INF GDP FX GDP GDP 

FX 0.00% 0.00% 0.00% 0.00% 100.00%  FX FX GDP INF INF 

POLRATE 0.00% 0.00% 0.00% 100.00% 100.00%  CURVATURE CURVATURE CURVATURE CURVATURE CURVATURE 

GDP 0.00% 0.00% 11.45% 100.00% 100.00%  SLOPE SLOPE SLOPE SLOPE SLOPE 

INF 0.00% 0.00% 0.00% 100.00% 100.00%  LEVEL LEVEL LEVEL LEVEL LEVEL 

 

As it is illustrated in table 4.8.a the FX Granger caused the EQUITY in the US, UK, EGP, and MEX, 

with a significant importance in MEX and EGP (ranking 3 in EGP, 1 in MEX), and moderate in the US and 

UK (4 in US, 4 in UK). It is worth mentioning that the FX was the only significant variable in MEX, 

reflecting its sensitivity to exchange rate volatility, which suggested that currency stability was 
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important for equity market performance, in open or managed economies. Ahmed et al. (2017) found a 

Causality relationship from the exchange rate to the stock market. The POLRATE Granger caused the 

EQUITY in three countries, the US, UK, and EGP, with a very high importance in these countries (ranking 

1 in US, 1 in UK, 2 in EGP), suggesting that the monetary policy had a strong impact on stock markets, 

likely through interest rate expectations affecting equity valuations. Laopodis (2013) suggested that the 

relationship between the monetary policy and the stock market was dynamic and not consistent. In MEX 

and SAF, the POLRATE did not Granger cause the EQUITY because their monetary policy was not 

transmitted effectively to the stock market. The GDP Granger caused the EQUITY in the US and UK only, 

with high importance in few countries (ranking 2 in US, 3 in UK). Thus, stock markets were sensitive to 

economic growth. In EGP, GDP’s moderate role suggested it was secondary to other drivers like the 

POLRATE. The INF Granger caused the EQUITY in three countries, the US, UK and EGP, with a high 

importance in these countries (ranking 3 in US, 2 in UK, 1 in EGP), reflecting inflation’s impact on equity 

valuations through cost pressures and investor expectations. In EGP, US, and UK, controlling inflation 

was crucial for stabilizing equity markets, as inflation expectations influence stock valuations. 

4.4.5. Causality for the FX 

Table 4.9 ANN P-Values & Feature Importance for the FX 

4.9.a ANN P-Values Y Variable: FX   4.9.b Feature Importance Y Variable: FX  
X Variable US UK EGP MEX SAF  US UK EGP MEX SAF 

LEVEL 100.00% 100.00% 100.00% 100.00% 100.00%  EQUITY INF INF EQUITY EQUITY 

SLOPE 100.00% 100.00% 100.00% 100.00% 100.00%  INF GDP POLRATE POLRATE POLRATE 

CURVATURE 100.00% 100.00% 100.00% 100.00% 100.00%  GDP POLRATE EQUITY GDP GDP 

EQUITY 0.00% 0.00% 100.00% 0.00% 0.00%  POLRATE EQUITY GDP INF INF 

POLRATE 0.00% 0.00% 0.00% 100.00% 100.00%  CURVATURE CURVATURE CURVATURE CURVATURE CURVATURE 

GDP 0.00% 0.00% 100.00% 100.00% 100.00%  SLOPE SLOPE SLOPE SLOPE SLOPE 

INF 0.00% 0.00% 0.00% 100.00% 100.00%  LEVEL LEVEL LEVEL LEVEL LEVEL 

 

As illustrated in table 4.9.a the EQUITY Granger caused the FX in the US, UK, MEX, and SAF, 

ranking highly in the US, MEX and SAF (1 in US, 1 in MEX, 1 in SAF), probably due to global capital flows. 

As we have previously mentioned that the EQUITY was a leading indicator of economic growth, thus, 

positive sentiment led to the appreciation of the country’s currency and vice versa. As one would 

expect, the POLRATE Granger caused the FX in the US, UK, and EGP, with a high importance in the UK 

and EGP (ranking 3 in UK, 2 in EGP and moderate ranking of 4 in US), suggesting that the monetary 

policy had a strong practical impact on exchange rates, likely through interest rate differentials affecting 

capital flows. According to Ahmed et al. (2017) interest rates caused a slight appreciation in the 

country’s exchange rate. Dilmaghani & Tehranchian (2015) stated that the country’s exchange rate was 

also affected by other macro variables such as the inflation and GDP. Though, the GDP Granger caused 
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the FX in only the US and UK, with a high importance in these two countries, reflecting economic 

growth’s role in driving exchange rate movements, particularly in these two developed countries. 

Additionally, INF Granger caused the FX in the US, UK, and EGP, with a very high importance on their 

currency exchange rates. The impact of growth and inflation on the exchange rate of developed 

economies, like the US and UK, reflected effective transmission mechanisms. However, for the rest of 

the countries, stabilizing the exchange rate could be linked to either inflation or growth, depending on 

the country.  

4.4.6. Causality for the POLRATE 

Table 4.10 ANN P-Values & Feature Importance for the POLRATE 

4.10.a ANN P-Values Y Variable: POLRATE   4.10.b Feature Importance Y Variable: POLRATE  
X Variable US UK EGP MEX SAF  US UK EGP MEX SAF 

LEVEL 100.00% 100.00% 100.00% 100.00% 100.00%  INF FX FX EQUITY INF 

SLOPE 100.00% 100.00% 100.00% 100.00% 100.00%  GDP GDP EQUITY FX GDP 

CURVATURE 100.00% 100.00% 100.00% 100.00% 100.00%  EQUITY EQUITY INF GDP FX 

EQUITY 0.00% 100.00% 100.00% 0.00% 0.00%  FX INF GDP INF EQUITY 

FX 0.00% 100.00% 0.00% 0.00% 0.00%  CURVATURE CURVATURE CURVATURE CURVATURE CURVATURE 

GDP 0.00% 100.00% 100.00% 0.00% 0.00%  SLOPE SLOPE SLOPE SLOPE SLOPE 

INF 0.00% 100.00% 100.00% 0.00% 0.00%  LEVEL LEVEL LEVEL LEVEL LEVEL 

 

As illustrated in table 4.10.a the EQUITY Granger caused the POLRATE in the US, MEX, and SAF, 

with a high impact in the US and MEX (ranking 3 in US, 1 in MEX, 4 in SAF), suggesting that the stock 

market performance influenced central banks decisions, reflecting economic confidence and market 

sentiment. Suhaibu et al. (2017) stated that stock markets were affected by their respective monetary 

policies through interest rates, and in the long term this relation is bidirectional. The FX Granger caused 

the POLRATE in US, EGP, MEX, and SAF, ranking highly in these countries (1 in EGP, 2 in MEX, 3 in SAF), 

suggesting that exchange rate movements significantly influenced policy rates, reflecting currency 

stability’s role in monetary policy (Olamide & Maredza, 2019). Conform to academic literature, the GDP 

and INF Granger caused the POLRATE in three countries, the US, MEX and SAF, ranking highly in these 

countries, which reflected inflation and economic growth role in driving monetary policy decisions. 

4.4.7. Causality for the GDP 

Table 4.11 ANN P-Values & Feature Importance for the GDP 

4.11.a ANN P-Values Y Variable: GDP   4.11.b Feature Importance Y Variable: GDP  
X Variable US UK EGP MEX SAF  US UK EGP MEX SAF 

LEVEL 100.00% 100.00% 100.00% 100.00% 100.00%  EQUITY INF INF EQUITY INF 

SLOPE 100.00% 100.00% 100.00% 100.00% 100.00%  POLRATE POLRATE FX POLRATE POLRATE 

CURVATURE 100.00% 100.00% 100.00% 100.00% 100.00%  FX FX POLRATE FX EQUITY 

EQUITY 0.00% 0.00% 0.00% 0.00% 0.00%  INF EQUITY EQUITY INF FX 

FX 0.00% 0.00% 0.00% 0.00% 0.00%  CURVATURE CURVATURE CURVATURE CURVATURE CURVATURE 

POLRATE 0.00% 0.00% 0.00% 0.00% 0.00%  SLOPE SLOPE SLOPE SLOPE SLOPE 

INF 0.00% 0.00% 0.00% 100.00% 0.00%  LEVEL LEVEL LEVEL LEVEL LEVEL 
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As illustrated in table 4.11.a the EQUITY Granger caused GDP across all countries, ranking highly 

in the US, MEX, and SAF, and moderately in others, which was likely due to economic confidence, wealth 

effects and the stock market leading indicator role for economic growth (Plíhal, 2016). The FX Granger 

caused GDP across all countries, ranking highly in the US, UK, EGP, and MEX. Khandare (2017) stated 

that the correlation between the currency exchange rate and the GDP growth was positive and 

equivalent to +0.16, and different results between countries were affected by their respective exchange 

rate regime. Although, Pramanik (2021) found out that currency exchange rates depreciations were 

accompanied by economic growth in several studied countries, this relationship was not apparent for 

Mexico, and could differ between countries. As it is economically expected, the POLRATE Granger 

caused the GDP in all countries, being second in importance in the US, UK, MEX and SAF, highlighting 

monetary policy’s strong role in shaping economic growth, with consistent influence in both developed 

(US, UK) and developing countries (EGP, MEX, SAF), influencing investment and consumption through 

interest rate channels. Amaral et al. (2022) demonstrated that the monetary policy did have a positive 

impact on economic growth. Lee & Werner (2018) concluded that interest rates followed the GDP 

growth and were positively correlated. Contrarily, Hameed (2011) argued that the interest rate had a 

minor impact on the GDP, and Ryan-Collins et al. (2016) found out that short and long-term interest 

rates did not affect the GDP. With the exception of MEX, INF Granger caused GDP in all countries, being 

the most influential variable in the UK, EGP, and SAF, emphasizing the need for price stability to support 

growth. A higher inflation would prompt the central bank to hike its rates, which will negatively affect 

economic growth.  

4.4.8. Causality for the INF 

Table 4.12 ANN P-Values & Feature Importance for the INF 

4.12.a ANN P-Values Y Variable: INF   4.12.b Feature Importance Y Variable: INF  
X Variable US UK EGP MEX SAF  US UK EGP MEX SAF 

LEVEL 100.00% 100.00% 100.00% 100.00% 100.00%  GDP GDP EQUITY GDP GDP 

SLOPE 100.00% 100.00% 100.00% 99.95% 100.00%  EQUITY EQUITY FX EQUITY POLRATE 

CURVATURE 99.99% 0.21% 100.00% 30.78% 41.09%  POLRATE POLRATE POLRATE FX EQUITY 

EQUITY 0.00% 0.00% 0.00% 0.00% 0.00%  FX FX GDP POLRATE FX 

FX 0.00% 0.00% 0.00% 0.00% 0.00%  CURVATURE CURVATURE CURVATURE CURVATURE CURVATURE 

POLRATE 0.00% 0.00% 0.00% 0.00% 0.00%  SLOPE SLOPE SLOPE SLOPE SLOPE 

GDP 0.00% 0.00% 0.00% 0.00% 0.00%  LEVEL LEVEL LEVEL LEVEL LEVEL 

 

As illustrated in table 4.12.a the CURVATURE did not Granger cause INF in most countries, 

except for the UK, indicating it generally did not lead INF. The EQUITY Granger caused INF in all 

countries, ranking highly in several countries (2 in US, 2 in UK, 1 in EGP, 2 in MEX, 3 in SAF). EQUITY’s 
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high importance in all countries, particularly in EGP, reflected the stock market role in driving inflation, 

likely through wealth effects and demand pressures. Pradhan et al. (2015) found causality from both, 

economic growth, and the stock market, to the inflation; and Chiang (2022) found evidence of negative 

correlation between the stock market and inflation, although, Plihal (2016) did not find evidence of the 

stock market effect on the inflation rate. The FX Granger caused INF in all countries, with a high 

importance in EGP and MEX (ranking 2 in EGP, 3 in MEX), and moderate in the US, UK and SAF (4 in US, 4 

in UK, 4 in SAF). FX’s high importance in EGP and MEX reflected their sensitivity to exchange rate 

volatility, likely due to import-driven inflation in these developing countries. Its influence on the US, UK, 

and SAF indicated that exchange rate movements impacted inflation universally, affecting both 

developed and developing countries through trade, capital flows, and price dynamics. The POLRATE 

Granger caused INF in all countries, ranking highly in several countries (3 in US, 3 in UK, 3 in EGP, 2 in 

SAF), highlighting the monetary policy’s critical role in shaping inflation. Its consistent ranking across all 

countries reflected its universal impact. As it is economically expected, with economic growth comes 

inflation, the GDP Granger caused INF in all countries, having the highest impact in the US, UK, MEX and 

SAF (ranking 1 in US, 1 in UK 1 in MEX, 1 in SAF), with the exception of EGP (ranking 4 in EGP) where 

other factors such as EQUITY and FX dominated INF.   

4.4.9. General Trends and Economic Implications for all Variables 

• Dominance of Macroeconomic and Financial Variables: Across all target variables, 

macroeconomic and financial factors (EQUITY, FX, POLRATE, GDP, INF) consistently exhibited 

strong Granger causality and high feature importance rankings, underscoring their critical role in 

driving economic and financial outcomes. EQUITY was a leading indicator for GDP and INF, 

reflecting wealth effects and economic confidence. FX significantly influenced INF and POLRATE, 

particularly in developing countries like EGP and MEX, due to trade and capital flow dynamics. 

POLRATE shaped multiple variables (LEVEL, SLOPE, CURVATURE, EQUITY, FX, INF), highlighting 

its persistent influence. GDP drove INF and EQUITY in developed markets (US, UK) and select 

developing markets (MEX, SAF), while INF impacted EQUITY, FX, and POLRATE, especially in EGP, 

US, and UK. 

• Cross-Country Consistency and Variation: Macroeconomic variables (EQUITY, FX, POLRATE, 

GDP, INF) showed consistent influence across countries, but their relative importance varied. 

Developed markets (US, UK) emphasized GDP and POLRATE for EQUITY and INF, reflecting 

robust economic and monetary policy transmission. Developing markets (EGP, MEX, SAF) 

highlighted FX and EQUITY for INF and POLRATE, driven by currency volatility and market 

sentiment. SAF’s commodity-driven economy amplified FX and EQUITY’s roles, while EGP’s 

managed monetary framework emphasized POLRATE and FX. 
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• Global Integration Effects: FX and EQUITY’s high importance across all countries reflected global 

capital flows and market sentiment’s role in shaping economic variables. FX’s influence on INF 

and POLRATE was universal, driven by trade and currency dynamics, while EQUITY’s impact on 

GDP and INF underscored global investor confidence. This global integration was particularly 

pronounced in emerging markets, where external shocks via FX and EQUITY significantly 

affected domestic outcomes. 

• Bidirectional Relationships: Bidirectional causality was evident in several relationships, such as 

EQUITY and GDP, POLRATE and INF, and FX and INF, indicating feedback loops where variables 

mutually reinforced each other. For example, the GDP drove EQUITY through economic growth, 

while EQUITY influenced the GDP via wealth effects, particularly in the US and MEX. 

• Monetary Policy: POLRATE’s consistent Granger causality and high importance across variables 

(LEVEL, SLOPE, CURVATURE, EQUITY, FX, INF) made it a critical tool for managing economic 

outcomes. Central banks influenced INF, FX, and GDP through interest rate adjustments, 

particularly in EGP and SAF for INF, and US and UK for GDP. However, the effectiveness of 

monetary policy varied, with MEX and SAF showing weaker transmission to EQUITY, suggesting 

the need for complementary policies to enhance impact. 

• Inflation Management: INF’s strong influence on EQUITY, FX, and POLRATE, especially in EGP, 

US, UK, and SAF, underscored the importance of price stability. Central banks must prioritize 

inflation control to stabilize equity markets and exchange rates, particularly in EGP, where INF is 

a top driver of EQUITY. In MEX, where INF’s causality is weaker for some variables, other factors 

like FX and EQUITY dominated, requiring targeted currency and market policies. 

• Currency Stability: FX’s robust causality and high importance for INF and POLRATE, particularly 

in EGP and MEX, highlighted the need for currency stability to manage inflation and monetary 

policy. Developing markets, sensitive to import-driven inflation and global capital flows, should 

implement policies to mitigate exchange rate volatility, such as foreign exchange interventions 

or capital controls, to support economic stability. 

• Economic Growth Sensitivity: GDP’s strong causality and high importance for INF, EQUITY, and 

FX in US, UK, MEX, and SAF indicated that economic growth drove multiple economic outcomes. 

Policymakers should adopt sustainable growth to support equity markets and stabilize exchange 

rates, while monitoring growth shocks that could exacerbate inflation, particularly in developed 

markets. 

• Equity Market Monitoring: EQUITY’s high importance for GDP, INF, and FX, especially in US, 

MEX, and EGP, suggested that stock market performance was a critical indicator of economic 

conditions. Policymakers and investors should monitor equity markets to anticipate growth and 

inflation trends, leveraging positive market sentiment to boost economic confidence. 

4.4.10. Bidirectional Causality  
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Table 4.13 Bidirectional Causality per Country 

Country Causality FX ↔ INF Causality POLRATE ↔ GDP Causality EQUITY ↔ GDP Causality EQUITY ↔ INF 

US Yes Yes Yes Yes 

UK Yes Yes Yes Yes 

EGP Yes X Yes X 

MEX Yes Yes Yes X 

SAF Yes Yes Yes X 

 

As illustrated in table 4.13 the bidirectional causality between FX and INF across all countries 

reflected the critical interplay of exchange rates and inflation. In open economies, like the US and UK, 

exchange rate fluctuations drove inflation through import prices, while inflation impacted currency 

valuation due to purchasing power effects. In other countries like EGP, MEX, and SAF this relationship 

was amplified by import reliance (EGP, MEX) and commodity-driven export dynamics (SAF), where 

currency volatility directly affected inflation, and inflation influenced currency stability. This dynamic 

interdependence underscored the need for policymakers to monitor exchange rate movements to 

manage inflation, particularly in developing economies sensitive to global trade and capital flows. 

The bidirectional causality between the POLRATE and GDP in the US, UK, MEX, and SAF 

highlighted monetary policy’s role in shaping economic growth and GDP’s effect on policy rate decisions 

as well. In developed economies (US and UK) central banks adjusted policy rates to stabilize growth, 

while strong GDP performance prompted tighter monetary policy to control inflation. In developing 

countries, like MEX and SAF, this two-way interaction was critical due to sensitivity to global economic 

conditions and commodity markets, respectively. Thus, policymakers must balance rate adjustments 

with growth objectives, as GDP dynamics directly influence monetary policy responses. 

The bidirectional causality between the EQUITY and GDP, across all countries, underscored stock 

markets as both drivers and indicators of economic growth. In the US and UK, robust stock market 

performance signaled investor confidence, boosting economic activity through wealth effects, while 

GDP growth enhanced equity valuations. In developing countries, EGP, MEX and SAF, stock markets 

played a growing role in signaling and supporting economic expansion, particularly in resource driven 

(SAF) or trade-dependent (MEX) economies. This two-way interaction highlighted the importance of 

financial market stability for fostering economic growth across diverse economic contexts. 

The bidirectional causality between the EQUITY and INF bidirectional causality in the US and UK 

reflected the interaction between stock markets and inflation. Equity market performance influenced 

inflation expectations through wealth and consumption effects, while inflation impacted stock 

valuations by altering cost structures and investor sentiment. This relationship was pronounced in 
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developed financial markets like the US and UK where stock market dynamics were closely tied to 

monetary policy and inflation expectations, emphasizing the need for central banks to monitor equity 

trends to manage inflationary pressures. 

4.4.11. Country Analysis 

The US exhibited strong monetary policy transmission, with POLRATE driving LEVEL, SLOPE, 

CURVATURE, EQUITY, FX, and INF. GDP and EQUITY were critical for INF and FX, reflecting the US’s 

developed market status and sensitivity to economic growth and market sentiment. INF’s influence on 

EQUITY and FX underscored the importance of price stability. Yield curve factors (LEVEL, SLOPE, 

CURVATURE) were endogenous but had minimal impact on other variables, allowing focus on 

macroeconomic drivers. EQUITY and INF mutually influenced each other via wealth effects, as did FX and 

INF through trade dynamics, POLRATE and GDP through policy feedback, and EQUITY and GDP via 

market signals, highlighting reciprocal dynamics between financial markets, currency, monetary policy, 

and economic growth in the US’s robust economy. 

Similar to the US, the UK showed strong POLRATE influence on LEVEL, SLOPE, CURVATURE, 

EQUITY, and FX, with GDP and INF driving EQUITY and FX. FX and EQUITY’s moderate roles on INF 

highlighted global integration, while CURVATURE’s weak causality for INF suggested a unique sensitivity 

to yield curve twists. The UK’s developed market status emphasized GDP and POLRATE, with inflation 

control critical for equity and currency stability. EQUITY and INF, as well as FX and INF, mutually affected 

each other through market and trade dynamics, POLRATE and GDP through policy feedback, and EQUITY 

and GDP via growth signals, reflecting the UK’s interconnected financial and economic systems. 

EGP’s managed monetary framework amplified POLRATE and FX’s roles in INF and EQUITY, with 

EQUITY as the top driver of INF, reflecting market-driven inflation pressures. FX’s high importance for 

INF and POLRATE underscored currency volatility’s impact in this country. GDP had a secondary role, 

suggesting a focus on currency and market stability over growth for inflation control. FX and INF 

mutually influenced each other via import prices, and EQUITY and GDP reciprocally affected each other 

through financial growth, emphasizing EGP’s sensitivity to currency fluctuations and the growing role of 

financial markets. 

MEX showed strong EQUITY and FX influence on GDP, INF, and POLRATE, reflecting its emerging 

market sensitivity to global capital flows. POLRATE and GDP drove growth, but POLRATE’s weak causality 

for EQUITY suggested limited monetary policy transmission to stock markets. INF’s weaker role for some 

variables indicated that currency and equity dynamics dominated inflation management. FX and INF, 
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POLRATE and GDP, and EQUITY and GDP mutually influenced each other via trade, policy, and growth 

dynamics, highlighting MEX’s trade-driven economy and financial-growth linkages. 

SAF’s commodity-driven economy amplified FX and EQUITY roles in INF and GDP, with the 

POLRATE being a key driver for both. INF’s high importance for GDP and POLRATE reflected sensitivity to 

price pressures, while GDP drove multiple outcomes. Yield curve factors were irrelevant for non-yield 

curve variables, emphasizing macroeconomic and financial drivers for this country. FX and INF, POLRATE 

and GDP, and EQUITY and GDP mutually affected each other via commodity prices, policy feedback, and 

growth signals, underscoring the interplay of currency, policy, and markets in SAF’s resource-based 

economy. 

 

5. Conclusion 

This study established an effective framework for analyzing nonlinear Granger causality in 

macroeconomic systems by integrating MSSA denoising with ANN-based input occlusion. By examining 

macroeconomic variables across several countries, we demonstrated the superiority of this approach 

over VAR Granger causality, identifying 38 significant causal relationships compared to 24 for VAR. The 

findings highlighted the critical roles of equity markets, exchange rates, and policy rates in driving yield 

curve factors, GDP, and inflation, with cross-country variations reflecting unique economic structures. 

For instance, developed markets like the US and UK showed strong monetary policy transmission, while 

developing markets like Egypt and Mexico emphasized currency and equity dynamics. MSSA’s ability to 

reduce noise enhanced the stability and convergence of causality p-values, enabling the ANN to focus on 

underlying signals and capture complex, nonlinear interactions effectively. 

The implications of this research are noteworthy for policymakers and economists seeking to 

understand and manage dynamic economic nonlinear systems. The consistent influence of policy rates 

across variables underscored the importance of monetary policy in shaping economic outcomes, 

particularly in stabilizing inflation and supporting growth. Similarly, the strong causality from equity 

markets and exchange rates highlighted the need for vigilant monitoring of financial markets and 

currency stability, especially in developing economies sensitive to global capital flows. While our 

methodology exceled in detecting nonlinear dynamics, the detection of some linear relationships by VAR 

suggested a complementary role for both approaches. A limitation of this study is that the MSSA 

denoising step may over-smooth the data: an aggressively chosen noise-reduction threshold risks 

discarding causal signals and, consequently, some economically meaningful relationships. Future 

research could expand this framework to an LSTM network to further enhance temporal dependencies. 
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Additionally, we could benchmark the occlusion-based ANN against a bootstrap-driven alternative, 

where block-bootstrapped resamples of the denoised series are fed into the same network to estimate 

empirical distributions of nonlinear Granger statistics. Finally, this study provided a robust, adaptable 

tool for unraveling the complexities of macroeconomic nonlinear interactions, offering actionable 

insights for policy formulation. 
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Appendix  

Table 4.3 Raw vs MSSA p-values 

 Iterations 100 200 300 400 1000 MSSA 100 

Y Variable X Variable P-Value P-Value P-Value P-Value P-Value P-Values 

LEVEL SLOPE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

LEVEL CURVATURE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

LEVEL EQUITY 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

LEVEL FX 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

LEVEL POLRATE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

LEVEL GDP 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

LEVEL INF 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

SLOPE LEVEL 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

SLOPE CURVATURE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

SLOPE EQUITY 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

SLOPE FX 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

SLOPE POLRATE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

SLOPE GDP 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

SLOPE INF 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

CURVATURE LEVEL 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

CURVATURE SLOPE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

CURVATURE EQUITY 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

CURVATURE FX 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

CURVATURE POLRATE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

CURVATURE GDP 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

CURVATURE INF 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

EQUITY LEVEL 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

EQUITY SLOPE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

EQUITY CURVATURE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

EQUITY FX 26.03013% 0.00071% 0.45634% 3.74679% 0.00599% 0.00002% 

EQUITY POLRATE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

EQUITY GDP 99.98957% 99.99993% 100.00000% 99.99999% 100.00000% 0.00000% 

EQUITY INF 0.03383% 1.11385% 0.00482% 0.01415% 0.00000% 0.00116% 

FX LEVEL 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

FX SLOPE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

FX CURVATURE 99.99967% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

FX EQUITY 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

FX POLRATE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

FX GDP 0.00001% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

FX INF 0.00006% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

POLRATE LEVEL 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

POLRATE SLOPE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

POLRATE CURVATURE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 
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 Iterations 100 200 300 400 1000 MSSA 100 

Y Variable X Variable P-Value P-Value P-Value P-Value P-Value P-Values 

POLRATE EQUITY 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

POLRATE FX 0.00001% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

POLRATE GDP 0.00004% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

POLRATE INF 0.27318% 0.00052% 0.00000% 0.00000% 0.00000% 0.00000% 

GDP LEVEL 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

GDP SLOPE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

GDP CURVATURE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

GDP EQUITY 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

GDP FX 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

GDP POLRATE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

GDP INF 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 0.00007% 

INF LEVEL 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

INF SLOPE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 

INF CURVATURE 100.00000% 100.00000% 100.00000% 100.00000% 100.00000% 99.98727% 

INF EQUITY 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

INF FX 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

INF POLRATE 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

INF GDP 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

 

Table 4.4 MSSA p-values vs VAR MSSA p-values 

  MSSA 100 VAR MSSA 

Y Variable X Variable P-Values P-Values 

LEVEL SLOPE 0.00000% 4.12706% 

LEVEL CURVATURE 0.00000% 26.32160% 

LEVEL EQUITY 0.00000% 9.83244% 

LEVEL FX 0.00000% 18.68650% 

LEVEL POLRATE 0.00000% 0.26714% 

LEVEL GDP 0.00000% 14.80841% 

LEVEL INF 0.00000% 0.05575% 

SLOPE LEVEL 100.00000% 94.10353% 

SLOPE CURVATURE 0.00000% 91.42867% 

SLOPE EQUITY 0.00000% 97.91004% 

SLOPE FX 0.00000% 68.82886% 

SLOPE POLRATE 0.00000% 2.51553% 

SLOPE GDP 0.00000% 83.24277% 

SLOPE INF 0.00000% 0.94950% 

CURVATURE LEVEL 100.00000% 0.00000% 

CURVATURE SLOPE 100.00000% 0.00073% 

CURVATURE EQUITY 0.00000% 3.78274% 

CURVATURE FX 0.00000% 0.00383% 



33 
 

  MSSA 100 VAR MSSA 

Y Variable X Variable P-Values P-Values 

CURVATURE POLRATE 0.00000% 0.00003% 

CURVATURE GDP 0.00000% 0.00000% 

CURVATURE INF 0.00000% 0.00009% 

EQUITY LEVEL 100.00000% 58.80360% 

EQUITY SLOPE 100.00000% 66.86698% 

EQUITY CURVATURE 100.00000% 38.54675% 

EQUITY FX 0.00002% 2.71256% 

EQUITY POLRATE 0.00000% 16.47825% 

EQUITY GDP 0.00000% 17.32381% 

EQUITY INF 0.00116% 9.39006% 

FX LEVEL 100.00000% 59.69996% 

FX SLOPE 100.00000% 77.10969% 

FX CURVATURE 100.00000% 98.09645% 

FX EQUITY 0.00000% 15.55821% 

FX POLRATE 0.00000% 70.26149% 

FX GDP 0.00000% 43.25522% 

FX INF 0.00000% 3.85058% 

POLRATE LEVEL 100.00000% 0.00015% 

POLRATE SLOPE 100.00000% 0.00000% 

POLRATE CURVATURE 100.00000% 0.00016% 

POLRATE EQUITY 0.00000% 0.71807% 

POLRATE FX 0.00000% 0.00014% 

POLRATE GDP 0.00000% 0.03313% 

POLRATE INF 0.00000% 0.00484% 

GDP LEVEL 100.00000% 0.10855% 

GDP SLOPE 100.00000% 17.96824% 

GDP CURVATURE 100.00000% 61.19914% 

GDP EQUITY 0.00000% 92.56364% 

GDP FX 0.00000% 20.88933% 

GDP POLRATE 0.00000% 0.56234% 

GDP INF 0.00007% 21.31093% 

INF LEVEL 100.00000% 56.93867% 

INF SLOPE 100.00000% 17.49975% 

INF CURVATURE 99.98727% 1.19947% 

INF EQUITY 0.00000% 22.15520% 

INF FX 0.00000% 18.66607% 

INF POLRATE 0.00000% 10.50828% 

INF GDP 0.00000% 23.99003% 

 


