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Abstract 

We consider the investor who doesn’t trade shares of his portfolio. The investor only observes 

the current trades made in the market with his securities to estimate the current return, variance, 

and risks of his unchanged portfolio. We show how the time series of consecutive trades made 

in the market with the securities of the portfolio can determine the time series that model the 

trades with the portfolio as with a single security. That establishes the equal description of the 

market-based variance of the securities and of the portfolio composed of these securities that 

account for the fluctuations of the volumes of the consecutive trades. We show that 

Markowitz’s (1952) variance describes only the approximation when all volumes of the 

consecutive trades with securities are assumed constant. The market-based variance depends 

on the coefficient of variation of fluctuations of volumes of trades. To emphasize this 

dependence and to estimate possible deviation from Markowitz variance, we derive the Taylor 

series of the market-based variance up to the 2nd term by the coefficient of variation, taking 

Markowitz variance as a zero approximation. We consider three limiting cases with low and 

high fluctuations of the portfolio returns, and with a zero covariance of trade values and 

volumes and show that the impact of the coefficient of variation of trade volume fluctuations 

can cause Markowitz’s assessment to highly undervalue or overestimate the market-based 

variance of the portfolio. Incorrect assessments of the variances of securities and of the 

portfolio cause wrong risk estimates, disturb optimal portfolio selection, and result in 

unexpected losses. The major investors, portfolio managers, and developers of macroeconomic 

models like BlackRock, JP Morgan, and the U.S. Fed should use market-based variance to 

adjust their predictions to the randomness of market trades. 
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1. Introduction 

The variances of market securities and the variance of the portfolio composed of these 

securities measure the risks investors are taking. The dependence of the portfolio variance on 

the variances of its securities determines the heart of the matter for optimal portfolio selection. 

The accurate valuation of the portfolio variance that accounts for the randomness of current 

financial markets is the main challenge for the investors and portfolio managers. This paper 

investigates only the portfolio variance and doesn’t consider any portfolio selection problems.  

Markowitz (1952) derived the portfolio variance ΘM(t,t0) (1.2) as the quadratic form in 

variables Xj(t0) of relative amounts invested into the securities with the coefficients equal to 

the covariances θjk(t,t0) (1.3) of securities returns. The mean return R(t,t0) (1.1) at current time 

t of the portfolio that was composed at time t0 in the past of j=1,.. J securities, takes the form: 𝑅(𝑡, 𝑡0) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1 𝑋𝑗(𝑡0)   (1.1) 

The functions Rj(t,t0) denote the average returns of the security j at current time t with respect 

to time t0 in the past. The variables Xj(t0) in (1.1) denote the relative amounts invested into 

security j at time t0. Markowitz described the variance ΘM(t,t0) (1.2) of the portfolio as: 𝛩𝑀(𝑡, 𝑡0) = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝑋𝑗(𝑡0)𝐽𝑗,𝑘=1 𝑋𝑘(𝑡0)   (1.2) 

The functions θjk(t,t0) (1.3) denote the covariance between securities j and k of the portfolio: 𝜃𝑗𝑘(𝑡, 𝑡0) = 𝐸[(𝑅𝑗(𝑡𝑖, 𝑡0) − 𝐸[𝑅𝑗(𝑡𝑖, 𝑡0)])(𝑅𝑘(𝑡𝑖, 𝑡0) − 𝐸[𝑅𝑘(𝑡𝑖, 𝑡0)])] (1.3) 

We reconsider the derivation of the portfolio variance and show that Markowitz variance 

ΘM(t,t0) (1.2) describes the approximation when all volumes of consecutive trades with all 

securities of the portfolio are assumed constant during the averaging interval. The time series 

of constant trade volumes have zero coefficients of variation. One should consider Markowitz 

variance as an approximation valid for zero coefficient of variation of trade volumes. We recall 

that the coefficient of variation equals the ratio of the standard deviation of a random variable 

to its average value. 

However, the financial markets reveal high fluctuations in the volumes of the consecutive 

trades with market securities, and that results in a positive coefficient of variation. To account 

for the impact of fluctuations of the volumes of consecutive trades with securities, we derive 

the market-based portfolio variance Θ(t,t0) and its dependence on the coefficient of variation 

of the volumes of consecutive trades. That defines the difference from Markowitz variance 

ΘM(t,t0) (1.2), which describes the case with zero coefficient of variation. 

To evaluate the difference between the values of market-based variance Θ(t,t0), which accounts 

for the random trade volumes, and Markowitz variance ΘM(t,t0) (1.2), which ignores them, we 
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derive the Taylor series of the market-based variance up to the 2nd term by the coefficient of 

variation of trade volumes and take Markowitz variance ΘM(t,t0) (1.2) as a zero approximation.  

To describe the market-based variance of the portfolio, we consider the investor who collected 

his portfolio of j=1,..J securities in the past at time t0, and since then has held his portfolio and 

not traded his shares. However, the investor is interested in current assessments of returns, 

variance, and risks he takes with his portfolio. To satisfy his curiosity, the investor observes 

the market trades with the securities of his portfolio that were made currently in the market 

during the averaging interval. We show how the investor should transform the time series of 

the observed trades that were made in the market with the securities of his portfolio to derive 

the time series, which model the trades with his portfolio as with a single security. The time 

series of trades with the portfolio describe its return and variance exactly the same as the time 

series of trades with any security describe its return and variance. We highlight that we derive 

the equal description of return and variance of any market security and of the portfolio. The 

Taylor series equally describe the dependence of the market-based variance of the portfolio 

and of each market security on their coefficients of variation of their trade volumes. 

We show how the dependence of the time series of trades with the portfolio on the time series 

of trades with its securities determine the decomposition of the portfolio variance by its 

securities. We show that if one assumes that the volumes of the consecutive trades with all 

securities are constant during the averaging interval, the decomposition of the portfolio 

variance Θ(t,t0) coincides with Markowitz’s expression ΘM(t,t0) (1.2). 

While the portfolio theory has been developed a lot since 1952 (Markowitz, 1991; Rubinstein, 

2002; Boyd et al., 2024), the expression of the portfolio variance ΘM(t,t0) (1.2) remains the 

same. We restudy only this particular issue and don’t consider no problems for optimal 

portfolio selection. The only needed reference is Markowitz’s (1952) famous study.  

However, we should mention studies (Tauchen and Pitts, 1983; Karpoff, 1986; 1987; Lo and 

Wang, 2001; Goyenko et al., 2024) and references therein that investigate the price-volume 

relation. We underline that our description of the market-based variance that accounts for the 

impact of fluctuations of the volumes of consecutive trades has nothing in common with the 

above models. We highlight this to avoid possible hasty, and wrong comments that our research 

has its roots in these studies. That is not so. 

In Section 2, we show how one should transform the time series of trades with the securities of 

the portfolio to derive the time series, which model the trades with the portfolio as with a single 

security. In Section 3, we discuss Taylor series of market-based variance. In Section 4, we 

discuss three cases that display when Markowitz’s expression ΘM(t,t0) (1.2) can undervalue or 
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overestimate the market-based variance Θ(t,t0) that dependend on the variance on the 

coefficient of variation of the volumes of consecutive trades. The major investors, portfolio 

managers, and the developers of macroeconomic models, such as BlackRock, JPMorgan, and 

the U.S Fed., should keep that in mind. The Conclusion is in Section 5. App. A gives a brief 

derivation of market-based variance. In App. B, we derive the Taylor series of the portfolio 

variance and take Markowitz variance ΘM(t,t0) (1.2) as a zero approximation. We consider three 

cases that illustrate when Markowitz expression ΘM(t,t0) (1.2) may overvalue or underestimate 

the market-based variance Θ(t,t0). In App. C we derive the Taylor series of the decomposition 

of the portfolio variance by its securities. 

2. How can market trades with securities model trades with portfolio? 

The time series of market trades with a security determine its return and variance. However, it 

is common to believe that the investor who holds his portfolio of j=1,..J securities and doesn’t 

trade his shares should know the returns and covariances of returns of all securities of his 

portfolio to assess the return and the variance of his portfolio. We show that the investor can 

avoid that and directly calculate the return and the variance of his portfolio using the time series 

that model the current trades with his portfolio as with a single market security. 

2.1 Time series of trades with securities 

We consider the investor who at time t0 in the past collected his portfolio of j=1,..J securities 

and since then doesn’t trade his shares. We assume that at time t0, each security j of the portfolio 

had Uj(t0) shares of the value Cj(t0) and price pj(t0) that obey trivial equations:  𝐶𝑗(𝑡0) = 𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)       ;       𝑗 = 1, … 𝐽   (2.1) 

All prices are adjusted to current time t. We denote WΣ(t0) (2.2) the total number of all shares 

of all securities in the portfolio with the total value QΣ(t0) (2.2) of the portfolio at time t0.  𝑄Σ(𝑡0) = ∑ 𝐶𝑗(𝑡0)𝐽𝑗=1        ;          𝑊Σ(𝑡0) = ∑ 𝑈𝑗(𝑡0)𝐽𝑗=1   (2.2) 

The total value QΣ(t0) and the total number of shares WΣ(t0) of the portfolio determine the price 

s(t0) (2.3) per share of the portfolio at t0. From (2.2; 2.3), obtain: 𝑄Σ(𝑡0) = 𝑠(𝑡0)𝑊Σ(𝑡0)    ;     𝑠(𝑡0) = ∑ 𝑝𝑗(𝑡0)𝐽𝑗=1 𝑥𝑗(𝑡0)   ;   𝑥𝑗(𝑡0) = 𝑈𝑗(𝑡0)𝑊Σ(𝑡0)   (2.3) 

The functions xj(t0) denote the relative numbers of the shares Uj(t0) of security j in the total 

number of shares WΣ(t0) of the portfolio. 

The investor at the current time t observes the time series of trades that were made in the market 

with the securities of his portfolio during the averaging interval. For each security j=1,..J, we 



 5 

denote the trade volumes Uj(ti), values Cj(ti), and prices pj(ti) at time ti during the averaging 

interval, which follow equations (2.4): 𝐶𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖)𝑈𝑗(𝑡𝑖)    ;      𝑗 = 1, . . 𝐽    (2.4) 

We recall that (2.4) describes the trades with shares of the securities j=1,..J that are currently 

made in the market. However, the shares of the portfolio (2.1-2.3) are not traded, and their 

numbers in the portfolio don’t change. For convenience, we assume that the trades with all 

securities j of the portfolio are made at ti with a small constant time span  between the trades, 

so ti+1=ti+. If so, any averaging interval Δ (2.5) at the current time t contains only a finite 

number N of trades with each security j: ∆= [𝑡 − ∆2 ;  𝑡 + ∆2 ]      ;      𝑡𝑖 ∈ ∆     ;   𝑖 = 1, … 𝑁    ;     𝑁 ∙ 𝜀 = ∆  (2.5) 

2.2 Time series of trades with the portfolio 

The simple equations (2.4) that define the prices pj(ti) of securities j=1,..J have the important 

attribute: the changes of the scale λ of the values Cj(ti) and volumes Uj(ti) of trades don’t change 

the price pj(ti) and its statistical properties. We use this, and for each security j=1,2,..J of the 

portfolio, choose the scale λj (2.6) that equals the ratio of the number of shares Uj(t0) (2.1) of 

security j in the portfolio at time t0 to the current total volume of trades Uj(t) (2.7) with security 

j that were made in the market at current time t during Δ (2.5): 𝜆𝑗 = 𝑈𝑗(𝑡0)𝑈Σj(𝑡)      (2.6) 

We denote the total value Cj(t) and the total volume Uj(t) (2.7) of current trades with security 

j that were made in the market during Δ (2.5). 𝐶Σj(𝑡) = ∑ 𝐶𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑁 ∙ 𝐶𝑗  (𝑡)  ;  𝑈Σj(𝑡) = ∑ 𝑈𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑁 ∙ 𝑈𝑗  (𝑡) ;   𝑗 = 1, . . 𝐽    (2.7) 

In (2.7), Cj(t) denotes the current average value and the average volume Uj(t) of market trades 

made with security j during Δ (2.5). We define the normalized values cj(ti) and volumes uj(ti) 

of trades at time ti with securities j  𝑐𝑗(𝑡𝑖) = 𝜆𝑗  ∙ 𝐶𝑗(𝑡𝑖)            ;          𝑢𝑗(𝑡𝑖) = 𝜆𝑗 ∙  𝑈𝑗(𝑡𝑖)   (2.8) 

The change of scales (2.8) transforms the equations (2.4) into (2.9):  𝑐𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖) 𝑢𝑗(𝑡𝑖)     𝑜𝑟     𝜆𝑗 ∙ 𝐶𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖) 𝜆𝑗 ∙ 𝑈𝑗(𝑡𝑖)  (2.9) 

It is obvious that for constant λj (2.6), the properties of price pj(ti) of security j that are 

determined by both equations (2.9) are the same. From (2.7; 2.8; 2.9), obtain that the total 

normalized volumes uj(t) (2.10) and average normalized volumes uj(t) (2.10) of trades with 

each security j during Δ (2.5) exactly equals its number of shares Uj(t0) (2.1) in the portfolio: 
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𝑢Σj(𝑡) = ∑ 𝑢𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑁 ∙ 𝑢𝑗(𝑡) = 𝑈𝑗(𝑡0)𝑈Σj(𝑡) ∑ 𝑈(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑗(𝑡0)   (2.10) 

Thus, for each security j, during Δ (2.5), the time series of the normalized values cj(ti) and 

volumes uj(ti) (2.8) describe the trades with the total volumes uj(t) (2.10) that are precisely 

equal to the numbers Uj(t0) of shares of each security j in the portfolio. Simply speaking, for 

each security j=1,..J, the time series of the normalized values cj(ti) and volumes uj(ti) (2.8) of 

trades during Δ (2.5) describe the trade with exactly Uj(t0) number of shares of security j of the 

portfolio. The sum of the trades for all j=1,..J securities describe the trade with exactly WΣ(t0) 

(2.2) shares of the portfolio. Thus, the time series of the volumes W(ti) and values Q(ti) (2.11; 

2.13) during Δ (2.5), exactly describe the trades with the portfolio as with a single security: 𝑄(𝑡𝑖) = ∑ 𝑐𝑗(𝑡𝑖)𝐽𝑗=1        ;        𝑊(𝑡𝑖) = ∑ 𝑢𝑗(𝑡𝑖)𝐽𝑗=1    (2.11) 

Alike to (2.1; 2.3; 2.4), we define the price s(ti) (2.12) of the portfolio at time ti during Δ (2.5): 𝑄(𝑡𝑖) = 𝑠(𝑡𝑖) 𝑊(𝑡𝑖)        ;         𝑡𝑖 ∈ ∆     ;   𝑖 = 1, … 𝑁   (2.12) 

The time series of the values Q(ti), volumes W(ti) (2.11), and prices s(ti) (2.12) describe the 

trades with the portfolio as with a single security (2.1-2.3). Theses time series describe the 

portfolio return and variance exactly the same as the time series of the volumes Uj(ti), values 

Cj(ti), and prices pj(ti) of trades with each security j=1,..J describe their returns and variances. 

We recall that the investor doesn’t trade the shares of his portfolio in the market. The time 

series (2.11; 2.12) model the trades with the portfolio as with a single security. 

 2.3 Average price and return of the portfolio as a single security  

This section describes market-based average price, return, and their variances of the portfolio 

as a single market security, which account for the impact of fluctuations of the volumes of 

consecutive trades with its securities and with the portfolio as a whole. 

The total volume W(t) (2.13) of trades with the portfolio during Δ (2.5) is constant and equals 

the total number of shares W(t0) (2.2) in the portfolio at time t0.  𝑊Σ(𝑡) = ∑ 𝑊(𝑡𝑖)𝑁𝑖=1 = ∑ ∑ 𝑢𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1 = ∑ 𝑈𝑗(𝑡0)𝐽𝑗=1 = 𝑊Σ(𝑡0)  (2.13) 

The current total value QΣ(t) (2.14) of trades with the portfolio during Δ (2.5) depends on 

current prices s(ti) (2.12) and defines the average price of the portfolio s(t): 𝑄Σ(𝑡) = 𝑠(𝑡)𝑊Σ(𝑡) = ∑ 𝑄(𝑡𝑖)𝑁𝑖=1 = ∑ ∑ 𝑐𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1 = ∑ ∑ 𝑝𝑗(𝑡𝑖)𝑢𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1  (2.14) 

The average price s(t) (2.14; 2.15) of the portfolio and the average prices pj(t) (2.16) of its 

securities during Δ (2.5) take the form of volume weighted average price (VWAP) (Berkowitz 

et al., 1988; Duffie and Dworczak, 2021). 
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𝑠(𝑡) = 𝑄Σ(𝑡)𝑊Σ(𝑡) = 1𝑊Σ(𝑡0) ∑ 𝑠(𝑡𝑖) 𝑊(𝑡𝑖)𝑁𝑖=1    (2.15) 𝑝𝑗(𝑡) = 𝑐Σj(𝑡)𝑢Σj(𝑡) = 1𝑈Σj(𝑡0) ∑ 𝑝𝑗(𝑡𝑖) 𝑢𝑗(𝑡𝑖)𝑁𝑖=1 = 1𝑈Σj(𝑡) ∑ 𝑝𝑗(𝑡𝑖) 𝑈𝑗(𝑡𝑖)𝑁𝑖=1  (2.16) 

From (2.14-2.16), obtain the decomposition of VWAP s(t) of the portfolio by VWAP prices 

pj(t) of its securities that is similar to the decomposition of the portfolio price s(t0) (2.3) by the 

initial prices pj(t0) of securities at time t0 in the past: 𝑠(𝑡) = ∑ 𝑝𝑗(𝑡) 𝑥𝑗(𝑡0)𝐽𝑗=1     (2.17) 

We recall that the investor doesn’t trade his shares. The investor uses the current time series of 

trades made with securities of his portfolio in the market during Δ (2.5) to assess the current 

average price s(t) (2.14; 2.15) of shares of his portfolio, return, and their variances. VWAP s(t) 

(2.14; 2.15; 2.17) determines the estimate of the current return R(t,t0) of the portfolio during Δ 

(2.5) with respect to its price s(t0) (2.3) at time t0 in the same form as the time series of trades 

with securities define their returns. At time ti we determine the instant return Rj(ti,t0) of security 

j and the instant return R(ti,t0) of the portfolio (2.18): 

 𝑅𝑗(𝑡𝑖, 𝑡0) = 𝑝𝑗(𝑡𝑖)𝑝𝑗(𝑡0)     ;    𝑅(𝑡𝑖, 𝑡0) = 𝑠(𝑡𝑖)𝑠(𝑡0)   (2.18) 

For convenience, we use the definition of “gross return” (2.18) instead of the usual definition 

of return r(ti,t0)= R(ti,t0)-1. Actually, the variances of both definitions are the same. The instant 

return Rj(ti,t0) (2.18) of security j and (2.6; 2.8; 2.16), define the average return Rj(t,t0): 𝑅𝑗(𝑡, 𝑡0) = 𝑝𝑗(𝑡)𝑝𝑗(𝑡0) = 1𝑈Σ(𝑡0) ∑ 𝑅𝑗(𝑡𝑖, 𝑡0) 𝑢𝑗(𝑡𝑖)𝑁𝑖=1 = 1𝑈Σj(𝑡) ∑ 𝑅𝑗(𝑡𝑖, 𝑡0) 𝑈𝑗(𝑡𝑖)𝑁𝑖=1    (2.19) 

The time series Q(ti), W(ti) (2.11), and s(ti) (2.12) define the average return R(t,t0) (2.20) of the 

portfolio in the same form as the return Rj(t,t0) (2.19) of security j: 𝑅(𝑡, 𝑡0) = 𝑠(𝑡)𝑠(𝑡0) = 1𝑊Σ(𝑡0) ∑ 𝑅(𝑡𝑖, 𝑡0)𝑊(𝑡𝑖)𝑁𝑖=1 = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1 𝑋𝑗(𝑡0) (2.20) 

The use of (2.17) presents the decomposition of the portfolio return R(t,t0) (2.20) by the returns 

Rj(t,t0) (2.19) of its securities in the same form as (1.1).  

2.4 Market-based variances of the portfolio as a single security  

To estimate market-based variance Θj(t,t0) (2.21) of the returns of security j or market-based 

variance Θ(t,t0) (2.21) of the return of the portfolio: 

 𝛩𝑗(𝑡, 𝑡0) = 𝐸𝑚[(𝑝𝑗(𝑡𝑖)−𝑝𝑗(𝑡))2]𝑝𝑗2(𝑡0)       ;        𝛩(𝑡, 𝑡0) = 𝐸𝑚[(𝑠(𝑡𝑖)−𝑠(𝑡))2]𝑠2(𝑡0)   (2.21) 

the investor should calculate market-based variance j(t) of prices of security j and the variance 

Φ(t) (2.22) of prices of the portfolio. We use Em[..] to denote market-based variance j(t) (2.22) 
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of prices and the variance Θj(t,t0) (2.21) of returns of security j that account for the randomness 

of the volumes Uj(ti) of trades with securities during Δ (2.5). 𝜙𝑗(𝑡) = 𝐸𝑚 [(𝑝𝑗(𝑡𝑖) − 𝑝𝑗(𝑡))2]     ;      𝛷(𝑡) = 𝐸𝑚 [(𝑠(𝑡𝑖) − 𝑠(𝑡))2] (2.22) 

We present relations (2.21; 2.22) to underline once more that the time series of the values Cj(ti), 

volumes Uj(ti), and prices pj(ti) of trades with securities j=1,..J assess their variances exactly 

in the same form as the time series of the values Q(ti), volumes W(ti) (2.11), and prices s(ti) 

(2.12) of trades with the portfolio as with a single market security. In App A, we show that the 

market-based variance Φ(t) (A.10; 2.23) of prices and the variance Θ(t,t0) (A.12; 2.24) of 

returns take the form: Φ(𝑡) = 𝜓2−2 𝜑+𝜒21+𝜒2  𝑠2(𝑡)     (2.23) 𝛩(𝑡, 𝑡0) = 𝛷(𝑡)𝑠2(𝑡0) = 𝜓2−2 𝜑+𝜒21+𝜒2  𝑅2(𝑡, 𝑡0)   (2.24) 

The relations (2.23; 2.24) depend on the coefficients of variation  and  of the values Q(ti) 

and volumes W(ti) of trades with the portfolio that are equal to the ratio of their standard 

deviations to their averages during Δ (2.5). 𝜓2 =  𝜎𝑄2 (𝑡)𝑄2(𝑡;1)     ;        𝜒2 =  𝜎𝑊2 (𝑡)𝑊2(𝑡;1)    ;    𝜑 =  𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}𝑄(𝑡;1)𝑊(𝑡;1)    (2.25) 

The function  describes the ratio of the covariance of values Q(ti) and volumes W(ti) to their 

average values Q(t;1) and W(t;1) (2.28). We omit the dependence of , , and   on time t.  In 

(2.25), Q
2 (2.26) denotes the square of the standard deviation of the values Q(ti) of trades: 𝜎𝑄2 = 1𝑁 ∑ (𝑄(𝑡𝑖) − 𝑄(𝑡; 1))2𝑁𝑖=1 = 𝑄(𝑡; 2) − 𝑄2(𝑡; 1)  (2.26) 

We recall that the finite number N of trades during Δ (2.5) gives the approximations of the 

average values Q(ti) and volumes W(ti). In (2.25), W
2(t) (2.27) denotes the square of the 

standard deviation of the volumes W(ti) of trades.  𝜎𝑊2 (𝑡) = 1𝑁 ∑ (𝑊(𝑡𝑖) − 𝑊(𝑡; 1))2𝑁𝑖=1 = 𝑊(𝑡; 2) − 𝑊2(𝑡; 1)  (2.27) 

The relations (2.28; 2.29) for n=1 determine the average Q(t;1), W(t;1), and for n=2, the 

averages squares Q(t;2), W(t;2): 𝑄(𝑡; 𝑛) = 1𝑁 ∑ 𝑄𝑛(𝑡𝑖)𝑁𝑖=1       ;         𝑄(𝑡; 1) = 𝑄Σ(𝑡)𝑁    (2.28) 𝑊(𝑡; 𝑛) = 1𝑁 ∑ 𝑊𝑛(𝑡𝑖)𝑁𝑖=1       ;       𝑊(𝑡; 1) = 𝑊Σ(𝑡)𝑁     (2.29) 

cov{Q(t),W(t)} (2.30) – denotes the covariance between the time series of the values Q(ti) and 

volumes W(ti) of the consecutive trades with the portfolio during Δ (2.5): 
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𝑐𝑜𝑣{𝑄(𝑡), 𝑊(𝑡)} = 1𝑁 ∑ (𝑄(𝑡𝑖) − 𝑄(𝑡; 1))(𝑊(𝑡𝑖) − 𝑊(𝑡; 1))𝑁𝑖=1   (2.30) 

The variances Φ(t) (2.23) and Θ(t,t0) (2.24) define the same coefficient of variation (,,): 𝜇(𝜓, 𝜒, 𝜑) = 𝛷(𝑡)𝑠2(𝑡) = 𝛩(𝑡,𝑡0)𝑅2(𝑡,𝑡0) = 𝜓2−2 𝜑+𝜒21+𝜒2    (2.31) 

We denote the coefficient of variation as (,,) (2.31) to highlight its dependence on the 

coefficient of variation  (2.25) of trade values Q(ti), on the coefficient of variation  (2.25) of 

trade volumes W(ti), and on their covariance  (2.25). The coefficient of variation (,,) 

(2.31) equally measures the degree of fluctuations of prices s(ti) and returns R(ti,t0) of the 

portfolio. Due to (2.31) it is the same coefficient of variation of prices and returns. The 

coefficient of variation (,,) (2.31) presents Φ(t) and Θ(t,t0) (2.23; 2.24) as: 𝛷(𝑡) = 𝜇(𝜓, 𝜒, 𝜑) ∙ 𝑠2(𝑡)         ;          𝛩(𝑡, 𝑡0) = 𝜇(𝜓, 𝜒, 𝜑) ∙ 𝑅2(𝑡, 𝑡0) (2.32) 

If all volumes of the consecutive trades W(ti) with the portfolio are constant during Δ (2.5) and 

W(ti)=W(t;1)=W, then =0, =0, and the coefficient of variation (,) (2.31) takes the usual 

and simple form (2.33). The function s
2(t) denotes the square of standard deviation of prices: 𝜇(𝜓, 0,0) = 𝜓02 = 𝜎𝑄2 (𝑡)𝑄2(𝑡;1) = 𝜎𝑠2(𝑡)𝑠2(𝑡)      ;     𝜎𝑠2(𝑡) = 1𝑁 ∑ (𝑠(𝑡𝑖) − 𝑠(𝑡))2𝑁𝑖=1   (2.33) 

We denote 0 the coefficient of variation (2.25) if one assumes that the volumes W(ti) are 

constant and their coefficient of variation =0. The coefficient of variation (,,) (2.31) and 

hence the variances Φ(t) and Θ(t,t0) (2.32) depend on the coefficients of variation  of random 

volumes W(ti) of the consecutive trades. To clarify the dependence on the coefficients of 

variation  and to study the possible deviations of the the variances Φ(t) and Θ(t,t0) (2.32) due 

to fluctuations of the volumes W(ti) of consecutive trades, we derive the Taylor expansion of 

the coefficient of variation (,,) (2.31), and hence of the portfolio variances Φ(t) and Θ(t,t0) 

(2.32) by the coefficient of variation  up to the 2nd degree terms.  

3. Taylor series of market-based variance 

In this section we consider the Taylor expansions of the variance Θ(t,t0) (2.24; 2.32) of the 

portfolio by the coefficient of variation  (2.25) up to the 2nd degree terms. The derivation is 

given in App. B. We derive the Taylor series of the decompositions of the variance Θ(t,t0) 

(2.24) by securities of the portfolio in App. C. 

The coefficient of variation  (2.25) of the volumes W(ti) of consecutive trades with the 

portfolio is positive and less than or equal to the unit. The growth of  from 0 to 1 describes 

the rise of the fluctuations of the volumes W(ti) of trades with the portfolio.  
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3.1 Taylor series of the variances Θ(t,t0) of returns 

In App. B we show that the Taylor series of the variance Φ(t) (2.23) of prices and of the of the 

variance Θ(t,t0) (2.24; 2.32) of returns of the portfolio have the same form (B.11; 3.1): 𝛩(𝑡, 𝑡0) = [𝜓02 − 2 𝑎 ∙ 𝜓0 ∙ 𝜒 + (1 − 𝜓02) ∙ 𝜒2] ∙ 𝑅2(𝑡, 𝑡0)   (3.1) 

In (2.31) we introduce the coefficient of variance (,,) and (B.2) defines (,0,0) in 

case that the coefficient of variance =0, and hence the covariance =0 (B.5) 𝜇(𝜓, 0,0) = 𝜓02 = 𝜎𝑄2 (𝑡)𝑄2(𝑡;1) = 𝜎𝑠2(𝑡)𝑠2(𝑡)      ;     𝜎𝑠2(𝑡) = 1𝑁 ∑ (𝑠(𝑡𝑖) − 𝑠(𝑡))2𝑁𝑖=1    (3.2) 

We use the Cauchy-Schwarz-Bunyakovskii inequality (Shiryaev, 1999, p. 123) to show that 

the covariance cov{Q(t),W(t)} (2.30) is proportional to the coefficients of variation  and  

(2.25) with the coefficient proportionality a (B.5). The use of (A.19) and transform (3.1): 𝛩(𝑡, 𝑡0) = 𝛩𝑀(𝑡, 𝑡0) − 2𝑎 𝛩𝑀1/2(𝑡, 𝑡0) 𝑅(𝑡, 𝑡0) 𝜒 + [𝑅2(𝑡, 𝑡0) − 𝛩𝑀(𝑡, 𝑡0)] 𝜒2    (3.3) 𝛩𝑀(𝑡, 𝑡0) = 𝜓02 ∙ 𝑅2(𝑡, 𝑡0) = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝐽𝑗,𝑘=1  𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)  (3.4) 

The function ΘM(t,t0) (1.2; A.19; 3.4) describes Markowitz’s expression of the portfolio 

variance, which is valid if all volumes of trades with the securities of the portfolio and hence 

the volumes W(ti) of trades with the portfolio as with a single security are constant and =0. 

One can use (3.2) and show that Markowitz’s approximation of the portfolio variance ΘM(t,t0) 

when =0, takes the form (3.5): 𝛩𝑀(𝑡, 𝑡0) = 𝜎𝑠2(𝑡,𝑡0)𝑠2(𝑡0) = 𝜎𝑅2(𝑡, 𝑡0) = 1𝑁 ∑ (𝑅(𝑡𝑖, 𝑡0) − 𝑅(𝑡, 𝑡0))2𝑁𝑖=1   (3.5) 

If one assumes that W(ti)=W – constant, the average return R(t,t0) (2.20) takes the form (3.6): 𝑅(𝑡, 𝑡0) = 𝑠(𝑡)𝑠(𝑡0) = 1𝑁 ∑ 𝑅(𝑡𝑖, 𝑡0)𝑁𝑖=1     (3.6) 

4. How much can the coefficient of variation  change the variance ? 

We consider three extreme cases. As the first one, we consider the very high fluctuations (B.18) 

of the portfolio returns R(ti,t0) during the averaging interval Δ (2.5), for which the coefficient 

of variation (,0,0)=0~1 (2.31) is almost equals to 1. One can one can neglect (1- 0
2) in 

(3.1; B.11) and can present Taylor series as (B.14): 𝛩(𝑡, 𝑡0)~[1 − 2 𝑎 ∙ 𝜒] 𝑅2(𝑡, 𝑡0)       ;    𝛩𝑀(𝑡, 𝑡0)~𝑅2(𝑡, 𝑡0)  (3.7) 

For this case (3.7; B.13; B.14), Markowitz’s assessment of the portfolio variance ΘM(t,t0) 

almost takes its maximum value R2(t,t0). High portfolio variance relates to high risks of the 

portfolio, and that should upset the investors. However, if the covariance  is positive and a>0 

(B.5), the impact of the coefficient of variation  can significantly reduce the value of the 
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variance Θ(t,t0) and thus reduce the risks of the portfolio (B.15; B.16): 𝛩(𝑡, 𝑡0)~[1 − 2 𝑎 ∙ 𝜒] 𝑅2(𝑡, 𝑡0)  → [1 − 2 𝑎] 𝑅2(𝑡, 𝑡0)  𝑎𝑠   𝜒 → 1  ;   0 < 𝑎 ≤ 1/2 𝛩(𝑡, 𝑡0)~[1 − 2 𝑎 ∙ 𝜒] 𝑅2(𝑡, 𝑡0)  → 0  𝑎𝑠   𝜒 → 12𝑎   ;    𝑎 ≥ 1/2    

Thus, in the case Markowitz’s estimate of the portfolio variance may vastly overvalue the real 

portfolio variance and risks. The action of the coefficient of variation  can decline the portfolio 

variance and risks. The investors and portfolio managers should keep this in mind. 

The opposite limiting case describes very low fluctuations of the returns (B.18; B.19) with the 

coefficient of variation (,0,0)= 0 <<1 (2.31). For this case, Markowitz’s assessment of the 

portfolio variance gives (3.8; B.1)8: 𝛩𝑀(𝑡, 𝑡0)~𝜓02 ∙ 𝑅2(𝑡, 𝑡0) ≪ 𝑅2(𝑡, 𝑡0)   ;     𝜓02 ≪ 1  (3.8) 

However, for any sign of the covariance  (B.5), if 0<<, the coefficient of variance can 

significantly increase the portfolio variance Θ(t,t0) from its minimum (3.8) to (B.20): 𝛩(𝑡, 𝑡0)~[𝜓02 + 𝜒2]𝑅2(𝑡, 𝑡0) → 𝜒2𝑅2(𝑡, 𝑡0), 𝜒2 → 1 − 𝜓02     ;     𝜓0 ≪ 𝜒 

The action of fluctuations of the volumes W(ti) (2.11) of trades with the portfolio as with a 

single security and their coefficient of variation  can significantly increase the portfolio 

variance Θ(t,t0) and risks. For this case Markowitz’s estimate of the portfolio variance ΘM(t,t0) 

(3.8; 1.2), which neglects the effects of random volumes W(ti) of consecutive trades with the 

portfolio, may highly undervalue the portfolio variance and risks. 

The third case describes zero covariance =0 (B.5), between the values and volumes of trades. 

If the covariance  is zero and a=0 (B.5), then the variance Θ(t,t0) (B.21; 3.9) grows up from 

its value ΘM(t,t0) =0
2 R2(t,t0) to its maximum value Θ(t,t0) = R2(t,t0), when =1. 𝛩(𝑡, 𝑡0)~[𝜓02 + (1 − 𝜓02) ∙ 𝜒2] 𝑅2(𝑡, 𝑡0)  →   𝑅2(𝑡, 𝑡0)  𝑎𝑠   𝜒2 → 1     (3.9) 

If 0
2<<1, then (3.9) presents the case where Markowitz’s estimate of the portfolio variance 

ΘM(t,t0)=0
2 R2(t,t0)<< Θ(t,t0) → R2(t,t0) may underestimate the portfolio variance Θ(t,t0) (3.9) 

that is determined by the coefficient of variation 2
 → 1. 

The above three limiting cases also describe the assessments of the variance of any market 

security. The assessments of the variance that use the implicit assumption that the volumes of 

consecutive trades with the security are constant may lead to overvalue or underestimate of the 

variance. Both mistakes can disturb the optimal portfolio and lead to unwanted losses. 

The portfolio managers and investors should keep in mind the possible effects of the 

fluctuations of the volumes W(ti) of trades on the portfolio variance and adjust in time 

Markowitz’s approximation of the variance to market-based assessments to avoid the excess 

losses due to possible overvaluation or underestimation of the variance and risks.  
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5. Conclusion 

We show that the time series of trades made during the averaging interval can describe the 

current market-based assessments of the variances of securities and of the portfolios. Taylor 

series by the coefficient of variation  assess the possible deviations from the zero 

approximation by Markowitz variance ΘM(t,t0) (1.2) that is valid for =0. We consider three 

limiting cases with high and low fluctuations of returns of the portfolio and with zero 

covariance of trade values and volumes. We show that the impact of fluctuations of trade 

volumes may cause the significant overestimation or great underestimation of the portfolio 

variance by Markowitz’s expression (1.2). The same is valid for the assessments of the 

variances of any tradable market securities. To avoid unexpected losses, the investors and 

portfolio managers should adjust in time Markowitz variance to market-based variance that 

accounts for the impact of random volumes of consecutive trades.   

The explicit dependence of the market-based variance on the time series of values and volumes 

of trades during the averaging interval reveals the additional complexity of predicting the 

variances of securities or of the portfolio at the time horizon T. To make such a forecast for a 

particular security, one should predict the time series of the values and volumes of trades at 

horizon T during the averaging interval, like Δ (2.5). To forecast the portfolio variance, one 

should predict at the horizon T the time series of the values and volumes of trades with all 

securities of the portfolio during interval Δ (2.5). Such forecasts are impossible without the 

usage of reliable market and macroeconomic models and require huge market data and efforts 

of highly qualified researchers for the development of true macroeconomic models. Perhaps 

that can be implemented by the majors like BlackRock, JP Morgan, and the U.S. Fed. Most 

investors and portfolio managers will probably continue to use a zero approximation, described 

by Markowitz variance, which ignores the impact of trade volume fluctuations. Doing this, 

they should be ready for unexpected losses.  
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Appendix A. Market-based variance 

One can determine the price probability by the set of statistical moments (Shiryaev, 1999; 

Shreve, 2004). The market-based average price Em[s(ti)]=s(t) (2.15) determines the 1st 

statistical moment of price probability. We recall that Em[..] denotes market-based 

mathematical expectation. The 2nd market-based statistical moment Em[s2(ti)] should be 

consistent with the average price s(t) (2.15) and always define non-negative variance Φ(t):  𝛷(𝑡) = 𝐸𝑚 [(𝑠(𝑡𝑖) − 𝑠(𝑡))2] = 𝐸𝑚[𝑠2(𝑡𝑖)] −  𝑠2(𝑡)  ≥ 0   (A.1) 

To fulfill (A.1) we define market-based variance Φ(t) (A.1) as follows: 𝛷(𝑡) = 1𝑊Σ(𝑡;2) ∑ (𝑠(𝑡𝑖) − 𝑠(𝑡))2 𝑊2(𝑡𝑖)𝑁𝑖=1    ;    𝑊Σ(𝑡; 2) = ∑ 𝑊2(𝑡𝑖)𝑁𝑖=1   (A.2) 

One can present (A.2) as follows: 𝛷(𝑡) = 𝛷(𝑡; 2) − 2𝛷(𝑡; 1)𝑠(𝑡) + 𝑠2(𝑡)    (A.3) 

We use (2.12) and define the function Φ(t;2) as: 𝛷(𝑡; 2) = 1𝑊Σ(𝑡;2) ∑ 𝑠2(𝑡𝑖) 𝑊2(𝑡𝑖)𝑁𝑖=1 = 1𝑊(𝑡;2) 1𝑁 ∑ 𝑄2(𝑡𝑖)𝑁𝑖=1 = 𝑄(𝑡;2)𝑊(𝑡;2)  (A.4) 𝑄(𝑡; 2) = 1𝑁 ∑ 𝑄2(𝑡𝑖)𝑁𝑖=1   ;    𝑊(𝑡; 2) = 𝑊Σ(𝑡;2)𝑁    (A.5) 

Relations (A.5) denote the average of squares of trade values Q(t;2) and volumes W(t;2). The 

use of (2.12; 2.13) allow present the function Φ(t;1) as: 𝛷(𝑡; 1) = 1𝑊Σ(𝑡;2) ∑ 𝑠(𝑡𝑖) 𝑊2(𝑡𝑖)𝑁𝑖=1 = 1𝑊(𝑡;2)  1𝑁 ∑ 𝑄(𝑡𝑖) 𝑊(𝑡𝑖)𝑁𝑖=1 = 𝐸[𝑄(𝑡𝑖) 𝑊(𝑡𝑖)]𝑊(𝑡;2)  (A.6) 

One can use (2.25; 2.26; 2.28; 2.29) and present:  𝑄(𝑡; 2) = 𝑄2(𝑡) + 𝜎𝑄2(𝑡)   ;      𝑊(𝑡; 2) = 𝑊2(𝑡) + 𝜎𝑊2 (𝑡) = 𝑊2(𝑡)[1 + 𝜒2] (A.7) 𝐸[𝑄(𝑡𝑖) 𝑊(𝑡𝑖)] = 𝑄(𝑡; 1)𝑊(𝑡; 1) + 𝑐𝑜𝑣{𝑄(𝑡), 𝑊(𝑡)}   (A.8) 

The substitution of (A.4-A.8) into (A.3), gives: 𝛷(𝑡) = 𝑄2(𝑡;1)+𝜎𝑄2 (𝑡)−2𝑠(𝑡)𝑄(𝑡;1)𝑊(𝑡;1)−2𝑠(𝑡)𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}+𝑠2(𝑡)𝑊2(𝑡;1)+𝑠2(𝑡)𝑊2(𝑡;1)𝜒2𝑊2(𝑡;1)[1+𝜒2]   (A.9) 

Due to (2.15; 2.28; 2.29): 𝑄2(𝑡; 1) − 2𝑠(𝑡)𝑄(𝑡; 1)𝑊(𝑡; 1) + 𝑠2(𝑡)𝑊2(𝑡; 1) = [𝑄(𝑡; 1) − 𝑠(𝑡)𝑊(𝑡; 1)]2 = 0 

We use of (2.25) and present the variance Φ(t) (A.9) as: 𝛷(𝑡) = 𝜎𝑄2 (𝑡)−2𝑠(𝑡)𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}+𝑠2(𝑡)𝑊2(𝑡;1)𝜒2𝑊2(𝑡;1)[1+𝜒2] = 𝜓2−2 𝜑+𝜒21+𝜒2  𝑠2(𝑡)    (A.10) 

From (A.1) obtain the 2nd statistical moment Em[s2(ti)] of price: 𝐸𝑚[𝑠2(𝑡𝑖)] = 𝛷(𝑡) + 𝑠2(𝑡) = [𝜓2−2 𝜑+𝜒21+𝜒2 + 1] 𝑠2(𝑡)  (A.11) 

The market-based variance Θ(t,t0) of returns follows from (A.10): 
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𝛩(𝑡, 𝑡0) = 𝛷(𝑡)𝑠2(𝑡0) = 𝜓2−2 𝜑+𝜒21+𝜒2  𝑅2(𝑡, 𝑡0)   (A.12) 

One can find the additional justifications in (Olkhov, 2022-2025).  

A.2 Decomposition of the portfolio variance Θ(t,t0) by its securities 

In this subsection we show that if the volumes of trades with all securities of the portfolio are 

constant and hence the coefficient of variation of the volumes W(ti) of the trades with the 

portfolio equals zero: =0, then the decomposition of the portfolio variance Θ(t,t0) (A.12) by 

its securities coincides with Markowitz’s expression of portfolio variance (1.2). 𝛩𝑀(𝑡, 𝑡0) = 𝜓02 ∙ 𝑅2(𝑡, 𝑡0) = 𝜎𝑄2 (𝑡)𝑄2(𝑡)  𝑠2(𝑡)𝑠2(𝑡0)     ;      𝜓02 = 𝜓2   𝑖𝑓   = 0  (A.13) 

Let us use (2.8; 2.9; 2.11) and present Q
2(t) (2.26) as: 𝜎𝑄2(𝑡) = 1𝑁 ∑ (𝑄(𝑡𝑖) − 𝑄(𝑡; 1))2𝑁𝑖=1 = 1𝑁 ∑ ∑ [𝑐𝑗(𝑡𝑖) − 𝑐𝑗(𝑡)]𝐽𝑗,𝑘=1𝑁𝑖=1 [𝑐𝑘(𝑡𝑖) − 𝑐𝑘(𝑡)] 

The change of order of the sums, gives: 𝜎𝑄2(𝑡) = ∑ 1𝑁𝐽𝑗,𝑘=1  ∑ [𝑐𝑗(𝑡𝑖) − 𝑐𝑗(𝑡)]𝑁𝑖=1 [𝑐𝑘(𝑡𝑖) − 𝑐𝑘(𝑡)] = ∑ 𝑐𝑜𝑣{𝑐𝑗(𝑡), 𝑐𝑘(𝑡)}𝐽𝑗,𝑘=1    (A.14) 

In (A.14) we denote covariance cov{cj(t),ck(t)} (A.15) of between two normalize values cj(t) 

and ck(t) (2.6; 2.8) during Δ (2.5): 𝑐𝑜𝑣{𝑐𝑗(𝑡), 𝑐𝑘(𝑡)} = 1𝑁  ∑ [𝑐𝑗(𝑡𝑖) − 𝑐𝑗(𝑡)]𝑁𝑖=1 [𝑐𝑘(𝑡𝑖) − 𝑐𝑘(𝑡)]   (A.15) 

From (2.6) obtain: 𝑐𝑜𝑣{𝑐𝑗(𝑡), 𝑐𝑘(𝑡)} = 1𝑁 ∑ [𝐶𝑗(𝑡𝑖) − 𝐶𝑗(𝑡)]𝑁𝑖=1 [𝐶𝑘(𝑡𝑖) − 𝐶𝑘(𝑡)] 𝑈𝑗(𝑡0)𝑈𝛴𝑗(𝑡)  𝑈𝑘(𝑡0)𝑈𝛴𝑘(𝑡) 

Hence, the variance ΘM(t,t0) (A.13), takes the form: 𝛩𝑀(𝑡, 𝑡0) = ∑ 1𝑁𝐽𝑗,𝑘=1  ∑ [𝐶𝑗(𝑡𝑖)−𝐶𝑗(𝑡)]𝑄(𝑡;1)𝑁𝑖=1 [𝐶𝑘(𝑡𝑖)−𝐶𝑘(𝑡)]𝑄(𝑡;1) 𝑈𝑗(𝑡0)𝑈Σj(𝑡)  𝑈𝑘(𝑡0)𝑈Σk(𝑡)  𝑠2(𝑡)𝑠2(𝑡0)  (A.16) 

We recall that all trade volumes Uj(ti) =Uj with securities j=1,..J of the portfolio are constant 

and hence trade volumes W(ti) =W with the portfolio also constant. If so,  𝐶𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖) 𝑈𝑗   ;    𝑄(𝑡; 1) = 𝑠(𝑡)𝑊 𝛩𝑀(𝑡, 𝑡0) = ∑ 1𝑁𝐽𝑗,𝑘=1  ∑ [𝑝𝑗(𝑡𝑖)−𝑝𝑗(𝑡)]𝑠(𝑡)𝑊𝑁𝑖=1 [𝑝𝑘(𝑡𝑖)−𝑝𝑘(𝑡)]𝑠(𝑡)𝑊  𝑈𝑗𝑈𝑘   𝑈𝑗(𝑡0)𝑈Σj(𝑡)  𝑈𝑘(𝑡0)𝑈Σk(𝑡)  𝑠2(𝑡)𝑠2(𝑡0)  

𝛩𝑀(𝑡, 𝑡0) = ∑ 1𝑁𝐽𝑗,𝑘=1 ∑ [𝑝𝑗(𝑡𝑖)−𝑝𝑗(𝑡)]𝑝𝑗(𝑡0)𝑁𝑖=1 [𝑝𝑘(𝑡𝑖)−𝑝𝑘(𝑡)]𝑝𝑘(𝑡0)  𝑈𝑗𝑈Σj(𝑡) 𝑈𝑘𝑈Σk(𝑡)  𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊  𝑝𝑘(𝑡0)𝑈𝑘(𝑡0)𝑠(𝑡0)𝑊    (A.17) 

We use xj(t0) (2.3) that denote the relative numbers of the shares Uj(t0) of security j in the total 

number of shares WΣ(t0) of the portfolio. In (A.18) Xj(t0) denotes the relative investment into 

security j at time t0:  
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𝑈𝑗𝑈Σj(𝑡) = 1𝑁    ;     𝑥𝑗(𝑡0) = 𝑈𝑗(𝑡0)𝑊Σ(𝑡0)     ;      𝑋𝑗(𝑡0) = 𝑝𝑗(𝑡0)𝑠(𝑡0)  𝑥𝑗(𝑡0) = 𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊Σ(𝑡0)   (A.18) 

Let us divide and multiply each term in A(1.7) by the initial price pj(t0) (2.1) of security j: 𝛩𝑀(𝑡, 𝑡0) = ∑ 1𝑁𝐽𝑗,𝑘=1 [ ∑ [𝑝𝑗(𝑡𝑖)−𝑝𝑗(𝑡)]𝑝𝑗(𝑡0)𝑁𝑖=1 [𝑝𝑘(𝑡𝑖)−𝑝𝑘(𝑡)]𝑝𝑘(𝑡0)  ] ∙  𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊Σ(𝑡0)  ∙ 𝑝𝑘(𝑡0)𝑈𝑘(𝑡0)𝑠(𝑡0)𝑊Σ(𝑡0)    

𝜃𝑗𝑘(𝑡, 𝑡0) = 1𝑁 ∑ [𝑝𝑗(𝑡𝑖)−𝑝𝑗(𝑡)]𝑝𝑗(𝑡0)𝑁𝑖=1 [𝑝𝑘(𝑡𝑖)−𝑝𝑘(𝑡)]𝑝𝑘(𝑡0) = 1𝑁 ∑ (𝑅𝑗(𝑡𝑖 , 𝑡0) − 𝑅𝑗(𝑡, 𝑡0)) (𝑅𝑘(𝑡𝑖, 𝑡0) − 𝑅𝑘(𝑡, 𝑡0))𝑁𝑖=1   

From above, obtain the decomposition of the portfolio variance Θ(t,t0) (A.13) by its securities 

in the form (A.19) that coincides with Markowitz’s expression ΘM(t,t0) (1.2):  𝛩𝑀(𝑡, 𝑡0) = 𝜓02 ∙ 𝑅2(𝑡, 𝑡0) = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝐽𝑗,𝑘=1  𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)  (A.19) 

We underline, that we derived the decomposition of the portfolio variance Θ(t,t0) (A.19) by its 

securities using the relations (2.11-2.14) that determine the dependence of the time series of 

the values Q(ti) and volumes W(ti) (2.11-2.14) of consecutive trades with the portfolio on the 

time series of trades with its securities. The assumption that all volumes Uj(ti)=Uj of trades 

with the securities j=1,..J are constant and hence the volumes W(ti)=W of trades with the 

portfolio also constant, results in zero value of the coefficient of =0 of fluctuations of the 

volumes W(ti) of the trades with the portfolio.  

Hence, Markowitz portfolio variance ΘM(t,t0) (1.2) describes the approximation when all trade 

volumes with the securities of the portfolio are assumed constant during Δ (2.5). 

Appendix B. Taylor Series of the variance 

The Taylor series of the coefficient of variation (,,) (2.31) by the coefficient of variation 

 determine the Taylor series of the variances Φ(t) and Θ(t,t0) (2.32).  

B.1 Taylor Series of the coefficient of variation (,,) (2.31) 𝜇(𝜓, 𝜒, 𝜑) = 𝜇(𝜓, 0,0) + 𝑑 𝜇(𝜓,𝜒,𝜑)𝑑𝜒 |=0 𝜒 + 12  𝑑2 𝜇(𝜓,𝜒,𝜑)𝑑𝜒2 |=0 𝜒2  (B.1) 

From (2.33): 𝜇(𝜓, 0,0) = 𝜓02 = 𝜎𝑄2 (𝑡)𝑄2(𝑡;1) = 𝜎𝑠2(𝑡)𝑠2(𝑡)      ;     𝜎𝑠2(𝑡) = 1𝑁 ∑ (𝑠(𝑡𝑖) − 𝑠(𝑡))2𝑁𝑖=1   (B.2) 

The 1st derivative of the coefficient of variation (,,)  by d at point =0: 𝑑 𝜇(𝜓,𝜒,𝜑)𝑑𝜒 |=0 = −2 𝑑 𝜑𝑑𝜒 |=0    (B.3) 

To calculate the derivative of  (2.25) in (B.3) by the coefficient of variation , let us consider 

the Cauchy-Schwarz-Bunyakovskii inequality (B.4) (Shiryaev, 1999, p 123) that states:  |𝜑| = |𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}𝑄(𝑡;1)𝑊(𝑡;1) | ≤ 𝜓 𝜒      (B.4) 

The inequality (B.4) allows present the covariance  (2.25; B.4) as: 
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𝜑 = 𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}𝑄(𝑡;1)𝑊(𝑡;1) = 𝑎 ∙  𝜓 ∙ 𝜒      ;       −1 ≤  𝑎 ≤ 1   (B.5) 

The sign of a in (B.5) describes the positive or negative covariance between the values Q(ti) 

and volumes W(ti) of market trades with the portfolio. From (B.5), obtain: 𝑑 𝜇(𝜓,𝜒,𝜑)𝑑𝜒 |=0 = −2 𝑑 𝜑𝑑𝜒 |=0 = −2 𝑎 ∙  𝜓0 = −2 𝑎 ∙ 𝜎𝑠𝑠   (B.6) 

The 2nd derivative of the coefficient of variation (,,)  by d2 at point =0: 𝑑2 𝜇(𝜓,𝜒,𝜑)𝑑𝜒2 |=0 = 2(1 − 𝜓02)     (B.7) 

The substitution of (B.2; B.3; B.7) into (B.1) give Taylor series of the coefficient of variation 

(,,) by the coefficient of variation : 𝜇(𝜓, 𝜒, 𝜑) = 𝜓02 − 2 𝑎 ∙  𝜓0 ∙  𝜒 +  (1 − 𝜓02) ∙  𝜒2   (B.8) 

From (B.2), obtain: 0 ≤  𝜓02 = 𝜎𝑠2(𝑡)𝑠2(𝑡)  ≤ 1     (B.9) 

B.2 Taylor Series of the portfolio variances Φ(t) and Θ(t,t0) 

The relations (2.32) and (B.1-B.3; B.7) give Taylor series of the variances Φ(t) and Θ(t,t0): 𝛷(𝑡) = [𝜓02 − 2 𝑎 ∙ 𝜓0 ∙ 𝜒 + (1 − 𝜓02) ∙ 𝜒2] ∙ 𝑠2(𝑡)   (B.10) 𝛩(𝑡, 𝑡0) = [𝜓02 − 2 𝑎 ∙ 𝜓0 ∙ 𝜒 + (1 − 𝜓02) ∙ 𝜒2] ∙ 𝑅2(𝑡, 𝑡0)  (B.11) 

We highlight that if one assumes that the volumes Uj(ti) of trades with all securities j=1,..J of 

the portfolio and the volumes W(ti) of trades with the portfolio are constant and the coefficient 

of variation =0, then the portfolio variances Φ(t) and Θ(t,t0) Θ(t,t0) (B.10; B.11):  𝛷(𝑡)|=0 = 𝜓02 ∙ 𝑠2(𝑡) ≤ 𝑠2(𝑡)    ;     𝛩𝑀(𝑡, 𝑡0) = 𝜓02 ∙ 𝑅2(𝑡, 𝑡0) ≤ 𝑅2(𝑡, 𝑡0)    (B.12) 

In App. A we show (A.13 - A.19) that the decomposition of the portfolio variance ΘM(t,t0) 

(B.12) by its securities coincides with Markowitz’s expression of the variance ΘM(t,t0) (1.2). 

B.3 How much can the coefficient of variation  change the variance Θ(t,t0) 

Let us estimate the possible change of the value of the portfolio variance Θ(t,t0) (B.11) from 

Markowitz’s approximation of the portfolio variance ΘM(t,t0) (1.2; B.12), which describes the 

case with the coefficient of variation =0. To do that we consider three extreme cases that 

highlight the possible significant change on the portfolio variance Θ(t,t0) (B.11) from ΘM(t,t0) 

(B.12) due to growth of the coefficient of variation  from 0 to 1. 

a) Very high fluctuations of portfolio returns: 0 ~1.  

Let us assume that fluctuations of the portfolio returns during Δ (2.5) are very high and their 

coefficient of variation (,0,0)= 0 ~1 (2.31) is almost equals to1. 
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0 ~1 →    1 − 𝜓02 ≪ 1    ;       0 ∙ 𝜒~𝜒     ;     0 ≤ 𝜒 ≤ 1           (B.13) 

Due to (B.13) one can neglect (1- 0
2) in (B.11) and the variance Θ(t,t0) takes the form: 𝛩(𝑡, 𝑡0)~[1 − 2 𝑎 ∙ 𝜒] 𝑅2(𝑡, 𝑡0)       ;    𝛩𝑀(𝑡, 𝑡0)~𝑅2(𝑡, 𝑡0)  (B.14) 

In this case, Markowitz’s approximation of the portfolio variance ΘM(t,t0) ~ R2(t,t0) (B.14) takes 

almost maximum value. The investors and portfolio managers consider high fluctuations of 

returns as extremely high risks for their portfolios. 

However, if the covariance  is positive and a>0 (B.5), then the action of the coefficient of 

variation  can  significantly decline the value of the market-based variance Θ(t,t0) (B.14):  𝛩(𝑡, 𝑡0)~[1 − 2 𝑎 ∙ 𝜒] 𝑅2(𝑡, 𝑡0)  → [1 − 2 𝑎] 𝑅2(𝑡, 𝑡0)  𝑎𝑠   𝜒 → 1  ;   0 < 𝑎 ≤ 1/2    (B.15) 𝛩(𝑡, 𝑡0)~[1 − 2 𝑎 ∙ 𝜒] 𝑅2(𝑡, 𝑡0)  → 0  𝑎𝑠   𝜒 → 12𝑎   ;    𝑎 ≥ 1/2   (B.16) 

Thus, if the covariance  (B.5) is positive, the impact of fluctuations of the volumes of the 

consecutive trades and positive values of the coefficient of variation  can significantly decline 

the portfolio variance Θ(t,t0) (B.16) and portfolio risks from its almost maximum value that is 

estimated by Markowitz’s expression (1.2) to almost a zero value (B.16).  

In this case, Markowitz’s expression ΘM(t,t0) ~ R2(t,t0) (1.2) may vastly overvalue the portfolio 

variance Θ(t,t0) that can be much less than ΘM(t,t0) due to the impact of the coefficient of 

variation  and positive covariance  (B.5). 

Very low fluctuations of portfolio returns: 0 <<1.  

Let us assume that the fluctuations of the returns are very low and their coefficient of variation 

(,0,0)= 0 <<1 (2.31): 𝜓0 ≪ 1     ;     1 − 𝜓02~1    ;     ;    𝛩𝑀(𝑡, 𝑡0)~𝜓02 ∙ 𝑅2(𝑡, 𝑡0) ≪ 𝑅2(𝑡, 𝑡0)   (B.18) 

 Then, one can approximate the portfolio variance Θ(t,t0) (B.11) as: 𝛩(𝑡, 𝑡0)~[1 − 2 𝑎 ∙ 𝑦 + 𝑦2] 𝜓02 ∙ 𝑅2(𝑡, 𝑡0)    ;        𝑦 = 𝜒𝜓0   (B.19) 

In (B.19) we introduce variable y as the ratio of the coefficients of variations of volume and 

prices. In this case Markowitz’s assessment ΘM(t,t0) ~ 0
2 R2(t,t0)<<R2(t,t0) (B.18) is much 

less than its maximum value. The investors and the portfolio managers probably may be happy 

and consider that the risks of their portfolios are very low.  

However, in this case the impact of the coefficient of variation  can significantly increase the 

portfolio variance Θ(t,t0) and portfolio risks. If 0<<<1, then y>>1 and one can neglect the 

term 2ay for any sign of the covariance  (B.5), as it is small to compare with y2, and obtain: 𝛩(𝑡, 𝑡0)~[𝜓02 + 𝜒2] ∙ 𝑅2(𝑡, 𝑡0) → 𝜒2 ∙ 𝑅2(𝑡, 𝑡0)  , 𝜒2 → 1 − 𝜓02  ;   𝜓0 ≪ 𝜒 < 1       (B.20) 
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In this case (B.20), the impact of the coefficient of variation  can significantly increase the 

portfolio variance Θ(t,t0) and portfolio risks, for any sign of the covariance  (B.5) to compare 

with Markowitz’s estimate ΘM(t,t0)~0
2
· R2(t,t0)<<R2(t,t0) to its maximum value Θ(t,t0) ~ 

2R2(t,t0),  21-0
2. 

Thus, if the coefficient of variation 0
2<<1 then Markowitz’s estimate ΘM(t,t0) )~0

2
· R

2(t,t0)    

may significantly underestimate the portfolio variance Θ(t,t0) that is determined by the 

coefficient of variation  for rather high fluctuations of the trade volumes W(ti). 

b) Zero covariance , a=0 (B.5)  

If the covariance  is zero and a=0 (B.5), (B.11) takes the form: 𝛩(𝑡, 𝑡0)~[𝜓02 + (1 − 𝜓02) ∙ 𝜒2(𝑡)] 𝑅2(𝑡, 𝑡0)     ;    𝛩𝑀(𝑡, 𝑡0)~𝜓02 ∙ 𝑅2(𝑡, 𝑡0)  (B.21)  

If 0
2<<2<1, then the covariance Θ(t,t0) (B.21) grows up with the increasing coefficient of 

variation 2<1 from Markowitz’s the approximation ΘM(t,t0) ~0
2

 R
2(t,t0) that describes the 

case when =0, to the  𝛩𝑀(𝑡, 𝑡0)~𝜓02 ∙ 𝑅2(𝑡, 𝑡0) ≪ 𝛩(𝑡, 𝑡0) ~  𝜒2(𝑡)   𝑅2(𝑡, 𝑡0)   ;     𝜓02 ≪ 𝜒2(𝑡) < 1 (B.22) 

The relations (B.22) illustrate that in this case Markowitz’s assessment ΘM(t,t0) of the portfolio 

variance can highly underestimate the variance Θ(t,t0) and risks of the portfolio that are 

generated by the fluctuations of the volumes W(ti) of trades with the portfolio. 

We avoid study here all possible cases and leave that for the investors and portfolio managers 

who can process their market trade time series and high motivation for the correct assessment 

of the market-based variance that accounts for the randomness of trade volumes, sign of the 

covariance  (B.5) and other factors. 

Appendix C. Taylor Series of the decomposition of variances by securities  

Taylor series of the decomposition of the portfolio variance Θ(t,t0) of return by its securities 

follow from (B.8; B.11). To obtain the decomposition of the portfolio variance Θ(t,t0) (B.11) 

by its securities one should use (A.19) and derive the decompositions the coefficient of 

variation  of trade volumes of the portfolio, and its square 2, by the coefficients of variation 

j (C.1) of the trade volumes Uj(ti) of the portfolio’s securities j=1,…J. We define the 

coefficient of variation j (C.2) of security j alike to definition (2.25): 𝜒𝑗2 =  𝜎𝑈𝑗2 (𝑡)𝑈𝑗2(𝑡)     ;    𝜎𝑈𝑗2 (𝑡) = 1𝑁 ∑ [𝑈𝑗𝑁𝑖=1 (𝑡𝑖) − 𝑈𝑗(𝑡)]2    (C.1) 

From the definition (2.25) of the coefficient of variation , and (2.6; 2.9; 2.11), obtain: 

 𝜒2 =  𝜎𝑊2 (𝑡)𝑊2(𝑡;1) = 1𝑊2(𝑡;1) 1𝑁 ∑ ∑ (𝑢𝑗(𝑡𝑖) − 𝑢𝑗(𝑡))(𝑢𝑘(𝑡𝑖) − 𝑢𝑘(𝑡))𝐽𝑗,𝑘=1𝑁𝑖=1 =   
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= 1𝑊2(𝑡;1) ∑ 1𝑁 ∑ (𝑢𝑗(𝑡𝑖) − 𝑢𝑗(𝑡))(𝑢𝑘(𝑡𝑖) − 𝑢𝑘(𝑡))𝑁𝑖=1𝐽𝑗,𝑘=1 = 1𝑊2(𝑡;1) ∑ 𝑐𝑜𝑣𝐽𝑗,𝑘=1 {𝑢𝑗(𝑡), 𝑢𝑘(𝑡)} =  

= ∑ 𝑐𝑜𝑣{𝑢𝑗(𝑡), 𝑢𝑘(𝑡)}𝑢𝑗(𝑡)  ∙  𝑢𝑘(𝑡)𝐽𝑗,𝑘=1  𝑢𝑗(𝑡)𝑊(𝑡; 1) 𝑢𝑘(𝑡)𝑊(𝑡; 1) = ∑ 𝑐𝑜𝑣{𝑈𝑗(𝑡), 𝑈𝑘(𝑡)}𝑈𝑗(𝑡)  ∙  𝑈𝑘(𝑡)𝐽𝑗,𝑘=1  𝑢𝑗(𝑡)𝑊(𝑡; 1) 𝑢𝑘(𝑡)𝑊(𝑡; 1) 

From above and (2.3; 2.6; 2.7; 2.10), obtain: 𝜒2 = ∑ 𝜒𝑗𝑘𝐽𝑗,𝑘=1  𝑥𝑗(𝑡0)𝑥𝑘(𝑡0)       ;     𝜒𝑗𝑘 = 𝑐𝑜𝑣{𝑈𝑗(𝑡),𝑈𝑘(𝑡)}𝑈𝑗(𝑡) ∙ 𝑈𝑘(𝑡)    (C.2) 𝑐𝑜𝑣{𝑈𝑗(𝑡), 𝑈𝑘(𝑡)} = 1𝑁 ∑ (𝑈𝑗(𝑡𝑖) − 𝑈𝑗(𝑡))(𝑈𝑘(𝑡𝑖) − 𝑈𝑘(𝑡))𝑁𝑖=1   (C.3) 

We use Cauchy-Schwarz-Bunyakovskii inequality (Shiryaev, 1999, p 123) and present the 

covariances (C.3) of time series of the volumes Uj(ti) and Uk(ti) of trades with securities j and 

k normalized to their average values Uj(t) and Uk(t) by the coefficients of variation j (C.1): 𝜒𝑗𝑘 =  𝑐𝑜𝑣{𝑈𝑗(𝑡),𝑈𝑘(𝑡)}𝑈j(𝑡)𝑈k(𝑡) = 𝛽𝑗𝑘𝜒𝑗 ∙ 𝜒𝑘    ;    −1 ≤ 𝛽𝑗𝑘 ≤ 1  ;     𝛽𝑗𝑗 = 1  (C.4) 

Finally, obtain the decomposition of the square of the coefficient of variation 2 of volumes 

W(ti) of trades with the portfolio by the coefficients of variation j (C.1) of its securities: 𝜒2 = ∑ 𝛽𝑗𝑘𝐽𝑗,𝑘=1 𝜒𝑗 ∙ 𝜒𝑘 ∙  𝑥𝑗(𝑡0) ∙ 𝑥𝑘(𝑡0)   (C.5) 

Taylor series of the coefficient of variation  near j=0 is a simple exercise: 𝜒 = [∑ 𝛽𝑗𝑘𝐽𝑗,𝑘=1 𝜒𝑗 ∙ 𝜒𝑘 ∙  𝑥𝑗(𝑡0) ∙ 𝑥𝑘(𝑡0)]1/2
     𝑑 𝜒𝑑 𝜒𝑗 |𝜒𝑗=0,𝑗=1,..𝐽 =  ∑ 𝛽𝑗𝑘𝜒𝑘∙ 𝑥𝑗(𝑡0)∙𝑥𝑘(𝑡0)[𝜒𝑘∙𝜒𝑘∙ 𝑥𝑘(𝑡0)∙𝑥𝑘(𝑡0)]1/2𝐽𝑘=1  |𝜒𝑗,𝜒𝑘=0 = 𝑥𝑗(𝑡0) ∑ 𝛽𝑗𝑘𝐽𝑘=1    

We introduce coefficients j (C.6) to obtain the decomposition of  near j=0: 𝜒 = ∑ 𝛽𝑗  𝜒𝑗 ∙𝐽𝑗=1  𝑥𝑗(𝑡0)        ;           𝛽𝑗 = ∑ 𝛽𝑗𝑘𝐽𝑘=1    (C.6) 

From (2.20) obtain the decomposition of the portfolio return R(t,t0) (C.7) 𝑅(𝑡, 𝑡0) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1 𝑋𝑗(𝑡0)    (C.7) 

and from (3.6; 1.2; A.13-A.19) obtain Markowitz portfolio variance ΘM(t,t0) =R
2(t,t0) (C.8): 𝛩𝑀(𝑡, 𝑡0) = 𝜎𝑅2 (𝑡, 𝑡0) = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝑋𝑗(𝑡0)𝐽𝑗,𝑘=1 𝑋𝑘(𝑡0)   (C.8) 

(C.1-C.8) define Taylor series of the decomposition of the portfolio variance by j (C.1). 𝛩(𝑡, 𝑡0) = [𝜓02 − 2 𝑎 ∙ 𝜓0 ∙ (∑ 𝛽𝑗 𝜒𝑗 ∙𝐽𝑗=1  𝑥𝑗(𝑡0)) + (1 − 𝜓02) ∙ [∑ 𝛽𝑗𝑘𝐽𝑗,𝑘=1 𝜒𝑗 ∙ 𝜒𝑘 ∙  𝑥𝑗(𝑡0) ∙
𝑥𝑘(𝑡0)]] ∙ ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗,𝑘=1 𝑅𝑘(𝑡, 𝑡0) 𝑋𝑗(𝑡0)𝑋𝑘(𝑡0)   
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