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Abstract

This paper presents a demand-led growth model augmented with induced technical change
to address the two Harrod’s problems in growth theory. Building on recent developments
in the supermultiplier literature, we investigate how both Harrodian instability problems
can be resolved through two complementary mechanisms: (1) autonomous, non-capacity-
creating demand components growing at an exogenous rate, and (2) endogenous technical
change responsive to income distribution. While existing supermultiplier models show
how autonomous expenditures stabilize demand-led growth, we integrate induced tech-
nical change into the determination of the natural rate of growth. The model achieves
twin stabilization through the interplay of two stabilizing mechanisms: the supermulti-
plier and induced technical change. On the one hand, demand shocks are absorbed via
adjustments in the investment share, allowing capital accumulation to align with the ex-
ogenously determined growth rate of autonomous expenditures. On the other hand, labor
market imbalances trigger productivity adjustments that reconcile natural and warranted
growth through changes in the wage share. This dual adjustment mechanism allows the
system to sustain normal capacity utilization and stable employment rates, while preserv-
ing demand-led growth outcomes. The results suggest that incorporating induced technical
change enhances the supermultiplier’s capacity to address both of Harrod’s instability prob-
lems within a unified demand-led framework.
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1 Introduction

Roy Harrod’s seminal paper An Essay in Dynamic Theory (Harrod, 1939) is conventionally

considered the beginning of modern growth theory. In his attempt to extend the Keynesian

analysis of output determination to the long run, he devised two problems that could affect the

process of accumulation in capitalist economies. First, there is no reason to expect that full

employment equilibrium growth will emerge. In fact, the ‘warranted’ growth rate, that is the

growth rate allowed by full capacity savings, would equal the rate of growth of the labor force,

or ‘natural’ growth rate, only by accident. Secondly, deviations of the actual growth rate from

the warranted growth rate, rather than being self-correcting, would produce cumulative effects

and destabilize the economy. This second issue is typically referred to as the ‘Harrod instability’

problem.

Elaborating on the seminal paper by Serrano (1995), current versions of the supermultiplier

growth model (Allain, 2015; Freitas and Serrano, 2015; Lavoie, 2016; Serrano et al., 2019) have

shown that the existence of a non capacity generating autonomous component of aggregate

demand may tame Harrodian instability. This occurs when firms do not react too strongly to

discrepancies between actual and normal growth (or utilization) rates. Within this framework,

by assuming that autonomous, i.e. independent of output, expenditures grow at a given rate,

both Sraffian and neo-Kaleckian authors produced a demand-led growth theory that features a

stable growth rate, exogenous income distribution and normal capacity utilization in the long

run. Besides investigating the stability of the growth path, some recent contributions have also

begun to address the first Harrod problem, that is the reconciliation of the demand and supply

side, in a context where the natural growth rate includes labor productivity growth in addition

to exogenous labor supply growth. Palley (2019) and Fazzari et al. (2020) have assumed that

the supply side adjusts to the growth rate of demand by making the natural growth rate endoge-

nous. When technical change is a positive function of the employment rate, disequilibrium in

the labor market will be self-correcting. Stronger aggregate demand, by driving up employment

growth, will also ease supply constrains through labor productivity growth; a symmetric mech-

anism would work in the opposite direction when demand falls short of supply. Nomaler et al.

(2021) model productivity growth, and in turn the natural growth rate, as a function of R&D in-

vestment. Aggregate demand and aggregate supply equalize in the long run, but the model loses

its demand-led flavor as supply conditions ultimately anchor the balanced growth rate, while
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demand growth adjusts. Allain (2021) proposes a technical progress function that depends on

capital accumulation and the wage share, thus incorporating both the Kaldor-Verdoorn’s law

and the Classical-Marxian notion of induced technical change. The natural growth rate is thus

explained endogenously; but even in this case, the long-run equilibrium that stabilizes the em-

ployment rate is determined by supply conditions. Nah and Lavoie (2019) also model labor pro-

ductivity growth along Kaldor-Verdoorn’s lines; in their version of the supermultiplier model,

however, labor supply is unconstrained so that the first Harrod problem does not arise.

In this paper, we further explore the potential implications of introducing induced technical

in the supermultiplier growth model. The notion that labor productivity growth is a positive

function of the wage share relies on the incentive for competitive firms to introduce labor-

saving innovations when facing high unit labor costs, that is higher wage shares. It has been

formally developed within different analytical frameworks. On the one hand, it follows from

the Classical-Marxian analysis of the choice of techniques, which states that new techniques of

production are adopted only if they do not decrease the profit rate at the given real wage (Ok-

ishio, 1961). In this context, a rise in the wage share requires an increase in labor productivity to

avoid a reduction in the rate of profit. On the other hand, neoclassical authors in the 1960s (von

Weizsacker, 1962; Kennedy, 1964) proved the same result by assuming that firms choose the

profit-maximizing direction of technical change given an innovation possibility frontier, which

describes the trade-off between freely available capital- and labor-augmenting innovations.

While the conventional supermultiplier mechanism ensures the long-run equality between

the actual and warranted growth rates, the introduction of induced technical change into the

supermultiplier model produces a novel way to reconcile the growth rate of demand and sup-

ply, thus offering an original solution to the first Harrod problem. The adjustment mechanism

works if we assume that income distribution reacts to the dynamics of the employment rate.

Divergences between the actual and the natural growth rates yield a disequilibrium in the labor

market. If the state of the labor market affects income distribution, there is a direct and stabi-

lizing feedback to the growth rate of labor productivity that may facilitate the equalization of

demand and supply growth. When the actual growth rate is higher than the natural growth rate,

employment growth will be faster than labor supply growth, and the employment rate will rise.

If the tighter labor market puts pressure on real wages relative to labor productivity growth,

the wage share increases; at this point, the induced technical chance channel makes labor pro-

ductivity grow faster, thus stabilizing the employment rate. Symmetrically, a negative shock to
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demand growth would make the employment rate fall. The wage share would decline and labor

productivity growth would slow down, so that the employment rate would settle and the actual

and natural growth rates would equalize at a lower level.

In line with the standard conclusions of the supermultiplier literature, the reconciliation

between aggregate demand and supply preserves the demand-led flavor of the model as the

growth rate of autonomous consumption fully determines long-run growth. The dynamics of

the model also ensures that firms operate at the exogenous normal utilization rate in steady

state. On the contrary, our analysis departs from the conventional framework regarding income

distribution, which loses its exogenous nature. In fact, the wage share becomes the adjusting

variable capable of reconciling the natural growth rate with autonomous demand growth, and it

becomes therefore endogenous. However, contrary to the growth-distribution trade-offs featured

in Kaldor-Robinson growth models with endogenous distribution, the wage share moves in the

same direction as the growth rate since higher demand growth fosters faster technical change

by increasing employment and the wage share. From this standpoint, our model relates to the

wage-led growth literature but with the fundamental difference that the direction of causality

between growth and distribution is inverted.

Finally, an additional original feature of our model concerns the employment rate. While the

equality between actual and natural growth rate stabilizes the employment rate, the model does

not determine its equilibrium value. In fact, the steady-state equilibrium is compatible with a

continuum of employment rates. The actual equilibrium employment rate depends on its initial

conditions, so that the model exhibits path dependence.

The paper is divided as follows. Section 2 illustrates the basic levers of the model, while sec-

tion 3 discusses the model dynamics in the long run. Section 4 presents calibration, simulation

results, and numerical stability analysis. Last, section 5 concludes, summarizing our results.

2 Basic elements of the model

2.1 Production and employment

In a closed economy with no public sector, final output Y is produced according to a Leon-
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tief production function that uses capital K and labor L in fixed proportions:

Y = min[uK/v,AL], (1)

where v denotes the ratio of capital to potential output (Y p), A is labor productivity, and

u ≡ Y/Y p measures capacity utilization. Cost minimization implies uK/v = AL, so that

labor demand is L = uK/(vA). We will explore the model under two alternative hypothe-

ses regarding labor supply (N). We will start by assuming that labor is abundant, or infinitely

elastic at the ruling wage, so that labor supply instantaneously accommodates labor demand

and never constrains capital accumulation and growth. Next, we will assume that labor supply

is exogenous and grows at a constant rate n. In this case, we can define the employment rate

as e ≡ L/N = Y/(AN). The long-run dynamics of the employment rate could lead to the

emergence of the first Harrod problem, for which a solution is presented in subsection 3.2.

2.2 Social classes and income distribution

Capitalists own the means of production, receive profit income Π from ownership of the

capital stock, and have a constant propensity to save s. Workers supply labor, earn a real wage

w, and do not save. If the wage share is ω ≡ wL/Y = w/A, capitalists’ profits are

Π = (1− ω)Y = (1− ω)uK/v. (2)

2.3 Technical change

As discussed in the Introduction, we assume that labor productivity growth is a positive

function of the wage share. This notion is founded both in the Classical-Marxian analysis of

the choice of techniques and in the neoclassical induced innovation literature. The logic of the

argument is based on the incentive to introduce labor-saving innovations by firms facing rising

labor cost. Without dwelling on the microfoundations of the assumption, we simply adopt the

reduced form:

gA = f(ω), f ′ > 0, (3)

as in Taylor (1991) and Dutt (2013).
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2.4 Aggregate demand

We distinguish three sources of aggregate demand. Consumption is either autonomous (Z),

that is financed out of financial wealth or through credit, or a function of income: C = wL+(1−

s)Π = ωY+(1−s)(1−ω)Y = Y (sω+1−s). A crucial assumption in the supermultiplier model

is that autonomous consumption grows at the exogenous rate gZ . Investment (I) is modelled

along the accelerator principle as a positive function of output: I = hY . Notice that h is given

at any point in time, but we will assume that it is time dependent as it adjusts to discrepancies

between actual and normal utilization rates.

2.5 The short-run equilibrium

In the short run, production adjusts instantaneously to the level of aggregate demand. Equi-

librium output solves

Y ∗ = Z + C + I = Z + (sω + 1− s)Y ∗ + hY ∗. (4)

Accordingly:

Y ∗ =
Z

s(1− ω)− h
, (5)

where 1/ (s(1− ω)− h) is the ‘supermultiplier’. Both the paradox of saving and the paradox

of costs hold as Y ∗ is a negative function of the saving rate and a positive function of the wage

share. Since Y = uK/v, the equilibrium utilization rate is u∗ = Y ∗v/K = zv
s(1−ω)−h , where

we defined z ≡ Z/K.

The Keynesian tradition emphasizes the dual nature of investment as a source of aggregate

demand and productive capacity creation. Since investment builds productive capacity, it defines

the law of motion of capital as K̇ = I−δK, where δ is the exogenous depreciation rate.1 We

can then find the growth rate of capital as gK = I/K − δ= hu/v − δ, which, in the short-run

equilibrium, yields g∗K = hu∗/v − δ = zh
s(1−ω)−h − δ.

1We will use the notation ẋ and gx to indicate, respectively, the time derivative and the growth rate of variable
x.
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3 Long-run analysis

3.1 Abundant labor supply and exogenous income distribution

This first closure of the model mostly coincides with the benchmark Sraffian supermulti-

plier model, as it features exogenous income distribution (ω = ω̄) and no labor constraints on

growth (as for example in Freitas and Serrano 2015). We simply introduce the explicit depen-

dence of the marginal saving rate on income distribution as in the neo-Kaleckian versions of the

supermultiplier model (Allain, 2015; Lavoie, 2016).

Within this setup, the dynamic evolution of the model is described by two differential equa-

tions in the state variables z and h. From the definition of z as the autonomous demand-to-capital

ratio, it follows that:

ż = z(gZ − g∗K) = z

(
gZ −

(
zh

s(1− ω̄)− h
− δ

))
. (6)

The evolution of h, on the other hand, depends on firms’ behavioral assumptions. When firms

observe an actual degree of capacity utilization higher than the normal one (un), they respond

by increasing investment as they expect higher future demand; on the contrary, they reduce

investment when u∗< un. This is the source of the so-called Harrodian instability problem and

it translates into the following equation:

ḣ = hγ(u∗ − un) = hγ

(
zv

s(1− ω̄)− h
− un

)
, (7)

where γ > 0 measures the speed of adjustment.

By setting ż = ḣ = 0 we can find the (non-trivial) steady-state values zss and hss as

solutions to the system:


gZ + δ = zsshss

s(1−ω̄)−hss

zssv
s(1−ω̄)−hss

= un .

(8)

The equilibrium values are hss = (gZ + δ)v/un and zss = s(1− ω̄)un/v− (gZ + δ). If z is

stationary, capital grows at the rate of autonomous consumption growth gZ . Positive shocks to

gZ are accommodated by a higher investment share, necessary for faster capital accumulation,

and lower autonomous expenditure relative to capital. Since in steady state Y = unK/v, output
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also grows at the rate gZ .

Remembering that, by definition, Y = AL, in steady state we have gY = gA + gL =

f(ω̄) + gL = gZ . Since labor supply is abundant, there are no constraints on output growth.

Income distribution fixes productivity growth, and employment growth emerges residually given

that output grows at gZ . This is analogous to what happens in Nah and Lavoie (2019), though

they model labor productivity growth according to the Kaldor-Verdoorn law. We show in the

Appendix that the steady state is locally stable if γ < zss/un = s(1 − ω̄)/v − (gZ + δ)/un,

which means that the Harrodian instability effect is not too strong.

3.2 Exogenous labor supply and endogenous income distribution

We now turn to the more innovative contribution of our paper. If we try to keep income

distribution exogenous while also adding an exogenous labor supply, steady-state employment

growth cannot equal labor supply growth. In fact, gL = gZ − f(ω̄) ̸= n unless by a fluke. In

Harrod’s words, the natural and the warranted growth rates are different, and this creates ever

increasing disequilibrium in the labor market. However, if we let income distribution reacts to

the disequilibrium in the labor market, the wage share can become the adjusting variable that

ensures the stability of employment: gL = gZ − f(ωss) = n.

The adjustment of income distribution in response to labor market dynamics is a mechanism

deeply rooted in different economic theories. This relationship draws inspiration from the profit

squeeze hypothesis, which posits that tightening labor markets strengthen workers bargaining

power, enabling them to secure higher wages and compress profit margins, thereby raising the

wage share of income (Goodwin, 1967; Marglin, 1984). Similarly, modern macroeconomic

models incorporating a wage-setting curve formalize this link by relating real wages – or the

wage share – to employment levels, where lower unemployment increases workers’ ability to

negotiate higher compensation (Blanchflower and Oswald, 1994; Carlin and Soskice, 2006).

These frameworks suggest that the wage share is not exogenously fixed but evolves endoge-

nously depending on labor market conditions. In this spirit, we formalize the wage share as a

positive function of the employment rate, introducing a feedback mechanism that enables the

convergence between the warranted and the natural rates of growth.

In particular, let us assume that the wage share is an increasing power function of the em-

ployment rate: ω = aeη; a, η > 0. Then, we have ω̇ = aηeη−1ė and ω̇/ω = η(ė/e), where η

is the constant elasticity of the wage share to the employment rate. The wage share becomes an
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additional state variable and its evolution, given e = Y/(AN), is described by the equation:

ω̇ = ωη(ė/e) = ωη (gY − f(ω)− n) .

The time derivative of (5) yields Ẏ = Ż
s(1−ω)−h +

(ḣ+sω̇)

(s(1−ω)−h)2
, so that gY = gZ + ḣ+sω̇

s(1−ω)−h .

If we then plug the output growth rate back into ω̇ and factor the terms depending on ω̇, we find

ω̇ = ωη
s(1− ω)− h

s(1− ω)− h− ηωs

(
gZ +

ḣ

s(1− ω)− h
− f(ω)− n

)
. (9)

We can couple (9) with (6) and (7) to form a three dimensional dynamical system in (z, h,ω).

The introduction of the new equation does not affect the steady-state solutions for hss and zss,

save for replacing ω̄ with ωss = f−1(gZ − n).

The new steady state features multiple relevant properties. First, it reconciles aggregate

demand and aggregate supply while fully retaining the demand-led nature of the model, as

long-run growth is anchored by the exogenous growth rate of autonomous consumption gZ .

This adds to contributions such as Fazzari et al. (2020) and Palley (2019), who obtain analogous

results while assuming that labor productivity growth is a positive function of the employment

rate rather than the wage share. On the other hand, our approach differs from the reconciliation

proposed by Allain (2021). He adopts a technical progress function similar to ours, but in his

analysis autonomos expenditure eventually depends on the exogenous growth rate of population,

so that the natural growth rate of the economy is ultimately supply driven.

Secondly, the model differs from the Sraffian supermultiplier model as income distribution

becomes endogenous. However, contrary to the Cambridge growth models criticized by Serrano

and Freitas (2017), growth remains fully demand-led in our framework. Even more importantly,

the wage share moves in the same direction as the growth rate. Rather than the standard trade-

off between growth and distribution featured in the Kaldor-Robinson analyses, we devised the

possibility of a win-win result where higher demand growth fosters faster technical change by

increasing employment and the wage share.

Finally, notice that even though the employment rate is stable in a steady-state equilibrium,

the stationarity conditions of the model do not pin down its equilibrium value. In the Appendix

we show that the equilibrium employment rate is:

ess =
e0[s(1− ω0)− h0]

s(1− ωss)− hss
exp

(
[gZ − n]tss −

ˆ tss

0
f(ω(τ)dτ

)
(10)
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where tss is the time when the system reaches the steady state; and e0, ω0, and h0 are the

starting values of the employment rate, the wage and investment shares. ess depends on the

initial levels of the employment rate, the wage and investment shares and it is thus subject to

path dependence. In fact, the model allows for a continuum of equilibrium employment rates

compatible with the triple (hss, zss, ωss). In the next section, Figure 3 shows that raising the

initial level of the employment rate makes the employment rate converge to a higher long-run

value.

4 Simulation results and stability

4.1 Parameter values and initial conditions

To illustrate the model dynamics, we choose a simple linear specification for gA = f(ω) (equa-

tion 3), assuming that f(ω) = αω. Accordingly, α measures the sensitivity of productivity

growth to changes in the functional distribution of income. Choosing a functional form of f(ω)

allows to calculate the non-trivial steady-state value of ωss as:

ωss =
gZ − n

α
. (11)

Parameter and exogenous variable values are drawn from the theoretical and empirical liter-

ature on the US economy, and are summarized in Table 1.

The model is calibrated on an annual basis, as reflected particularly in the values assigned to

the capital-capacity ratio v, the depreciation rate δ, and the growth rate of autonomous demand

gZ . Although the depreciation and growth rates explicitly incorporate a temporal dimension,

it is important to emphasize that the capital-capacity ratio also plays a key role in ensuring

consistency with an annual calibration. This stems from the fact that v represents a ratio between

a stock and a flow variable, as further discussed by Gallo (2022).

The normal rate of capacity utilization is set at un = 82.42%, following Setterfield and

Budd (2011). This figure aligns closely with empirical estimates for other advanced capitalist

economies; for instance, it is comparable to the value of 0.8104 reported by Gallo and Barbi-

eri Góes (2023) for the Euro Area. The capital-capacity ratio is taken from Fazzari et al. (2020),

who estimate a long-run capital-output ratio of 1.2 for the U.S. economy using BEA data on

non-residential investment and the capital stock; given un = 82.42%, this implies a capital-

capacity ratio of v = K
Yp

= K
Yn

· Yn
Yp

= 1.2× 0.8242 = 0.989, where Yn is output corresponding
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to the normal utilization rate. The annual depreciation rate is fixed at δ = 0.084 in line with

Fazzari et al. (2020), who provide a value that is consistent with empirical evidence for the U.S.

economy, as noted in their Supplementary Appendix. The annual growth rate of autonomous

demand, gZ , is set at 2.5%, consistent with the calibration adopted by Fazzari et al. (2020).

Population growth is assumed to be 1% per year, consistent with standard calibrations in

neoclassical growth models (Barro and Sala-i Martin, 2004) and roughly aligned with the aver-

age rate observed in the United States since 1980 (United Nations, 2024).

Given the values assigned to gZ and n discussed above, we set α to 0.025 to obtain an

equilibrium wage share of 60% (via equation 11), in order to be roughly in line with the observed

value in many high income countries.

Last, parameter γ is assigned a value of 0.1, consistent with previous simulation exercises

featuring accelarator dynamics (Nomaler et al., 2021; Gallo, 2022). The value of the elasticity

of the wage share to the employment rate is also set 0.1. Since there is no clear guidance on the

values of α, γ, and η, a numerical robustness analysis will be presented in subsection 4.3.

Table 1: Exogenous variables and parameter values

Par. Description Value

s Capitalists’ propensity to save 0.8

gz Growth rate of autonomous demand 0.025

un Normal rate of capacity utilization 0.8242

v Acceleration coefficient 0.989

δ Depreciation rate 0.084

n Population growth rate 0.01

α Sensitivity of productivity growth to distribution 0.025

γ Sensitivity of the investment share adjustment 0.1

η Elasticity of the wage share to the employment rate 0.1

Initial conditions are summarized in Table 2. We start from the steady-state positions for

the autonomous demand-to-capital ratio (z0 = zss) and the investment share (h0 = hss), equal

in the baseline to 15.75% and to 14.29%, respectively.2 To generate the model dynamics, we

introduce an exogenous distributive shock by setting the initial wage share 5% above its steady-

2It ought to be noted that these values are compatible with the empirical evidence (see e.g. Barbieri Góes 2024).
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state value of 60%, i.e. ω0 = 1.05 · ωss = 0.63.

Table 2: Initial Conditions

Variable Description Value

z0 Autonomous demand-capital ratio 0.1575

h0 Investment share 0.1429

ω0 Wage share 0.63

4.2 Simulation results

Given the parameter space and initial conditions discussed in the previous subsection, we can

now discuss simulation results.3 The full model we simulate is composed of equations (6), (7),

and (9) with f(ω) = αω, as illustrated above:



ż = z

[
gZ −

(
zh

s(1− ω)− h
− δ

)]
ḣ = hγ

(
zv

s(1− ω)− h
− un

)
ω̇ = ωη

s(1− ω)− h

s(1− ω)− h− ηωs

(
gZ +

ḣ

s(1− ω)− h
− αω − n

)
.

(12)

Figure 1 presents the 3D phase plane of the system. Starting from a positive wage share

shock, the model converges through dumpened fluctuations in the three endogenous variables to

its long-run position.

To get a better sense of the out-of-equilibrium dynamics, we plot the trajectories of the state

variables over time in Figure 2. The simulation illustrates how a positive distributive shock to

the wage share propagates through the system, generating cyclical adjustments with dampening

oscillations across all three endogenous state variables.

Over the traverse path, the initial positive shock to ω generates a demand increase through

the multiplier, yielding a surge in the short-run capacity utilization rate and in the short-run

growth rate. This produces an initial increase in h and a simultaneous reduction in z during the

early periods. Last, the distributive adjustment mechanism activates, with ω further increasing

in the early phase of the traverse (as the actual growth rate surpasses the natural rate), then
3The model is simulated in Python using the solve_ivp function from the scipy.integrate library. The

Runge-Kutta 45 (RK45) method is employed as the numerical integrator, which is an explicit, adaptive step-size
solver based on the Dormand-Prince formulation. This method is well-suited for smooth, non-stiff systems of ordi-
nary differential equations and allows for efficient and accurate computation of the models dynamic trajectories over
the chosen time horizon.
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Figure 1: 3D phase plane

triggering a wage share reduction due to the feedback effect on labor productivity growth, which

initiates a reversal of the adjustment process. The progressive decline in the wage share then

helps stabilize the dynamics of the investment share and the autonomous demand-capital ratio.

The dynamic trajectories exhibit oscillatory patterns with varying convergence speeds. As

autonomous demand growth falls short of capacity growth, z initially plunges below its steady-

state value (zss). Then, it rebounds sharply, overshooting the equilibrium, and continuing to

oscillate with gradually diminishing amplitude. Even after 400 periods, z has not fully stabi-

lized, though the oscillations have substantially dampened. Similarly, h displays pronounced

cyclical behavior, initially surging above its steady-state value (hss) in the early phase of the

traverse (when u∗ > un), before falling below it. The subsequent oscillations in h demon-

strate relatively faster convergence compared to the other variables, with minimal deviations

from equilibrium observed in the later periods of the simulation. Last, the wage share exhibits

the most persistent disequilibrium dynamics. Following its initial positive shock, ω increases

further before beginning a series of dampened oscillations around a gradually declining trend.
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This cyclical adjustment process illustrates the feedback mechanisms between distribution

and growth in the model. The simulation demonstrates that while the system tends toward its

equilibrium configuration, the adjustment process requires substantial time, particularly for the

distributive variables.

On the other hand, the dynamics of the employment rate (figure 3) shows no convergence

to a predetermined equilibrium value, as it is characterized by path dependence. As illustrated

above (equation 10) and in the Appendix, the equilibrium employment rate chiefly depends on

its initial condition. History thus affects employment dynamics: starting from a higher employ-

ment rate (e0 = 0.68) allows to maintain a higher utilization of labor at any time step both in

the transitional dynamics and in equilibrium compared to a lower initial state (e0 = 0.58).
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Figure 3: The trajectory of the employment rate with different e0

4.3 Robustness of the stability analysis

Following the methodology adopted by Nomaler et al. (2021), we examine the robustness of the

local stability properties of the system by performing a grid search over the parameter space.

Conducting such an analysis across the full set of parameters would be both computationally

intensive and of limited analytical value. We therefore restrict our focus to a subset of parameters

for which no clear guidance is available from either the theoretical or empirical literature –

namely, the adjustment speed of the investment share to deviations in the capacity utilization
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rate (γ), the elasticity of the wage share to the employment rate (η), and the sensitivity of

productivity growth to changes in the functional distribution of income (α). Parameters that are

well-anchored in prior research are held constant at their baseline values, as discussed above.

Specifically, we vary γ in the interval [0, 0.4], η in the range [0, 0.5], and α between [0, 0.1],4

using 100 evenly spaced points along each dimension. For each combination of parameters, we

numerically compute the eigenvalues of the Jacobian matrix evaluated at the steady state.

The resulting stability maps are shown in the 2D plane in Figure 4, and in 3D in Fig-

ure 5. This sampling of the parameter space allows us to systematically evaluate how different

combinations of (γ, η, α) influence the system stability. We restrict our analysis to economi-

cally meaningful steady states, excluding from consideration all combinations of parameters for

which: (1) the Keynesian stability condition is violated (s(1−ωss)−hss < 0), (2) zss, hss, ωss

are negative, or (3) ωss > 1. In such cases, the Jacobian matrix is not computed, and these

parameter constellations are represented by white areas in Figure 4.

4Although the range for α may appear narrow, this restriction is justified by the crucial role the parameter
plays in determining the steady-state wage share ωss (see equation 11). Specifically, for higher values of α – given
plausible values of gZ and n – the wage share in the steady state converges toward zero, i.e., ωss → 0. To avoid
economically implausible outcomes, we cap α at 0.1, which already corresponds to a very low wage share of 0.125.
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Figure 4: Stability maps for different values of α, γ, and η

The stability maps reveal that system stability is particularly sensitive to (γ, η), with in-

stability arising when both parameters take relatively high values. This underscores that one

key assumption regarding baseline supermultiplier models holds true even within our extended

framework: Harrodian instability must not be too strong. In other terms, γ must remain fairly
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low to ensure that induced investment does not adjust capacity to demand too quickly outside

its fully adjusted position (Freitas and Serrano, 2015; Serrano and Freitas, 2017; Gallo, 2022).

Regarding η, higher values tend to destabilize the model, amplifying the reaction of the wage

share to changes in the employment rate. In contrast, α appears to play a stabilizing role across

most of parameter space; instability emerges only when it becomes very small, as illustrated in

both (η, α)- and (α, γ)-planes. Therefore, unlike the destabilizing role of γ and η, the strength

of the induced innovation mechanism plays a key role in taming Harrodian instability.
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Figure 5: 3D Stability map for different values of α, γ, and η

The 3D stability map (Figure 5) provides a more comprehensive view of how these three pa-

rameters interact to define stable regions, highlighting that achieving stability requires balancing

all three parameters simultaneously. Moderate values of η and low-to-intermediate values of γ

are conducive to stability when coupled with sufficiently high values of α.
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5 Conclusion

This paper has developed a supermultiplier growth model augmented with induced technical

change to address both of Harrod’s problems in growth theory. By integrating these two comple-

mentary mechanisms, we have shown how a demand-led growth framework can simultaneously

resolve Harrodian instability and reconcile demand-led growth with supply constraints.

The model achieves twin stabilization. The interplay between the supermultiplier and the

induced technical change mechanisms simultaneously ensures that: i) demand shocks are ab-

sorbed through changes in the investment share, thus allowing capital accumulation to adjust

to the exogenously given growth rate of autonomous expenditures; ii) productivity growth re-

sponds to distributive pressures arising from labor market imbalances, thereby aligning the nat-

ural rate of growth with the warranted rate. In the long run, actual, warranted and natural growth

rates are equalized so that both Harrod’s problems are addressed.

Our analysis demonstrates that the model can sustain normal capacity utilization and sta-

ble employment rates without surrendering to supply-side determinism. Growth remains fully

demand-led in our framework, with the dynamics of autonomous non-capacity creating compo-

nents of aggregate demand anchoring the long-run growth rate. Notably, our model presents an

important departure from traditional growth-distribution trade-offs, as higher demand growth

can foster faster technical change by increasing employment and the wage share, creating a

potential win-win scenario. Furthermore, a feature of our model is that while the employment

rate stabilizes in the steady state, its equilibrium value exhibits path dependence, being deter-

mined by the initial conditions of the system. This generates indeterminacy of the long-run

employment equilibrium.
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A Appendix

A.1 Stability Analysis: 2D case

Linearization of the dynamical system formed by equations (6) and (7) around its steady

state yields the following Jacobian matrix:

J(zss, hss) =

 żz żh

ḣz ḣh


ss

=

 J11 J12

J21 J22

 ,

where J11 = −(gZ + δ), J12 = −s(1 − ω)
(
un
v

)2
,J21 = γv(gZ + δ)/zss, J22 = γun(gZ +

δ)/zss. We can calculate the determinant of J as: DetJ = J11J22 − J21J12 = γun(gZ +

δ)/zss
[
s(1− ω)un

v − (gZ + δ)
]
= γun(gZ + δ) > 0. On the other hand, the trace of J is

TrJ = J11 + J22 = (gZ + δ) [γun/zss − 1] . Hence, γ < zss/un =s(1−ω)/v− (gZ + δ)/un

ensures that the trace of Jacobian matrix is negative and the system is locally stable.

A.2 Stability Analysis: 3D Case

Linearization of the dynamical system formed by equations (6), (7) and (9) around its

steady-state position yields the following Jacobian matrix

J(zss, hss, ωss) =


żz żh żω

ḣz ḣh ḣω

ω̇z ω̇h ω̇ω


ss

=


J11 J12 J13

J21 J22 J23

J31 J32 J33

 ,

where J11 = −(gZ + δ), J12 = −s(1 − ω)
(
un
v

)2
, J13 = −s(gZ + δ)un/v,J21 = γv(gZ +

δ)/zss, J22 = γun(gZ + δ)/zss, J23 = sγun(gZ + δ)/zss,J31 = ωη
s(1−ω)−h−ηωsJ21, J32 =

ωη
s(1−ω)−h−ηωsJ22, J33 = ωη

s(1−ω)−h−ηωs (J23 − f ′(ω) (s(1− ω)− h)) .

The Routh-Hurwitz necessary and sufficient conditions for stability cannot be established

purely analytically. We have proceeded to calibrate and simulate the model to investigate its

stability properties.

A.3 Time path of the employment rate

Let us solve the differential equation ė = e
(
gZ + ḣ+sω̇

s(1−ω)−h − f(ω)− n
)

. We start by setting

D = s(1 − ω) − h, so that the term ḣ+sω̇
s(1−ω)−h can be rewritten as ḣ+sω̇

D = − Ḋ
D = − d

dt lnD.

Substituting this back into the original equation, we get: ė/e =
(
gZ − d

dt lnD − f(ω)− n
)
.
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Rewriting the left-hand side as the logarithmic derivative: d
dt ln e = gZ− d

dt lnD−f(ω)−n. In-

tegrating both sides with respect to time : ln e+k0 = − lnD+k1+
´
[gZ−f(ω(t))+n]dt; hence,

ln e+lnD = ln(eD) = k1−k0+[gZ−n]t−
´
f(ω(t)dt ≡ k2+[gZ−n]t−

´
f(ω(t)dt. Expo-

nentiating the second and the last element in the equality chain and making the time dependence

explicit: e(t)D(t) = exp
(
k2 + [gZ − n]t−

´
f(ω(t)dt

)
= k3 exp

(
[gZ − n]t−

´
f(ω(t)dt

)
,

where k3 ≡ ek2 . Since [gZ − n]0−
´ 0
0 f(ω(t)dt = 0, we can calculate

e(0)D(0) = k3 exp

(
[gZ − n]0−

ˆ 0

0
f(ω(t)dt,

)
= k3.

Hence, substituting D(t) = s(1− ω(t))− h(t), the final solution is:

e(t) =
e(0)[s(1− ω(0))− h(0)]

s(1− ω(t))− h(t)
exp

(
[gZ − n]t−

ˆ t

0
f(ω(τ))dτ

)
.

If we call tss the moment the system reaches the steady state, the equilibrium employment

rate will be

e(tss) =
e(0)[s(1− ω(0))− h(0)]

s(1− ωss)− hss
exp

(
[gZ − n]tss −

ˆ tss

0
f(ω(τ)dτ

)
,

and it will thus depend on the initial conditions of the system.
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