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Abstract 

 

Financial market data are known to be far from normal and replete with outliers, i.e., “dirty” 

data that contain errors. Data errors introduce extreme or aberrant data points that can 

significantly distort parameter estimation results. This paper proposes a robust estimation 

approach to achieve stable and accurate results. The robust estimation approach is 

particularly applicable for financial data that often features the three situations we are 

protecting against: occasional rogue values (outliers), small errors and underlying non-

normality. 
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1. Introduction 

 

Simulation is widely used in financial markets for valuation and risk management. 

Market data that affect a financial product value and risk may change over time and 

impact the profit and loss of the trade. These market data called risk factors may need to 

be simulated for value assessment and risk management. 

 

A simulation engine normally performs Monte Carlo simulation for all risk factors in any 

combination. This process will consist of successive evaluations of simulation models 

through time and will be generally path dependent. Those models will be fed by 

correlated random numbers and parameters obtained from calibration process. 

 

Most financial valuation and risk models are based on the assumption of multivariate 

normality. But the real market data distributions are rarely normal. Instead, they usually 

have fat tails and ae contaminated by outliers. As such, the traditional estimation methods 

that are optimal for uncontaminated clean data have difficult to correctly be applied to 

actual market date due to outlier, missing points, and fat tails. 

 

In order to achieve stable estimation of financial market data, the robust parameter 

estimation is deemed necessary. Robust estimation is an estimation technique which is 

insensitive to small departures from model assumptions, such as outliers. Robust means 

that changing a small part, even by a large amount, of the data does not cause a large 

change in the estimate. 

 

There is a vast literature regarding robust parameter estimation. Xu et al. (2014) introduce 

a robust method to estimate the g- and -h distribution for risk management and stock return 

analysis. They use the model to obtain base distribution for outlier detection, 



Bassik et al. (2025) present a new approach for estimating parameters in rational ODE 

models from measured time series data. The approach does not suffer from non-robustness 

and does not require making good initial guesses. 

 

Wang et al. (2015) propose several simple closed-form and robust estimators and study the 

breakdown points and asymptotic properties of the proposed estimators. Liu et al. (2021) 

present a novel Kalman robust smoother by introducing a specific reweighting approach to 

estimate the system parameters as well as the states when the nominal noise covariances 

are known. 

 

Fujisawa (2013) discusses a robust parameter estimation for reducing a bias caused by 

outliers and uses a normalized estimating equation that is corrected to ensure that the mean 

of the weight is one. 

 

Johnson et al. (2024) propose a hybrid estimation algorithm that guarantees convergence 

of the parameter estimate to the true value. The estimator is input-to-state stable with 

respect to a class of hybrid disturbances. 

 

Liu et al. (2021) consider estimation problems involving constrained nonlinear systems 

with the unknown time-delays and unknown system parameters and propose a robust 

estimation formulation. 

 

Guney (2025) employs the maximum Lq-likelihood estimation method that provides robust 

parameter estimation and further introduces the penalized Lq-likelihood method to select 

significant variables. 

 

Zhu et al. (2021) propose a joint estimation and robustness optimization framework to 

mitigate estimation uncertainty in optimization problems by seamlessly incorporating both 

the parameter estimation procedure and the optimization problems. 

 



This paper presents a robust estimation approach for financial simulation to achieve stable 

and accurate results. The methods are particularly applicable for financial data that often 

are often deteriorated by outliers, errors and underlying non-normality. It is a powerful tool 

for stable evaluation of statistical parameters. 

 

We derive an estimation error formula for the case when the exact shape of the data 

distribution is unknown. We also propose an algorithm to find the closest correlation matrix 

to a given matrix when traditional correlation estimators cannot guarantee the positivity of 

the correlation decomposition. 

 

The approaches are insensitive to a small number of large departures from model 

assumptions. The model ensures that changing a few samples in the data, even by a large 

amount, does not cause a large change in estimates. 

 

The rest of this article is organized as follows: First we describe the robust estimation 

approaches. Second, we discuss the details of implementation. Then, we present the 

empirical results. Finally, the conclusions are provided. 

 

 

 

2. Robust Estimation 

 

Robust estimations have been used in data modelling for decades. The first robust estimator 

is arguably the linear regression based on combination of sample variance and the sum of 

absolute values in the tails. However, the estimator does not satisfy all the robustness 

criteria. 

 

The sensitivity of an estimator to unbounded outliers is usually quantified using the 

breaking point that is defined as the fraction of points in samples whose unbounded errors 

do not send the total variance of the parameter estimation to infinity.  

 



In terms of the breaking point, the most robust estimators are median absolute deviation 

(MAD) and interquartile distance (IQD). In this paper, we propose an integrated Median 

Absolute Deviation (MAD) algorithm that is a robust measure of the variability of a 

univariate sample of quantitative data.  

 

The MAD for a univariate date set 𝑋1,𝑋2,…,𝑋𝑛 is defined as 

 𝑀𝐴𝐷𝑋 = 𝑚𝑒𝑑{[𝑋 − 𝑚𝑒𝑑𝑋]}     (1) 

where 𝑚𝑒𝑑𝑥 is the median of the time series 𝑥𝑖 

 

There is a constant scale factor between the standard deviation 𝜎 and the MAD, i.e. 

 𝜎 =
𝑀𝐴𝐷𝑋

𝐾
       (2) 

 

We extend the univariate MAD into the bivariate case. Define a bivariate MAD for two 

random variables X and Y as 

 𝑀𝐴𝐷𝑋𝑌 = 𝑚𝑒𝑑 {
[𝑋−𝑚𝑒𝑑𝑋][𝑌−𝑚𝑒𝑑𝑌]

𝜎𝑋𝜎𝑌
}    (3) 

 

Many financial market data have extended period of so-called sticky prices, over which the 

value of the time series does not change and hence the returns are zero. Another group of 

estimators are based on a certain way of data trimming. Data trimming methods heavily 

depend on the number of points trimmed, which effectively becomes the major parameter 

of the estimator and stipulates its breaking point. 

 

The statistical median is an order statistic that gives the ‘middle’ value of a population 

sample.  That is, the value such that an equal number of samples are less than and greater 

than the value. 

 

The median is less sensitive to outliers than the mean, making it useful as a robust 

estimation technique.  A robust estimator is insensitive to small perturbations from 

identical assumptions such as those encountered in noisy and infrequently sampled 

financial data.   



 

Assume that Y is equal to X. Then we have 

 𝑀𝐴𝐷𝑋𝑋 = 𝑚𝑒𝑑 {
[𝑋−𝑚𝑒𝑑𝑋]

2

𝜎𝑋
2 }     (4) 

 

Extending from the univariate MAD, we assume that there is a constant scale factor 

between the variance 𝜎𝑋
2 and 𝑚𝑒𝑑[(𝑋 − 𝑚𝑒𝑑𝑋)

2]. The variance 𝜎𝑋
2 of X can be estimated 

by 

 𝜎𝑋
2 =

𝑚𝑒𝑑[(𝑋−𝑚𝑒𝑑𝑋)
2]

𝐾
     (5) 

 

The K can be calibrated by taking the error minimization as 

 𝑚𝑖𝑛|𝜎𝑋
2 −𝑚𝑒𝑎𝑛((𝑋 −𝑚𝑒𝑑𝑋)

2)|    (6) 

 

For real time-series data, we can easily calculate 𝑀𝐴𝐷𝑋𝑋 and then get 𝜎𝑋
2 according to (5). 

 

Pearson’s correlation is probably one of the most used statistical quantities. But it can 

seriously be affected by only one outlier. Its influence function is unbounded. There are 

several categories of the robust correlation estimations. They are median correlation 

measures, rank correlation measures, and Winsorized correlation measures. 

 

Median correlation utilizes the median and a generalization of the MAD (median absolute 

deviation). The most popular median correlation statistics are Quadrant correlation and 

Percentage Bend Correlation. 

 

Rank correlation is the study of relationships between different rankings on the same set 

of items. A rank correlation coefficient measures the correspondence between two 

rankings and assesses its significance. Two of the most popular rank correlation statistics 

are Kendall’s tau and Spearman’s rho. 

 

Winsorizing or Winsorization is the transformation of statistics by transforming extreme 

values in the statistical data. A typical strategy is to set all outliers to a specified 



percentile of the data. Note that Winsorizing is not equivalent to trimming that simply 

excludes data. 

 

In a trimmed estimator, the extreme values are discarded; in a Winsorized estimator, the 

extreme values are instead replaced by certain percentiles. 

 

Extending from the univariate MAD, we also assume that there is a constant scale factor 

between the correlation 𝜌 and the 𝑀𝐴𝐷𝑋𝑌, that is 

 𝜌 =
𝑀𝐴𝐷𝑋𝑌

𝐾
       (7) 

 

Assume that 𝑍1 and 𝑍2 are independent t-distribution random variables (0 mean, 1 variance, 

and D degree of freedom). We can construct two correlated random variables X and Y with 

a correlation 𝜌 such as 

 𝑋 = 𝑍1 

 𝑌 = 𝜌𝑍1 +√1 − 𝜌2𝑍2      (8) 

 

We can calculate the bivariate 𝑀𝐴𝐷𝑋𝑌 according to (3). Therefore, we can build a 

relationship between the 𝜌 and the 𝑀𝐴𝐷𝑋𝑌.  

 

When 𝜌 =1, 𝐾 = 𝑀𝐴𝐷𝑋𝑌. Based on the known K, we can calibrate the freedom D of the t-

distribution by setting 𝐾 = 𝑀𝐴𝐷𝑋𝑌. 

 

After computing the calibrated freedom D, we can re-construct the two independent t-

distribution random variables 𝑍1 and 𝑍2. The two correlated variables X and Y will be 

generated by recognizing the fact that the correlation increases when X and Y become 

bigger. The construction is given by 

𝑋 = 𝑍1 

𝑌 = 𝜌̃𝑍1 +√1 − 𝜌̃2𝑍2 

where 



{

𝜌̃ = 𝜌 + 𝑓(√𝑋2 + 𝑌2) × (1 − 𝜌)  𝑖𝑓 𝜌 > 0

𝜌̃ = 𝜌 − 𝑓(√𝑋2 + 𝑌2) × (1 + 𝜌)  𝑖𝑓 𝜌 < 0

   (9) 

𝑓(𝑍) =
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛(𝛽𝑍) 

 

Next, we can build a relationship in the form of a lookup table between 𝜌 and  𝑀𝐴𝐷𝑋𝑌 for 

each 𝛽. 

 

Based on real time-series data, we can estimate 𝛽 by computing the error minimization as 

 𝑚𝑖𝑛[𝑚𝑒𝑎𝑛(𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝐶𝑜𝑟 − 𝑀𝑎𝑑𝐶𝑜𝑟)]    (10) 

 

where PearsonCor is the Pearson correlations and MadCor is the correlation estimated by 

searching the lookup table. After we know the 𝛽, we can finally create the lookup table 

between the 𝜌 and the 𝑀𝐴𝐷𝑋𝑌. 

 

The distribution is estimated as a t-distribution with degrees of freedom parameter ν= 4.5.  

The value of ν was selected by calculating the estimation error in recovering a known 

volatility from simulated data from a t-distribution. The estimation error was shown to 

exhibit a small spread across all input distributions with ν > 2 for values of the estimation 

parameter 4 ≤ν ≤ 5.  

 

Consider a stochastic representation of a t-distributed random variable, 
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where Zt are independent standard normal variables that are also independent of St, and St 

are independent  χ2
 ν/( ν-2) random variables. We can determine an iterative scheme for 

calculating the mean and variance of the distribution. The following set of equations is 

solved iteratively, converging to σ-hat, μ-hat for sufficiently large k, 
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where ν is the degree of freedom and is set to 4.5 

 

The original estimate does not affect the final result of the iterations, but only the number 

of iterations, i.e., rate of convergence.  The current version uses the sample median and 

sample standard deviation as the starting point for the mean and volatility respectively.  

The iterations are repeated until the following convergence criterion is met: 
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3. Implementation Procedure 

 

The calibration procedure consists of several steps: First, the calibration of K in equation 

(5) is based on real time-series data. For risk factor (time-series) X, we calculate the 

𝑀𝐴𝐷𝑋𝑋 according to (4) and the 𝑚𝑒𝑎𝑛((𝑋 −𝑀𝑒𝑑𝑋)
2). The variance V can be estimated 

following (5). Then the K can be estimated by taking the error minimization (6). 

 

Next, the calibration of freedom D of the t-distribution is based on Monte-Carlo simulation. 

We construct two independent t-distribution random variables 𝑍1 ~ t(D, 0, 1) and 𝑍2 ~t(D, 

0, 1). Furthermore, we can set two correlated random variables X and Y with correlation 𝜌 

according to (8). 

 



By changing 𝜌 and then calculating 𝑀𝐴𝐷𝑋𝑌, we can build the relationship between 𝜌 and 

𝑀𝐴𝐷𝑋𝑌. There are different relationship lookup tables for different freedoms. Then the 

freedom of the t-distribution can be estimated by setting 𝐾 = 𝑀𝐴𝐷𝑋𝑌 in the case of 𝜌 = 1. 

 

Then the calibration of beta 𝛽 combines Monte-Carlo simulation and real time-series data. 

Based on the freedom of the t-distribution determined above, we re-generate 𝑍1 and 𝑍2. 

Then we can construct X and Y according to (9). If 𝛽 is known, we can build the 

relationship lookup table between the 𝜌 and the 𝑀𝐴𝐷𝑋𝑌. 

 

For real time-series data, we can get robust correlations by looking up the table and also 

calculate Pearson correlations. The 𝛽 can be estimated by taking the error minimization 

(10). 

 

Finally, we can create a relationship lookup table between the 𝜌 and the 𝑀𝐴𝐷𝑋𝑌 based on 

𝛽. 

 

4. Numerical Results 

 

To verify the assumption that there is a constant scale factor between the correlation 𝜌 and 

the 𝑀𝐴𝐷𝑋𝑌, we conduct some convergence tests. If the 𝑀𝐴𝐷𝑋𝑌 converges to a constant, 

we believe that we prove the assumption empirically. The convergence results are shown 

in Table 1. The Figure 1 shows the case where freedom=4. 

 

Table 1 Convergence results for 𝜌 = 0.5 (n ~ freedom) 

N 

MAD 

n=3 n=3.5 n=4 n=4.5 n=5 

100 0.079727 0.096331 0.109184 0.117092 0.123175 

200 0.079664 0.09697 0.108736 0.116778 0.122957 

300 0.079735 0.096989 0.108652 0.116994 0.123148 

400 0.079747 0.097028 0.108591 0.117023 0.123103 



500 0.079686 0.096991 0.108645 0.116964 0.123127 

600 0.079682 0.096998 0.108675 0.116984 0.123137 

700 0.07967 0.097024 0.108669 0.116958 0.123129 

800 0.079669 0.097025 0.108655 0.116979 0.123146 

900 0.07966 0.097025 0.108671 0.11694 0.123136 

1000 0.079674 0.097017 0.108646 0.116932 0.123139 

1100 0.079693 0.097039 0.108657 0.116958 0.123125 

1200 0.079702 0.097035 0.108656 0.116968 0.123136 

1300 0.079685 0.097025 0.10866 0.116952 0.123129 

1400 0.07968 0.097024 0.108665 0.116955 0.12314 

1500 0.079686 0.097025 0.108663 0.11695 0.123125 

 

 

 

Figure 1: Convergence results of MAD correlation  

(N ~ number of grids, n ~ number of freedom) 

  

n=4

0.1085

0.1086

0.1087

0.1088

0.1089

0.109

0.1091

0.1092

0.1093

0 500 1000 1500 2000

N

M
A

D

n=4



The table and figure tell us that the estimator is resistant to outliers. It is not sensitive to 

the distribution assumption and at the same time not very sensitive to the number of degrees 

of freedom.  

 

The relationship lookup table between the 𝜌 and the 𝑀𝐴𝐷𝑋𝑌 according to (8) is shown in 

Table 2. Figure 2 shows the case where freedom=4. 

 

Table 2: MAD vs Correlation (n ~ freedom) 

rho 

MAD 

n=3 n=3.5 n=4 n=4.5 n=5 

-1 -0.19502 -0.24168 -0.27432 -0.29839 -0.31685 

-0.95 -0.18039 -0.22338 -0.25343 -0.27558 -0.29255 

-0.9 -0.1675 -0.20707 -0.23466 -0.25495 -0.27047 

-0.85 -0.15529 -0.19171 -0.21693 -0.23548 -0.24962 

-0.8 -0.1436 -0.17695 -0.19998 -0.21684 -0.22968 

-0.75 -0.13226 -0.16271 -0.1836 -0.19887 -0.21045 

-0.7 -0.12123 -0.14882 -0.16778 -0.1815 -0.19185 

-0.65 -0.11048 -0.13536 -0.15235 -0.16466 -0.17388 

-0.6 -0.09998 -0.12225 -0.13739 -0.14828 -0.15641 

-0.55 -0.08971 -0.10947 -0.12283 -0.13234 -0.13953 

-0.5 -0.07967 -0.09702 -0.10865 -0.11693 -0.12314 

-0.45 -0.0699 -0.08492 -0.09491 -0.10201 -0.10729 

-0.4 -0.06038 -0.07316 -0.08163 -0.08761 -0.092 

-0.35 -0.05114 -0.0618 -0.0688 -0.07374 -0.07735 

-0.3 -0.0422 -0.05085 -0.05649 -0.06044 -0.06333 

-0.25 -0.03363 -0.04037 -0.04476 -0.04779 -0.05003 

-0.2 -0.02545 -0.03045 -0.03368 -0.03591 -0.03755 

-0.15 -0.01779 -0.0212 -0.0234 -0.02492 -0.02602 

-0.1 -0.01075 -0.01277 -0.01407 -0.01496 -0.01562 

-0.05 -0.0046 -0.00545 -0.006 -0.00638 -0.00666 



0 

-3.44E-

20 

-4.30E-

20 

-4.90E-

20 

-5.40E-

20 

-5.80E-

20 

0.05 0.004596 0.005452 0.005998 0.006384 0.006661 

0.1 0.010754 0.012769 0.014066 0.01496 0.01562 

0.15 0.017786 0.021196 0.023396 0.024922 0.026021 

0.2 0.025449 0.030451 0.033676 0.035914 0.037551 

0.25 0.033626 0.040371 0.044765 0.047795 0.05003 

0.3 0.042203 0.050851 0.056488 0.06044 0.063326 

0.35 0.051142 0.061801 0.068799 0.073743 0.077352 

0.4 0.060379 0.073157 0.081628 0.087614 0.091996 

0.45 0.069905 0.084922 0.094915 0.10201 0.107289 

0.5 0.079674 0.097017 0.108646 0.116932 0.123139 

0.55 0.089708 0.109473 0.12283 0.13234 0.13953 

0.6 0.099984 0.122248 0.137393 0.148277 0.156406 

0.65 0.110485 0.135362 0.152346 0.164655 0.173881 

0.7 0.121229 0.148824 0.167781 0.181504 0.191846 

0.75 0.132265 0.162706 0.183605 0.19887 0.210453 

0.8 0.143596 0.176947 0.199984 0.216842 0.22968 

0.85 0.15529 0.191706 0.216934 0.23548 0.24962 

0.9 0.167501 0.207073 0.234663 0.254945 0.270472 

0.95 0.18039 0.223377 0.253433 0.275585 0.292552 

1 0.195022 0.241677 0.274319 0.298388 0.316847 

 

 



 

Figure 2 Relationship between correlation and MAD 

(t distribution: freedom n=4) 

 

The above table and figure show the error relative to the estimated correlation for different 

degrees of freedom. The relationship between correlation and MAD is also plotted. They 

also show that the estimators with the degrees of freedom between 4.5 and 5 are practically 

indistinguishable. At the same time, all estimators shown above are relatively insensitive 

to the data contamination. 

 

Consider an example of financial time series drawn from the commodity market. The data 

source consists of natural gas NYMEX futures and forwards on a pipeline from Jan 2015 

to Sept 2022. The estimated parameters for commodity are: K = 0.33, Freedom D = 5.43 

and 𝛽 = 0.1455. The estimated errors are: 

 

Table 3: estimated errors for commodity market data 

 

Mean STD Max Min SSE 

1.5864e-005 0.1002 0.7434 -0.5866 218.2184 
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The final relationship between the 𝜌 and the 𝑀𝐴𝐷𝑋𝑌 is shown in Figure 3. 

 

 

 

Figure 3: 𝜌 vs 𝑀𝐴𝐷𝑋𝑌 for commodity 

 

The volatility correction is derived from the implied volatility time series.  The average 

implied volatility is calculated for each pipeline (NG, AECO, CHCG, ELSAN, NWROC, 

PAN, SOCAL) by simply taking the average of the 9-year time series.  Then, the average 

implied volatility for a given calendar month is calculated by averaging implied 

volatilities in the time series that fall within that month.  This is repeated for each 

calendar month, resulting in 12 calendar month average volatilities for each of the 7 

pipelines listed above.  The volatility correction is then given by the following ratio: 

 

average

monthC



= . 

 

We also use real interest rate data to test the model. There are essentially two types of IR 

curves provided in the feeds, so called ‘dependent’ or ‘basis’ curves and ‘derived’ curves. 

The rates for ‘dependent’ curves are obtained by adding the spreads of ‘dependent’ 

MAD vs Rho 
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curves on top of their corresponding ‘base’ curves. However, the rates supplied in the 

feeds for the ‘dependent’ curves are already ‘base + spread’ values, and therefore, there is 

no need for conversion. 

 

Interest rates are calculated under certain day count and compounding rules. In a case 

ACT/ACT day count rule is used, the appropriate way to calculate particular discount 

factor or rate is to calculate actual # of days for each year covered by the period of 

interest. For example, 2016 will be a leap year, so if today is 15 Dec 2015, and the period 

of interest t  ends on 20 Jan 2016, the appropriate dt /  calculation would be 

366/20365/16/ +=dt . However, since every fourth year is a leap year, a common way to 

simplify the calculations in this case is to use a rule of ACT/365.25, i.e. assume that 

every year has a fixed # of days of 365.25. The last tab of the attached shows this is a 

very good approximation, and can be used till time allows for proper implementation of 

ACT/ACT rule. 

 

The assumption is that the rates of all IR curves should be converted to their continuously 

compounded equivalents, while keeping the same day count rule. The idea of converting 

and saving the rates to follow both continuous compounding and ACT/365 day count rule 

is to be considered. Namely, by doing so, we might increase computational efficiency as 

the pricing formulas will be assuming the input rates always respect the same 

conventions.  

 

The data source consists of interest rate curves from Jan 2015 to Sept 2022.The estimated 

parameters for interest rates are: K = 0.1, Freedom = 2.4, and 𝛽 = 0.0912 

 

Table 4: estimated errors for interest rate market data 

 

Mean STD Max Min SSE 

-5.1729e-005 0.1166 0.8892 -0.4685 32.8291 

 

The final relationship between the 𝜌 and the 𝑀𝐴𝐷𝑋𝑌 is shown in Figure 4. 



 

 

 

Figure 4: 𝜌 vs 𝑀𝐴𝐷𝑋𝑌 for interest rates 

 

The equity market data of interest can be subdivided into price-related data, dividends, 

rebates, and volatility surfaces. Note that when price-related data is in question, the market 

data are the last prices. 

 

Equity prices are classified by the security ticker, exchange code and currency.  The 

market prices of individual stocks and indices and their dividend information are required 

to price equity derivatives.  The dividend can be reported as cash dividend or dividend 

yield (see https://finpricing.com/lib/EqBarrier.html).   

 

The data source consists of equity last prices from Jan 2015 to Sept 2022. For each equity 

name, the integrity of the return series is checked against some criteria.  The max allowed 

missing sets the maximum allowable ratio of values within a return series that fail to meet 

the criteria.   

 

The estimated parameters for equity are: K = 0.271, Freedom = 3.94, and 𝛽 = 0.1374. 
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Table 4: estimated errors for equity market data 

 

Mean STD Max Min SSE 

8.2619e-005 0.0856 0.6319 -0.3840 76.4512 

 

The final relationship between the 𝜌 and the 𝑀𝐴𝐷𝑋𝑌 is shown in Figure 5. 

 

 

 

Figure 5: 𝜌 vs 𝑀𝐴𝐷𝑋𝑌 for interest rates 

 

We show the robustness comparison results below. It can be seen that the MAD approach 

has the smallest sum of squired changes (SSC) that means it has the best robustness. 

 

Table 2: Robustness Comparison (Outliers occur, SSC = Sum of Squired 

Changes) 

 MAD Pearson Kendal Tau median correlation 

𝝆𝑿𝒀 value change value change value change value change 

1 0.45530 0 1 0 0.99988 0 1.00000 0 

0.9 0.39483 0.00872 1 0.10000 0.89461 -0.00574 0.89995 0.00059 

0.8 0.33001 0.00755 1 0.20000 0.79707 -0.00323 0.79912 -0.00061 

0.7 0.27181 0.00643 0.999999 0.30000 0.69999 0.00006 0.70004 -0.00068 

0.6 0.21974 0.00762 0.999999 0.40000 0.60388 0.00428 0.60225 0.00508 

Rho vs MAD 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 

MAD 

Rho 



0.5 0.17070 0.00740 0.999999 0.50000 0.50814 0.00876 0.49887 -0.00102 

0.4 0.12600 0.00687 0.999997 0.60000 0.41261 0.01333 0.39847 -0.00212 

0.3 0.08690 0.00615 0.99999 0.69999 0.31723 0.01790 0.30193 0.00342 

0.2 0.05224 0.00451 0.99999 0.79999 0.22206 0.02237 0.20234 0.00322 

0.1 0.02359 0.00394 0.99995 0.89995 0.12707 0.02667 0.09990 0.00129 

0 0 0 0 0 0 0 0 0 

-0.1 -0.02359 -0.00406 -0.99995 -0.89995 -0.12707 -0.02667 -0.09990 -0.00129 

-0.2 -0.05224 -0.00504 -0.99999 -0.79999 -0.22206 -0.02237 -0.20234 -0.00322 

-0.3 -0.08690 -0.00622 -0.99999 -0.69999 -0.31723 -0.01790 -0.30193 -0.00342 

-0.4 -0.12572 -0.00663 -1 -0.60000 -0.41261 -0.01333 -0.39847 0.00212 

-0.5 -0.17069 -0.00750 -1 -0.50000 -0.50814 -0.00876 -0.49887 0.00102 

-0.6 -0.21974 -0.00767 -1 -0.40000 -0.60388 -0.00428 -0.60225 -0.00508 

-0.7 -0.27181 -0.00660 -1 -0.30000 -0.69999 -0.00006 -0.70004 0.00068 

-0.8 -0.33001 -0.00783 -1 -0.20000 -0.79707 0.00323 -0.79912 0.00061 

-0.9 -0.39483 -0.00892 -1 -0.10000 -0.89461 0.00574 -0.89995 -0.00059 

-1 -0.45530 0 -1 4.218E-14 -0.99988 0 -1.00000 0 

SSC  0.000832  5.69976  0.00370  0.00111 

 

 

5. Conclusion 

 

The most important statistical performance criteria are robustness, resistance and 

efficiency. In the statistical context resistance refers to the degree of tolerance of a 

statistical technique to the presence of outliers. Efficiency is a relative measure of 

sampling variability. It relates some technique of interest to some standard/traditional 

technique. Robustness refers to insensitivity with regard to an underlying assumed 

probability model. 

 

This paper proposes an integrated parameter estimation approach for both variance and 

correlation that are using in financial simulation. The approach is a robust measure of the 

variability of a univariate sample of financial market data.  

 

The approach is very well fit for calculating volatilities and correlations for financial time 

series. It is resistant to outliers, not sensitive to the distribution assumption, and at the 

same time not very sensitive to the number of the degrees of freedom.  
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