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Abstract 

In his famous paper, Markowitz (1952) derived the dependence of portfolio random returns on 

the random returns of its securities. This result allowed Markowitz to obtain his famous 

expression for portfolio variance. We show that Markowitz’s equation for portfolio random 

returns and the expression for portfolio variance, which results from it, describe a simplified 

approximation of the real markets when the volumes of all consecutive trades with the 

securities are assumed to be constant during the averaging interval. To show this, we consider 

the investor who doesn’t trade shares of securities of his portfolio. The investor only observes 

the trades made in the market with his securities and derives the time series that model the 

trades with his portfolio as with a single security. These time series describe the portfolio return 

and variance in exactly the same way as the time series of trades with securities describe their 

returns and variances. The portfolio time series reveal the dependence of portfolio random 

returns on the random returns of securities and on the ratio of the random volumes of trades 

with the securities to the random volumes of trades with the portfolio. If we assume that all 

volumes of the consecutive trades with securities are constant, obtain Markowitz’s equation 

for the portfolio’s random returns. The market-based variance of the portfolio accounts for the 

effects of random fluctuations of the volumes of the consecutive trades. The use of Markowitz 

variance may give significantly higher or lower estimates than market-based portfolio variance. 
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1. Introduction 

In this paper we consider an unintended approximation made by Markowitz (1952) in his 

classical paper that helped him to derive the expression of the portfolio variance. We don’t 

consider here any portfolio selection problems but study only the derivation of the portfolio 

variance. Markowitz’s expression of the portfolio variance didn’t change since 1952, and the 

only reference needed for our discussion is his famous paper (Markowitz, 1952). We are sure 

that Markowitz’s results are well known and don’t need additional explanations. For 

convenience, we reproduce a few relations from his paper. Markowitz considered the portfolio 

composed at time t0 of j=1,..J securities. At current time t the mean return R(t,t0) (1.1) of the 

unchanged portfolio takes the form (Markowitz, 1952, p. 78): 𝑅(𝑡, 𝑡0) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1 𝑋𝑗(𝑡0)    (1.1) 

The functions Rj(t,t0) denote the average returns of the securities j at current time t with respect 

to time t0 in the past. The variables Xj(t0) in (1.1) denote the relative amounts invested into 

securities j at time t0. All prices are adjusted to the current time t. Markowitz concluded that 

the random return R (1.2) of the portfolio has a linear form similar to (1.1):   𝑅 = ∑ 𝑅𝑗𝐽𝑗=1 𝑋𝑗(𝑡0)     (1.2) 

Markowitz highlighted (Markowitz, 1952, p. 81) that “the Rj (and consequently R) are 

considered to be random variables.” The relation (1.2) is a key statement made by Markowitz. 

On the one hand, (1.2) justifies the expression of the mean return R(t,t0) (1.1), and on the other 

hand, (Markowitz, 1952, p. 81) directly leads to the expression the portfolio variance ΘM(t,t0) 

(1.3) as a quadratic form in the variables Xj(t0): 𝛩𝑀(𝑡, 𝑡0) = ∑ 𝜃𝑗𝑘(𝑡, 𝑡0)𝑋𝑗(𝑡0)𝐽𝑗,𝑘=1 𝑋𝑘(𝑡0)   (1.3) 

The coefficients θjk(t,t0) (1.4) are equal to the covariance of securities j and k of the portfolio: 𝜃𝑗𝑘(𝑡, 𝑡0) = 𝐸[(𝑅𝑗(𝑡𝑖, 𝑡0) − 𝐸[𝑅𝑗(𝑡𝑖, 𝑡0)])(𝑅𝑘(𝑡𝑖, 𝑡0) − 𝐸[𝑅𝑘(𝑡𝑖, 𝑡0)])] (1.4) 

The “obvious” dependence (1.2) of a random return R of the unchanged portfolio on the random 

returns Rj of its securities served as a reliable tool for the justification of the portfolio variance 

ΘM(t,t0) (1.3) since 1952. 

However, the devil is in the details. We show that while making a short transition from the 

description of the mean return R(t,t0) (1.1) to the description of random returns (1.2), 

Markowitz unintentionally made an important and non-trivial assumption. However, his 

hidden and unwilled assumption describes a rather limited model of real trades made in the 
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markets with the securities. Left unnoticed since 1952, it probably limited the description of 

real markets that reveal highly irregular or random fluctuations of volumes of trades. 

2. Unintentional Markowitz’s approximation 

We follow Markowitz and consider the investor who collected his portfolio with shares of 

j=1,..J securities in the past at time t0 and since then doesn’t trade shares of his portfolio. Now, 

let us assume that the investor wants to estimate the return and variance of the portfolio at the 

current time t. To do that, the investor needs not to trade shares of his portfolio. The investor 

may observe the time series of the current trades made in the market with the shares of his 

securities during some averaging interval. We show how that allows the investor to derive the 

time series that model the trades with his portfolio as with a single security and to estimate the 

current return and variance of his unchanged portfolio. 

The time series of trades with the securities j=1,..J of the portfolio give the evident justification 

of the mean return R(t,t0) (1.1). The mean contribution during the averaging interval of the 

security j to the portfolio value at time t equals the average return Rj(t,t0) of security j multiplied 

by the initial value Cj(t0) of the shares of security j in the portfolio at time t0 in the past. The 

current value Q(t) (2.1)  of the portfolio equals the sum of the contributions of all securities: 𝑄Σ(𝑡) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1 𝐶𝑗(𝑡0)     ;     𝑄Σ(𝑡0) = ∑ 𝐶𝑗(𝑡0)𝐽𝑗=1    ;    𝑋𝑗(𝑡0) = 𝐶𝑗(𝑡0)𝑄Σ(𝑡0) (2.1) 

The initial value Q(t0) (2.1) of the portfolio at time t0 is a sum of the initial values or amounts 

Cj(t0) invested into securities j. The ratio of the current value Q(t) to the initial value Q(t0) 

(2.1) of the portfolio gives the mean portfolio return R(t,t0) (1.1). The relative amounts Xj(t0) 

invested into security j at time t0 are determined in (2.1). 

However, the justification of the equation (1.2) that describes a random return R of the portfolio 

as a linear form (1.2) of random returns Rj of securities j=1,..J similar to a linear dependence 

of the mean return R(t,t0) (1.1) is not evident, and moreover, is valid only for a rather limited 

approximation of the change of the volumes of the consecutive market trades. As we show 

below, the equation (1.2) derived by Markowitz, is correct only if all volumes of the 

consecutive trades with all securities j=1,..J of the portfolio are assumed constant during the 

averaging interval. 

To explain the economic meaning of Markowitz’s involuntary approximation, let us consider 

the time series of the values Cj(ti), volumes Uj(ti), and prices pj(ti) of the consecutive trades 

made in the market with securities j=1,..J of the portfolio at time ti during the averaging 

interval. We assume that the consecutive trades with securities are made at time ti with a small 
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constant span  between the trades, so ti+1=ti+, and hence, the averaging interval Δ (2.2) 

contains only a finite number N of trades with each security j: 

 ∆= [𝑡 − ∆2 ;  𝑡 + ∆2 ]      ;      𝑡𝑖 ∈ ∆     ;   𝑖 = 1, … 𝑁    ;     𝑁 ∙ 𝜀 = ∆  (2.2) 

A finite number N of terms of time series define the approximation of the mean value C(t) and 

volume U(t) of trades at time t: 𝐶𝑗 (𝑡) = 1𝑁 ∑ 𝐶𝑗(𝑡𝑖)𝑁𝑖=1    ;  𝐶Σj(𝑡) = 𝑁 ∙ 𝐶𝑗 (𝑡)   ;   𝑈𝑗  (𝑡) = 1𝑁 ∑ 𝑈𝑗(𝑡𝑖)𝑁𝑖=1  ;   𝑈Σj(𝑡) = 𝑁 ∙ 𝑈𝑗  (𝑡)   (2.3) 

The functions Cj(t) and Uj(t) in (2.3) denote the total value and volume of trades with security 

j during Δ (2.2). The values Cj(ti), volumes Uj(ti), and prices pj(ti) follow the equation: 𝐶𝑗(𝑡𝑖) =  𝑝𝑗(𝑡𝑖) ∙ 𝑈𝑗(𝑡𝑖)    (2.4) 

We recall that the investor doesn’t trade his shares, and his portfolio remains unchanged. The 

investor observes the time series of the values Cj(ti), volumes Uj(ti), and prices pj(ti) of the 

trades with securities j=1,..J of his portfolio made in the market during Δ (2.2). These trades 

don’t change the numbers of shares of the portfolio. Relations (2.3; 2.4) determine the mean 

price pj(t) (2.5) of security j during Δ (2.2): 𝑝𝑗(𝑡) = 𝐶Σj(𝑡)𝑈Σj(𝑡) = 𝐶j(𝑡)𝑈j(𝑡) = 1𝑈Σj(𝑡) ∑ 𝑝𝑗(𝑡𝑖)𝑁𝑖=1 𝑈𝑗(𝑡𝑖)   (2.5) 

The mean price pj(t) (2.5) has the form of volume weighted average price (VWAP) (Berkowitz 

et al., 1988; Duffie and Dworczak, 2021). We give these simple definitions to determine the 

mean Rj(t,t0) and the random Rj(ti,t0) returns of security j: 𝑅𝑗(𝑡𝑖, 𝑡0) = 𝑝𝑗(𝑡𝑖)𝑝𝑗(𝑡0)     ;       𝑅𝑗(𝑡, 𝑡0) = 𝑝𝑗(𝑡)𝑝𝑗(𝑡0) = 1𝑈Σj(𝑡) ∑ 𝑅𝑗(𝑡𝑖, 𝑡0)𝑁𝑖=1 𝑈𝑗(𝑡𝑖)  (2.6) 

In (2.6), functions pj(t0) determine the price of shares of security j of the portfolio at time t0 in 

the past. For convenience, we consider the “gross” returns (2.6) instead of the “usual” definition 

of returns rj(t,t0)= Rj(t,t0)-1. Both definitions have the same variances. 

The random return Rj(ti,t0) (2.6) of security j is determined by the random price pj(ti) of trade 

with security j made at time ti during Δ (2.2). The mean return Rj(t,t0) (2.6) of security j is 

determined by the VWAP pj(t) (2.5). One may call the definition (2.6) as volume weighted 

average returns Rj(t,t0). The returns of the security j are determined by the time series (2.3-2.6) 

of trades with security j during Δ (2.2). To define the random returns R(ti,t0) of the portfolio in 

the form that is similar to (2.6), we introduce the time series of trades with the portfolio. 

3. Time series of trades with the portfolio 

At first, let us specify the portfolio that was composed by the investor at time t0 in the past and 

since then the numbers Uj(t0) of shares of its securities j=1,..J remain unchanged. The values 
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Cj(t0) and prices pj(t0) of the shares of security j at time t0 follow an equation (3.1): 𝐶𝑗(𝑡0) =  𝑝𝑗(𝑡0) ∙ 𝑈𝑗(𝑡0)     (3.1) 

We introduce the total number of shares WΣ(t0) of all securities of the portfolio and its total 

value QΣ(t0) as the sums of the numbers Uj(t0) and values Cj(t0) of securities j=1,..J:  𝑄Σ(𝑡0) = ∑ 𝐶𝑗(𝑡0)𝐽𝑗=1        ;          𝑊Σ(𝑡0) = ∑ 𝑈𝑗(𝑡0)𝐽𝑗=1    (3.2) 

The total value QΣ(t0) and the total number of shares WΣ(t0) of the portfolio determine the price 

s(t0) (3.3) per share of the portfolio at time t0: 𝑄Σ(𝑡0) = 𝑠(𝑡0)𝑊Σ(𝑡0)    ;     𝑠(𝑡0) = ∑ 𝑝𝑗(𝑡0)𝐽𝑗=1 𝑥𝑗(𝑡0)   ;   𝑥𝑗(𝑡0) = 𝑈𝑗(𝑡0)𝑊Σ(𝑡0)   (3.3) 

The functions xj(t0) have the meaning of relative numbers of the shares of security j in the 

portfolio. The number of shares WΣ(t0) of the portfolio remains constant, but the value QΣ(t) of 

the portfolio at the current time t during Δ (2.2) depends on the current mean prices pj(t) (2.5) 

of trades with the securities during Δ (2.2). To estimate the current value QΣ(t) of the portfolio 

during Δ (2.2) using the time series of the values Cj(ti), volumes Uj(ti), and prices pj(ti) of the 

trades with securities j=1,..J, let us for each security j define the factor λj (3.4) that is equal to 

the ratio of the number of shares Uj(t0) (3.1) of security j in the portfolio at time t0 to the current 

total volume Uj(t) (2.3) of trades with security j made in the market during Δ (2.2): 𝜆𝑗 = 𝑈𝑗(𝑡0)𝑈Σj(𝑡)      (3.4) 

We highlight that the equation (2.4) has the important property that the multiplication of the 

values Cj(ti) and volumes Uj(ti) by a constant factor λj doesn’t change the price pj(ti). Let us use 

this and define normalized values cj(ti) and volumes uj(ti) (3.5) of trades with security j: 𝑐𝑗(𝑡𝑖) = 𝜆𝑗  ∙ 𝐶𝑗(𝑡𝑖)            ;          𝑢𝑗(𝑡𝑖) = 𝜆𝑗 ∙  𝑈𝑗(𝑡𝑖)   (3.5) 

The equations (3.4; 3.5) transform (2.4) into (3.6): 𝑐𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖) 𝑢𝑗(𝑡𝑖)     𝑜𝑟     𝜆𝑗 ∙ 𝐶𝑗(𝑡𝑖) = 𝑝𝑗(𝑡𝑖) ∙  𝜆𝑗 ∙ 𝑈𝑗(𝑡𝑖)  (3.6): 

From (3.4; 3.5), obtain that the total normalized volume uj(t) (2.3; 3.7) of trades during Δ (2.2) 

exactly equals the number of shares Uj(t0) (3.1) of security j in the portfolio:  𝑢Σj(𝑡) = ∑ 𝑢𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑗(𝑡0)𝑈Σj(𝑡) ∑ 𝑈𝑗(𝑡𝑖)𝑁𝑖=1 = 𝑈𝑗(𝑡0)     ;    𝑢𝑗(𝑡) = 𝑢Σj(𝑡)𝑁   (3.7) 

The time series of the normalized values cj(ti) and volumes uj(ti) (3.5) of trades with securities 

j=1,..J during Δ (2.2) model the trades with securities of the portfolio and their total normalized 

volumes uj(t)=Uj(t0) (3.7) exactly equal to the number of shares Uj(t0) of each security. That 

determines the time series of the values Q(ti) and volumes W(ti) of trades with the portfolio: 𝑄(𝑡𝑖) = ∑ 𝑐𝑗(𝑡𝑖)𝐽𝑗=1        ;        𝑊(𝑡𝑖) = ∑ 𝑢𝑗(𝑡𝑖)𝐽𝑗=1    (3.8) 
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The sum of normalized values cj(ti) of trades with all securities j=1,..J determines the value 

Q(ti) (3.8) of the trade with the portfolio at time ti. The sum of normalized volumes uj(ti) of 

trades with all securities j=1,..J determines the volume W(ti) (3.8) of the trade with the portfolio 

at time ti. The total sum W(t) (3.9) of the volumes of trades with the portfolio during Δ (2.2) 

equals the total number of shares of the portfolio W(t0) (3.2): 𝑊Σ(𝑡) = ∑ 𝑊(𝑡𝑖)𝑁𝑖=1 = ∑ ∑ 𝑢𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1 = ∑ 𝑈𝑗(𝑡0)𝐽𝑗=1 = 𝑊Σ(𝑡0)  (3.9) 

Thus, the time series of the values Q(ti) and volumes W(ti) describe the trades with the portfolio 

as with a single security in the same way as the time series of the values Cj(ti) and volumes 

Uj(ti) describe the trades with security j. Similar to equation (2.4), we introduce the price s(ti) 

(3.10) of the trade with the portfolio as with a single security at time ti during Δ (2.2): 𝑄(𝑡𝑖) = 𝑠(𝑡𝑖) 𝑊(𝑡𝑖)        ;         𝑡𝑖 ∈ ∆     ;   𝑖 = 1, … 𝑁   (3.10) 

The total current value Q(t) (3.11) of trades with all W(t0) (3.2) shares of the portfolio or the 

current value Q(t) of the portfolio during Δ (2.2) equals:  𝑄Σ(𝑡) = 𝑠(𝑡)𝑊Σ(𝑡) = ∑ 𝑄(𝑡𝑖)𝑁𝑖=1 = ∑ ∑ 𝑐𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1 = ∑ ∑ 𝑝𝑗(𝑡𝑖)𝑢𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1  (3.11) 

The equations (3.11) at time t determine the mean price s(t) (3.12) per share of the portfolio 

during Δ (2.2) in the form that is similar to VWAP pj(t) (2.25): 𝑠(𝑡) = 𝑄Σ(𝑡)𝑊Σ(𝑡) = 1𝑊Σ(𝑡0) ∑ 𝑠(𝑡𝑖) 𝑊(𝑡𝑖)𝑁𝑖=1    (3.12) 

4. Mean and random portfolio returns 

The equations (3.3; 3.10; 3.12) determine the mean R(t,t0) and the random R(ti,t0) returns of the 

portfolio during Δ (2.2) in a form that is alike to the definitions (2.6) of the mean and the 

random returns of security j: 𝑅(𝑡𝑖, 𝑡0) = 𝑠(𝑡𝑖)𝑠(𝑡0)     ;       𝑅(𝑡, 𝑡0) = 𝑠(𝑡)𝑠(𝑡0) = 1𝑊Σ(𝑡) ∑ 𝑅(𝑡𝑖, 𝑡0)𝑁𝑖=1 𝑊(𝑡𝑖)  (4.1) 

From (2.5; 3.4; 3.6; 3.8; 3.9; 3.11; 3.12), obtain the decomposition of the mean price s(t) (4.2) 

of the portfolio: 𝑠(𝑡) = 1𝑊Σ(𝑡0) ∑ ∑ 𝑝𝑗(𝑡𝑖)𝑢𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1 = 1𝑊Σ(𝑡0) ∑ 𝑈𝑗(𝑡0)𝑈Σj(𝑡) ∑ 𝑝𝑗(𝑡𝑖)𝑈𝑗(𝑡𝑖)𝑁𝑖=1𝐽𝑗=1    𝑠(𝑡) = ∑ 𝑝𝑗(𝑡)𝐽𝑗=1 𝑈𝑗(𝑡0)𝑊Σ(𝑡0) = ∑ 𝑝𝑗(𝑡)𝐽𝑗=1 𝑥𝑗(𝑡0)    ;     𝑥𝑗(𝑡0) = 𝑈𝑗(𝑡0)𝑊Σ(𝑡0)  (4.2) 

We recall that xj(t0) (3.3; 4.2) denotes the relative numbers of shares of securities j in the 

portfolio. The decomposition of the mean price s(t) (3.12; 4.2) of the portfolio by the mean 

prices pj(t) (2.5) of its securities determines the decomposition of the mean return R(t,t0) (4.1) 

by the mean returns Rj(t,t0) (2.6): 
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𝑅(𝑡, 𝑡0) = 𝑠(𝑡)𝑠(𝑡0) = 1𝑠(𝑡0) ∑ 𝑝𝑗(𝑡)𝐽𝑗=1 𝑥𝑗(𝑡0) = ∑ 𝑝𝑗(𝑡)𝑝𝑗(𝑡0)𝐽𝑗=1   𝑝𝑗(𝑡0)𝑠(𝑡0) 𝑈𝑗(𝑡0)𝑊Σ(𝑡0)    

From (2.1; 3.1; 3.3), obtain the mean return R(t,t0) (4.3) that coincides with (1.1): 𝑅(𝑡, 𝑡0) = ∑ 𝑅𝑗(𝑡, 𝑡0)𝐽𝑗=1  𝑋𝑗(𝑡0)    ;     𝑋𝑗(𝑡0) = 𝐶𝑗(𝑡0)𝑄Σ(𝑡0) = 𝑝𝑗(𝑡0)∙𝑈𝑗(𝑡0)𝑠(𝑡0)∙𝑊Σ(𝑡0)  (4.3) 

The time series of the values Q(ti) and volumes W(ti) (3.8-3.12) that describe the trades with 

the portfolio as with a single security give the additional proof of the decomposition (1.1; 4.3) 

of mean return R(t,t0) of the portfolio by the mean returns Rj(t,t0) of its securities. 

However, the time series of the values Q(ti) and volumes W(ti) (3.8-3.12) reveal that the 

decomposition of the random return R(ti,t0) (4.1) of the portfolio differs from Markowitz’s 

equation (1.2). From (4.1; 3.10), obtain: 𝑅(𝑡𝑖, 𝑡0) = 𝑠(𝑡𝑖)𝑠(𝑡0) = 𝑄(𝑡𝑖)𝑠(𝑡0)𝑊(𝑡𝑖) = 1𝑠(𝑡0)𝑊(𝑡𝑖) ∑ 𝑐𝑗(𝑡𝑖)𝐽𝑗=1 = 1𝑠(𝑡0)𝑊(𝑡𝑖) ∑ 𝑝𝑗(𝑡𝑖) 𝑢𝑗(𝑡𝑖)𝐽𝑗=1   

Simple transformations give: 𝑅(𝑡𝑖, 𝑡0) = ∑ 𝑝𝑗(𝑡𝑖)𝑝𝑗(𝑡0)𝐽𝑗=1  𝑝𝑗(𝑡0)𝑈𝑗(𝑡0)𝑠(𝑡0)𝑊Σ(𝑡0)  𝑢𝑗(𝑡𝑖)𝑊(𝑡𝑖)  𝑊Σ(𝑡0)𝑈𝑗(𝑡0) = ∑ 𝑅𝑗(𝑡𝑖, 𝑡0)𝐽𝑗=1  𝑋𝑗(𝑡0) 𝑢𝑗(𝑡𝑖)𝑊(𝑡𝑖)  𝑊Σ(𝑡0)𝑈𝑗(𝑡0)   

Finally, obtain the equation of the portfolio random return R(ti,t0) (4.4) that accounts for the 

impact of fluctuations of the volumes of the consecutive trades, which was missed in (1.2): 𝑅(𝑡𝑖, 𝑡0) = ∑ 𝑅𝑗(𝑡𝑖, 𝑡0)𝐽𝑗=1 ∙ 𝑥𝑗(𝑡𝑖)𝑥𝑗(𝑡0) ∙ 𝑋𝑗(𝑡0)         ;       𝑥𝑗(𝑡𝑖) = 𝑢𝑗(𝑡𝑖)𝑊(𝑡𝑖) = 𝑈𝑗(𝑡0)𝑈Σj(𝑡) ∙ 𝑈𝑗(𝑡𝑖)𝑊(𝑡𝑖)  (4.4) 

The random relative volumes xj(ti) (4.4) at time ti equal to the ratio of the random volumes uj(ti) 

(3.5) of the normalized trades with securities j to the random volumes W(ti) (3.8) of trades with 

the portfolio. The decomposition of the random return R(ti,t0) (4.1; 4.4) of the portfolio by the 

random returns Rj(ti,t0) (2.6) of its securities depends on the random relative volumes xj(ti) (4.4) 

that are additional to Markowitz’s expression of random returns (1.2). The differences between 

the market-based expression of the random return R(ti,t0) (4.4) and Markowitz’s expression 

(4.3) reflect the different approximations of the values of the consecutive trades. These 

distinctions vanish and make no impact while one evaluates the mean return R(t,t0) (4.3) of the 

portfolio. However, the assessment of the portfolio variance via (4.4) results in significant 

distinctions from Markowitz variance (1.3). The economic nature of the distinctions between 

Markowitz’s assessment of the random return of the portfolio (1.2) and (4.4) is rather simple. 

One can easily show that if the volumes Uj(ti) of all N consecutive trades with all securities 

j=1,..J of the portfolio are assumed constant during the averaging interval Δ (2.2), then: 𝑈𝑗(𝑡𝑖) = 𝑈𝑗 = 𝑈Σj(𝑡)𝑁   ;  𝑢𝑗(𝑡𝑖) = 𝑢𝑗 =  𝑈𝑗(𝑡0)𝑈Σj(𝑡)  𝑈Σj(𝑡)𝑁 = 𝑈𝑗(𝑡0)𝑁  ;    𝑊(𝑡𝑖) = 𝑊 = 𝑊Σ(𝑡0)𝑁  

𝑥𝑗(𝑡𝑖) = 𝑢𝑗𝑊 = 𝑈𝑗(𝑡0)𝑊Σ(𝑡0) = 𝑥𝑗(𝑡0)     (4.5) 
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Thus, if one assumes that all volumes Uj(ti) of the consecutive trades are constant, the equation 

(4.4) on the random probability R(ti,t0) of the portfolio takes the form (1.2) that was proposed 

by Markowitz (1952). That highlights the origin of Markowitz variance ΘM(t,t0) (1.3) that 

describes the approximation when all volumes Uj(ti) of the consecutive trades with securities 

of the portfolio are assumed constant. This approximation greatly simplifies the assessment of 

the portfolio variance. Since 1952 it has given a strong impetus for the successful development 

of the optimal portfolio selection models and portfolio theory as well. However, one should 

keep in mind the existing limitations of Markowitz’s results that completely ignore the random 

fluctuations of the trade volumes of real markets. 

5. Market-based portfolio variance 

The time series of the values Q(ti), volumes W(ti) (3.8), and prices s(ti) (3.10) of trades with the 

portfolio determine the random return R(ti,t0) (4.4) and the market-based portfolio variance that 

accounts for the impact of fluctuations of the volumes of the consecutive trades. For the 

readers’ convenience, we present the expressions of market-based portfolio variance. One can 

find the derivation and clarification of these results in Olkhov (2025a; 2025b). 

At current time t, market-based portfolio variance Θ(t,t0) (5.1) with respect to time t0 in the 

past takes the form: Θ(𝑡, 𝑡0) = 𝜓2(𝑡)−2 𝜑(𝑡)+𝜒2(𝑡)1+𝜒2(𝑡)  𝑅2(𝑡, 𝑡0)   (5.1) 

The variance Θ(t,t0) (5.1) depends on the mean return R(t,t0) (4.3) and on the coefficients of 

variation of the trade values ψ(t) (5.2) and of trade volumes χ(t) (5.2) averaged during Δ (2.2): 𝜓2(𝑡) = 𝑐𝑜𝑣{𝑄(𝑡),𝑄(𝑡)}𝑄2(𝑡;1) = Ψ𝑄(𝑡)𝑄2(𝑡;1)     ;     𝜒2(𝑡) = 𝑐𝑜𝑣{𝑊(𝑡),𝑊(𝑡)}𝑊2(𝑡;1) = Ψ𝑊(𝑡)𝑊2(𝑡;1) (5.2) 

The function φ(t) in (5.1) denotes the ratio (5.3) of the covariance of values Q(ti) and volumes 

W(ti) of the portfolio trades to their mean values Q(t;1) (5.5) and W(t;1) (5.7). 𝜑(𝑡) = 𝑐𝑜𝑣{𝑄(𝑡),𝑊(𝑡)}𝑄(𝑡;1)𝑊(𝑡;1)    ;    𝑐𝑜𝑣{𝑄(𝑡), 𝑊(𝑡)} = 1𝑁 ∑ (𝑄(𝑡𝑖) − 𝑄(𝑡; 1))𝑁𝑖=1 (𝑊(𝑡𝑖) − 𝑊(𝑡; 1))   (5.3) 

The functions Q(t) (5.4) and W(t) (5.6) denote the square of standard deviations of the values 

Q(ti) and volumes W(ti) of trades: Ψ𝑄(𝑡) = 𝑐𝑜𝑣{𝑄(𝑡), 𝑄(𝑡)} = 1𝑁 ∑ (𝑄(𝑡𝑖) − 𝑄(𝑡; 1))2𝑁𝑖=1 = 𝑄(𝑡; 2) − 𝑄2(𝑡; 1) (5.4) 

The functions Q(t;1) and Q(t;2) (5.5) denote the mean values and the mean squares of values: 𝑄(𝑡; 1) = 1𝑁 ∑ 𝑄(𝑡𝑖)𝑁𝑖=1    ;    𝑄(𝑡; 2) = 1𝑁 ∑ 𝑄2(𝑡𝑖)𝑁𝑖=1    (5.5) Ψ𝑊(𝑡) = 𝑐𝑜𝑣{𝑊(𝑡), 𝑊(𝑡)} = 1𝑁 ∑ (𝑊(𝑡𝑖) − 𝑊(𝑡; 1))2𝑁𝑖=1 = 𝑊(𝑡; 2) − 𝑊2(𝑡; 1)  (5.6) 

The functions W(t;1), W(t;2) (5.7) denote the mean volumes and the mean squares of volumes. 
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𝑊(𝑡; 1) = 1𝑁 ∑ 𝑊(𝑡𝑖)𝑁𝑖=1    ;    𝑊(𝑡; 2) = 1𝑁 ∑ 𝑊2(𝑡𝑖)𝑁𝑖=1 = 𝑊2(𝑡; 1)[1 + 𝜒2(𝑡)]  (5.7) 

To simplify the assessments of market-based variance Θ(t,t0), (5.1) Olkhov (2025b) derived 

the Taylor expansion (5.8) of the variance Θ(t,t0) (5.1) up to the 2nd degree of the coefficient 

of variation χ(t) (5.2) of the trade volumes, taking Markowitz variance ΘM(t,t0) (1.3) as a zero 

approximation for χ(t)=0. 𝛩(𝑡, 𝑡0) = 𝛩𝑀(𝑡, 𝑡0) − 2𝑎 𝛩𝑀12 (𝑡, 𝑡0) 𝑅(𝑡, 𝑡0) 𝜒(𝑡) + [𝑅2(𝑡, 𝑡0) − 𝛩𝑀(𝑡, 𝑡0)] 𝜒2(𝑡)     (5.8) 

For three limiting cases with high and low fluctuations of returns of the portfolio and with zero 

covariance of trade values and volumes, Olkhov (2025b) revealed that the impact of 

fluctuations of trade volumes causes that Markowitz variance ΘM(t,t0) (1.3) may significantly 

overestimate or greatly underestimate the market-based variance of the portfolio that accounts 

for the impact of fluctuations of the volumes of consecutive trades.  

The decomposition of the portfolio variance Θ(t,t0) (5.1) by the variances of its securities and 

the Taylor series of the decomposition by the coefficients of variations χj(t) of trade volumes 

of securities j=1,..J are given in Olkhov (2025a; 2025b). 

6. Conclusion 

The portfolio selection and the portfolio theory as a whole relies heavily on the dependence of 

portfolio random returns on the random returns of its securities. To a great extent this 

dependence serves as a basis for the assessments of the impact of the risks of securities  on 

portfolio risks. However, any “intuition” or implicit simplification, like one made by 

Markowitz to describe a linear dependence (1.2) of the portfolio risks on risks of its securities, 

has a particular economic ground and limitations. The reliable forecasts of modern financial 

markets and the secure projections of the mean and variance of returns essentially depend on 

the economic approximations made to model the market trades. Markowitz’s unintended 

approximation of the volumes of the consecutive trades with securities as being constant gave 

a simple and useful expression of the variance that boosted the development of the optimal 

portfolio selection. 

Left unnoticed for almost 75 years, this simplified approximation probably might have limited 

in some sense the description of the random markets. One should care that the use of Markowitz 

variance (1.3) may give much lower or greatly higher estimates than the market-based portfolio 

variance, which accounts for the impact of fluctuations of the volumes of consecutive trades 

(Olkhov, 2025a; 2025b). The investors and portfolio managers should keep that in mind.  
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