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Abstract 

This study examines the relationship between the neoclassical, net-zero, and climate 
neutrality perspectives, an area that has received limited attention in formal economic 
analysis. Adopting the concept of factor substitution, we model the production 
function as a set of discrete, substitutable options to explore the properties and 
interactions of these three perspectives. The findings demonstrate that each 
perspective yields a non-empty subset of solution options. Climate neutrality 
solutions are situated between neoclassical and net-zero solutions, exhibit discrete 
convexity, and are influenced by the level of GHG credit costs. Lower GHG credit costs 
tend to favour neoclassical solutions, while higher costs shift preference toward net-
zero solutions. This highlights the importance of GHG credit pricing in guiding the 
transition to a low-emissions economy. Moreover, the framework enables the 
categorization of new climate mitigation options based on their effects, whether they 
are irrelevant, complementary, or disruptive. Overall, the proposed model provides 
an alternative formal approach that enhances the economic analysis of climate 
change mitigation strategies. 

Keywords: neoclassical, net zero, climate neutrality, substitution, and production 
function. 

 

1. Introduction  

The rise in greenhouse gas (GHG) emissions since the Industrial Revolution has become one of the 
most pressing challenges for human civilization (Brohé, 2017; IPCC, 2021a). Climate change, defined 
as long-term shifts in temperatures and weather patterns, has had a wide-ranging impact on Earth's 
ecological system, including rising global temperatures, shifts in precipitation, extreme weather 
events, glacial melt, droughts, and forest fires, all of which pose risks to human well-being (IPCC, 
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2022a). These changes also affect various social and economic dimensions, increasing the likelihood 
of conflict, social unrest, and substantial global economic losses (Mach, et al., 2019; Beals, 2019).  

In response, the discourse on climate change has generated not only a range of normative initiatives 
in global economic policy but also significant positive developments in economic practice. The two 
most prominent concepts are net zero and climate neutrality. Although these two terms are often used 
interchangeably in public narratives, conceptually these terms have different definitions, implications, 
and consequences (Jeudy-Hugo, Re, & Falduto, 2021; Rogelj, Geden, Cowie, & Reisinger, 2021). Net 
zero refers to minimizing GHG emissions as much as technologically and economically possible, 
bringing net emissions close to zero (Chen, Lim, Yeo, & Tseng, 2024). In contrast, carbon neutrality 
focuses on balancing the carbon emissions with carbon removal initiatives or carbon offsets (Chen, 
Lim, Yeo, & Tseng, 2024; Chen, et al., 2022). Despite the widespread use, the two key concepts are 
rarely explored through formal economic analysis. In particular, the relationship between the 
neoclassical, net zero, and climate neutrality perspectives warrant further exploration within a formal 
analytical framework. 

This study aims to fills that gap by examining the relationship between neoclassical, net zero, and 
climate neutrality in an integrated manner. We adapt the idea of factor substitution (McFadden, 1962), 
treating the production function as a set of discrete substitutable options. This framework is built on 
the principle of substitution within the production process, the idea that the same output can be 
achieved through different combinations of inputs (Lachmann, 1947), where each factor input is 
viewed as a set of substitutable options. This formal approach aims to explain the properties and 
relationships between the neoclassical, net zero, and climate neutrality. 

2. Production Function as Systematics of Options 

A firm produces output using a combination of factor inputs such as equipment, raw materials, 
gasoline, natural gas, electricity, capital, labour, and land (McFadden, 1962; Wiese, 2021). This 
production process can be expressed as: 

 𝑄 = 𝑓(𝑋) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝐼)      (1) 

In Equation (1), 𝑓 represents the production function, which defines the technological relationship 
between the vector of factor inputs 𝑋 and the resulting output 𝑄 (McFadden, 1962). This function 
maps all feasible input combinations to a corresponding level of output, forming a production set that 
is assumed to be non-empty, closed, and bounded (Wiese, 2021). In this study, we extend the classical 
idea of factor substitution in production analysis (McFadden, 1962). Traditional substitution theory 
emphasises that identical output can be achieved with different combinations of inputs, for example, 
trading capital for labour (Lachmann, 1947; Arrow, Chenery, Minhas, & Solow, 1961). 

Here, however, we shift the focus from substitution between factor classes to substitution within a 
given factor class. Each factor input is treated as a set of mutually substitutable options. In other words, 
the “gasoline” input is not a single scalar but a menu that might include conventional gasoline, bio-
gasoline, or synthetic gasoline. Likewise, an “electricity” input can be supplied by coal, gas-turbine, 
solar, or hydro plants, and an “air-conditioning” input might be met by a central chiller, a mini-split 
unit, or an evaporative cooler. 

Axiom: Existence of a Non-Empty Set of Options (𝑋𝑖) 

∀ 𝑖 ∃ 𝑋𝑖  = {𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3, … , 𝑥𝑖,𝑗, … } ≠ ∅ 



3 
 

Each 𝑋𝑖  represents a set of available options for the 𝑖𝑡ℎ factor input. Within this set: 

• 𝑥𝑖 ∈ 𝑋𝑖  denotes the selected input that is used in the production function. 

• 𝑥𝑖,𝑗 ∈ 𝑋𝑖 denotes a potential option of input that could be selected but has not yet been. 

All members of the set 𝑋𝑖  are perfectly substitutable and produce the same output in Equation (1) or 

𝑓(𝑥1, … , 𝑥𝑖,1,, … , 𝑥𝐼) = 𝑓(𝑥1, … , 𝑥𝑖,2,, … , 𝑥𝐼) = ⋯ for ∀ 𝑥𝑖,1, 𝑥𝑖,2, … ∈ 𝑋𝑖. There exists an amount 𝑥𝑖,𝑗 

of option 𝑗 within factor input 𝑖 is associated with a non-negative cost (𝑝) and produces a non-negative 
greenhouse gas (GHG) emission (𝑒).  

 ∀ 𝑖, 𝑗 ∃ 𝑥𝑖,𝑗 ≥ 0 ∶  𝑝𝑖,𝑗 ≥ 0 ∩ 𝑒𝑖,𝑗 ≥ 0      (2) 

For each factor input 𝑖, the firm selects one member from the set of options for factor input 𝑖, such 
that 𝑥𝑖 ∈ 𝑋𝑖. The total production costs (𝑃) can be calculated by summing the costs of all selected 
factor inputs (Marshall, 1890). 

 𝑃 = ∑ 𝑝𝑖
𝐼
𝑖=1          (3) 

In this model, each firm is responsible for the GHG emissions from the input factors used. GHG 
emissions from the firm's output are assumed to be the responsibility of downstream firms or end 
consumers. 

Assumption 1: Firm's Emissions Responsibilities 

 Each company/firm is responsible for the GHG emissions from the input factors used. 

This assumption views the sale of production output as a transfer of ownership along with the 
corresponding rights and obligations. The total emissions (𝐸) produced by a firm can be calculated as 
the accumulated emissions from all selected factor inputs (Nordhaus, 2010; Richter & Schiersch, 2017). 

 𝐸 = ∑ 𝑒𝑖
𝐼
𝑖=1          (4) 

In this study, we assume the uniqueness of the set 𝑋𝑖  meaning no two members have identical costs 
and emissions.  

Assumption 2: Uniqueness in the Set 𝑋𝑖  

(𝑝𝑖,𝑗1
= 𝑝𝑖,𝑗2

∩  𝑒𝑖,𝑗1
= 𝑒𝑖,𝑗2

) → (𝑗1 = 𝑗2) 

When multiple options share identical cost and emission values, they can be represented by a single 
option without affecting the outcome. Assumption 2 ensures that each set 𝑋𝑖  is efficient or has no 
trivial information. 

An option can dominate or outperform other options (Leyton-Brown & Shoham, 2008) in terms of 
costs, in terms of emissions, or in terms of costs and emissions simultaneously. We define three types 
of weak dominance: weakly dominated in cost, weakly dominated in emissions, and weakly 
dominated. 

Definition 1: Weakly Dominated in Cost (≼𝑝) 

(𝑝𝑖,𝑗1
≥ 𝑝𝑖,𝑗2

) ↔ ( 𝑥𝑖,𝑗1
≼𝑝 𝑥𝑖,𝑗2

), meaning that option 𝑥𝑖,𝑗1
 is weakly dominated in cost by 

option 𝑥𝑖,𝑗2
. 
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Definition 2: Weakly Dominated in Emission (≼𝑒) 

(𝑒𝑖,𝑗1
≥ 𝑒𝑖,𝑗2

) ↔ (𝑥𝑖,𝑗1
≼𝑒 𝑥𝑖,𝑗2

), which indicates that option 𝑥𝑖,𝑗1
 is weakly dominated in 

emission by option 𝑥𝑖,𝑗2
. 

Definition 3: Weakly Dominated (≼)  

(𝑝𝑖,𝑗1
≥ 𝑝𝑖,𝑗2

 ∩  𝑒𝑖,𝑗1
≥ 𝑒𝑖,𝑗2

) ↔ (𝑥𝑖,𝑗1
≼ 𝑥𝑖,𝑗2

), implying that option 𝑥𝑖,𝑗1
 is weakly dominated 

by option 𝑥𝑖,𝑗2
. 

These definitions adopts the concept of "weakly dominated" (≼) which accommodates conditions 
𝑝𝑖,𝑗1

= 𝑝𝑖,𝑗2
 or 𝑒𝑖,𝑗1

= 𝑒𝑖,𝑗2
, in contrast to "strictly dominated" (≺) (Leyton-Brown & Shoham, 2008). An 

option may be considered dominated by another option based on any of the 3 definitions presented. 
Figure 1 illustrates examples of options that are weakly dominated in cost, weakly dominated in 
emission, and weakly dominated by another option. 

 

Figure 1. Illustration of options that are weakly dominated in cost, are weakly dominated in emission, 
and are weakly dominated by option 𝑖, 𝑗. 

Building on the simple conceptual framework above, we now formalize three distinct types of 
production functions, each reflecting a different strategic perspective in the context of climate-related 
economic analysis: (1) the neoclassical production function, (2) the net zero production function, and 
(3) the climate neutrality production function. 

3. Formalization: Subset of Discrete Options 

3.1. Neoclassical: Minimum Cost 

Alfred Marshall, one of the central figures who founded neoclassical economics (Veblen, 1919; 
Aspromourgos, 1986), introduced the concept of the "principle of substitution" in his book "The 
Principles of Economics" (1890). He observed that producers have flexibility in how they meet demand, 
and the principle of substitution emphasizes that producers will favour production factors that 
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minimize total production cost. When a lower-cost alternative becomes available, producers are 
incentivized to substitute existing inputs with more cost-efficient ones to maximize profit (Marshall, 
1890).  

Marshall also introduced the concept of elasticity (Marshall, 1890), which later became an important 
element in neoclassical economics. This concept underpins a wide range of economic analyses, 
including price elasticity of supply, price elasticity of demand, income elasticity of demand, and cross-
price elasticity of demand. Building on this foundation, John Hicks then developed a quantitative basis 
for the concept of substitution by introducing the concept of elasticity of substitution between factors 
of production (Hicks, 1932). The elasticity of substitution concept captures how producers may adopt 
new production methods that utilize less costly inputs to enhance profitability (Hicks, 1932). Minimum 
production cost orientation is a fundamental basis in the production function of neoclassical 
economics (Marshall, 1890; Hicks, 1932; McFadden, 1962). From this foundation, we define a subset 
of neoclassical options that yield minimum production costs: 

Definition 4: Subset of Neoclassical Options (𝑋𝑖
𝐺) 

∀ 𝑥𝑖,𝑗′ ∈ 𝑋𝑖 ∩ 𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝐺 ⊆ 𝑋𝑖 :  𝑥𝑖,𝑗′ ≼𝑝 𝑥𝑖,𝑗 

Let 𝑗′ be any option such that 𝑗′ ≠ 𝑗. A neoclassical option is one that has lower costs than all 
alternative options—in other words, all other options are weakly dominated in cost (≼𝑝) by the 

neoclassical options. Theorem 1 demonstrates that the subset of neoclassical options is not an empty 
set. 

Theorem 1: Existence of A Non-Empty Subset of Neoclassical Options  

𝑋𝑖
𝐺 ≠ ∅ 

Proof:  

The axiom states 𝑋𝑖 ≠ ∅  which implies that the number of set members (𝑛) is a positive integer, 
i.e., 𝑛(𝑋𝑖) ≥ 1. According to Equation (2), there exists a set of  𝑥𝑖,𝑗 options that is associated with a 

non-negative cost (𝑝), This allows us to define a corresponding mapping: 

𝑝𝑖: 𝑋𝑖 → ℙ𝑖 

Where ℙ𝑖 = {𝑝𝑖,1, 𝑝𝑖,2, 𝑝𝑖,3, … } ≠ ∅ is the set of cost value linked to the members of 𝑋𝑖. We can 

construct a partially ordered set of these costs: 

ℙ̂𝑖 = {𝑝𝑖,1∗ , 𝑝𝑖,2∗ , … , 𝑝𝑖,𝑗∗ , 𝑝𝑖,𝑗+1∗ , … } ≠ ∅ 

Where members of the cost set are ordered such that 𝑝𝑖,𝑗∗ ≤ 𝑝𝑖,𝑗+1∗ for all 𝑗 (Simovici & Djeraba, 

2008). Let 𝐾 be the number of options with the minimum cost such that: 

𝑝𝑖,1∗ = 𝑝𝑖,2∗ = ⋯ = 𝑝𝑖,𝐾∗  

with the following conditions: 

i. 𝐾 ≥ 1 because ℙ̂𝑖 ≠ ∅; and  

ii. 𝐾 ≤ 𝑛(𝑋𝑖) because subset ℙ̂𝑖 cannot contain more members than the set 𝑋𝑖. 

Define a subset of substitutable minimum-cost options as: 
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ℙ̂𝑖
𝐺 = {𝑝𝑖,1∗ , 𝑝𝑖,2∗ , … , 𝑝𝑖,𝐾∗} 

Thus, the full ordered set of cost options can be partitioned as: 

ℙ̂𝑖 = ℙ̂𝑖
𝐺 ∪ ℙ̂𝑖

~𝐺 ≠ ∅ 

Where ℙ̂𝑖
~𝐺 = { 𝑝𝑖,𝐾+1∗ , 𝑝𝑖,𝐾+2∗ , … }  

• If 0 < 𝐾 < 𝑛(𝑋𝑖) then ℙ̂𝑖
𝐺 ≠ ∅ and ℙ̂𝑖

~𝐺 ≠ ∅. 

• If 𝐾 = 𝑛(𝑋𝑖) then ℙ̂𝑖
𝐺 ≠ ∅ and ℙ̂𝑖

~𝐺 = ∅. 

In all cases, since 𝐾 ≥ 1 and 𝐾 ≤ 𝑛(𝑋𝑖), it follows that ℙ̂𝑖
𝐺 ≠ ∅, and therefore the corresponding 

subset of options 𝑋𝑖
𝐺 ≠ ∅ (∎).  

Theorem 1 establishes the existence of a non-empty subset of neoclassical options. This implies that 
there is at least one option with minimum cost. In this study, the costs associated with different factor 
inputs are assumed to be independent, as seen in Equation (3). Consequently, selecting the minimum-
cost option for any given input will result in lower total production costs compared to alternative 
options. 

3.2. Net Zero: Minimum Emission 

Despite their frequent interchangeable use, net zero and climate neutrality refer to conceptually 
distinct approaches, each with its own definitions, underlying assumptions, and implications. (Jeudy-
Hugo, Re, & Falduto, 2021; Rogelj, Geden, Cowie, & Reisinger, 2021). Net zero means to reduce GHG 
emissions as much as possible, such that the residual emissions approaches zero (Chen, Lim, Yeo, & 
Tseng, 2024). According to the Science Based Targets initiative (SBTi), their Corporate Net-Zero 
Standard encourages firms to set a long-term target that eliminates all possible emissions by more 
than 90% allowing only a small fraction of unavoidable emissions to remain (SBTi, 2024). In the "Net 
Zero Guidelines" by the International Organization for Standardization (ISO), it is stated that GHG 
emissions reduction is prioritized, and carbon removals may only be applied after all feasible reduction 
measures have been implemented (ISO, 2022).  

The scope and targets of net zero extends beyond just reducing carbon dioxide emissions but to also 
include all major greenhouse gases—such as methane, nitrous oxide, hydrofluorocarbons, and 
perfluorocarbons—each of which is converted into a standard unit of carbon dioxide equivalent (CO₂e) 
based on its global warming potential (United Nations, 2022; ISO, 2022; Chen et al., 2024; WBCSD & 
WRI, 2015; Corporate Finance Institute, 2024). Based on the definition and concept of net zero above, 
we define a subset of net zero options as follows: 

Definition 5: Subset of Net Zero Options (𝑋𝑖
𝐻) 

∀ 𝑥𝑖,𝑗′ ∈ 𝑋𝑖 ∩ 𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝐻 ⊆ 𝑋𝑖:  𝑥𝑖,𝑗′ ≼𝑒 𝑥𝑖,𝑗 

The subset 𝑋𝑖
𝐻 consists of net zero options, defined as those with lower emissions compared to other 

alternatives in the set 𝑋𝑖  or in other words all other options are weakly dominated in emission (≼𝑒) by 
net zero options. Theorem 2 establishes the existence of a nonempty subset of net zero options. 
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Theorem 2: Existence of A Non-Empty Subset of Net Zero Options  

𝑋𝑖
𝐻 ≠ ∅ 

Proof:  

Because the axiom states that 𝑋𝑖 ≠ ∅ , the number of members in set 𝑋𝑖  satisfies 𝑛(𝑋𝑖) ≥ 1. According 
to Equation (2), there exists a set of  𝑥𝑖,𝑗 options that is associated with a non-negative GHG emission 

(𝑒), This allows us to define a corresponding emission mapping: 

𝑒𝑖: 𝑋𝑖 → 𝔼𝑖 

Where 𝔼𝑖 = {𝑒𝑖,1, 𝑒𝑖,2, 𝑒𝑖,3, … } ≠ ∅ is the set of emissions value linked to the members of 𝑋𝑖. 

Therefore, there is a partial order set: 

𝔼̂𝑖 = {𝑒𝑖,1# , 𝑒𝑖,2# , … , 𝑒𝑖,𝑗# , 𝑒𝑖,𝑗+1# , … } ≠ ∅ 

where 𝑒𝑖,𝑗# ≤ 𝑒𝑖,𝑗+1# for all 𝑗 (Simovici & Djeraba, 2008). Let 𝐾 be the number of substitutable options 

with the minimum emission such that: 

𝑒𝑖,1# = 𝑒𝑖,2# = ⋯ = 𝑒𝑖,𝐾#  

with the following conditions: 

i. 𝐾 ≥ 1 because 𝔼̂𝑖 ≠ ∅; and 

ii. 𝐾 ≤ 𝑛(𝑋𝑖) because subset 𝔼̂𝑖 cannot contain more members than the set 𝑋𝑖. 

Define a subset of minimum-emission options as: 

𝔼̂𝑖
𝐻 = {𝑒𝑖,1# , 𝑒𝑖,2# , … , 𝑒𝑖,𝐾#} 

Thus, the full ordered set of emission options can be partitioned as: 

𝔼̂𝑖 = 𝔼̂𝑖
𝐻 ∪ 𝔼̂𝑖

~𝐻 ≠ ∅ 

Where 𝔼̂𝑖
~𝐻 = { 𝑒𝑖,𝐾+1# , 𝑒𝑖,𝐾+2# , … }  

• If 0 < 𝐾 < 𝑛(𝑋𝑖) then 𝔼̂𝑖
𝐻 ≠ ∅ and 𝔼̂𝑖

~𝐻 ≠ ∅. 

• if 𝐾 = 𝑛(𝑋𝑖) then 𝔼̂𝑖
𝐻 ≠ ∅ and 𝔼̂𝑖

~𝐻 = ∅. 

In all cases, since 𝐾 ≥ 1 and 𝐾 ≤ 𝑛(𝑋𝑖), it follows that 𝔼̂𝑖
𝐻 ≠ ∅, and therefore the corresponding 

subset of options 𝑋𝑖
𝐻 ≠ ∅ (∎).  

The characterization of minimum-emission options provides a foundation for understanding how 
environmental priorities shape the structure of feasible solutions. However, in many real-world policy 
and market contexts, decision-making does not rely on emissions alone. This opens the way for a 
broader formulation that accounts for both environmental outcomes and economic considerations. 
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3.3. Climate Neutral: Cost Optimization 

3.3.1. Undominated Options 

Emissions trading is a market-based mechanism for climate change mitigation that aims to control 
carbon and other greenhouse gas (GHG) emissions by providing economic incentives for emission 
reduction (Stavins, 2003). From an economic point of view, climate change arises because GHG 
producers do not bear the full external costs of their emissions. Therefore, it is essential to assigned 
costs to the emissions produced (IMF, 2008). Emissions trading has become an important tool in 
controlling GHG emissions at the local, national, and international levels (IPCC, 2021b), by 
disincentivizing emission-intensive activities and rewarding those that contribute to emission removal 
or reduction.  

To internalize the cost of emissions, a GHG offset cost (𝜌) is applied to each emission-producing option. 
Where 𝜌 is constrained by  0 < 𝜌 < ℒ, and ℒ is a large but finite upper bound. The total cost (𝜑) for 
option 𝑖, 𝑗 can be calculated as follows: 

 𝜑𝑖,𝑗,𝜌 = 𝑝𝑖,𝑗 + 𝜌 ∙ 𝑒𝑖,𝑗        (5) 

Figure 2 illustrates the relationship between option cost (𝑝), GHG credit costs (𝜌), and total option 
cost (𝜑) within the cost–emissions diagram. 

 

Figure 2. The relationship between option cost (𝑝), GHG credit costs (𝜌), and total option cost (𝜑). 

Building on this visualization, Corollary 1 formalizes the result that a weakly dominated option always 
incurs a higher total cost—and conversely, any option with a consistently higher total cost for all 0 <
𝜌 < ℒ is weakly dominated. 

Corollary 1: Relationship Between Weakly Dominated and Total Cost  

∀ 0 < 𝜌 < ℒ ∶ (𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ↔ (𝜑𝑖,𝑗,𝜌 ≥ 𝜑𝑖,𝑗′,𝜌) 
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Proof:  

From Definition 3, an option 𝑥𝑖,𝑗 is said to be weakly dominated by another option 𝑥𝑖,𝑗′  if and only if: 

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ↔ (𝑝𝑖,𝑗 ≥ 𝑝𝑖,𝑗′  ∩  𝑒𝑖,𝑗 ≥ 𝑒𝑖,𝑗′) 

Now, referring to Equation (5), the total cost of an option is defined as: 

𝜑𝑖,𝑗,𝜌 = 𝑝𝑖,𝑗 + 𝜌 ∙ 𝑒𝑖,𝑗  

Substituting the condition from Definition 3 into the total cost formula, we obtain:  

(𝜑𝑖,𝑗,𝜌 ≥ 𝜑𝑖,𝑗′,𝜌)  ≡  𝑝𝑖,𝑗 + 𝜌 ∙ 𝑒𝑖,𝑗 ≥ 𝑝𝑖,𝑗′ + 𝜌 ∙ 𝑒𝑖,𝑗′  

Thus,  

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ↔ (𝜑𝑖,𝑗,𝜌 ≥ 𝜑𝑖,𝑗′,𝜌) (∎). 

A weakly dominated option cannot be considered a valid solution, as it always incurs a higher total 
cost. Therefore, any selected option must belong to the subset of options that are not dominated by 

any other. This leads to the definition of the subset of undominated options, denoted (𝑋𝑖
𝑈), as follows: 

Definition 6: Subset of Undominated Options (𝑋𝑖
𝑈) 

∀ 𝑥𝑖,𝑗′ ∈ 𝑋𝑖 ∩ 𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑈 ⊆ 𝑋𝑖:  𝑥𝑖,𝑗 ⋠  𝑥𝑖,𝑗′  

This definition states that each member of the subset of undominated options are not weakly 
dominated by any other option. Conversely, any option that is weakly dominated by another option 
cannot be included in the subset of undominated options.  

This concept is closely related to what is commonly known in multi-objective optimization literature 
as the Pareto front or Pareto frontier, the set of non-dominated solutions where no objective (in this 
case, cost) can be improved without worsening another (such as emissions). Here, we adopt the term 
undominated options to emphasize its role as a foundational subset within the climate neutrality 
framework. The following corollary formalizes this exclusion principle. 

Corollary 2: Options Not Belonging to the Undominated Subset 

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ↔ (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑈) 

Proof:  

From Definition 6, an option 𝑥𝑖,𝑗 is said to be an undominated option, if and only if: 

𝑥𝑖,𝑗 ⋠  𝑥𝑖,𝑗′ ↔ 𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑈 

From there we can imply that: 

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ↔ (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑈) (∎). 

Building on Corollary 2, which characterizes options excluded from the undominated subset, Corollary 
3 identifies the unique option that lies at the intersection of the neoclassical and undominated subsets. 
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Corollary 3: Intersection between Neoclassical and Undominated Options 

𝑛(𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑈) = 1 

Proof:  

From the proof of Theorem 1, we know that the set of minimum-cost options is: 

ℙ̂𝑖
𝐺 = {𝑝𝑖,1∗ , 𝑝𝑖,2∗ , … , 𝑝𝑖,𝐾∗} ≠ ∅, 

with all members having interchangeable costs: 

𝑝𝑖,1∗ = 𝑝𝑖,2∗ = ⋯ = 𝑝𝑖,𝐾∗ . 

From Assumption 2 it follows that the associated emissions are all distinct: 

𝑒𝑖,1∗ ≠ 𝑒𝑖,2∗ ≠ ⋯ ≠ 𝑒𝑖,𝐾∗ . 

These emission values form a partially ordered set (Simovici & Djeraba, 2008)  

𝔼̂𝑖
𝐺 = {𝑒𝑖,1∗# , 𝑒𝑖,2∗# , … , 𝑒𝑖,𝑘∗# , … , 𝑒𝑖,𝐾∗#  } ≠ ∅, 

Ordered such that: 

𝑒𝑖,𝑘∗# < 𝑒𝑖,𝑘+1∗#  and 𝑥𝑖,𝑘∗# ∈ 𝑋𝑖
𝐺  

Now consider the following cases: 

• If 𝑘 ≠ 1 then 𝑒𝑖,1∗# < 𝑒𝑖,𝑘∗#, meaning 𝑥𝑖,𝑘∗# is weakly dominated in emissions and therefore 

𝑥𝑖,𝑘∗# ∉  𝑋𝑖
𝑈. 

• If 𝑘 = 1 and 𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝐺, then 𝑒𝑖,1∗# < 𝑒𝑖,𝑗. 

• If 𝑘 = 1 and 𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝐺 , then 𝑝𝑖,1∗# < 𝑝𝑖,𝑗.  

Which implies: 

𝑥𝑖,1∗# ⋠  𝑥𝑖,𝑗 

Thus, 𝑥𝑖,1∗#  is not weakly dominated and belongs to the undominated set: 

𝑥𝑖,1∗# ∈ 𝑋𝑖
𝑈 

We therefore conclude that: 

𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑈 = {𝑥𝑖,1∗#} = {𝑥𝑖,𝑗𝑔∩𝑢} (∎). 

For simplicity, we will refer to 𝑥𝑖,1∗# as 𝑥𝑖,𝑗𝑔∩𝑢 in the remainder of the study.  

Extending the result of Corollary 3, which identified the unique intersection between the neoclassical 
and undominated subsets, the next corollary establishes the existence of a single option at the 
intersection of the net-zero and undominated subsets. 
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Corollary 4: Intersection between Net Zero and Undominated Options  

𝑛(𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑈) = 1 

Proof:  

From the proof of Theorem 2, we know that the set of minimum-emission options is: 

𝔼̂𝑖
𝐻 = {𝑒𝑖,1# , 𝑒𝑖,2# , … , 𝑒𝑖,𝐾#} ≠ ∅, 

with all members having interchangeable costs: 

𝑒𝑖,1# = 𝑒𝑖,2# = ⋯ = 𝑒𝑖,𝐾# . 

From Assumption 2 it follows that the associated costs are all distinct: 

𝑝𝑖,1# ≠ 𝑝𝑖,2# ≠ ⋯ ≠ 𝑝𝑖,𝐾# . 

These emission values form a partially ordered set (Simovici & Djeraba, 2008)  

ℙ̂𝑖
𝐻 = {𝑝𝑖,1#∗ , 𝑝𝑖,2#∗ , … , 𝑝𝑖,𝑘#∗ , … , 𝑝𝑖,𝐾#∗  } ≠ ∅, 

Ordered such that: 

𝑝𝑖,𝑘#∗ < 𝑝𝑖,𝑘+#∗ and 𝑥𝑖,𝑘#∗ ∈ 𝑋𝑖
𝐻 . 

Now consider the following cases: 

• If 𝑘 ≠ 1 then 𝑝𝑖,1#∗ < 𝑝𝑖,𝑘#∗, meaning 𝑥𝑖,𝑘#∗is weakly dominated in cost and therefore 𝑥𝑖,𝑘#∗ ∉

 𝑋𝑖
𝑈. 

• If 𝑘 = 1 and 𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝐺, then 𝑝𝑖,1#∗ < 𝑝𝑖,𝑗. 

• If 𝑘 = 1 and 𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝐺 , then 𝑒𝑖,1#∗ < 𝑒𝑖,𝑗.  

Which implies: 

𝑥𝑖,1#∗ ⋠  𝑥𝑖,𝑗 

Thus, 𝑥𝑖,1#∗  is not weakly dominated and belongs to the undominated set: 

𝑥𝑖,1#∗ ∈ 𝑋𝑖
𝑈 

We therefore conclude that: 

𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑈 = {𝑥𝑖,1#∗} = {𝑥𝑖,𝑗ℎ∩𝑢} (∎). 

For simplicity, we will refer to 𝑥𝑖,1#∗ as 𝑥𝑖,𝑗ℎ∩𝑢 in the remainder of the study.  

Drawing from the results of Corollaries 3 and 4, we can now formalize the key properties of the subset 
of undominated options. 
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Theorem 3: Properties of the Subset of Undominated Options 

(a) 𝑋𝑖
𝑈 ≠ ∅. 

(b) If 𝑛(𝑋𝑖
𝑈) = 1 → 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗𝑔∩ℎ∩𝑢}. 

(c) If 𝑛(𝑋𝑖
𝑈) = 2 → 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢 , 𝑥𝑖,𝑗ℎ∩𝑢}. 

(d) If 𝑛(𝑋𝑖
𝑈) ≥ 3 → 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢 , 𝑋𝑖
𝑈∩𝐺′∩𝐻′

, 𝑥𝑖,𝑗ℎ∩𝑢} and 𝑛 (𝑋𝑖
𝑈∩𝐺′∩𝐻′

) = 𝑛(𝑋𝑖
𝑈) − 2. 

Proof:  

(a) If 𝑋𝑖
𝑈 = ∅; it contradicts Corollaries 3 and 4, which each guarantee a non-empty intersection with 

𝑋𝑖
𝑈. It also violates the principle that every finite partially ordered set has at least one minimal 

element/member (Johnsonbaugh, 2019) (∎).  
 

(b) From Corollary 3, if 𝑛(𝑋𝑖
𝑈) = 1 then 𝑋𝑖

𝐺 ∩ 𝑋𝑖
𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢}.  From Corollary 4, if 𝑛(𝑋𝑖

𝑈) = 1 then 

𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗ℎ∩𝑢}. It can be obtained that: 

𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑈 = 𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢} = {𝑥𝑖,𝑗ℎ∩𝑢} = {𝑥𝑖,𝑗𝑔∩ℎ∩𝑢}(∎). 

(c) Assuming 𝑛(𝑋𝑖
𝑈) ≥ 2 and suppose, for contradiction, that  

𝑥𝑖,𝑗𝑔∩𝑢 = 𝑥𝑖,𝑗ℎ∩𝑢  

So that: 

𝑋𝑖
𝑈 = {𝑥𝑖,𝑗𝑔∩ℎ∩𝑢 , 𝑋𝑖

𝑊}, where  𝑥𝑖,𝑗𝑊  ∈ 𝑋𝑖
𝑊 

and 𝑋𝑖
𝑊 represents the set of possible additional undominated options beyond the shared 

neoclassical-net-zero-undominated option. For 𝑥𝑖,𝑗𝑊  to belong to 𝑋𝑖
𝑈 it must satisfy Definition 3 

and Assumption 2: 

((𝑝𝑖,𝑗𝑤 < 𝑝𝑖,𝑗𝑔∩ℎ∩𝑢) ∩ (𝑒𝑖,𝑗𝑤 > 𝑒𝑖,𝑗𝑔∩ℎ∩𝑢)) 

or 

((𝑝𝑖,𝑗𝑤 > 𝑝𝑖,𝑗𝑔∩ℎ∩𝑢) ∩ ((𝑒𝑖,𝑗𝑤) < 𝑒𝑖,𝑗𝑔∩ℎ∩𝑢)) 

However: 

• The first condition contradicts  𝑥𝑖,𝑗𝑔∩ℎ∩𝑢 ∈ 𝑋𝑖
𝐺  (i.e., it has minimum cost), and 

• The second condition contradicts 𝑥𝑖,𝑗𝑔∩ℎ∩𝑢 ∈ 𝑋𝑖
𝐻. (i.e., it has minimum emissions). 

 

Thus, 𝑥𝑖,𝑗𝑊 ∉  𝑋𝑖
𝑈, implying 𝑋𝑖

𝑊 = ∅ and therefore 𝑛(𝑋𝑖
𝑈) = 1, which contradicts our initial 

assumption that 𝑛(𝑋𝑖
𝑈) ≥ 2. Hence, for 𝑛(𝑋𝑖

𝑈) ≥ 2 to hold, it must be that: 

𝑥𝑖,𝑗𝑔∩𝑢 ≠ 𝑥𝑖,𝑗ℎ∩𝑢  

And if 𝑛(𝑋𝑖
𝑈) = 2, then: 
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𝑋𝑖
𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢 , 𝑥𝑖,𝑗ℎ∩𝑢}(∎). 

(d) If (𝑋𝑖
𝑈) ≥ 3, then the neoclassical–undominated option and the net-zero–undominated option 

must be distinct, i.e., 

𝑥𝑖,𝑗𝑔∩𝑢 ≠ 𝑥𝑖,𝑗ℎ∩𝑢  

In this case, the remaining undominated options must belong to the subset 

𝑋𝑖
𝑈∩𝐺′∩𝐻′

 

which consists of options that are undominated but are neither neoclassical nor net-zero. 
Thus, we can express the undominated subset as: 
 

𝑋𝑖
𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢 , 𝑋𝑖

𝑈∩𝐺′∩𝐻′
, 𝑥𝑖,𝑗ℎ∩𝑢} 

 
with the number of such intermediate options given by: 
 

𝑛 (𝑋𝑖
𝑈∩𝐺′∩𝐻′

) = 𝑛(𝑋𝑖
𝑈) − 2 (∎). 

Based on the three theorems and four corollaries presented above, we can observe the relationship 

between the subset of neoclassical options (𝑋𝑖
𝐺), the subset of net zero options (𝑋𝑖

𝐻), and the subset 

of undominated options (𝑋𝑖
𝑈), as illustrated in Figure 3.  

 

Figure 3. Relationship between subset of neoclassical options (𝑋𝑖
𝐺), subset of net zero options (𝑋𝑖

𝐻), 

and subset of undominated options (𝑋𝑖
𝑈). 

The undominated subset 𝑋𝑖
𝑈 consists of options that are not weakly dominated by any other options. 

This subset contains one unique member that overlaps with the subset of neoclassical options (𝑥𝑖,𝑗𝑔∩𝑢)  

and one unique member that overlaps with the subset of net zero options (𝑥𝑖,𝑗ℎ∩𝑢). 
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3.3.2. Properties of Climate Neutrality 

Although the terms net zero, carbon neutrality, and climate neutrality are often used interchangeably 
in policy and public discourse, they differ significantly in scope, definition, and implementation (Jeudy-
Hugo, Re, & Falduto, 2021; Rogelj, Geden, Cowie, & Reisinger, 2021). Carbon neutrality, though not 
central to this study, is frequently referenced in climate policy. It generally refers to balancing carbon 
dioxide emissions with equivalent removals or offsets. However, its usage is often ambiguous, 
sometimes referring strictly to CO₂, and at other times used more broadly to imply all greenhouse gas 
(GHG) emissions (IPCC, 2022b; Rogelj et al., 2021). To avoid this ambiguity, this study adopts the term 
climate neutrality (or GHG neutrality), which explicitly encompasses all types of GHGs. Climate 
neutrality refers to a state in which total anthropogenic GHG emissions are balanced by an equivalent 
number of removals from the atmosphere. This balance can be achieved not only through emission 
reductions and avoidance strategies but also using carbon offsets, making offsets a formally recognized 
component of the climate neutrality framework (UN Climate Change, 2021; IPCC, 2022b). The concept 
of climate neutrality is grounded in Article 4(1) of the Paris Agreement, which calls for “a balance 
between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second 
half of this century” (United Nations, 2015; European Parliament, 2022). 

In contrast, the net zero approach emphasizes the reduction of emissions to the lowest possible level, 
with GHG removals permitted only to address unavoidable residual emissions (ISO, 2022; SBTi, 2024; 
Chen, Lim, Yeo, & Tseng, 2024). While both concepts aim at long-term climate stabilization, net zero 
places stricter limits on the role of offsets and prioritizes direct emission abatement as the primary 
pathway. While climate neutrality and net zero may converge conceptually at the global level, their 
implementation often varies across sub-global levels, such as for individuals, organizations, 
corporations, or countries (UN Climate Change, 2021; IPCC, 2022b). Achieving a perfect balance 
between GHG emissions and removals is particularly challenging at the micro level. Most firms lack 
the capacity to independently offset their emissions with equivalent removals, which makes it 
necessary to apply policy instruments that influence behaviour through economic incentives (Stavins, 
2003). 

Among these instruments, emissions trading is a prominent market-based mechanism for climate 
policy. In contrast to command-and-control regulations, which impose fixed rules or emission 
standards, emissions trading offers firms the flexibility to determine how best to meet policy targets 
(Callan & Thomas, 2013). This flexibility has made emissions trading a widely used approach for 
countries fulfilling their Paris Agreement commitments, and it is regarded as a key tool for climate 
change mitigation because it internalizes external emission costs by assigning them a market price 
(IPCC, 2007; ICAP, 2024). Such market mechanisms promote economic efficiency by enabling emission 
reductions to occur where marginal abatement costs are lowest (Coase, 1960; IPCC, 2001). Polluters 
are therefore incentivized to reduce emissions in the most cost-effective way and at the most strategic 
time (IPCC, 1996). Under this system, each emitter can select the optimal option based on the 
relationship between option cost, emissions level, and the price of GHG credits (𝜌). 

Building on this foundation, we define the subset of climate neutrality options as follows: 

Definition 7: Subset of Climate Neutrality Options (𝑋𝑖
𝑉) 

∀ 𝑥𝑖,𝑗′ ∈ 𝑋𝑖 ∩ 𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑉 ⊆ 𝑋𝑖 ∩ 0 < 𝜌 < ℒ: ∃ 𝜌 where 𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌  

In Definition 7, an option belongs to the subset of climate neutrality options if it has the lowest total 
cost for at least one value of the GHG credit cost (𝜌) within the range (0, ℒ). 
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To examine climate neutrality further, we need to distinguish collectively dominated from weakly 
dominated. While weak dominance, as defined in Definition 3, refers to a situation where one option 
is dominated by a single other option. In this section, we try to broaden the scope of exploration by 
introducing the concept of collectively dominated, collective dominance extends this idea. It describes 
a case where an option is dominated not by one, but by a combination of two or more other options. 
This broader concept is formalized in the following Definition 8. 

Definition 8: Collectively Dominated 

For all 𝑝𝑖,𝑗−𝑟 < 𝑝𝑖,𝑗 < 𝑝𝑖,𝑗+𝑠 where 𝑟, 𝑠 are positive integers and 𝑝𝑖,𝑗 = 𝛼 ∙ 𝑝𝑖,𝑗−𝑟 + (1 − 𝛼) ∙

𝑝𝑖,𝑗+𝑠 and 0 < 𝛼 < 1, and 𝑒𝑖,𝑗−𝑟 > 𝑒𝑖,𝑗 > 𝑒𝑖,𝑗+1 where 𝑒𝑖,𝑗 > 𝛼 ∙ 𝑒𝑖,𝑗−𝑟 + (1 − 𝛼) ∙ 𝑒𝑖,𝑗+𝑠 then 

𝑥𝑖,𝑗 is neither weakly dominated by 𝑥𝑖,𝑗−𝑟 nor 𝑥𝑖,𝑗+𝑠, but collectively dominated by 𝑥𝑖,𝑗−𝑟 and 

𝑥𝑖,𝑗+𝑠 or (𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗+𝑠]). 

Figure 4 illustrates this situation, where 𝑥𝑖,𝑗 appears acceptable in isolation but fails to deliver a better 

trade-off than the convex combination of the two surrounding options. This inefficiency justifies 
excluding it from the optimal choice set. 

 

Figure 4. Illustration of an option that is not weakly dominated by any single option, but is 
collectively dominated by two other options. 

The total cost (𝜑) of the collectively dominated options tends to be more expensive. 

Corollary 5: Collectively Dominated Option is Always More Expensive 

∀ 0 < 𝜌 < ℒ ∶ 𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗+𝑠] → (𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗−𝑟,𝜌) ∪ (𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗+𝑠,𝜌). 

Proof:  

From Equation 5, it is known that if 𝑝𝑖,𝑗 = 𝑝𝑖,𝑗̃, 𝑒𝑖,𝑗 > 𝑒𝑖,𝑗̃, and 𝜌 > 0, then: 

𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗̃,𝜌 
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Geometrically (see Figure 4), the GHG credit cost threshold (𝜌̅) can be defined as: 

𝜌̅ =
𝑝𝑖,𝑗+𝑠 − 𝑝𝑖,𝑗−𝑟

𝑒𝑖,𝑗−𝑟 − 𝑒𝑖,𝑗+𝑠
=

𝑝𝑖,𝑗̃ − 𝑝𝑖,𝑗−𝑟

𝑒𝑖,𝑗−𝑟 − 𝑒𝑖,𝑗̃
=

𝑝𝑖,𝑗+𝑠 − 𝑝𝑖,𝑗̃

𝑒𝑖,𝑗̃ − 𝑒𝑖,𝑗+𝑠
 

• If 𝜌̅ > 𝜌, then  
𝑝𝑖,𝑗̃−𝑝𝑖,𝑗−𝑟

𝑒𝑖,𝑗−𝑟 −𝑒𝑖,𝑗̃
> 𝜌 →  𝑝𝑖,𝑗̃ + 𝜌𝑒𝑖,𝑗̃ > 𝑝𝑖,𝑗−𝑟 + 𝜌𝑒𝑖,𝑗−𝑟 →  𝜑𝑖,𝑗̃,𝜌 > 𝜑𝑖,𝑗−𝑟,𝜌. Since 

𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗̃,𝜌, then 𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗−𝑟,𝜌 

 

• If 𝜌̅ < 𝜌 then 
𝑝𝑖,𝑗+𝑠 −𝑝𝑖,𝑗̃

𝑒𝑖,𝑗̃−𝑒𝑖,𝑗+𝑠
< 𝜌 ⇒  𝑝𝑖,𝑗+𝑠 + 𝜌𝑒𝑖,𝑗+𝑠 < 𝑝𝑖,𝑗̃ + 𝜌𝑒𝑖,𝑗̃  →  𝜑𝑖,𝑗+𝑠,𝜌 < 𝜑𝑖,𝑗̃,𝜌 or 𝜑𝑖,𝑗̃,𝜌 >

𝜑𝑖,𝑗+𝑠,𝜌. Since 𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗̃,𝜌, then 𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗+𝑠,𝜌 

 

• If 𝜌̅ = 𝜌, then 
𝑝𝑖,𝑗+𝑠 −𝑝𝑖,𝑗−𝑟

𝑒𝑖,𝑗−𝑟 −𝑒𝑖,𝑗+𝑠
= 𝜌 and  

𝑝𝑖,𝑗̃−𝑝𝑖,𝑗−𝑟

𝑒𝑖,𝑗−𝑟 −𝑒𝑖,𝑗̃
= 𝜌 ⇒ 𝑝𝑖,𝑗+𝑠 + 𝜌𝑒𝑖,𝑗+𝑠 = 𝑝𝑖,𝑗−𝑟 + 𝜌𝑒𝑖,𝑗−𝑟 and 

𝑝𝑖,𝑗̃ + 𝜌𝑒𝑖,𝑗̃ = 𝑝𝑖,𝑗−𝑟 + 𝜌𝑒𝑖,𝑗−𝑟 ⇒ 𝜑𝑖,𝑗̃,𝜌 = 𝜑𝑖,𝑗−𝑟,𝜌 = 𝜑𝑖,𝑗+𝑠,𝜌 

Given 𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗̃,𝜌, it follows that: 

𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗−𝑟,𝜌 and 𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗+𝑠,𝜌 

Since the only possible conditions are 𝜌̅ > 𝜌 or 𝜌̅ < 𝜌 or 𝜌̅ = 𝜌, the consequences are: 

𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗−𝑟,𝜌 or 𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗+𝑠,𝜌 (∎). 

From Definition 7, it is stated that for each member of the climate neutrality options set, for all 𝑗′ and 

all 𝜌 ∈  ℝ+, there exist a 𝜌 such that: 𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌, or ∃ 𝜌 such that: ⋂ (𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌)∀𝑗′ . This 

implies that for options that are not members of the climate neutrality option set, ¬∃ 𝜌 such that 

⋂ (𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌)∀𝑗′ . 

Corollary 6 follows by showing the implications for weakly dominated or collectively dominated 
options. 

Corollary 6: Not A Member of The Subset of Climate Neutrality Options 

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ∪ (𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗+𝑠]) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉)  

Proof:  

From Definition 7, we know the following equivalence: 

∀𝑗′: (∃ 𝜌: 𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌) ↔ (𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑉) 

or 

(∃ 𝜌: ⋂(𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌)

∀𝑗′

) ↔ (𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑉) 

Equivalently, 
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(¬∃ 𝜌: ⋂(𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗′ ,𝜌)

∀𝑗′

) ↔ (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉) 

From Corollary 1, we have: 

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ↔ (𝜑𝑖,𝑗,𝜌 ≥ 𝜑𝑖,𝑗′,𝜌) 

Since 

(𝜑𝑖,𝑗,𝜌 ≥ 𝜑𝑖,𝑗′,𝜌) → (¬∃ 𝜌: ⋂(𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌)

∀𝑗′

) 

It follows that: 

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉) 

From Corollary 5, we know that  

(𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗+𝑠]) → (𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗−𝑟,𝜌) ∪ (𝜑𝑖,𝑗,𝜌 > 𝜑𝑖,𝑗+𝑠,𝜌) 

This implies: 

¬∃ 𝜌: (𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗−𝑟,𝜌) ∩ (𝜑𝑖,𝑗,𝜌 ≤ 𝜑𝑖,𝑗+𝑠,𝜌) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉).   

Therefore, based on both conditions: 

• (𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉), and 

• (𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗+𝑠]) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉),  

through simplification of disjunctive antecedents (Alonso-Ovalle, 2004), we conclude:  

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ∪ (𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗+𝑠]) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉) (∎). 

This leads to Corollary 7, which states that the subset of climate neutrality options is itself a subset of 
the undominated options. 

Corollary 7: The Climate Neutrality Subset is a Subset of the Undominated Options 

𝑋𝑖
𝑉 ⊆ 𝑋𝑖

𝑈 

Proof:   

From Corollary 6, we know that: 

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) ∪ (𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟 , 𝑥𝑖,𝑗+𝑠]) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉) 

By using simplification of disjunctive antecedents (Alonso-Ovalle, 2004), we can separate this into two 
implications: 

(𝑥𝑖,𝑗 ≼ 𝑥𝑖,𝑗′) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉) and (𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗+𝑠]) → (𝑥𝑖,𝑗 ∉ 𝑋𝑖

𝑉). 
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Taking the contrapositive of the first implication (Johnsonbaugh, 2019), we obtain: 

(𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑉) → (𝑥𝑖,𝑗 ⋠ 𝑥𝑖,𝑗′) 

From the negation of Corollary 2, it is established that: 

(𝑥𝑖,𝑗 ⋠ 𝑥𝑖,𝑗′) ↔ (𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑈) 

Therefore, it follows that: 

(𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑉) → (𝑥𝑖,𝑗 ∈ 𝑋𝑖

𝑈) 

Thus, we conclude: 

𝑋𝑖
𝑉 ⊆ 𝑋𝑖

𝑈 (∎). 

Theorem 4: The Properties of the Subset of Climate Neutrality Options 

(a) 𝑋𝑖
𝑉 ≠ ∅ 

(b) 𝑛(𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑉) = 1   

(c) 𝑛(𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑉) = 1   

(d) If 𝑛(𝑋𝑖
𝑈) = 1 → 𝑛(𝑋𝑖

𝑈) = 𝑛(𝑋𝑖
𝑉) 

(e) If 𝑛(𝑋𝑖
𝑈) = 2 → 𝑛(𝑋𝑖

𝑈) = 𝑛(𝑋𝑖
𝑉) 

(f) If 𝑛(𝑋𝑖
𝑈) ≥ 3 → 𝑛(𝑋𝑖

𝑈) ≥ 𝑛(𝑋𝑖
𝑉) 

Proof:  

(a) From Equation (5), it is established that: 

𝜑: 𝜌, ℙ𝑖, 𝔼𝑖 → Φ𝑖 

We know the following: 

• From the proof of Theorem 1, ℙ𝑖 ≠ ∅ 

• From the proof of Theorem 2, 𝔼𝑖 ≠ ∅  

• From the requirement of Equation 5, 0 < 𝜌 < ℒ , therefore, it follows that Φ𝑖 ≠ ∅.  
 
For all 𝜌, there exist a partially ordered set 

𝛷̂𝑖 = {𝜑𝑖,1∗ , 𝜑𝑖,2∗ , … , 𝜑𝑖,𝑗∗ , 𝜑𝑖,𝑗+1∗ , … } ≠ ∅ 

Such that 𝜑𝑖,𝑗∗ ≤ 𝜑𝑖,𝑗+1∗ for all 𝑗 (Simovici & Djeraba, 2008). Let 𝐾 be an integer such that: 

𝜑𝑖,1∗ = 𝜑𝑖,2∗ = ⋯ = 𝜑𝑖,𝐾∗ 

with the following conditions: 
(i) 𝐾 ≥ 1 because Φ𝑖 ≠ ∅, and 
(ii) 𝐾 ≤ 𝑛(Φ𝑖), because the number of subset members is less than or equal to the 

number of set members in Φ𝑖.  
 
Define the subset of equal-valued minimum members as: 

𝛷̂𝑖
𝑉 = {𝜑𝑖,1∗ , 𝜑𝑖,2∗ , … , 𝜑𝑖,𝐾∗} 
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Thus, the full set can be written as: 

𝛷̂𝑖 = {𝛷̂𝑖
𝑉 , 𝜑𝑖,𝐾+1∗ , 𝜑𝑖,𝐾+2∗ , … } = {𝛷̂𝑖

𝑉, 𝛷̂𝑖
~𝑉} ≠ ∅ 

There are two cases: 

• if 0 < 𝐾 < 𝑛(Φ𝑖), then both Φ̂𝑖
𝑉 ≠ ∅ and Φ̂𝑖

~𝑉 ≠ ∅ 

• if 𝐾 = 𝑛(Φ𝑖), then Φ̂𝑖
𝑉 ≠ ∅ and Φ̂𝑖

~𝑉 = ∅.  
 

Since 𝐾 ≥ 1 and 𝐾 ≤ 𝑛(Φ𝑖), it follows that Φ̂𝑖
𝑉 ≠ ∅. Therefore, the set of climate neutrality 

options is non-empty: 

𝑋𝑖
𝑉 ≠ ∅ (∎). 

(b) From Corollary 3, it is established that  

𝑛(𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑈) = 1 

This can also be expressed as: 

𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢} or 𝑥𝑖,𝑗𝑔∩𝑢 ∈ 𝑋𝑖
𝐺  and 𝑥𝑖,𝑗𝑔∩𝑢 ∈ 𝑋𝑖

𝑈. 

From Definition 4, if 𝑥𝑖,𝑗𝑔∩𝑢 ∈ 𝑋𝑖
𝐺  then 𝑥𝑖,𝑗′ ≼𝑝 𝑥𝑖,𝑗𝑔∩𝑢   and from Definition 1 it is known that 

𝑝𝑖,𝑗𝑔∩𝑢 ≤ 𝑝𝑖,𝑗′ . From Equation (5), we know that: 

lim
𝜌→0+

𝜑𝑖,𝑗,𝜌 = 𝑝𝑖,𝑗  

Hence it follows that: 

lim
𝜌→0+

𝜑𝑖,𝑗𝑔∩𝑢,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌 

According to Definition 7, if there exist a  𝜌 where: 

𝜑𝑖,𝑗𝑔∩𝑢,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌 

Then: 

𝑥𝑖,𝑗𝑔∩𝑢 ∈ 𝑋𝑖
𝑉  

From here we can conclude that: 

𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑈 ∩ 𝑋𝑖
𝑉 = {𝑥𝑖,𝑗𝑔∩𝑢} 

or equivalently: 

𝑛(𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑉) = 1 (∎). 

(c) From Corollary 4 it is established that  

𝑛(𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑈) = 1 

This can also be stated as: 
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𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗ℎ∩𝑢} 

Which implies: 

𝑥𝑖,𝑗ℎ∩𝑢 ∈ 𝑋𝑖
𝐻 and 𝑥𝑖,𝑗ℎ∩𝑢 ∈ 𝑋𝑖

𝑈 

From Definition 4 it is known that if 𝑥𝑖,𝑗ℎ∩𝑢 ∈ 𝑋𝑖
𝐻 then 𝑥𝑖,𝑗′ ≼𝑒 𝑥𝑖,𝑗ℎ∩𝑢, and from Definition 1 it is 

known that 𝑒𝑖,𝑗ℎ∩𝑢 ≤ 𝑒𝑖,𝑗′ . From Equation (5), it is known that: 

𝑙𝑖𝑚
𝜌→ℒ−

𝜑𝑖,𝑗,𝜌

𝜌
= 𝑒𝑖,𝑗 

Thus, it follows that: 

𝑙𝑖𝑚
𝜌→ℒ−

𝜑𝑖,𝑗ℎ∩𝑢,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌 

According to Definition 7, if there exist a  𝜌 such that: 

𝜑𝑖,𝑗ℎ∩𝑢,𝜌 ≤ 𝜑𝑖,𝑗′,𝜌 

Then:  

𝑥𝑖,𝑗ℎ∩𝑢 ∈ 𝑋𝑖
𝑉 

Therefore, we conclude: 

𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑈 ∩ 𝑋𝑖
𝑉 = {𝑥𝑖,𝑗ℎ∩𝑢} 

or equivalently: 

𝑛(𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑉) = 1 (∎). 

(d) Theorem 3(b) states that if 𝑛(𝑋𝑖
𝑈) = 1 then 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗𝑔∩ℎ∩𝑢}. From Corollary 7, it is known that: 

𝑋𝑖
𝑉 ⊆ 𝑋𝑖

𝑈 

And from Theorem 4(a), it is established that: 

𝑋𝑖
𝑉 ≠ ∅ 

Given that 𝑋𝑖
𝑈 contains only one member, and 𝑋𝑖

𝑉 ⊆ 𝑋𝑖
𝑈 with 𝑋𝑖

𝑉 ≠ ∅, it must be the case that: 

𝑋𝑖
𝑉 = {𝑥𝑖,𝑗𝑔∩ℎ∩𝑢} 

Therefore, this result implies: 

𝑋𝑖
𝑉 = {𝑥𝑖,𝑗𝑔∩ℎ∩𝑢} = 𝑋𝑖

𝑈(∎). 
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(e) Theorem 3(c) states that if 𝑛(𝑋𝑖
𝑈) = 2  then 𝑋𝑖

𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢 , 𝑥𝑖,𝑗ℎ∩𝑢}. Note that 𝑥𝑖,𝑗𝑔∩𝑢 ≠ 𝑥𝑖,𝑗ℎ∩𝑢 , 

because if 𝑥𝑖,𝑗𝑔∩𝑢 = 𝑥𝑖,𝑗ℎ∩𝑢, then 𝑛(𝑋𝑖
𝑈) = 1, which contradicts the condition 𝑛(𝑋𝑖

𝑈) = 2. 

 
From Theorem 4(b), we have: 

𝑋𝑖
𝐺 ∩ 𝑋𝑖

𝑉 = {𝑥𝑖,𝑗𝑔∩𝑢} 

From Theorem 4(c), we have: 

𝑋𝑖
𝐻 ∩ 𝑋𝑖

𝑉 = {𝑥𝑖,𝑗ℎ∩𝑢} 

Given that  𝑥𝑖,𝑗𝑔∩𝑢 ≠ 𝑥𝑖,𝑗ℎ∩𝑢, it follows that: 

𝑋𝑖
𝑉 = {𝑥𝑖,𝑗𝑔∩𝑢 , 𝑥𝑖,𝑗ℎ∩𝑢} 

Thus, we can conclude: 

𝑋𝑖
𝑈 = {𝑥𝑖,𝑗𝑔∩𝑢 , 𝑥𝑖,𝑗ℎ∩𝑢} = 𝑋𝑖

𝑉(∎). 

(f) From Corollary 7, it is established that: 

𝑋𝑖
𝑉 ⊆ 𝑋𝑖

𝑈 

Therefore, 

𝑛(𝑋𝑖
𝑈) ≥ 𝑛(𝑋𝑖

𝑉) (∎). 

The following section introduces the concept of discrete convexity, which extends the idea of convexity 
from continuous functions to discrete spaces (Yüceer, 2002). 

Definition 9: Discrete Convex  

Let ℙ𝑖
𝑊 be a subspace of a discrete 𝑛-dimensional space. A function 𝑧 ∶  ℙ𝑖

𝑊 → 𝔼𝑖
𝑊 is discretely 

convex if for all 𝑝𝑖,𝑗−𝑟,  𝑝𝑖,𝑗,  𝑝𝑖,𝑗+𝑠 ∈ ℙ𝑖
𝑊 where 𝑟, 𝑠 are positive integers and 𝑝𝑖,𝑗−𝑟 < 𝑝𝑖,𝑗 <

𝑝𝑖,𝑗+𝑠 then 𝑧(𝑝𝑖,𝑗) = 𝑧(𝛼 ∙ 𝑝𝑖,𝑗−𝑟 + (1 + 𝛼) ∙ 𝑝𝑖,𝑗+𝑠) ≤ 𝛼 ∙ 𝑧(𝑝𝑖,𝑗−𝑟) + (1 + 𝛼) ∙ 𝑧(𝑝𝑖,𝑗+𝑠). 

Theorem 5: Discrete Convex in the Subset of Climate Neutrality Options 

  𝑋𝑖
𝑉  is discrete convex  

Proof:  

From Definition 8 it is known that if 𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗, 𝑥𝑖,𝑗+𝑠 ∈  𝑋𝑖
𝑉  and 𝑝𝑖,𝑗−𝑟 < 𝑝𝑖,𝑗 < 𝑝𝑖,𝑗+𝑠 and 𝑒𝑖,𝑗 > 𝛼 ∙

𝑒𝑖,𝑗−𝑟 + (1 − 𝛼) ∙ 𝑒𝑖,𝑗+𝑠 or 𝑧(𝑝𝑖,𝑗) > 𝛼 ∙ 𝑧(𝑝𝑖,𝑗−𝑟) + (1 − 𝛼)𝑧 ∙ (𝑝𝑖,𝑗+𝑠) then (𝑥𝑖,𝑗 ≼ [𝑥𝑖,𝑗−𝑟, 𝑥𝑖,𝑗+𝑠]), 

so that from Corollary 6 we obtain 𝑥𝑖,𝑗 ∉ 𝑋𝑖
𝑉.  

In order not to contradict 𝑥𝑖,𝑗 ∈ 𝑋𝑖
𝑉 then 𝑧(𝑝𝑖,𝑗) ≤ 𝛼 ∙ 𝑧(𝑝𝑖,𝑗−𝑟) + (1 + 𝛼) ∙ 𝑧(𝑝𝑖,𝑗+𝑠), or in line with 

the definition of discrete convex in Definition 9 (∎). 
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4. Discussion  

While the terms net zero and climate neutrality are often used interchangeably, they in fact refer to 
distinct concepts with different definitions, implications, and policy consequences (Jeudy-Hugo, Re, & 
Falduto, 2021; Rogelj, Geden, Cowie, & Reisinger, 2021; Chen, Lim, Yeo, & Tseng, 2024). This study 
formally explores these two strategic approaches within the economic analysis of climate change by 
adapting the concept of production factor substitution (McFadden, 1962), framing the production 
function as a set of discrete options. This discrete-option framework enables an integrated comparison 
of three perspectives: neoclassical, net zero, and climate neutrality. The neoclassical perspective, 
which emphasizes cost minimization (Marshall, 1890; Hicks, 1932; McFadden, 1962), yields a non-
empty subset of optimal solutions, as established in Theorem 1. The net-zero perspective, which 
prioritizes minimizing direct GHG emissions (Chen, Lim, Yeo, & Tseng, 2024; SBTi, 2024), also results in 
a non-empty solution subset (Theorem 2). Lastly, the climate neutrality perspective, which balances 
emissions with carbon removal or offset initiatives, thereby influencing total costs, likewise produces 
a non-empty subset of solutions (Theorem 4(a)) (Chen, Lim, Yeo, & Tseng, 2024; Chen, et al., 2022; 
IMF, 2008).  

As illustrated in Figure 5, the subset of climate neutrality solution options intersects with the subsets 
of neoclassical, net-zero, and undominated options. Specifically, the climate neutrality subset shares 
one solution with the neoclassical subset, namely, the neoclassical option with the lowest emissions 
(see Corollary 3 and Theorem 4(b)). It also intersects with one option from the net-zero subset, which 
is the net-zero option with the lowest cost (see Corollary 4 and Theorem 4(c)). Furthermore, the 
climate neutrality subset is entirely contained within the undominated options subset (see Corollary 
7), which comprises options not dominated by any other individual option (see Corollary 2). A key 
distinguishing feature of the climate neutrality subset is that its elements are not only free from 
individual dominance but are also not collectively dominated by any combination of two other options 
(see Corollary 6). An additional noteworthy property of the climate neutrality solution set is that it 
satisfies discrete convexity, meaning it preserves a form of convex structure in a discrete space (see 
Theorem 5). 

 

Figure 5. Illustration of the relationship between the subset of climate neutrality options and the 
subset of neoclassical, net-zero, and undominated options. 
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Figure 6. Effect of changes in GHG credit cost (𝜌) on total option cost (𝜑). At a given GHG credit cost 
(𝜌), one or two members of the subset of climate neutrality solution options have the smallest total 

option cost. 

Each member of the climate neutrality solution subset represents the option with the lowest total cost 
(𝜑) at a given GHG credit cost (𝜌), as defined in Definition 7. As illustrated in Figure 6, the option with 
the lowest total cost may shift from one member of the climate neutrality subset to another as 𝜌 
changes. At any given GHG credit cost (𝜌) there may be one or two options within the climate neutrality 
subset that achieve the minimum total cost. The relationship between GHG credit cost (𝜌) and the 
smallest total cost option (𝑥), where: 

𝑥𝑖,𝑗 : 𝜑𝑖,𝑗,𝜌 = 𝑚𝑖𝑛∀𝑗′{𝜑𝑖,𝑗′,𝜌} 

Maps from the domain set 𝑃 (the set of possible GHG credit costs) to the codomain set 𝑋̂ (the set of 
cost-minimizing options), i.e.,  

𝑃 → 𝑋̂ 

However, this mapping does not satisfy the formal definition of a function (Johnsonbaugh, 2019; Bartle 

& Sherbert, 1999) because some values of 𝜌 ∈ 𝑃 correspond to multiple elements in 𝑋̂. As shown in 
Figure 7, the resulting relationship resembles a step function, but it fails to meet the criteria of a 
mathematical function due to these instances of non-uniqueness. 
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Figure 7. The relationship between GHG credit costs (𝜌) and the option with the smallest total cost 
(𝑥). 

 

 Figure 7. Categorization of new option types based on their impact on the configuration of a subset 
of climate neutrality options. 

The emergence of a new option can have different impacts on the configuration of the climate 
neutrality solution subset. Broadly, there are seven distinct types of new options, categorized by their 
impact on this subset, as illustrated in Figure 7: 

1. New irrelevant option: a new option that does not affect the existing subset of climate 
neutrality options. 

2. New neoclassical option (non-displacing): a new neoclassical solution option that does not 
eliminate the previous neoclassical solution in the subset of climate neutrality options. 
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3. New neoclassical option (displacing): a new neoclassical solution option that eliminates the 
previous neoclassical option in the subset of climate neutrality options. 

4. New net-zero option (non-displacing): a new net-zero solution option that does not eliminate 
the previous net-zero solution in the subset of climate neutrality options. 

5. New net-zero option (displacing): a new net-zero solution option that eliminates the previous 
net-zero option in the subset of climate neutrality options. 

6. New climate neutrality option: a new option that do not eliminate the previous neoclassical 
option and do not eliminate the previous net-zero option in the subset of climate neutrality 
options. 

7. New disruptive option: a new option that eliminates all previous options in the subset of 
climate neutrality options. 

The geometric position of the new option within the costs-emission space determines its effect that 
ranges from having no impact, to partially modifying the subset, to fully replacing all previous options. 
This analytical framework can inform broader discussions on climate strategy, particularly in relation 
to disruptive innovations in the climate transition (McDowall, 2018; Kivimaa, Laakso, Lonkila, & 
Kaljonen, 2021). 

5. Conclusions  

Viewing the production function as a set of discrete, substitutable options enables a structured 
examination of the relationship between neoclassical, net-zero, and climate neutrality perspectives. 
This formal model illustrates both the properties and interconnections among these three frameworks, 
each of which yields a non-empty set of solution options. The study formally demonstrates that a 
solution under the climate neutrality perspective lies between the neoclassical solution with the 
lowest emissions and the net-zero solution with the lowest total cost. The model not only establishes 
the structural relationship among the three perspectives but also highlights the unique properties of 
climate neutrality. Compared to neoclassical and net-zero, climate neutrality exhibits more complex 
characteristics, including discrete convexity, and the selection of the most optimal option is influenced 
by the GHG credit cost. 

The relationship between GHG credit cost and the optimal solution resembles a step function, though 
it does not meet the formal definition of a function since some domain values correspond to multiple 
codomain values. In this framework, lower GHG credit costs tend to favour neoclassical solutions, while 
higher costs shift preference toward net-zero solutions. Thus, GHG credit cost plays a central role in 
shaping the transition to a low-emissions economy. Furthermore, this approach provides a basis for 
categorizing the impact of newly introduced climate mitigation options—classifying them as irrelevant, 
new neoclassical, new net-zero, new climate neutrality, or disruptive. Ultimately, conceptualizing the 
production function as a set of discrete, substitutable options offers a novel and rigorous lens to enrich 
the economic analysis of climate change. 
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