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Abstract

Water markets even though not perfect and require a lot of effort to establish are considered
as a robust tool to address water management issues around the world. However, the existing
literature does not provide an optimal water resource management policy. To create a perfect
water market, the government needs to identify the potential number of suppliers/producers
and consumers of water against various extraction/supply/production rates of water, i.e., to
identify a supply and a demand curve for number of suppliers/producers of water against each
production rate in economy. This article presents a theory which is practically applicable for an
optimal dynamical water resource management policy. (JEL H20, H23, H27)
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1 Introduction

Water is a scarce natural resource upon which the very existence of life depends. The water on

earth is in abundance, however, only 0.3 percent of that is usable, and the rest, i.e., 99.7 percent

is in the soil, icecaps, oceans, and floating in the atmosphere. A huge fraction of usable water has

still not been made available for use. The prospects of water resource management are formidable

including financial, regulatory, and institutional hindrances regarding policy formulation. A huge

fraction of population still does not have access to safe drinking water. Without appropriate policy

measures, water resource management in an optimal manner is not achievable.

Agricultural water management is the use of water for agricultural purposes in an optimal manner,

i.e., to provide crops and animals the water they need to enhance productivity, and at the same

time avoid wastage of water, and save it for other purposes including ecosystem balance. Around

70 percent of global freshwater is consumed for agricultural purposes, however, water use effi ciency

is less than 50 percent in majority of countries. Due to lack of proper management, changing

environment, and wasteful utilization of water, fresh water supply has been increasingly getting

scarce. Downward trends both in quality and quantity of water in various parts of the world are

daunting challenges both for safe drinking water and sustainability of ecological balance. To address

these issues, effi ciency in water use is required.

For effi ciency in water use, the government needs to create a perfect water market on the principle

of economic effi ciency. This is essential to address overuse of water on part of free riders. A

price attached to the use can be instrumental in demand management. The other component of

market is supply side, which needs to be augmented. It requires engineering and/or infrastructure

solutions to enhance water supply, such as construction of dams, weirs, and desalination, etc. Formal

water markets involve the transformation of water public property rights to one where some water

use rights are divisible, transferable, privately managed that can be bought or sold (in whole or

part). Creation of a water market can allocate resources effi ciently. The first stage involves the

establishment of enabling institutions, e.g., this includes having available information on current

and sustainable (capped) water extractions, hydrology, regulations, legislation, and enforcement

to govern water markets. The second stage involves trade facilitation including the assessment of

trade benefits, monitoring supply of water, and reduction in transaction costs. The third stage

involves revisiting and reform of existing water markets. Water markets even though not perfect

and require a lot of effort to establish are considered as a robust tool to address water management

issues around the world. However, the existing literature does not provide an optimal water resource

management policy.

Weinberg, Kling and Wilen (1993) show that although water markets will not generally achieve
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a least-cost solution, they may be a practical alternative to economically effi cient, but informa-

tionally intensive, environmental policies such as Pigouvian taxes. Bjornlund and McKay (1998)

shows that more effi cient irrigators are willing to pay a higher price for water, whereas the least

effi cient farmers are willing to sell at a lower price, showing that the buyers with high value of

marginal product are willing to pay a price in excess of the value of the income generated by the

sellers with low value of marginal product. Carey, Sunding and Zilberman (2002) considers the

allocation of water by markets that are only imperfectly developed, in which prices are not publicly

known and in which there is no centralized trading location. Romano and Leporati (2002) exam-

ines the distributive impacts on the relevant population (in particular on the poor and the most

vulnerable groups. Bjornlund (2003) discusses the operational mechanism of a water exchange in

Victoria, Australia, and analyses the outcome of the first five years of operation. Nieuwoudt and

Armitage (2004) studies demand-side responses to water allocation in two irrigation districts in

South Africa by investigating how water markets can lead to more effi cient water allocation and

use. Gómez-Limón and Martinez (2006) develops a multi-criteria methodology to simulate irriga-

tion water markets at basin level. Brown (2006) shows that much more water changes hands via

leases than via sales of water rights. Chong and Sunding (2006) advocates transferable water rights.

In Brennan (2006), the nature of the seasonal water market is examined using a theoretical model

and empirical evidence from the Victorian market. In van Heerden, Blignaut and Horridge (2008),

a static computable general equilibrium model of South Africa is adapted to compare new taxes

on water demand by two industries, namely forestry, and irrigated field crops. In Zaman, Malano

and Davidson (2009), the integration of an economic trading model with a hydrologic water allo-

cation model is discussed. Hanak and Stryjewski (2012) provides an overview of the policy context

for water marketing and the related practice of groundwater banking and summarizes trends in

both areas. Wheeler, Garrick, Loch and Bjornlund (2013) shows how Australia provides a lead-

ing example of a government buying back water for the environment. Bakker (2014) reviews the

literature relevant to market environmentalism in the water sector, focusing on five themes: the pri-

vatization of resource ownership and management, the commercialization of resource management

organizations, the environmental valuation and pricing of resources, the marketization of trading

and exchange mechanisms, and the liberalization of governance. Wheeler, Loch, Crase, Young and

Grafton (2017) attempts to fill the existing water market development gap and provide an initial

framework (the water market readiness assessment (WMRA)) to describe the policy and adminis-

trative conditions/reforms necessary to enable governments/jurisdictions to develop water trading

arrangements that are effi cient, equitable and within sustainable limits.

In order to create a perfect water market, the government needs to identify the potential number

of suppliers/producers and consumers of water against various extraction/supply/production rates

of water, i.e., to identify a supply and a demand curve for number of suppliers/producers of water
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against each production rate in economy. Graph A in figure 1 shows the number of producers

of water on x-axis, and the production rate on y-axis. The upward sloping curve is the supply

curve for number of producers (both private and public) of water against each production rate,

and the downward sloping curve is the demand curve. Graph B illustrates the supply and demand

of quantity of water against various prices, and both supply and demand collectively determine

the equilibrium price. Both graphs are connected, i.e., if perpendiculars from various points on

demand and supply curves are drawn on x, and y-axes in graph A, the areas correspond to the

abscissas/horizontal coordinates for demand and supply curves in graph B. As number of producers

of water multiplied by the production rate in graph A determines the quantity of water supplied

and demanded at various prices in graph B, both graphs and hence equilibria occur simultaneously.

However, the government has a non-tax revenue constraint for production contracts/leasing out

water extraction facilities/tradable licenses fee, which needs to be satisfied for an optimal water

production/supply level, therefore, the design of policy involves an order for graph B, and A, i.e.,

to first derive an optimal level of contract/lease/license fee subject to the non-tax revenue con-

straint based on graph B, followed by a policy design based on graph A for an optimal number

of producers of water, and the production rate subject to the constraint imposed by the optimal

policy in graph B, i.e., the change in inventory/storage of water per unit time. For an optimal

contract/lease/license fee, the effi ciency loss in post-fee equilibrium as well as that during the ad-

justment of water market is minimized subject to the fee revenue constraint. When the government

leases out the water extraction facility, the producers’cost becomes equal to the production cost

plus the lease/contract/license fee, which pushes the water market out of equilibrium (assuming

that before the government adopted the leasing out/contract/license fee, water demand was equal

to water supply, and the equilibrium was ineffi cient due to an externality of over-use of water).

Both supply and demand of water adjust over time and the market attains the final equilibrium.

The mechansim for adjustment of water market is based on the presumption that when the market

is out of equilibrium, the decisions of producers and consumers are not coordinated at current price.

The effi ciency losses during the water market adjustment must be taken into account to find an op-

timal policy. The optimal fee policy based on graph B decides the constraint for an optimal policy

based on graph A, i.e., to find an optimal number of producers of water and the production rate by

minimizing the social damage in terms of inadequate/excessive number of producers/suppliers of

water in initial equilibrium as well as during the adjustment process to the final equilibrium sub-

ject to a change in water inventory/storage per unit time (a constraint determined by derivation

of an optimal policy in graph B). As soon as the government adopts a policy to vary the number

of water producers/suppliers and the production/extraction rate, an equilibrium does not result

instantaneously, and rather the market of water producers undergo an adjustment mechanism to

achieve the final equilibrium, i.e., where the supply and demand of water producers become equal.
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While deriving an optimal policy for number of producers based on graph A, social damage both

in initial equilibrium as well as during the adjustment process has been minimized subject to the

change in water inventory/storage per unit time.

The remainder of this paper is organized as follows: Section 2 presents the water market model.

Section 3 provides a solution of the water market model with a contract/lease/license fee. Section

4 derives a dynamically optimal water market policy. Section 5 presents the water producers and

production rate model. Section 6 provides a solution of the water producers model with a production

policy. Section 7 derives a dynamic optimal production policy for water producers model. Section

8 provides a summary of findings and conclusion. Appendix elaborates detailed mathematical steps

in derivations in the text.

2 The Water Market Model

Suppose an imperfect water market exists and demand equals supply. There are four types of

infinitely-lived market agents, i.e., a representative or a unit mass of producer who uses some engi-

neering technique to make water useable and supplies that to the government who stores water and

sells to the consumer of water. The government has a dual role, i.e., as a middleman between the

producer and consumer, and also as a policy maker. Government sets the price equal to marginal

cost (marginal cost of producer plus the marginal cost of storage by the government). The govern-

ment as a policy maker increases the marginal cost of producer by imposing a contract/lease/license

fee to control the overuse of water. When a shock happens to the water market, the market goes out

of equilibrium, and the price is adjusted by government to bring the final equilibrium after shock.

Although, government is more informed than other economic agents and can play a coordination

role among agents, however, still the information of government is far from perfect regarding the

new water supply and demand patterns after the shock, so the government adjusts the price based

on the changing size of inventory/storage of water. Suppose the demand of water contracts in

agriculture due to some innovative technology which improves the water effi ciency of crops. As

the supply and demand are not equal any longer, the market is out of equilibrium, and the excess

supply will be reflected from a bigger inventory/storage volume of water with the government.

Government will react to this bigger volume of storage by decreasing the price, which will lead the

producer to produce less based on an altered profit maximizing condition after a price decrease.

After some adjustment the water market will arrive at the final equilibrium with both a lower price

and quantity than before. Equilibrium in water market is defined as follows:

(i) The producer maximizes profit and the consumer maximizes utility subject to their respective

constraints.

(ii) Supply of water equals demand and the storage volume with government stays the same.

The equilibrium conditions, i.e., Routh—Hurwitz stability criterion, which provides a necessary and
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suffi cient condition for the stability of a linear dynamical system have been elaborated in Section

3. Government as a middleman does not change the price during water market equilibrium, as it

sets price equal to marginal cost and does not deviate from that. However, after a shock happens

to the water market and equilibrium no longer holds, the government changes price only during

the adjustment of the market to the final equilibrium and once the market attains the equilibrium

again, the government stays put.

For mathematical purposes, the problem of each of the economic agents is considered and solved

such that their objective is achieved, and the equations resulting from their individual solutions are

solved simultaneously to arrive at the collective water market outcome. Linearity of supply and

demand curves is assumed which is reasonable as far as the final equilbrium is not too off the initial

equilibrium after shock.

2.1 Government-Water Storage

Government in the role of middleman buys water from producers at a price equal to the producers’

marginal cost, stores it and sells to the consumers at a price equal to the marginal cost of production

plus the marginal cost of storage. Storage is a phase between supply and demand of water. If the

level of storage remains the same, it implies that the supply and demand rate of water is the same.

A change in the level of storage implies a change in either of the rates, i.e., supply, demand or both

(at different rates). If due to a supply shock, the supply curve shifts to right without a change in

demand, the water storage goes up at the existing price (equal to marginal cost), and the price

decreases to equalize the new marginal cost in final equilibrium. Similarly, if due to a demand

shock, the demand curve shifts to right while there is no change in supply, the size of water storage

reduces at current price, and the price increases to the new marginal cost in the final equilibrium.

This implies that a price change is inversely related to water storage change, ceteris paribus. If

both supply and demand curves shift but the water storage size stays put, the price of water will

also remain the same. Water storage is central to both supply and demand shocks as each shock

operates through a change in size of water storage.

The following mechanism is operative to bring about the price changes described above: The gov-

ernment maintains a water storage through buying water from producers and selling to consumers.

It costs government more to maintain a bigger storage size. If supply and demand rates of water are

the same, the size of water storage does not change, and the price of water also stays put. Suppose

as a result of a technological advancement, the marginal cost of supply of water decreases, and

the production/extraction rate of water goes up, whereas demand remains the same. The water

market is no longer in equilibrium, and the water storage size increases at the current price. As the

government’s marginal cost of storage has gone up (while that of producer has gone down, and the

total marginal cost has also decreased, i.e., the marginal cost of producer plus the government’s
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marginal cost of storage), the government will try to reduce the water storage size by reducing the

price to bring demand up along demand curve. After making price follow some adjustment, the

government will finally set the price equal to the new marginal cost and the market will settle at

final equilibrium Mathematically, the movement of price of water by government as middleman is

captured as follows:

Price change ∝ change in water storage.

P = price change.

MB = mB −mBs = change in water storage,

mB = water storage at time t,

mBs = water storage in steady state equilibrium.

Input − output =
dmB

dt
=
d(mB −mBs)

dt
=
dMB

dt
,

or MB =
∫

(input − output) dt.

Price change ∝
∫

(supply rate − demand rate) dt, or

P = −KBm

∫
(supply rate − demand rate) dt.

KBm is proportionality constant; supply and demand rates are quantity of water per unit time.

The negative sign reflects that when (supply rate − demand rate) is positive, price goes down. After

rearranging the above expression, we get:∫
(supply rate − demand rate) dt = − P

KBm
, or

∫
(wBi − wB0) dt = − P

KBm
, (1)

wBi = supply rate,

wB0 = demand rate,

KBm = dimensional constant.

Suppose at t = 0, supply rate = demand rate, i.e., market is in equilibrium, substituting which, eq.

(1) becomes as follows:

∫
(wBis − wB0s) dt = 0. (2)

The subscript s stands for steady state equilibrium. P = 0 when market is in equilibrium. Sub-

tracting eq. (2) from (1) gives:
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∫
(wBi − wBis) dt−

∫
(wB0 − wB0s) dt = − P

KBm
, or

∫
(WBi −WB0) dt = − P

KBm
, (3)

where wBi − wBis = WBi = change in supply rate,

wB0 − wB0s = WB0 = change in demand rate.

P, WBi and WB0 are deviation variables, i.e., they reflect a deviation from equilibrium value, which

implies that their initial values are zero. Eq. (3) can also be expressed as:

P = −KBm

∫
WBdt = −KBmMB, (4)

where WB = WBi −WB0. If price of water changes on account of an input other than a change in

water storage volume, eq. (4) can be expressed as:

P = −KBm

∫
WBdt+BB = −KBmMB +BB. (4a)

This is due to the fact that in a linear dynamical model, inputs can get added. The water storage

volume can also get an exogenous shock which is not the same as the price feedback.

2.2 Water Extractor/Producer/Supplier

The water extractor/producer/supplier’s problem is to maximize present discounted value of future

stream of profits. The zero value, i.e., the present value for t = 0, is as follows:

V (0) =
∞∫
0

[αp(t)f (k (t) , l (t))− w(t)l (t)− r(t)i(t)] e−ρBptdt, (5)

α denotes the market price fraction charged by water extractor to government. ρBp reflects the

discount rate; l(t) (labor) and i(t) (level of investment) are control variables and k(t) is state

variable. Water extractor’s problem can be written as:

Max
{l(t),i(t)}

V (0) =
∞∫
0

[αp(t)f (k (t) , l (t))− w(t)l (t)− r(t)i(t)] e−ρBptdt,

subject to the constraints that
.
k(t) = i(t)− δk(t) (state equation, describing how state variable changes with time),

k(0) = ks (initial condition),

k(t) ≥ 0 (non-negativity constraint on state variable),
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k(∞) free (terminal condition).

The expression for current-value Hamiltonian is as follows:

H̃ = αp(t)f (k (t) , l (t))− w(t)l (t)− r(t)i(t) + µBp(t) [i(t)− δk(t)] . (6)

Maximizing conditions are given below:

(i) l∗(t) and i∗(t) maximize H̃ for all t: ∂H̃
∂l = 0 and ∂H̃

∂i = 0,

(ii)
.

µBp − ρBpµBp = −∂H̃
∂k ,

(iii)
.
k
∗

= ∂H̃
∂µBp

(this just gives back the state equation),

(iv) lim
t→∞

µBp(t)k(t)e−ρBpt = 0 (the transversality condition).

First two conditions are:

∂H̃

∂l
= 0, (7)

∂H̃

∂i
= 0, (8)

and

.
µBp − ρBpµBp = −∂H̃

∂k
. (9)

After a price increase, the water extractor’s profit maximizing condition gets modified and prompts

him to supply more water (details in appendix). Let p = market price of water at which government

supplies water to consumers, cB = a reference/feasible minimum price for water extractor to decide

whether to operate or not.

WBp = Change in water extraction/production volume due to change in price.

The condition p−cB ≥ 0 provides the water extractor/producer an incentive to supply more water,

i.e.,

WBp ∝ α(p− cB), or

WBp = KBp(p− cB). (10)

When the water market is in equilibrium, WBp = 0, i.e.,

0 = KBp(ps − cBs). (11)
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KBp is a proportionalityconstant. ps and cBs reflect the equilibrium values. If we subtract eq. (11)

from eq. (10), we get:

WBp = KBp [(p− ps)− (cB − cBs)] = −KBp (CB − P ) = −KBpεB, (12)

WBp, CB and P reflect corresponding deviation values from those at the steady state.

2.3 Consumers of Water

There are two major types of consumers of water, i.e., the producers involved in production activities

using water as an input, and the final consumer. The problems of both types of consumers are

discussed below:

Producers Using Water as an Input:

The producer of a commodity using water as an input has a problem of maximizing present dis-

counted value of future streams of profits. The zero value, i.e., the present value for t = 0, is as

follows:

V (0) =
∞∫
0

[pBc(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t)− p(t)wBc(t)] e−rtdt, (13)

pBc is price of commodity being produced by the producer; r reflects discount rate. L(t) (labor

input), I(t) (investment), and wBc(t) (quantity of water as an input) are control variables and K(t)

is the state variable. The producer’s (as consumer of water) problem can be written as

Max
{L(t),I(t),wBc(t)}

V (0) =
∞∫
0

[pBc(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t)− p(t)wBc(t)] e−rtdt,

subject to the constraints that
.
K(t) = I(t)− δK(t) (state equation, describing how the state variable changes with time),

K(0) = K0 (initial condition),

K(t) ≥ 0 (non-negativity constraint on state variable),

K(∞) free (terminal condition).

The expression for current-value Hamiltonian is as follows:

H̃ = pBc(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t)− p(t)wBc(t) + µ(t) [I(t)− δK(t)] . (14)

Maximizing conditions are given below:

(i) L∗(t), I∗(t) and w∗Bc(t) maximize H̃ for all t: ∂H̃
∂L = 0, ∂H̃∂I = 0 and ∂H̃

∂wBc
= 0,

(ii)
.
µ− rµ = −∂H̃

∂K ,

(iii)
.
K
∗

= ∂H̃
∂µ (this just gives back the state equation),
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(iv) lim
t→∞

µ(t)K(t)e−rt = 0 (the transversality condition).

First two conditions are:

∂H̃

∂L
= 0, (15)

∂H̃

∂I
= 0, (16)

∂H̃

∂wBc
= 0, (17)

and

.
µ− rµ = −∂H̃

∂K
. (18)

After a water price increase, the producer using water as an input will reduce water consumption

to satisfy profit maximization condition (see detail in appendix). If demand change is proportional

to price change (or otherwise if linearization of demand schedule around equilibrium is a reasonable

assumption), we have:

Change in demand ∝ P, or

WBc = −KBcP. (19)

WBc is deviation in demand with respect to the equilibrium value after a price change, i.e., P . KBc

is proportionality constant, and the negative sign is reflective of the fact that when price increases,

the demand of water goes down.

Final Consumer:

The consumer’s problem is to maximize present discounted value of future stream of utilities. The

zero value, i.e., the present value for t = 0, is as follows:

V (0) =
∞∫
0

UBc(wBc(t))e
−ρBctdt, (20)

ρBc reflects the discount rate, and wBc(t), i.e., the amount the consumer chooses for consumption

is control variable. Consumer’s problem can be written as:

Max
{wBc(t)}

V (0) =
∞∫
0

UBc(wBc(t))e
−ρBctdt,

subject to the constraints that
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.
a(t) = r(t)a(t) + w(t) − p(t)wBc(t) (state equation, describing how state variable changes with

time). a(t) is asset holdings (a state variable); and w(t) and r(t) are time path of wages and return

on assets respectively.

a(0) = as (initial condition),

a(t) ≥ 0 (non-negativity constraint on state variable),

a(∞) free (terminal condition).

The expression for current-value Hamiltonian is as follows:

H̃ = UBc(wBc(t)) + µBc(t) [r(t)a(t) + w(t)− p(t)wBc(t)] . (21)

Maximizing conditions are given below:

(i) w∗Bc(t) maximizes H̃ for all t: ∂H̃
∂wBc

= 0,

(ii)
.

µBc − ρBcµBc = −∂H̃
∂a ,

(iii)
.
a
∗

= ∂H̃
∂µBc

(this just gives back the state equation),

(iv) lim
t→∞

µBc(t)a(t)e−ρBct = 0 (the transversality condition).

First two conditions are:

∂H̃

∂wBc
= U ′Bc(wBc(t))− µBc(t)p(t) = 0, (22)

and

.
µBc − ρBcµBc = −∂H̃

∂a
= −µBc(t)r(t). (23)

If price of water goes up, the consumer’s utility maximizing condition at current consumption level

modifies to the following inequality:

∂H̃

∂wBc
= U ′Bc(wBc(t))− µBc(t)p(t) < 0,

which reflects that after price goes up, the consumer will reduce consumption of water for utility

maximization condition to get satisfied. If demand change is proportional to price change (or

otherwise if linearization of demand schedule around equilibrium is a reasonable assumption), we

have:

Change in demand ∝ P, or

WBc = −KBcP. (24)

WBc is deviation in demand with respect to the equilibrium value after a price change, i.e., P . KBc

is proportionality constant, and the negative sign is reflective of the fact that when price increases,
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the demand of water goes down. The demand going down implies that people economize on use of

water, and reduce wastages as they face a higher cost for wasting water.

3 Solution of the Water Market Model with a Contract/Lease/License Fee

From (4a), (12) and (24):

dP (t)

dt
= −KBmWB(t),

WBp(t) = −KBpεB(t),

εB(t) = CB(t)− P (t),

WBc = −KBcP.

In the absence of a shock, we have

WB(t) = WBp(t)−WBc(t).

The above expressions imply that

dP (t)

dt
= −KBm [WBp(t)−WBc(t)]

= −KBm [−KBpεB(t) +KBcP (t)]

= −KBm [−KBpCB(t) + (KBp +KBc)P (t)] ,

or

dP (t)

dt
+KBm(KBp +KBc)P (t) = KBmKBpCB(t). (25)

If a per unit water extraction fee is imposed on producer at t = 0, i.e., CB(t) = T , the above

expression becomes

dP (t)

dt
+KBm(KBp +KBc)P (t) = KBmKBpT. (26)

The Routh—Hurwitz stability criterion (a necessary and suffi cient condition for stability of a linear

dynamical system depicted by the above differential equation) is as follows: KBm(KBp+KBc) > 0.

As KBm, KBp and KBc are defined as positive numbers, the stability condition holds, which

ensures that after a shock the water market arrives at a new equilibrium through some adjustment

mechanism. If the fee is charged from buyer instead of producer per unit of water consumption,

the producer will take into account the price faced by him/her, i.e.,

12



εB(t) = T − P (t), (27)

which leads to the following expression:

dP (t)

dt
+KBm(KBp +KBc)P (t) = KBmKBpT.

The above expression is the same as eq. (26), however, the solution/dynamic adjustment path will

depend on initial conditions. The solution of eq. (26) with initial conditions of a producer’s fee is

as follows:

P (t) = C1 + C2e
−[KBm(KBp+KBc)]t. (28)

Putting values of C1 and C2 in the above expression, we get:

P (t) =
KBpT

KBp +KBc
− KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t. (29)

When t = 0, P (0) = 0 (initial condition). When t = ∞, P (∞) =
KBpT

KBp+KBc
(final value). In final

equilibrium, supply equals demand, which has been verified in appendix.

4 A Dynamically Optimal Water Market Policy

Pre-policy water market equilibrium is ineffi cient, and the imposition of producer fee leads to an

effi cient equilibrium. However, there are some effi ciency losses on the adjustment path of the water

market to the new effi cient equilibrium. After a fee is imposed on water producer, the supply

of water shrinks, the market forces come into play and the water market adjusts to the final

equilibrium. The price and quantity of water in final equilibrium are dependent on supply and

demand elasticities. The level of water storage rises if supply is higher than demand and goes down

otherwise. When demand and supply again become equal, the water market is in final equilibrium.

When demand and supply are not equal, either water supply and/or consumption is being lost

at that point in time. The total production and/or consumption lost in terms of quantity is the

effi ciency loss and can be expressed as follows:

ELB = −

 0∫
−∞

WBp(∞)dt+M(t)

 . (30)

After imposition of water fee, the supply of water shrinks by KBpT. As the demand of water has

not yet changed, the level of water storage also decreases by KBpT. The water market is out of

equilibrium, and drifts toward the final equilibrium through market forces. The price of water is
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changed by government to bring the final equilibrium. The government earns the following amount

as producer fee revenue (PFR):

PFR = T [wBpi(0)−KBp {T − P (t)}] . (31)

The problem of minimizing effi ciency loss with T as a control variable subject to constraint that

revenue from imposition of producer fee must be greater than or equal to GB in a given time, is as

follows:

min
T
ELB s.t. PFR ≥ GB.

The constraint is binding. Lagrangian for the problem of minimizing effi ciency loss is as follows:

L = −
0∫

−∞

WBp(∞)dt−M(t) + λ [GB − T [wBpi(0)−KBp {T − P (t)}]]

=

0∫
−∞

[
KBpT −

K2
BpT

KBp +KBc

]
dt

+
1

KBm

[
KBpT

KBp +KBc
− KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t +KBmKBpT

]
+ λ

[
GB − T

[
wBpi(0)−KBp

{
T − KBpT

KBp +KBc
+

KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t

}]]

=

0∫
−∞

KBpKBcT

KBp +KBc
dt+

1

KBm

[
KBpT

KBp +KBc
− KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t +KBmKBpT

]

+ λ

[
GB − T

[
wBpi(0)−KBp

{
T − KBpT

KBp +KBc
+

KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t

}]]
.

Derivative of Lagrangian with respect to T leads to the following expression:

T =

λwBpi(0)−

 0∫
−∞

KBpKBc

KBp+KBc
dt+ 1

KBm

[
KBp

KBp+KBc
− KBp

KBp+KBc
e−[KBm(KBp+KBc)]t +KBmKBp

]
2λKBp

[
1− KBp

KBp+KBc
+

KBp

KBp+KBc
e−[KBm(KBp+KBc)]t

] .

(32)

Similarly derivative of Lagrangian with respect to λ gives:

GB − T
[
wBpi(0)−KBp

{
T − KBpT

KBp +KBc
+

KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t

}]
. (33)
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Putting eq. (32) into (33), we obtain:

GB =
λw2Bpi(0)− wBpi(0)JB

2λQB
−
(
λwBpi(0)− JB

2λQB

)2
QB,

4λ2QBGB = 2λ2w2Bpi(0)− 2λwBpi(0)JB − λ2w2Bpi(0)− J2B + 2λwBpi(0)JB,

4λ2QBGB = 2λ2w2Bpi(0)− λ2w2Bpi(0)− J2B,

4λ2QBGB = λ2w2Bpi(0)− J2B,

where T =
λwBpi(0)− JB

2λQB
,

QB = KBp

[
1− KBp

KBp +KBc
+

KBp

KBp +KBc
e−[KBm(KBp+KBc)]t

]
,

JB =

0∫
−∞

KBpKBc

KBp +KBc
dt+

1

KBm

[
KBp

KBp +KBc
− KBp

KBp +KBc
e−[KBm(KBp+KBc)]t +KBmKBp

]
.

This implies that

{
w2Bpi(0)− 4QBGB

}
λ2 = J2B.

λ =
JB√

w2Bpi(0)− 4QBGB
.

Eq. (32) can also be written as

T =
λwBpi(0)− JB

2λQB
. (34)

After putting value of λ in above expression, we obtain:

T = −

JBwBpi(0)√
w2Bpi(0)−4QBGB

− JB

2QBJB√
w2Bpi(0)−4QBGB

,

T =
wBpi(0)−

√
w2Bpi(0)− 4QBGB

2QB
. (35)

The second order condition shows that effi ciency loss has been minimized (see appendix). Suppose

government has a revenue target of $1000 to be generated through imposition of producer fee. The

initial equilibrium value is 100, and the value of each parameter, i.e., KBm,KBp and KBc is equal

to one. Plugging these values in eq. (35) yields

15



T =
100−

√
10000− 4000

2
= 11.27,

where QB = 1− 0.5 + 0.5e−2t, and at t = 0, Q = 1. PFR = T [wBpi(0)−KBp {T − P (t)}] = 1000.

The optimal producer fee is $11.27 per unit of water.

5 The Water Producers and Production Rate Model

Please refer to graph A in figure 1, where the number of water producers per unit time are plotted

along x-axis, and the water production rate, i.e., quantity of water produced/extracted per producer

is plotted along y-axis. The upward sloping curve is the supply curve for number of producers, i.e.,

the number of water producers/extractors the society can have (both from public and private sector)

against each production/extraction rate. The positive relationship between the water production

rate and the number of producers is on account of the fact that a higher production/extraction

by the existing producers due to some incentives also encourages new entrants in water industry.

The downward sloping curve is the demand curve (including both public and private demand)

for number of water producers/extractors against each production rate. The negative relationship

indicates that for a higher water production/extraction rate, the demand for number of producers

is lower. The point of intersection of both curves denotes the equilibrium. At a production rate

where demand is higher than supply, the production rate will go up until the number of water

producers/extractors becomes equal on both curves. If supply is higher than demand at a certain

production rate, the production rate will decrease until the number of producers are in equilibrium.

Suppose the number of water producers on supply curve equals that on demand curve with an equi-

librium water production/extraction rate. The following infinitely-lived economic agents are there:

private and public sector in the role of having a demand for certain number of water producers

against a production rate; a representative —or a unit mass of—water producers who produce/extract

water to supply to the government as middleman; and public and private sector as a whole which

supplies a certain number of water producers at a certain production rate. The adjustment mech-

anism for water production rate is based on the fact that there is a lack of coordination among

economic agents regarding new supply and demand patterns regarding number of water producers

against each production rate after a supply or demand shift. Suppose the supply and demand of

number of water producers are in equilibrium. A rightward shift in demand occurs due to which

the demand of water producers becomes greater than the supply at production rate before demand

shock. There is a higher demand than supply regarding number of water producers. The existing

producers will increase production/extraction rate and new entrants will enter water industry. This

will lead to higher water production rate, and a higher number of producers in final equilibrium.

The equilibrium is defined as given below:

16



(i) Producers maximize profit, public and private sector maximizes utility in the role of having a

certain demand for water, and the public sector maximizes net benefit of public service for society,

subject to their respective constraints mentioned in Section 5.

(ii) The supply of water producers equals demand and the production rate stays put in equilibrium.

The equilibrium conditions are based on Routh—Hurwitz stability criterion (a necessary and suffi -

cient condition for a linear dynamical system to be stable), and are mentioned in Section 6. The

production rate for the public and private sector is given. Producer does not change water produc-

tion/extraction rate during equilibrium, however, he/she does so during the phase of disequilibrium.

The government formulates a policy to enhance or reduce water production/extraction either by

shifting supply and/or demand schedules depending on the objectives to be achieved. The final

equilibrium after implementation of policy does not result instantaneously, and rather the produc-

tion rate, and number of water producers/extractors adjust over time to lead to final equilibrium.

The basis of adjustment is self-interest by economic agents. Some social damage occurs during the

adjustment of number of producers and the water production rate, which is defined as the sum

of too many or too few water producers/extractors before the new equilibrium arrives. The new

equilibrium is (more) effi cient as compared to the initial equilibrium.

For mathematical derivation of results, the objectives of various economic agents are maximized

subject to constraints and then the resulting expressions are solved simultaneously to find expres-

sion regarding the collective outcome of their individual and independent decisions in self-interest.

Linearity of demand and supply schedules is assumed which is a reasonable assumption if both

initial and final equilibriums are not too far from each other.

5.1 Water Extractor/Producer/Supplier

The water producer extracts water and supplies to the government for storage for onward supply to

consumer. When the number of producers and production rate are in equilibrium, demand of water

producers equals supply. If the number of producers change, that must be on account of a supply

or demand shock, or both at different rates. The cumulative number of water producers, their

entry rate (supply) and demand are linked as follows: When demand of water producers shifts

to the right while supply remains the same, the cumulative number of water producers is lower

than the demand at existing water extraction rate, the water production/extraction rate goes up to

equalize supply and demand in final equilibrium. If supply shifts to the right while demand stays

put, the cumulative number of water producers increases at the existing water extraction rate, and

the production rate reduces to bring final equilibrium. The above discussion concludes that there

exists a negative relationship between number of water producers and production/extraction rate.

The following mechanism is at work: Suppose the number of water producers and the extraction

rate are in equilibrium. If supply of producers shifts to the right due to a reduced marginal cost
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of production as it will lead to new firms’ entry into water industry, the production rate goes

down, and the demand for producers increases as a feedback effect of reduced production rate.

The adjustment of number of producers and the production rate depends on how water producers

react to the shock, and the direction and magnitude of shock. For mathematical illustration of the

producer’s choice, let us take into consideration profit maximizing decision of the water producer

as follows:

5.1.1 One Time Period Problem

We consider profit maximization by producer for one time period where the water producer does

not take into account future time periods. The purpose is to provide a simple intuition to the

reader. A more complex dynamic problem is discussed later. Water producer’s objective is as

follows:

Θ = Uc(c)− ςA(mA(c, eA)), (36)

where

Θ = net benefit of water producer,

Uc(c) = benefit of the producer by producing,

c = quantity of water extracted per producer (production rate in a dynamic setting),

mA = total number of water producers in economy,

eA = other factors which affect the total number of producers,

ςA(mA(c, eA)) = cost as a function of total number of producers in economy (increasing in number

of producers).

The derivative of Θ with respect to c is given below:

U ′c(c)− ς ′A(mA(c, eA))m′A1(c, eA) = 0. (37)

If supply of water producers shifts to right due to a reduced water extraction cost faced by pro-

ducers, new entrants get an incentive to enter water industry, and number of producers get out

of equilibrium. With more water producers in number, the term ς ′A(mA(c, eA)) is higher at exist-

ing value of c. As the term, m′A1(c, eA) is a function of c, which has not changed yet, therefore,

m′A1(c, eA) is the same as before, and the water producer faces the following inequality as a modified

profit maximization condition:

∂Θ

∂c
= U ′c(c)− ς ′A(mA(c, eA))m′A1(c, eA) < 0, (38)

which suggests that after supply shock, the water producer reduces production/extraction rate

to maximize net benefit. If profit maximizing values of number of water producers are plotted
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against respective production/extraction rate, a downward sloping curve is obtained with number

of water producers/extractors on x-axis, and production/extraction rate on y-axis. This is defined

as cumulative number of producers curve.

5.1.2 Dynamic Optimization

The water producer’s long run problem (dynamic context) is to maximize present discounted value

of future stream of net benefits. The producer’s present value at t = 0 is given below:

V (0) =
∞∫
0

[Uc(c)− ςA(mA(c, eA))] e−$tdt, (39)

where $ is discount rate. c(t) is control variable, and mA(t) is state variable. Net benefit maxi-

mization problem of water producer/extractor is as follows:

Max
{c(t)}

V (0) =
∞∫
0

[Uc(c)− ςA(mA(c, eA))] e−$tdt,

subject to the following constraints:
.
mA(t) = m

′
A1(c(t), eA(c(t), zA))

.
c(t) + m

′
A2(c(t), eA(c(t), zA)) e

′
A1(c(t), zA)

.
c(t) (state equation, de-

picting how state variable changes with time; zA denote exogenous variables),

mA(0) = mAs (initial condition),

mA(t) ≥ 0 (non-negativity constraint on state variable),

mA(∞) free (terminal condition).

Current-value Hamiltonian is given below:

H̃ = Uc(c(t))−ςA(mA(c(t), eA(c(t), zA)))+µA(t)
.
c(t)

[
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

]
.

(40)

The maximizing conditions are listed below:

(i) c∗(t) maximizes H̃ for all t: ∂H̃
∂c = 0,

(ii)
.
µA −$µA = − ∂H̃

∂mA
,

(iii)
.
mA
∗

= ∂H̃
∂µA

(this just gives back the state equation),

(iv) lim
t→∞

µA(t)mA(t)e−$t = 0 (the transversality condition).

(i) and (ii) conditions are as follows:
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∂H̃

∂c
= U ′c(c(t))− ς ′A(mA(c(t), eA(c(t), zA)))

{
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

}

+ µA(t)
.
c(t) ∗

 m
′′
A11(c(t), eA(c(t), zA)) +m

′′
A12(c(t), eA(c(t), zA))e′A1(c(t), zA)+

m
′′
A21(c(t), eA(c(t), zA))e′A1(c(t), zA) +m′′A22(c(t), eA(c(t), zA))e′2A1(c(t), zA)+

m′A2(c(t), eA(c(t), zA))e
′′
11(c(t), zA)


= 0. (41)

and

.
µA −$µA = − ∂H̃

∂mA
= ς ′A(mA(c(t), eA(c(t), zA))). (42)

In steady state,
.
c(t) = 0, substituting which in eq. (41), the following expression is obtained:

U ′c(c(t))− ς ′A(mA(c(t), eA(c(t), zA)))

{
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

}
= 0.

Suppose a positive shock shifts supply to the right, then at current water extraction rate, the number

of water extractors is higher, and the same is the case with the term ς ′A(mA(c(t), eA(c(t), zA))). The

term multiplying ς ′A(mA(c(t), eA(c(t), zA))), i.e.,m′A1(c(t), eA(c(t), zA))+m′A2(c(t), eA(c(t), zA))e′A1(c(t), zA)

is a function of water extraction rate which is the same as before. Therefore, water producer/extractor

faces the following expression after shock:

∂H̃

∂c
< 0.

The water producer/extractor will reduce the extraction rate for maximizing net benefits in the

dynamic context after supply shock. Hence, a negative relationship exists between number of

water producers/extractors and extraction rate. If supply equals demand regarding number of

water producers in economy, there is an equilibrium. However, if due to a shock the supply rate is

no longer equal to demand rate, and the economic agents do not respond to the water extraction

rate on account of a difference in supply and demand rates, the water extraction rate will keep on

changing until the saturation point arrives. This explanation can be depicted mathematically as

follows:
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Water production/extraction rate change ∝ change in number of producers.

C = production rate change.

MA = mA −mAs = change in number of producers,

mA = number of producers at time t,

mAs = number of producers in steady state equilibrium.

Input − output =
dmA

dt
=
d(mA −mAs)

dt
=
dMA

dt
,

or MA =
∫

(input − output) dt.

Production rate change ∝
∫

(inflow/supply rate − required/demand rate) dt, or

C = −Kc

∫
(inflow/supply rate − required/demand rate) dt,

Kc is proportionality constant; inflow/supply and required/demand rates are inflow of new entrants

and demand of number of producers in water industry respectively. When (inflow/supply rate − required/demand rate)

is positive, C is negative, i.e., the water production/extraction rate reduces. The above expression

can also be written as:

∫
(inflow/supply rate − required/demand rate) dt = − C

Kc
, or

∫
(wAi − wA0) dt = − C

Kc
, (43)

wAi = inflow/supply rate,

wA0 = required/demand rate,

Kc = dimensional constant.

At time t = 0, inflow/supply rate = required/demand rate, and eq. (43) becomes:

∫
(wAis − wA0s) dt = 0. (44)

The subscript s is for steady state equilibrium, where C = 0. Subtracting eq. (44) from (43) gives:

∫
(wAi − wAis) dt−

∫
(wA0 − wA0s) dt = − C

Kc
, or

∫
(WAi −WA0) dt = − C

Kc
, (45)
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where wAi − wAis = WAi = change in inflow/supply rate,

wA0 − wA0s = WA0 = change in required/demand rate.

C, WAi and WA0 are deviation variables with zero initial value, as they indicate deviation from

equilibrium values. Eq. (45) is given by:

C = −Kc

∫
WAdt = −KcMA, (46)

where WA = WAi −WA0. If C gets changed due to some other input, that can be added to the

above expression as follows (inputs can get added in a linear dynamical system):

C = −Kc

∫
WAdt+ EA = −KcMA + EA. (46a)

MA gets affected due to feedback of water production/extraction rate, however, it can also have an

exogenous input just like C.

5.2 Private Sector as a Supplier of Water Producers/Extractors

The public and private sectors both supply and demand water producers/extractors, however, only

one of their roles is presented here. Total supply and demand is a sum of that of both public and

private sectors. In this section, the role the private sector plays as a supplier of water produc-

ers/extractors is presented. The private sector has a problem of maximizing present discounted

value of future stream of net benefit for economy, and present value at t = 0, is given below:

V (0) =
∞∫
0

[Upr (npr)− ςpr(c (npr))] e
−rprtdt. (47)

Upr (npr) is increasing in number of water producers/extractors, i.e., the private sector draws a

higher utility, the more the number of water producers. ςpr(c (npr)) is their cost which is a positive

function of the water extraction rate. The cost curve as a plot of cost against water production

rate is concave downward, i.e., decreasing in slope.

rpr is discount rate. npr(t) denotes control variable, and c(t) has been defined as the state variable.

The private sector’s problem is given below:

Max
{npr(t)}

V (0) =
∞∫
0

[Upr (npr)− ςpr(c (npr))] e
−rprtdt,

subject to the following constraints:
.
c(t) = c′(npr (t))

.
npr (t) (state equation, describing how the state variable changes with time),

c(0) = cs (initial condition),
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c(t) ≥ 0 (non-negativity constraint on state variable),

c(∞) free (terminal condition).

Current-value Hamiltonian is given below:

H̃ = Upr (npr(t))− ςpr(c (npr (t))) + µ(t) c′(npr (t))
.
npr (t) . (48)

Maximizing conditions can be expressed as follows:

(i) npr
∗(t) maximizes H̃ for all t: ∂H̃

∂npr
= 0,

(ii)
.
µpr − rprµpr = −∂H̃

∂c ,

(iii)
.
c
∗

= ∂H̃
∂µpr

(this just gives back the state equation),

(iv) lim
t→∞

µpr(t)c(t)e
−rprt = 0 (the transversality condition).

(i) and (ii) are given below:

∂H̃

∂npr
= U ′pr (npr(t))− ς ′pr(c (npr (t))) c′ (npr (t)) + µpr(t) c

′′
(npr (t))

.
npr (t) = 0, (49)

and

.
µpr − rprµpr = −∂H̃

∂c
= ς ′pr(c (npr (t))). (50)

During equilibrium,
.
npr (t) = 0, and we can express ∂H̃

∂npr
as follows:

U ′pr (npr(t))− ς ′pr(c (npr (t))) c′ (npr (t)) = 0.

If water production/extraction rate increases, the term ς ′pr(c (npr (t))) decreases, and the private

sector’s first order condition for dynamic optimization gets modified to:

∂H̃

∂npr
> 0.

The private sector will increase supply of water producers after production rate shock. If supply

curve is linear (or linearization around steady state is a reasonable assumption), and change in

number of water producers supplied is directly proportional to water extraction rate, we get the

following expression:

Wpr(t) = −Kpr [ε (t)− C(t)] = −Kprη(t), (51)

where ε (t) = e−es; e is a reference water production rate parameter. The private sector takes it as
a reference for decision making with which the variation in production rate is compared. Wpr(t) is

change in number of water producers/extractors by private sector as a supplier of producers from

initial equilibrium value, with an initial value of zero. Due to a time delay between change in water
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production/extraction rate and change in the number of producers supplied, a time lag term has

been introduced in the above equation leading to:

Wpr(t) = −Kprη(t− τd1). (52)

5.3 Public Sector/Government as a Demander of Water Producers/Extractors

This section presents the role of public sector as a demander of water producers/extractors. The

private sector also acts as a demander and the total demand is the sum of demand of both public

and private sectors. In the role of a demander, the public sector has the problem of maximizing

present discounted value of future stream of net benefits for economy, and present value at t = 0,

is given below:

V (0) =
∞∫
0

[Upu (npu)− ςpu(c (npu))] e−rputdt, (53)

Upu (npu) is public service benefit for economy, increasing in number of water producers/extractors

and concave downward. ςpu(c (npu)) is their cost to encourage production, and is a positive function

of the water production rate. The cost curve, i.e., a plot of cost against water production rate is

concave upward, i.e., increasing in slope.

rpu is discount rate. npu(t) denotes control variable,and c(t) has been defined as the state variable.

The public sector’s problem is given below:

Max
{npu(t)}

V (0) =
∞∫
0

[Upu (npu)− ςpu(c (npu))] e−rputdt,

subject to the following constraints:
.
c(t) = c′(npu (t))

.
npu (t) (state equation, describing how the state variable changes with time),

c(0) = cs (initial condition),

c(t) ≥ 0 (non-negativity constraint on state variable),

c(∞) free (terminal condition).

The current-value Hamiltonian for this case is

H̃ = Upu (npu(t))− ςpu(c (npu (t))) + µpu(t) c′(npu (t))
.
npu (t) . (54)

Maximizing conditions can be expressed as follows:

(i) npu
∗(t) maximizes H̃ for all t: ∂H̃

∂npu
= 0,

(ii)
.
µpu − rpuµpu = −∂H̃

∂c ,

(iii)
.
c
∗

= ∂H̃
∂µpu

(this just gives back the state equation),

(iv) lim
t→∞

µpu(t)c(t)e−rput = 0 (the transversality condition).
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(i) and (ii) are given below:

∂H̃

∂npu
= U ′pu (npu(t))− ς ′pu(c (npu (t))) c′ (npu (t)) + µpu(t) c

′′
(npu (t))

.
npu (t) = 0. (55)

and

.
µpu − rpuµpu = −∂H̃

∂c
= ς ′pu(c (npu (t))). (56)

During equilibrium,
.
npu (t) = 0, and we can express ∂H̃

∂npu
as follows:

U ′pu (npu(t))− ς ′pu(c (npu (t))) c′ (npu (t)) = 0.

If water production/extraction rate increases, the term ς ′pu(c (npu (t))) increases, and the public

sector’s first order condition for dynamic optimization gets modified to:

∂H̃

∂npu
< 0.

The public sector will decrease demand of water producers after production rate shock. If demand

curve is linear (or linearization around steady state is a reasonable assumption), and change in

number of water producers demanded is directly proportional to water extraction rate, we get the

following expression:

Wpu(t) = Kpu [ε (t)− C(t)] = −KpuC(t), (57)

Wpu(t) is change in number of water producers/extractors by public sector as a demander of pro-

ducers from initial equilibrium value, with an initial value of zero. Due to a time delay between

change in water production/extraction rate and change in the number of producers demanded, a

time lag term has been introduced in the above equation leading to:

Wpu(t) = −KpuC(t− τd2). (58)

6 Solution of the Water Producers Model with a Production Policy

We solve the model for τd1 = τd2 = 0. Eq. (46a), (51), and (57) are reproduced as follows:
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dC

dt
= −KcWA(t),

Wpr(t) = −Kpr [ε (t)− C(t)] ,

Wpu(t) = −KpuC(t),

WA(t) = W1(t)−Wpu(t),

= D(t) +Wpr(t)−Wpu(t).

where D(t) = WAi(t)−WA0(t).

When there is no exogenous shock regarding number of water producers or production/extraction

rate, D(t) = 0. Suppose government shifts supply leftward by adopting a policy of size A, i.e.,

Wpr(t) = −Kpr [A− C(t)] ,

which implies that

dC(t)

dt
= −Kc [Wpr(s)−Wpu(t)]

= −Kc [KprC (t)−KprA+KpuC(t)]

= −Kc [−KprA+ (Kpr +Kpu)C(t)] .

After rearranging, we obtain the following expression:

dC(t)

dt
+Kc(Kpr +Kpu)C(t) = KcKprA. (59)

The Routh—Hurwitz stability criterion for the dynamical system represented by the above expression

isKc(Kpr+Kpu) > 0. AsKc, Kpr andKpu have been defined as positive numbers, Kc(Kpr+Kpu) >

0, which ensures that after a shock, a new equilibrium is arrived at, after following an adjustment

path. The above expression is solved as given below:

The differential equation’s characteristic function is given below:

x+Kc(Kpr +Kpu) = 0,

which has a single root as given below:

x = −Kc(Kpr +Kpu).

The complementary solution can be written as
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Cc(t) = C2e
−[Kc(Kpr+Kpu)]t.

The particular solution can be expressed as follows:

Cp(t) = C1.

The solution is as given below:

C(t) = C1 + C2e
−[Kc(Kpr+Kpu)]t. (60)

By substituting the above expression into the differential equation, we obtain the following expres-

sion:

−Kc(Kpr+Kpu)C2e
−[Kc(Kpr+Kpu)]t+Kc(Kpr+Kpu)C1+Kc(Kpr+Kpu)C2e

−[Kc(Kpr+Kpu)]t = KcKprA,

C1 =
KprA

Kpr +Kpu
.

After substituting the initial conditions and value of C1 in eq. (60), the following expression results:

C(0) =
KprA

Kpr +Kpu
+ C2 = 0,

C2 = − KprA

Kpr +Kpu
.

Plugging in the values of C1 and C2 in eq. (60) yields:

C(t) =
KprA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t. (61)

The initial conditions are t = 0, C(0) = 0, and in the final steady state equilibrium, t = ∞,
C(∞) =

KprA
Kpr+Kpu

.

7 A Dynamic Optimal Production Policy for Water Producers Model

The equilibrium before adoption of water production policy needed to be improved upon, this is

why government wanted to adopt a water policy. Also, there are some effi ciency losses on the

dynamic adjustment path to the new equilibrium. Adding the equilibrium and adjustment path

ineffi ciencies, we get the total social damage which needs to be minimized. The government either

shifts the demand or the supply curve through a production policy. Suppose it shifts supply
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leftward. The number of water producers/extractors and the production rate adjust over time to

bring final equilibrium, at which the production/extraction rate is higher and the number of water

producers is lower as compared to those in the initial equilibrium. If supply of water producers is

higher than demand, the number of producers are excessive and vice versa. The excessive number

or a shortage of water producers is the social damage at a certain point in time. By summing up

the social damage in equilibrium and that on the dynamic adjustment path, the total damage in

terms of number of water producers/extractors is obtained as follows:

SD = −

 0∫
−∞

Wpr(∞)dt+MA(t)

 . (62)

From eq. (51), a change in number of water producers/extractors on account of implementation of

production policy is given below:

Wpr(t) = −Kpr [A− C(t)] ,

or wprf (t)− wpri(0) = −Kpr [A− C(t)] ,

where wpri(0) is number of water producers/extractors supplied in initial equilibrium and wprf (t) is

new value after water production policy is adopted, as Wpr(t) is a deviation variable, i.e., deviation

from initial steady state value. A change in quantity of production/extraction per unit time is

given below:

∆QP = A [wpri(0)−Kpr {A− C(t)}] . (63)

The problem of minimizing the social damage subject to a change in quantity of production be-

ing greater than or equal to GA
(
change in quantity of production per unit time = dMB

dt

)
can be

expressed as follows:

min
A
SD s.t. ∆QP ≥ GA

(
=
dMB

dt

)
.

A is choice variable, i.e., the size of production policy. The constraint is binding, and Lagrangian

can be expressed as follows:

L = −MA(t)−
0∫

−∞

Wpr(∞)dt+ λ [GA −A {wpri(0)−Kpr {A− C(t)}}] .

Expression from eq. (46a) is given below:

C(t) = −KcMA + EA.
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The value of EA is found by imposing initial conditions as shown below:

C(0) = −KcMA(0) + EA,

0 = KcKprA+ EA,

EA = −KcKprA

This implies that

MA(t) = − 1

Kc
[C(t) +KcKprA] .

Therefore, the Lagrangian can now be written as:

L = −
0∫

−∞

Wpr(∞)dt−MA(t) + λ [GA −A {wpri(0)−Kpr {A− C(t)}}]

=

0∫
−∞

[
KprA−

K2
prA

Kpr +Kpu

]
dt+

1

Kc

[
KprA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t +KcKprA

]

+ λ

[
GA −A

[
wpri(0)−Kpr

{
A− KprA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]]

=

0∫
−∞

KprKpuA

Kpr +Kpu
dt+

1

Kc

[
KprA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t +KcKprA

]

+ λ

[
GA −A

[
wpri(0)−Kpr

{
A− KprA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]]
.

Derivative of Lagrangian with respect to A leads to the following expression:

A =

λwpri(0)−

 0∫
−∞

KprKpuA
Kpr+Kpu

dt+ 1
Kc

[
KprA

Kpr+Kpu
− KprA

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t +KcKprA

]
2λKpr

{
A− KprA

Kpr+Kpu
+

KprA
Kpr+Kpu

e−[Kc(Kpr+Kpu)]t
} . (64)

Similarly derivative of Lagrangian with respect to λ gives:

GA −A
[
wpri(0)−Kpr

{
A− KprA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]
= 0. (65)

Putting eq. (64) into (65), we obtain:
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GA =
λw2pri(0)− wpri(0)JA

2λQA
−
(
λwpri(0)− JA

2λQA

)2
QA,

4λ2QAGA = 2λ2w2pri(0)− 2λwpri(0)JA − λ2w2pri(0)− J2A + 2λwpri(0)JA,

4λ2QAGA = 2λ2w2pri(0)− λ2w2pri(0)− J2A,

4λ2QAGA = λ2w2pri(0)− J2A,

where T =
λwpri(0)− JA

2λQA
,

QA = Kpr

[
1− Kpr

Kpr +Kpu
+

Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

]
,

JA =

0∫
−∞

KprKpuA

Kpr +Kpu
dt+

1

Kc

[
KprA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t +KcKprA

]
.

This implies that

{
w2pri(0)− 4QAGA

}
λ2 = J2A.

λ =
JA√

w2pri(0)− 4QAGA
.

Eq. (64) can also be written as

A =
λwpri(0)− JA

2λQA
. (66)

After putting value of λ in above expression, we obtain:

A =

JAwpri(0)√
w2pri(0)−4QAGA

− JA

2JAQA√
w2pri(0)−4QAGA

,

A =
wpri(0)−

√
w2pri(0)− 4QAGA

2QA
. (67)

A is a policy for an optimal number of water producers/extractors in a dynamical setting. The

second order condition shows that effi ciency loss has been minimized (see appendix).
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8 Conclusion

When government adopts a dynamically optimal water market policy, e.g., imposes a production

fee, and shifts the water production/extraction curve to the left, the water market goes out of

equilibrium, with a presemption that it was in equilibrium before the implementation of the policy.

The water production/extraction and the market price of water adjust over time and the water

market eventually attains the final equilibrium. The final equilibrium is (more) effi cient as compared

to the initial equilibrium, however, some effi ciency is lost during the adjustment of the market. Eq

(35) presents a dynamically optimal water market policy after minimizing the effi ciency losses

during adjustment of the market. The expression involves production, demand, and government

storage curves’slopes and initial pre-policy water equilibrium quantity.

For a dynamically optimal production policy for water producers model, we develop a water pro-

duction model involving number of water producers and production/extraction rate. The model

can predict the adjustment path and the final equilibrium after a supply/demand or production

rate shock. A dynamic optimal water production policy has been derived by minimizing social

damage in terms of excessive number of water producers/extractors on the adjustment path to

final equilibrium after the government adopts the policy subject to a certain change in water quan-

tity per unit time. The area under the demand curve is social benefit in terms of water quantity

per unit time when water production is in equilibrium. Eq. (67) presents the expression for the

optimal production policy depending on parameters wpri(0), GA, Kc, Kpr, Kpu, τd1 and τd2.

9 Appendix:

9.1 Water Extractor/Producer/Supplier

The water extractor/producer/supplier’s problem is to maximize present discounted value of future
stream of profits. The zero value, i.e., the present value for t = 0, is as follows:

V (0) =
∞∫
0

[αp(t)f (k (t) , l (t))− w(t)l (t)− r(t)i(t)] e−ρBptdt, (68)

α denotes the market price fraction charged by water extractor to government. ρBp reflects the
discount rate; l(t) (labor) and i(t) (level of investment) are control variables and k(t) is state
variable. Water extractor’s problem can be written as:

Max
{l(t),i(t)}

V (0) =
∞∫
0

[αp(t)f (k (t) , l (t))− w(t)l (t)− r(t)i(t)] e−ρBptdt,

subject to the constraints that
.
k(t) = i(t)− δk(t) (state equation, describing how state variable changes with time),
k(0) = ks (initial condition),
k(t) ≥ 0 (non-negativity constraint on state variable),
k(∞) free (terminal condition).
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Current-value Hamiltonian can be written as follows:

H̃ = αp(t)f (k (t) , l (t))− w(t)l (t)− r(t)i(t) + µBp(t) [i(t)− δk(t)] . (69)

Maximizing conditions are given below:
(i) l∗(t) and i∗(t) maximize H̃ for all t: ∂H̃

∂l = 0 and ∂H̃
∂i = 0,

(ii)
.

µBp − ρBpµBp = −∂H̃
∂k ,

(iii)
.
k
∗

= ∂H̃
∂µBp

(this just gives back the state equation),

(iv) lim
t→∞

µBp(t)k(t)e−ρBpt = 0 (the transversality condition).

First two conditions are:

∂H̃

∂l
= αp(t)f ′l (k (t) , l (t))− w(t) = 0, (70)

∂H̃

∂i
= −r(t) + µBp(t) = 0, (71)

and

.
µBp − ρBpµBp = −∂H̃

∂k
= −

[
αp(t)f ′k (k (t) , l (t))− δµBp(t)

]
. (72)

Substituting values of
.

µBp and µBp from eq. (71) into eq. (72) yields

αp(t)f ′k (k (t) , l (t))− (ρBp + δ)r(t) +
.
r(t) = 0.

If p(t) increases, producer faces following inequalities at existing levels of labor and investment:

αp(t)f ′l (k (t) , l (t))− w(t) > 0,

αp(t)f ′k (k (t) , l (t))− (ρBp + δ)r(t) +
.
r(t) > 0.

After a price increase, the water extractor’s profit maximizing condition gets modified and prompts
him to supply more water (details in appendix). Let p = market price of water at which government
supplies water to consumers, cB = a reference/feasible minimum price for water extractor to decide
whether to operate or not.

WBp = Change in water extraction/production volume due to change in price.

The condition p−cB ≥ 0 provides the water extractor/producer an incentive to supply more water,
i.e.,

WBp ∝ α(p− cB), or

WBp = KBp(p− cB). (73)

When the water market is in equilibrium, WBp = 0, i.e.,
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0 = KBp(ps − cBs). (74)

KBp is a proportionalityconstant. ps and cBs reflect the equilibrium values. If we subtract eq. (11)

from eq. (10), we get:

WBp = KBp [(p− ps)− (cB − cBs)] = −KBp (CB − P ) = −KBpεB, (75)

WBp, CB and P reflect corresponding deviation values from those at the steady state.

9.2 Consumers of Water

There are two major types of consumers of water, i.e., the producers involved in production activities
using water as an input, and the final consumer. The problems of both types of consumers are
discussed below:
Producers Using Water as an Input:
The producer of a commodity using water as an input has a problem of maximizing present dis-
counted value of future streams of profits. The zero value, i.e., the present value for t = 0, is as
follows:

V (0) =
∞∫
0

[pBc(t)F (K (t) , L (t) , wBc(t))− w(t)L (t)−<(t)I(t)− p(t)wBc(t)] e−rtdt, (76)

pBc is price of commodity being produced by the producer; r reflects discount rate. L(t) (labor
input), I(t) (investment), and wBc(t) (quantity of water as an input) are control variables and K(t)

is the state variable. The producer’s (as consumer of water) problem can be written as

Max
{L(t),I(t),wBc(t)}

V (0) =
∞∫
0

[pBc(t)F (K (t) , L (t) , wBc(t))− w(t)L (t)−<(t)I(t)− p(t)wBc(t)] e−rtdt,

subject to the constraints that
.
K(t) = I(t)− δK(t) (state equation, describing how the state variable changes with time),
K(0) = K0 (initial condition),
K(t) ≥ 0 (non-negativity constraint on state variable),
K(∞) free (terminal condition).
The expression for current-value Hamiltonian is as follows:

H̃ = pBc(t)F (K (t) , L (t) , wBc(t))− w(t)L (t)−<(t)I(t)− p(t)wBc(t) + µ(t) [I(t)− δK(t)] . (77)

Maximizing conditions are given below:
(i) L∗(t), I∗(t) and w∗Bc(t) maximize H̃ for all t: ∂H̃

∂L = 0, ∂H̃∂I = 0 and ∂H̃
∂wBc

= 0,

(ii)
.
µ− rµ = −∂H̃

∂K ,

(iii)
.
K
∗

= ∂H̃
∂µ (this just gives back the state equation),

(iv) lim
t→∞

µ(t)K(t)e−rt = 0 (the transversality condition).

First two conditions are:
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∂H̃

∂L
= pBc(t)

.
F2 (K (t) , L (t) , wBc(t))− w(t) = 0, (78)

∂H̃

∂I
= −<(t) + µ(t) = 0, (79)

∂H̃

∂wBc
= pBc(t)

.
F3 (K (t) , L (t) , wBc(t))− p(t) = 0, (80)

and

.
µ− rµ = −∂H̃

∂K
= −

[
p(t)

.
F1 (K (t) , L (t) , wBc(t))− δµ(t)

]
. (81)

If price of water goes up, the producer as consumer of water faces a modified condition, i.e.,

pBc(t)
.
F3 (K (t) , L (t) , wBc(t))− p(t) < 0.

After a water price increase, the producer using water as an input will reduce water consumption
to satisfy profit maximization condition (see detail in appendix). If demand change is proportional
to price change (or otherwise if linearization of demand schedule around equilibrium is a reasonable
assumption), we have:

Change in demand ∝ P, or

WBc = −KBcP. (82)

WBc is deviation in demand with respect to the equilibrium value after a price change, i.e., P . KBc

is proportionality constant, and the negative sign is re‡ective of the fact that when price increases,
the demand of water goes down.

9.3 Solution of the Water Market Model with a Contract/Lease/License Fee

From (4a), (12) and (24):

dP (t)

dt
= −KBmWB(t),

WBp(t) = −KBpεB(t),

εB(t) = CB(t)− P (t),

WBc = −KBcP.

In the absence of a shock, we have

WB(t) = WBp(t)−WBc(t),

The above expressions imply that
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dP (t)

dt
= −KBm [WBp(t)−WBc(t)]

= −KBm [−KBpεB(t) +KBcP (t)]

= −KBm [−KBpCB(t) + (KBp +KBc)P (t)] ,

or

dP (t)

dt
+KBm(KBp +KBc)P (t) = KBmKBpCB(t). (83)

If a per unit water extraction fee is imposed on producer at t = 0, i.e., CB(t) = T , the above
expression becomes

dP (t)

dt
+KBm(KBp +KBc)P (t) = KBmKBpT. (84)

The Routh—Hurwitz stability criterion (a necessary and suffi cient condition for stability of a linear
dynamical system depicted by the above differential equation) is as follows: KBm(KBp+KBc) > 0.
As KBm, KBp and KBc are defined as positive numbers, the stability condition holds, which
ensures that after a shock the water market arrives at a new equilibrium through some adjustment
mechanism. If the fee is charged from buyer instead of producer per unit of water consumption,
the producer will take into account the price faced by him/her, i.e.,

εB(t) = T − P (t). (85)

which leads to the following expression:

dP (t)

dt
+KBm(KBp +KBc)P (t) = KBmKBpT.

The above expression is the same as eq. (26), however, the solution/dynamic adjustment path will
depend on initial conditions. The solution of eq. (26) with initial conditions of a producer’s fee is
as follows:
The above differential equation’s characteristic function is as follows:

x+KBm(KBp +KBc) = 0,

which has a single root, i.e.,

x = −KBm(KBp +KBc),

giving the complementary solution as

Pc(t) = C2e
−[KBm(KBp+KBc)]t.

The particular solution has the form

Pp(t) = C1,
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and the solution has the following form:

P (t) = C1 + C2e
−[KBm(KBp+KBc)]t. (86)

The constant C1 is determined by substitution into the differential equation as follows:

−KBm(KBp+KBc)C2e
−[KBm(KBp+KBc)]t+KBm(KBp+KBc)C1+KBm(KBp+KBc)C2e

−[KBm(KBp+KBc)]t = KBmKBpT,

C1 =
KBpT

KBp +KBc
.

C2 is determined by the initial condition as follows:

P (0) =
KBpT

KBp +KBc
+ C2 = 0,

C2 = − KBpT

KBp +KBc
.

Substituting the values of C1 and C2 in eq. (86), we get:

P (t) =
KBpT

KBp +KBc
− KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t. (87)

When t = 0, P (0) = 0 (initial condition). When t = ∞, P (∞) =
KBpT

KBp+KBc
(final value). In final

equilibrium, supply equals demand, and in order to verify that we proceed as follows:

wBp(∞) = wBc(∞), or

wBp(0)−KBp [T − P (∞)] = wBc(0)−KBcP (∞),

−KBp [T − P (∞)] = −KBcP (∞),

−KBp

[
T − KBpT

KBp +KBc

]
= −KBc

KBpT

KBp +KBc
,

− KBcKBpT

KBp +KBc
= − KBcKBpT

KBp +KBc
,

which is true as

wBp(0) = wBc(0).

9.4 A Dynamically Optimal Water Market Policy

Pre-policy water market equilibrium is ineffi cient, and the imposition of producer fee leads to an
effi cient equilibrium. However, there are some effi ciency losses on the adjustment path of the water
market to the new effi cient equilibrium. After a fee is imposed on water producer, the supply
of water shrinks, the market forces come into play and the water market adjusts to the final
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equilibrium. The price and quantity of water in final equilibrium are dependent on supply and
demand elasticities. The level of water storage rises if supply is higher than demand and goes down
otherwise. When demand and supply again become equal, the water market is in final equilibrium.
When demand and supply are not equal, either water supply and/or consumption is being lost
at that point in time. The total production and/or consumption lost in terms of quantity is the
effi ciency loss and can be expressed as follows:

ELB = −

 0∫
−∞

WBp(∞)dt+M(t)

 . (88)

After imposition of water fee, the supply of water shrinks by KBpT. As the demand of water has
not yet changed, the level of water storage also decreases by KBpT. The water market is out of
equilibrium, and drifts toward the final equilibrium through market forces. The price of water is
changed by government to bring the final equilibrium. The government earns the following amount
as producer fee revenue (PFR):

PFR = T [wBpi(0)−KBp {T − P (t)}] . (89)

The problem of minimizing effi ciency loss with T as a control variable subject to constraint that
revenue from imposition of producer fee must be greater than or equal to GB in a given time, is as
follows:

min
T
ELB s.t. PFR ≥ GB.

The constraint is binding. Lagrangian for the problem of minimizing effi ciency loss is as follows:

L = −
0∫

−∞

WBp(∞)dt−M(t) + λ [GB − T [wBpi(0)−KBp {T − P (t)}]]

=

0∫
−∞

[
KBpT −

K2
BpT

KBp +KBc

]
dt

+
1

KBm

[
KBpT

KBp +KBc
− KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t +KBmKBpT

]
+ λ

[
GB − T

[
wBpi(0)−KBp

{
T − KBpT

KBp +KBc
+

KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t

}]]

=

0∫
−∞

KBpKBcT

KBp +KBc
dt+

1

KBm

[
KBpT

KBp +KBc
− KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t +KBmKBpT

]

+ λ

[
GB − T

[
wBpi(0)−KBp

{
T − KBpT

KBp +KBc
+

KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t

}]]
.

Derivative of Lagrangian with respect to T leads to the following expression:
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T =

λwBpi(0)−

 0∫
−∞

KBpKBc

KBp+KBc
dt+ 1

KBm

[
KBp

KBp+KBc
− KBp

KBp+KBc
e−[KBm(KBp+KBc)]t +KBmKBp

]
2λKBp

[
1− KBp

KBp+KBc
+

KBp

KBp+KBc
e−[KBm(KBp+KBc)]t

] .

(90)
Similarly derivative of Lagrangian with respect to λ gives:

GB − T
[
wBpi(0)−KBp

{
T − KBpT

KBp +KBc
+

KBpT

KBp +KBc
e−[KBm(KBp+KBc)]t

}]
. (91)

Putting eq. (32) into (33), we obtain:

GB =
λw2Bpi(0)− wBpi(0)JB

2λQB
−
(
λwBpi(0)− JB

2λQB

)2
QB,

4λ2QBGB = 2λ2w2Bpi(0)− 2λwBpi(0)JB − λ2w2Bpi(0)− J2B + 2λwBpi(0)JB,

4λ2QBGB = 2λ2w2Bpi(0)− λ2w2Bpi(0)− J2B,
4λ2QBGB = λ2w2Bpi(0)− J2B,

where T =
λwBpi(0)− JB

2λQB
,

QB = KBp

[
1− KBp

KBp +KBc
+

KBp

KBp +KBc
e−[KBm(KBp+KBc)]t

]
,

JB =

0∫
−∞

KBpKBc

KBp +KBc
dt+

1

KBm

[
KBp

KBp +KBc
− KBp

KBp +KBc
e−[KBm(KBp+KBc)]t +KBmKBp

]
.

This implies that {
w2Bpi(0)− 4QBGB

}
λ2 = J2B.

λ =
JB√

w2Bpi(0)− 4QBGB
.

After putting value of λ in above expression, we obtain:

T = −

JBwBpi(0)√
w2Bpi(0)−4QBGB

− JB

2QBJB√
w2Bpi(0)−4QBGB

.

Eq. (90) can also be written as

T =
λwBpi(0)− JB

2λQB
. (92)
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After substituting value of λ in eq. (92), we get:

T =
wBpi(0)−

√
w2Bpi(0)− 4QBGB

2QB
. (93)

The second order condition for minimization of effi ciency loss is as follows:
Lagrangian can be written as

L = JBT + λ [GB − T (wBpi(0)−QBT )] .

The Bordered Hessian matrix of Lagrange function is as follows:

BH =

 0 wBpi(0)− 2QBT

wBpi(0)− 2QBT
2QBJB√

w2Bpi(0)−4QBGB

 .
As the determinant of the above matrix is negative, i.e., − (wBpi(0)− 2QBT )2 < 0, it implies that
the effi ciency loss is minimized.

9.5 A Dynamic Optimal Production Policy for Water Producers Model

The equilibrium before adoption of water production policy needed to be improved upon, this is
why government wanted to adopt a water policy. Also, there are some effi ciency losses on the
dynamic adjustment path to the new equilibrium. Adding the equilibrium and adjustment path
ineffi ciencies, we get the total social damage which needs to be minimized. The government either
shifts the demand or the supply curve through a production policy. Suppose it shifts supply
leftward. The number of water producers/extractors and the production rate adjust over time to
bring final equilibrium, at which the production/extraction rate is higher and the number of water
producers is lower as compared to those in the initial equilibrium. If supply of water producers is
higher than demand, the number of producers are excessive and vice versa. The excessive number
or a shortage of water producers is the social damage at a certain point in time. By summing up
the social damage in equilibrium and that on the dynamic adjustment path, the total damage in
terms of number of water producers/extractors is obtained as follows:

SD = −

 0∫
−∞

Wpr(∞)dt+MA(t)

 . (94)

From eq. (51), a change in number of water producers/extractors on account of implementation of
production policy is given below:

Wpr(t) = −Kpr [A− C(t)] ,

or wprf (t)− wpri(0) = −Kpr [A− C(t)] ,

where wpri(0) is number of water producers/extractors supplied in initial equilibrium and wprf (t) is
new value after water production policy is adopted, as Wpr(t) is a deviation variable, i.e., deviation
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from initial steady state value. A change in quantity of production/extraction per unit time is
given below:

∆QP = A [wpri(0)−Kpr {A− C(t)}] . (95)

The problem of minimizing the social damage subject to a change in quantity of production be-

ing greater than or equal to GA
(
change in quantity of production per unit time = dMB

dt

)
can be

expressed as follows:

min
A
SD s.t. ∆QP ≥ GA

(
=
dMB

dt

)
.

A is choice variable, i.e., the size of production policy. The constraint is binding, and Lagrangian
can be expressed as follows:

L = −MA(t)−
0∫

−∞

Wpr(∞)dt+ λ [GA −A {wpri(0)−Kpr {A− C(t)}}] .

Expression from eq. (46a) is given below:

C(t) = −KcMA + EA.

The value of EA is found by imposing initial conditions as shown below:

C(0) = −KcMA(0) + EA,

0 = KcKprA+ EA,

EA = −KcKprA

This implies that

MA(t) = − 1

Kc
[C(t) +KcKprA] .

Therefore, the Lagrangian can now be written as:
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L = −
0∫

−∞

Wpr(∞)dt−MA(t) + λ [GA −A {wpri(0)−Kpr {A− C(t)}}]

=

0∫
−∞

[
KprA−

K2
prA

Kpr +Kpu

]
dt+

1

Kc

[
KprA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t +KcKprA

]

+ λ

[
GA −A

[
wpri(0)−Kpr

{
A− KprA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]]

=

0∫
−∞

KprKpuA

Kpr +Kpu
dt+

1

Kc

[
KprA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t +KcKprA

]

+ λ

[
GA −A

[
wpri(0)−Kpr

{
A− KprA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]]
.

Derivative of Lagrangian with respect to A leads to the following expression:

A =

λwpri(0)−

 0∫
−∞

KprKpuA
Kpr+Kpu

dt+ 1
Kc

[
KprA

Kpr+Kpu
− KprA

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t +KcKprA

]
2λKpr

{
A− KprA

Kpr+Kpu
+

KprA
Kpr+Kpu

e−[Kc(Kpr+Kpu)]t
} . (96)

Similarly derivative of Lagrangian with respect to λ gives:

GA −A
[
wpri(0)−Kpr

{
A− KprA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]
= 0. (97)

Putting eq. (96) into (97), we obtain:

GA =
λw2pri(0)− wpri(0)JA

2λQA
−
(
λwpri(0)− JA

2λQA

)2
QA,

4λ2QAGA = 2λ2w2pri(0)− 2λwpri(0)JA − λ2w2pri(0)− J2A + 2λwpri(0)JA,

4λ2QAGA = 2λ2w2pri(0)− λ2w2pri(0)− J2A,
4λ2QAGA = λ2w2pri(0)− J2A,

where T =
λwpri(0)− JA

2λQA
,

QA = Kpr

[
1− Kpr

Kpr +Kpu
+

Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

]
,

JA =

0∫
−∞

KprKpuA

Kpr +Kpu
dt+

1

Kc

[
KprA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t +KcKprA

]
.
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This implies that {
w2pri(0)− 4QAGA

}
λ2 = J2A.

λ =
JA√

w2pri(0)− 4QAGA
.

λ must be positive as the social damage increases with an increase in GA. Eq. (96) can also be
written as

A =
λwpri(0)− JA

2λQA
. (98)

After putting value of λ in above expression, we obtain:

A =

JAwpri(0)√
w2pri(0)−4QAGA

− JA

2JAQA√
w2pri(0)−4QAGA

,

A =
wpri(0)−

√
w2pri(0)− 4QAGA

2QA
. (99)

The second order condition for minimization of effi ciency loss is as follows:
Lagrangian can be written as

L = JAA+ λ [GA −A (wpri(0)−QAA)] .

The Bordered Hessian matrix of Lagrange function is as follows:

BH =

 0 wpri(0)− 2QAA

wpri(0)− 2QAA
2QAJA√

w2pri(0)−4QAGA

 .
As the determinant of the above matrix is negative, i.e., − (wpri(0)− 2QAA)2 < 0, it implies that
the effi ciency loss is minimized.
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Figure 1: Theory of an optimal dynamical water resource management policy.
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