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Evaluating seasonal weather risks on cereal yield distributions in southern India 

Abstract: Climate change poses significant threats to Indian agriculture, markedly through its 

impact on crop yields. While most existing research focuses on climate-sensitive crops like 

rice, relatively climate-resilient cereals such as sorghum, maize and finger and pearl millets 

have received less attention. This study uses district-level data from four southern states over 

26 years to conduct a moment-based analysis of the effects of various climatic and non-climatic 

factors on these crop yields. The research offers nuanced insights into how different weather 

patterns influence crop yields, yield variability (risk) and downside yield risks. The study 

disaggregates climate variables into seasonal effects, showing that winter maximum 

temperatures positively affect the yields of maize and sorghum but negatively impact rice. In 

contrast, summer maximum temperatures generally reduce yields across all crops except finger 

millet, which thrives due to its heat tolerance. Monsoon rainfall boosts the yields of pearl millet, 

although excessive rainfall during the monsoon season increases downside risks for maize and 

rice. Evapotranspiration shows mixed effects, while wind speed tends to negatively affect 

yields, especially during the summer and monsoon seasons. Additionally, the study finds that 

excessive irrigation can harm rainfed crops like maize and pearl millet, while technological 

advancements such as HYV seeds and fertilisers positively impact yields. These findings 

underscore the urgent need to promote climate-resilient crop varieties, restructure irrigation 

subsidies and provide targeted support to smallholder farmers to enhance food security in the 

face of increasingly erratic seasonal conditions. 

Keywords: Climate change; Cereal crops; Production risks; Southern India; Moment-based 

analysis 

JEL Classification: D81, Q18, Q54 

1 Introduction 

The agriculture sector is highly susceptible to climatic variations and extremes, which can lead 

to significant crop losses (Ahsan et al. 2020; Shaw et al. 2020; Da et al. 2024). By the end of 

this century, cereal yields are expected to decline by up to 33.6%, posing a serious threat to 

global food security (Gammans et al. 2017). Among major cereals, rice and wheat are 

particularly vulnerable due to their lower climate resilience compared to millet, increasing the 

risk of crop failure and exacerbating food insecurity (Neupane et al. 2022). Research by Sossou 

et al. (2019) indicates that even a modest increase in rainfall, such as 1mm, can enhance cereal 

production by 252 tons in the short term and 385 tons in the long term. However, rising 

temperatures have an adverse effect, leading to crop losses and increasing production risks, 

especially in African countries. These impacts are most severe in tropical regions like Sub-

Saharan Africa and South Asia—areas heavily dependent on agriculture yet challenged by 
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underdevelopment and limited resources (Aryal et al. 2018). In addition, limited research on 

climate-resilient cereals highlights a crucial gap in efforts toward future sustainability. Farmers 

in these regions often manage small, marginal holdings, making it difficult for them to adapt 

to the adverse effects of climate change (Barbier and Hochard 2018). As a result, climate 

change not only reduces local food availability but also decreases farmer incomes and 

heightens global food insecurity (Mall et al. 2017; Veetil and Hitch 2020). Climate-related 

factors contribute to nearly 60% of crop losses, with their impact on global food production 

and farmer incomes continuing to intensify (Matiu et al. 2017; Paul et al. 2023). Given these 

challenges, it is crucial to assess the impact of climate change on crop yields and the associated 

risks. Weather risks are among the most significant challenges faced by rural households in 

developing countries (Di Falco et al. 2011). Studies show that farmers are aware of these risks 

and consider them when making decisions about inputs and outputs (Mukasa 2018; Chavas 

2019). For instance, Mukasa (2018) demonstrates that rural farmers tend to adopt modern 

inputs when confronted with increased risks to crop yields. 

However, many conventional inputs, particularly those associated with the Green Revolution—

characterised by the intensive use of fertilisers, irrigation and high-yield variety (HYV) seeds—

have not only increased food production but also led to unsustainable practices, such as soil 

degradation and groundwater depletion (Kulkarni 2021). Moreover, previous research suggests 

that farmers are generally risk-averse, often choosing to avoid downside risks (Antle 1987). 

This risk aversion frequently leads rural farmers to rely on older, less profitable inputs, which 

heightens their vulnerability to weather-related uncertainties. Therefore, technologies that 

enhance crop productivity while stabilising yields are especially valuable. For example, 

although Green Revolution technologies often boosted crop yields, they also introduced greater 

variability and income risk. Antle and Crissman (1990) illustrate this in their study of rice 

production in the Philippines, where individual conventional technologies tended to increase 

risks, although carefully selected combinations of practices and inputs could mitigate them. 

Thus, there is a need for approaches that not only increase crop yields but also reduce the risks 

of crop failure and minimise negative environmental impacts (Cui et al. 2020). Such strategies 

can help farmers adapt to the adverse effects of climate shocks by adopting climate-smart 

practices.  

Various studies have examined the role of production risks in agriculture and investigated how 

different inputs and technologies can help mitigate these risks (Kim and Chavas 2003; Di Falco 
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and Chavas 2006; Mukasa 2018; Chavas 2019). However, few studies have addressed how 

these risks are accounted for over time as technology evolves. For instance, Kim and Chavas 

(2003)  found that changes in farm inputs over time can decrease farmers’ exposure to risks, 

although the effects differ by time and location, particularly in the case of corn yields. Other 

research indicates that adopting diverse agricultural practices may increase crop production 

skewness, thereby reducing exposure to downside risks. Climate change is expected to 

intensify these risks, especially in climate-dependent activities like rainfed agriculture, and it 

may further discourage investment in agricultural inputs under uncertain conditions. 

The growing body of literature on climate change suggests that India’s agrarian economies will 

disproportionately suffer from rising temperatures and erratic precipitation, leading to 

significant agricultural yield losses. Indian agriculture, which is heavily dependent on the 

monsoon, experiences a 0.83% decline in cereal yields for every 1% increase in average 

temperature (P. Kumar et al. 2021). In southern India, where agriculture is a primary livelihood, 

challenges such as soil degradation and water scarcity have already contributed to a reduction 

in rice productivity from 99 million metric tons to 89 million metric tons (Arokiaraj and Srivel 

2017). For instance, in Telangana, high temperatures during the kharif season have led to crop 

losses of 1.65% for rice and 4.09% for groundnut, respectively (Moulkar and Peddi 2023). 

Furthermore, the authors reveal that non-weather variables played a significant role in 

mitigating the effects of weather variables in the Telangana region, highlighting the importance 

of region-specific factors.  

1.1 Regional focus and objectives 

Sorghum, maize, and millets emerged as vital food crops that have historically sustained Indian 

agriculture, especially in arid regions where other crops struggle to thrive. Telangana, Andhra 

Pradesh, Tamil Nadu, and Karnataka have been selected for this study due to their diverse and 

predominantly dry agro-climatic conditions, making them ideal for assessing the impact of 

climate variability. While these states are among South India’s leading rice producers 

(Arokiaraj and Srivel 2017), they also contribute significantly to the production of climate-

resilient cereals. Andhra Pradesh and Karnataka are the top maize-producing states, accounting 

for 20.9% and 16.5% of India’s total maize production, respectively (Murdia et al. 2016). 

Karnataka and Maharashtra dominate sorghum cultivation, with approximately 66% of total 

sorghum production occurring during the rainy season, making it highly vulnerable to rainfall 

variability (Sivakumar et al. 1984). Karnataka also ranks among the top three states for millet 
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cultivation, accounting for 14% of the national millet-growing area. Along with Tamil Nadu, 

it has the largest finger millet cultivation areas (Bhat et al. 2023); however, Tamil Nadu has 

experienced a significant decline in the cultivation of finger millet and other minor millets in 

recent years (Nithya et al. 2025). Telangana plays a crucial role in national rice production, 

contributing 42.37% of the total paddy cultivation area (Lahari et al. 2024), yet climate factors 

such as minimum temperature pose substantial risks to rice as well as sorghum yields 

(Guntukula and Goyari 2020). Frequent climate extremes and various constraints have led to 

high yield gaps, low priority, and limited technological progress (Uma and Prabhu 2017; 

Nithya et al. 2025). Understanding these regional variations and climate-related risks is 

essential for designing targeted interventions to promote climate-resilient cereal production and 

safeguard food security in South India. 

The selection of crops is based on not only their varying levels of climate sensitivity but also 

their growing economic importance in the southern states. Sorghum and millets not only 

occupy substantial cultivated areas but are also recognised as climate-friendly nutri-cereals, 

demonstrating resilience to extreme climatic and soil conditions in semi-arid regions (Tadele 

2016). Acknowledging the potential of millets, the Indian Government declared 2018 as the 

“National Year of Millets,” promoting their resurgence. To revitalise millet cultivation in Tamil 

Nadu, the M. S. Swaminathan Research Foundation launched targeted interventions (Nithya et 

al. 2025), underscoring their rising importance. In Karnataka, rabi sorghum has gained 

prominence in recent years due to higher demand and favourable market prices, leading to an 

expansion in cultivated areas (Basavaraja et al. 2005; Chapke et al. 2017). Meanwhile, maize 

demand in Andhra Pradesh has grown significantly, driven by a ban on the use of sugarcane 

for ethanol production and increased poultry feed requirements (R. Kumar et al. 2013). 

Although these climate-resilient cereals offer a sustainable alternative, they are not entirely 

immune to climate shocks. For instance, rising temperatures have been shown to significantly 

impact millet growth parameters (Abubakar et al. 2023), and rabi crop yields are projected to 

decline by up to 11% by 2050 due to climate variation (Srivastava et al. 2010). While phasing 

out maize in favour of millets and sorghum has been suggested due to their lower resource 

needs (Negri et al. 2024), socioeconomic shifts—such as rising incomes, urbanization, and 

changing dietary preferences—have led to a decline in coarse grain consumption like sorghum 

(Gali and Rao 2012), posing challenges to their wider adoption. Nevertheless, the nutritional 

value of these crops, coupled with advances in climate-smart agricultural practices, holds 
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immense potential for enhancing food security and diversifying South India’s heavily rice-

centric food basket (Gowri 2020). 

Against this backdrop, this study focuses on evaluating the impacts of climate variation and 

extremes on less climate-sensitive crops, including finger and pearl millets, maize and 

sorghum. Additionally, we aim to estimate the effects of climate change on the first three 

moments (mean, variance and skewness) of these crop yields in the southern states of India. 

The impact of climate change extends beyond productivity patterns, influencing the direction, 

magnitude and risks associated with crop yields, necessitating further exploration. Among the 

crops studied, finger and pearl millets, maize, and sorghum are more climate-resilient 

compared to rice, which serves as a comparative benchmark. We also consider farm-specific 

inputs, such as the area under HYVs, fertiliser use, irrigation, farm workers, smallholder 

density and urbanisation rates. Thus, we seek to answer the question: How do seasonal 

variations and extreme weather events, when accounting for farm inputs, shape the yield 

distribution of selected cereal crops in southern India? 

This research utilises district-level data from Telangana, Andhra Pradesh, Tamil Nadu and 

Karnataka, casing a period of 26 years. Over the past 50 years, cereals have become a major 

source of dietary energy, contributing 50-70% of daily intake, and they play a crucial role in 

enhancing health and nutrition (Poole et al. 2022). Therefore, it is vital to prioritise cereal 

production to ensure food security and meet the nutritional needs of the growing population. 

Crops like sorghum and finger and pearl millets have been instrumental in ensuring food 

security in India due to their greater climate resilience and ability to mitigate the impacts of 

climate change (Basson et al. 2021). Sorghum, finger and pearl millets are particularly drought-

tolerant due to their deep root systems, although finger millet requires more rainfall than pearl 

millet (Talwar et al. 2020). While maize is moderately drought-tolerant, it can still experience 

yield reductions of up to 37% due to drought (Wang et al. 2018; Li et al. 2019). Figure 1 shows 

the crop trends relative to climate variation in India—our key focus. 

1.2 Research contributions and framework 

This study highlights the critical importance of understanding how farmers’ sensitivity to 

climate impacts the yield of these relatively less climate-sensitive cereals. Recognising 

production risks in the context of climate variability is crucial, as low adaptive capacity—

particularly in terms of conventional inputs—significantly heightens risk exposure under 

unfavourable climatic conditions (Pecetti et al. 1992; Di Falco and Chavas 2009). Therefore, 
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the responsiveness of production risk will depend on both climate change and farmers’ 

perceptions of these changes.  

Figure 1. Selected crop trends relative to climate variation in India 

 

  
Source: Authors’ construct based on crop data retrieved from the FAO (2024) and weather data from the World Bank (2024).  

 

Further, this research makes three significant contributions to the existing literature. First, we 

explore a frequently overlooked aspect of weather’s impact: the effects of seasonal variations 

and extreme weather events on crop yields. By examining these factors, we provide fresh 

insights into their influence on agricultural outcomes, extending beyond conventional 

approaches. Our analysis builds upon previous studies while addressing key gaps in the 

literature. For instance, Verma et al. (2020) investigated the impact of climate variation and 

extreme weather on the mean and variance of three major crop yields but did not consider 

seasonality, thereby limiting the scope of their findings. In the Indian context, seasonality is 

crucial for agricultural production, as much of farm-level planning revolves around it. Moulkar 

and Dayakar (2023) and Mohapatra et al. (2024) accounted for seasonality, identifying the 

monsoon season as a key factor affecting the yield of major crops. However, their studies did 

not address downside risk and primarily focused on major crops, overlooking regional impacts 
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and the role of less climate-sensitive cereals. Our study fills this gap by examining how climate 

variation influences the risk attributes of selected cereal yield distributions in South India, 

especially considering specific farm inputs believed to mitigate risk. While recognising the 

importance of season-specific climate influence for each crop, our approach incorporates 

climate variation extremes across all four seasons to account for the interconnected agro-

climatic conditions that influence yield beyond the immediate growing season. 

Second, we broaden the understanding of how climate and other control variables affect the 

entire probability distribution of less climate-sensitive crop yields. Unlike traditional 

approaches that concentrate only on average yields (Barnwal and Kotani 2013), this study 

investigates the impact of weather across the full distribution, providing a more comprehensive 

perspective on weather-related production risks. Specifically, we employ an econometric 

approach that models weather and other inputs as functions of the different moments of the 

agricultural production function. This enables us to capture the effects of weather shocks on 

higher moments of the yield distribution, such as variance and skewness, which are crucial for 

understanding yield risk and downside exposure. Third, our study addresses a common 

limitation in existing research, which often relies on small, survey-based samples that may not 

accurately reflect broader regional trends and may include individual attitude biases (Birthal et 

al. 2015). We overcome this limitation by using district-level data, allowing us to estimate the 

effects of weather uncertainties on production risks with greater precision and reliability across 

southern regions. This approach provides more generalisable findings, offering better insights 

into agricultural risk management strategies. 

The rest of the paper is organised as follows: Section 2 outlines the analytical framework, 

environmental specifications, and data sources used. Section 3 presents the results and 

discusses them in relation to existing studies. Section 4 concludes by summarising the findings, 

addressing policy implications and limitations, and suggesting areas for future research. 

2 Material and methods 

2.1 Analytical framework and modelling 

This paper adopts a farmer’s expected utility approach, as detailed in Singh (2023), where 

utility is derived from crop yield, modelled as a function of farm inputs and stochastic weather 

variables. Since weather is uncertain and beyond farmers’ control, understanding how these 
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factors collectively influence expected yield, variability, and distribution is critical (see Table 

1). Farmers derive utility 𝑈 from yield 𝑦, which depends on inputs 𝑋 (e.g. labour, fertiliser) 

and weather 𝑊 (e.g. rainfall, temperature), represented as 𝑈 = 𝑈(𝑓(𝑋, 𝑊)). 

Table 1. Relationships of the first three moments with farm inputs and weather 

 Description  Proposition 

Expected 

utility 

 

The first movement, expected utility 

𝐸(𝑈), represents the average effect of 

inputs and weather conditions. When 

temperature increases or extreme 

climate events occur, the yield function 

𝑓(𝑋, 𝑊) may experience shifts in its 

distribution. 

 

If temperature increases or extreme climate events occur, expected utility 

𝐸(𝑈), is likely to decrease due to adverse impacts on crop growth, 

leading to lower average yields. Specifically, an increase in temperature 

beyond optimal levels or the occurrence of extreme events (e.g. floods, 

droughts) can reduce yield, lowering  𝐸[𝑈(𝑓(𝑋, 𝑊))].  

 𝐸(𝑈) =  𝐸[𝑈(𝑓(𝑋, 𝑊))] 
decreases with increased temperature or extreme events. 

Variance 

of utility 

 

In the second moment, the variance of 

utility 𝑉𝑎𝑟(𝑈), represents the risk or 

uncertainty associated with yield. The 

variance of utility is affected by the 

sensitivity of the yield to both farm 

inputs and weather variables. 

 

An increase in temperature or the occurrence of extreme climate events is 

likely to increase the variance of utility 𝑉𝑎𝑟(𝑈). This is because such 

events introduce greater uncertainty and variability in yield outcomes, 

leading to higher yield variance 𝑉𝑎𝑟(𝑓(𝑋, 𝑊)) which, in turn, increases 

𝑉𝑎𝑟(𝑈).  

 𝑉𝑎𝑟(𝑈) ≈

(𝑈′(𝑦 ̅))
2

 𝑉𝑎𝑟(𝑓(𝑋, 𝑊))  increases with increased temperatur

e or extreme events.  

Skewness 

of utility 

 

The third moment, skewness of utility 

𝑆𝑘𝑒𝑤(𝑈), captures the asymmetry of 

the utility distribution. It reflects the 

likelihood of extreme outcomes in yield, 

either low or high. 

 

Extreme climate events are likely to cause a negative skewness in utility 

𝑆𝑘𝑒𝑤(𝑈), indicating a higher probability of extremely low yields 

(negative tail). On the other hand, increased temperature might shift the 

skewness either way, depending on whether it consistently leads to 

suboptimal growth or sporadically benefits certain crops. 

 𝑆𝑘𝑒𝑤(𝑈) ≈

[
(𝑈 ′(𝑦 ̅))

3
𝑆𝑘𝑒𝑤(𝑓(𝑋,𝑊))

(𝑉𝑎𝑟(𝑈))
3
2

] likely shifts negatively with extreme eve

nts and varies with temperature. 

Source: Authors’ construction 

 

Key to this analysis is the relationship between farm inputs, weather variables, and the 

probability distribution of yield 𝑓(𝑋, 𝑊), expressed through its moments (Antle 1983; Antle 

1987). The expected yield is modelled as 𝑓(𝑋, 𝑊) = 𝑓1(𝑋, 𝜇) + 𝜉  , where 𝑓1(𝑋, 𝜇) is the mean, 

and 𝜉 is a zero-mean random variable. Higher moments, such as variance (𝑓2) and skewness 

(𝑓3), are expressed as 𝐸([𝑓(𝑋, 𝑊) − 𝑓1]𝑚|𝑋) = 𝑓𝑚(𝑋, 𝜇𝑚), 𝑚 = 2,3.      

The production function is empirically specified as 𝑦𝑖𝑡 = 𝑊𝑖𝑡𝛼 + 𝑋𝑖𝑡𝛽 + 𝛾𝑖 + 𝜃𝑡 + 𝜀𝑖𝑡, with 

district-level (𝛾𝑖) and time-fixed (𝜃𝑡) effects removed through demeaning. This results in the 

transformed equation: 𝑦̈𝑖𝑡 = 𝑊̈𝑖𝑡𝛼 + 𝑋̈𝑖𝑡𝛽 + 𝜀𝑖̈𝑡. Estimating this equation provides consistent 

parameter estimates, enabling the derivation of residuals 𝜀𝑖̂𝑡. 

Following Di Falco and Chavas (2009), higher moments of the production function, such as 

variance and skewness, are modelled as 𝜀𝑖̂𝑡
𝑚 = 𝛾𝑚 + 𝑊̈𝑖𝑡𝛼𝑚 + 𝑋̈𝑖𝑡𝛽𝑚 + 𝜖𝑖𝑡,𝑚, where 𝑚 indexes 

the moments. This framework examines the relationship between yield and weather shocks 

across the first three moments, addressing heteroscedasticity during parameter estimation. 
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2.2 Data sources and variable construction 

The study analyses district-level data from four southern states of India—Tamil Nadu, Andhra 

Pradesh, Karnataka and Telangana—based on the 2015 district boundaries, totalling 35 

districts. This data, spanning from 1990 to 2017, was sourced from the ICRISAT (2024). The 

agricultural variables included in the study encompass crop production and area for less 

climate-sensitive crops (sorghum, maize, finger and pearl millets), with rice also considered 

for sensitivity analysis. These are primarily kharif crops, though some are also grown in rabi. 

Additional variables include the number of diesel and electric pump sets, power tillers, tractors, 

HYV area, fertiliser use (measured per hectare of gross cropped area), gross irrigated area and 

the number of agricultural labourers (farm workers). The dependent variable, crop yield—is 

defined as the ratio of crop production to the total cropped area, expressed in tons per hectare. 

As seen in Figure 2, both millet yield distributions have spatially concentrated over the past 25 

years, unlike more dispersed yields of less climate-resilient crops like rice. Figure B1 highlights 

the distributional shifts in the area under cultivation for these crops, emphasising their 

significance across selected states. 

Figure 2. Cereal crops yield distributions over 25 years in southern India districts. 

 
Source: Authors’ construct based on data retrieved from ICRISAT (2024) 
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Since the agricultural input variables are presented in composite form, relevant crop-specific 

non-weather inputs are computed through prorating (Gupta et al. 2014; Verma et al. 2020). 

Additional non-weather variables that are not prorated include the area of small and marginal 

holders, total holding area, urban population and rural population data sourced from the 

population census. From these, we derive metrics such as smallholder intensity (the proportion 

of the total area under smallholders’ operational holdings to total operational holdings in the 

district) and urbanisation rate (the ratio of the urban population to the rural population 

multiplied by 100). These metrics provide a snapshot of the sociodemographic profile of each 

district. 

Weather variables are sourced from the Terra Climate database, which provides monthly high-

resolution meteorological data for the global terrestrial surface for the same period (1990-

2017). This data is processed in batches to create annual state-level tables for each variable. 

The weather variables are categorised according to the four Indian Meteorological Department-

defined seasons: Summer (Mar-May), Rainy (Jun-Sep), Autumn (Oct-Dec) and Winter (Jan-

Feb). This classification aligns with the seasonal crop cycle, where kharif crops, are sown in 

summer, grow during the monsoon, and are harvested in autumn, whereas rabi crops follow an 

autumn-winter-summer cycle. The independent seasonal weather variables included in the 

study are minimum and maximum temperatures, evapotranspiration, rainfall and wind speed. 

Table A1 presents the labels and descriptive statistics for both weather and non-weather 

variables of interest. 

Based on the data summary, rice has the highest yield at 2967.8 kg/ha despite low 

mechanisation and fertiliser use. Maize follows closely with a yield of 3165.49 kg/ha, though 

it shows greater variability. Finger Millet, with a yield of 1544.45 kg/ha, is highly dependent 

on mechanisation and fertilisers, using 246.64 thousand electric pump sets and 1242.84 kg/ha 

of fertiliser. Sorghum has the lowest yield at 1124.82 kg/ha, reflecting lower input levels. These 

yield differences highlight the varying resource needs and agricultural practices required for 

optimising each crop’s productivity. Climatic factors, such as temperatures ranging from 

19.19℃ to 35.98℃ and rainfall from 9.4 mm (Winter) to 118.5 mm (Monsoon), also 

significantly affect crop outcomes. This highlights the need to capture and analyse seasonal 

weather patterns asymmetrically to gain a more accurate understanding of the risks and 

challenges farmers face due to climate unpredictability. 
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To capture the impact of deviations from typical climate patterns on agricultural yield 

distribution, we consider seasonal weather anomalies (see Figure 3 for a summary). These 

anomalies, denoted as anomaly 𝜔𝑖𝑡 = 𝑤𝑖𝑡 − 𝑤̅𝑖, represents the observed weather in district 𝑖 at 

time 𝑡 and 𝑤̅𝑖 is the climate normal. Climate normals are long-term averages of weather 

variables, and a weather observation is deemed normal if 𝑤𝑖𝑡 ∈ [𝑤̅𝑖 ± 𝜏𝑤̅𝑖], where 𝜏 is the 

climate threshold expressed as a percentage of 𝑤̅𝑖. Weather anomalies 𝜔𝑖𝑡 that exceed ±𝜏 of 

𝑤̅𝑖 capture the asymmetric response of crop yield to extreme climate events. 

To determine 𝜏, we assume normality of variables (based on the central limit theorem, 

considering our sample size), a common approach to identifying outliers, which in this context 

are extreme climate events. Since climate extremes often result in larger losses than gains, the 

distribution of yields becomes skewed. 

The climate threshold is expressed as: 𝜏 =
𝑍0.99 .𝜎𝑚

𝑤̅𝑖
× 100, where 𝑍0.99 is the z-score 

corresponding to a 99% confidence level and 𝜎𝑚 is the standard error of the sample statistics. 

Consequently, weather anomalies 𝜔𝑖𝑡 are constructed across five climate parameters and four 

seasons as follows: 

High 𝜔𝑖𝑡 = 1 if 𝑤𝑖𝑡 ≥ (1 + 𝜏)𝑤̅𝑖 otherwise 0 

Low 𝜔𝑖𝑡 = 1 if  𝑤𝑖𝑡 ≤ (1 − 𝜏)𝑤̅𝑖 otherwise 0  

Figure 3. Process diagram summarising methods 

 

Source: Authors’ construct 

Disaggregated data: agricultural (ICRISAT); climate (Terra Climate); sociodemographic (Census)

Stochastic function: 𝑦 = 𝑔(𝑥, 𝑤) where 𝑦 is farm output, 𝑥 is inputs and 𝑤 is random variable beyond farm's control 
(e.g. climate)

Econometric specification: 𝑔 𝑥, 𝑤 = 𝑓1 𝑥, 𝛽1 + 𝜇 where 𝑓1 𝑥, 𝛽1 is mean of  and 𝜇 is random variable with a 
mean of zero

Assumptions about 𝜇: Since distribution of 𝜇 is exogenous and normality assumptions are not necessary (Antle, 1987)

Calculation of higher moments: 𝐸[ 𝑔 𝑥, 𝑤 − 𝑓1 𝑥, 𝛽1
𝑘 𝑥 = 𝑓𝑘 𝑥, 𝛽𝑘 , 𝑘 = 2,3 where 𝑓2 𝑥, 𝛽2 is variance and 

𝑓3 𝑥, 𝛽3 is skewness

Estimation and risk assessment: FLGS fixed-effect estimator with separate specification for climate variation and 
extremes (outside 99% confidence interval) to assess how 𝑥 affects 𝑦 distribution under production uncertainty
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3 Results and discussion 

This section outlines the empirical findings and provides a comprehensive analysis. Two model 

specifications were estimated using the FGLS fixed-effect method: Specification 1 integrates 

climate factors in a discrete form, while Specification 2 models their extremes using dummy 

variables. The socioeconomic determinants of crop yield remain consistent across both 

specifications. We begin by discussing the determinants of the mean yield function (first 

moment) for five crops, followed by an analysis of yield risk (second moment, or yield 

variability) and downside yield risk (third moment, or yield skewness). Climate factors such as 

temperature (both maximum and minimum), precipitation, evapotranspiration and wind speed 

are individually considered on a seasonal basis—winter, summer, monsoon and autumn—

across both specifications for the different crops.  

3.1 First-moment determinants  

Among the non-climatic factors influencing the mean yield function, the use of diesel engines, 

pump sets, power tillers and tractors is found to be significant across both specifications for all 

five crops (see Table A3), highlighting the positive impact of mechanisation on crop yields. 

However, the coefficient for electric pump sets is negative, indicating a detrimental effect on 

maize and pearl millet yields, though it is positive for rice. This suggests that excessive 

irrigation, especially in rainfed crops, can sometimes lead to crop loss. Therefore, substantial 

power subsidies for irrigation may be harmful, as noted by Akber et al. (2022). In contrast, rice, 

which requires significant water, benefits from increased irrigation. 

Additionally, the use of chemical inputs such as fertilisers and HYV seeds significantly boost 

yields for rice and sorghum, although these inputs do not have a notable impact on the other 

crops. Other factors, such as the high density of smallholders, negatively affect crop yields 

across all crops. This indicates that the ongoing fragmentation of land hampers the realisation 

of economies of scale and scope in small-scale farming, leading to inefficiencies. Furthermore, 

urbanisation is observed to have an adverse effect on crop yields, likely due to the continued 

conversion of farmland for non-agricultural purposes (Arokiaraj and Srivel 2017). This shift 

impedes the adoption of modern farming techniques and mechanisation.  

The primary objective of this paper is to investigate the impact of climatic factors on crop 

yields, yield risk and downside yield risk. Our analysis of the determinants of mean yield 

function reveals that winter maximum temperature has a significant positive effect on the yields 
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of sorghum, maize and finger millet but a negative impact on rice yield. The growing shift to 

rabi season rice cultivation reflects diversification efforts (Deep et al. 2018) yet remains highly 

climate-sensitive. Specifically, each unit increase in winter maximum temperature may 

increase the yields of sorghum, maize and finger millet by 44 kg/ha, 212 kg/ha and 241 kg/ha, 

respectively, while reducing rice yield by 171 kg/ha. This difference in sensitivity can be 

attributed to the fact that sorghum, maize and finger millet are less sensitive to climate changes 

and can tolerate temperatures around 40-42°C. For example, sorghum thrives in temperate 

climates and requires temperatures above 15°C, while maize and finger millet grow optimally 

within the 25-35°C range. Therefore, the winter maximum temperature benefits these crops as 

it fall within their optimal temperature range. This finding is consistent with Barnwal and 

Kotani (2013), who observed that winter crops in Andhra Pradesh were more resilient to 

temperature changes, drought and heat. However, winter maximum temperature negatively 

affects rice yields, as the winter season overlaps with the growing period of rabi rice, making 

it susceptible to rising temperatures. This result is supported by recent studies such as those of 

Manohar (2022) in India and Zhang et al. (2022) in China. Additionally, while the study 

indicates that extreme highs in winter maximum temperature could be harmful to these crops, 

these effects are statistically insignificant (see Figures 4 and B2). On the other hand, extreme 

lows in winter maximum temperature have a significant negative impact on sorghum yield (-

141.98 kg/ha).  

Summer maximum temperature is detrimental to almost all crops, including rice, except finger 

millet. For instance, a marginal increase in summer maximum temperature is associated with a 

decrease of 305 kg/ha in pearl millet yield and 184 kg/ha in rice yield. Previous research has 

shown that excessive heat can have a more severe negative impact on agricultural productivity 

than a rainfall deficit (Birthal et al. 2015; Zhang et al. 2022). Kabubo-Mariara and Karanja 

(2007) also found that global warming has had a greater adverse effect on productivity in recent 

years than precipitation changes. Sanjay et al. (2020) reported that pre-monsoon or summer 

temperatures (April to June) have reached their highest levels in recent times. However, for 

finger millet, summer maximum temperature has a positive effect, increasing yield by 298 

kg/ha. The summer season, from March to May, coincides with the planting of kharif rainfed 

crops and the harvesting of rabi crops, creating favourable conditions for dryland crops like 

finger millet, which is heat-resistant and can tolerate temperatures up to 42°C. 
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Figure 4. Mean function estimated coefficients for climate-resilient cereals 

  

  
Source: Authors’ construction. Notes: Significant coefficients are emphasised. For details, see Table A3.  
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Nonetheless, extreme summer temperatures follow a similar pattern to winter extremes, 

harming all crops. Singh et al. (2023) and Mulu (2020) observed similar adverse effects of 

extreme temperatures or heatwaves on crop yields in India and Ethiopia, respectively. Singh et 

al. (2023) reported that a 1% increase in heatwaves led to a 15% reduction in crop yield in 

2022. On the other hand, low extremes in summer maximum temperature create a favourable 

environment for these rainfed crops, as they prefer temperatures above 15°C, though this effect 

is statistically insignificant for rice. This finding is supported by Guntukula and Goyari (2020). 

Analysing the impact of monsoon temperatures, we find a significant and positive effect on the 

yields of pearl millet and rice. The marginal yield increases are 266 kg/ha for pearl millet and 

112 kg/ha for rice. However, this effect is not significant for other crops. Pearl millet thrives at 

temperatures above 15°C and can tolerate temperatures as high as 42-45°C. During the 

monsoon, which aligns with the planting and growing period of kharif crops, temperatures 

generally fall within an optimal range, promoting the growth of both pearl millet and rice. The 

marginal impact is greater for pearl millet than for rice. A similar pattern is observed with 

autumn temperatures, where each unit increase leads to a 280 kg/ha reduction in finger millet 

yield but a 128 kg/ha increase in pearl millet yield. However, extreme autumn temperatures, 

whether high or low, negatively affect most crops. 

By examining the influence of precipitation on crop yields, summer rainfall significantly boosts 

the yields of rainfed crops such as sorghum, maize and pearl millet. An increase of one 

millimetre in summer rainfall can increase sorghum yields by 13 kg/ha, maize by 29 kg/ha and 

pearl millet by 23 kg/ha, with no significant effect on rice yields. Panda (2019) provided 

evidence of the positive impact of increased rainfall on crop yields. Since summer rainfall 

coincides with the sowing and growing periods of kharif rainfed crops, it provides necessary 

moisture and relief from heatwaves, which are essential for optimal growth. While high 

extremes in rainfall can cause damage, low extremes do not significantly affect these crops, 

which typically require 400-600 mm of precipitation for optimal growth and can yield 

adequately with as little as 200 mm. Monsoon rainfall also positively impacts rice, finger millet 

and pearl millet yields, as supported by recent studies like Kumar et al. (2021). The positive 

impact is most pronounced in rice yields (5 kg/ha), followed by pearl millet (4.5 kg/ha) and 

finger millet (1.8 kg/ha). However, extreme monsoon rainfall, whether too high or too low, is 

detrimental to all crops due to the risk of floods and droughts. We observe significant negative 

impacts of such extremes on rice (-398.6 kg/ha) and maize yields (-625.6 kg/ha). Autumn 



16 

 

rainfall negatively affects kharif crops like paddy (-4.26 kg/ha) since the harvesting season 

occurs in Oct-Nov. However, it positively impacts sorghum and pearl millet yields, with 

marginal increases of 3 kg/ha for pearl millet, 2.6 kg/ha for maize and 1.5 kg/ha for sorghum. 

The growing period for pearl millet varies from 3-4 months depending on the variety, and 

sowing times differ by region, so autumn rainfall can be beneficial if it coincides with the 

growing season. Nevertheless, extreme autumn rainfall is detrimental to all crops, particularly 

when excessive. 

The next climatic factor we have integrated into our empirical models is evapotranspiration. It 

combines two processes that contribute to the loss of liquid water into the atmosphere: water 

vapour evaporation, which occurs from surface water, and transpiration, which occurs through 

the leaves and roots of plants. Transpiration is particularly beneficial for crop growth, as it 

encourages higher productivity by promoting the uptake of nutrients along with water. 

However, the transpiration component is significantly smaller compared to evaporation. 

Consequently, high evapotranspiration results in greater water loss to the atmosphere (Nath et 

al. 2017), increasing the need for irrigation. Thus, evapotranspiration also serves as an indicator 

of water use efficiency. 

Our analysis shows that winter evapotranspiration rates have a significant positive impact on 

pearl millet yield, with a marginal increase of 5.5 kg/ha. However, extremely high or low winter 

evapotranspiration does not significantly impact any crops. In contrast, summer 

evapotranspiration negatively affects all crops, with the most severe impact on sorghum, maize, 

pearl millet and rice. The marginal detrimental effect is highest on maize (-45 kg/ha), followed 

by pearl millet (-30 kg/ha), sorghum (-12 kg/ha) and rice (-1.36 kg/ha). Additionally, extreme 

summer evapotranspiration is harmful, reducing yields of pearl millet and, at low extremes, 

sorghum (-2 kg/ha) and finger millet (-1.5 kg/ha). High summer evapotranspiration also 

significantly reduces yields of sorghum, pearl millet and rice. During summer, 

evapotranspiration rates are much higher, and when combined with high temperatures, these 

extremes lead to water stress on crops (Matiu et al. 2017), inhibiting photosynthesis and 

reducing growth and productivity. 

Monsoon evapotranspiration, on the other hand, benefits rainfed crops like pearl millet but 

negatively impacts others like maize and finger millet. A one-unit increase in monsoon 

evapotranspiration boosts pearl millet yield by 9 kg/ha but decreases maize yield by 28 kg/ha 

and finger millet by 4 kg/ha. Similarly, autumn evapotranspiration is favourable for most crops 
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except sorghum. Maize benefits with a positive marginal effect of 19 kg/ha, followed by rice 

(9 kg/ha) and finger millet (4 kg/ha). These rainfed crops require less water, and 

evapotranspiration helps maintain a dry climate that is conducive to their growth. However, a 

unit increase in autumn evapotranspiration reduces sorghum yield by 3 kg/ha. Nevertheless, 

extreme autumn evapotranspiration has detrimental effects on all crops. 

The final climate factor in our empirical model is wind speed. We find that wind speed across 

all seasons generally negatively impacts crop productivity. For instance, wind speeds during 

winter, monsoon and summer adversely affect crop yields. However, in some cases, this impact 

is insignificant. This is because crops like sorghum, pearl millet and finger millet can tolerate 

moderate to high wind speeds due to their strong stems, which reduce the risk of lodging growth 

(Mohapatra et al. 2022). Conversely, maize is particularly susceptible to lodging when exposed 

to high wind speeds, especially during the reproductive stage. 

3.2 Second-moment determinants 

In this section, we explore yield risk by analysing the second moment, which represents the 

yield variability. One of the key statistical tools used to analyse yield risk is the variance of a 

probability distribution, which represents the dispersion of yields around the mean—

quantifying the risk associated with variability. 

Table A5 provides a breakdown of the determinants of yield risk across five different crops. 

Among the mechanical factors examined, electric pump sets and power tillers significantly 

reduce yield risk for sorghum and rice. Although these technologies generally have a risk-

reducing effect, their statistical significance is particularly notable for these two crops. When 

comparing the relative effectiveness of these mechanical interventions, electric pump sets show 

a more substantial impact on rice yield (-0.13) compared to sorghum yield (-0.006). 

Additionally, all chemical and structural technological factors—such as the area under HYV, 

fertiliser application and irrigation—are significant. However, the area under HYVs and 

irrigated land increases yield risk in the case of sorghum and maize. Conversely, fertiliser 

application helps reduce yield risk for several crops, including sorghum, maize and both finger 

and pearl millets. Surprisingly, these technological factors do not significantly influence rice 

yield variability, aligning with Gupta et al. (2014) that production is labour-intensive. 

When examining the influence of climate factors on yield variability, it is observed that winter 

maximum temperatures have a risk-reducing effect on sorghum (-0.48) and maize (-0.49). 
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However, extremely high temperatures during winter increase yield variability for finger millet 

(4.9) (see Figures 5 and B2), a crop that thrives in temperatures between 38-40°C and prefers 

conditions above 10°C. Thus, a rise in winter maximum temperatures from January to 

February—the critical growing period for rainfed kharif crops like sorghum, maize and 

millets—creates a favourable environment that positively affects yield variability. 

Similarly, maximum temperatures during summer, monsoon and autumn generally absorb risk 

across the crops studied. However, they are statistically significant only for finger millet and 

maize. For instance, extreme high temperatures during the monsoon are particularly harsh for 

rainfed crops like finger millet (1.33), leading to significant yield risk. On the other hand, lower 

maximum temperatures during autumn reduce the risk for maize (-1.23), as this period 

coincides with the harvesting season for kharif crops, where cooler conditions are conducive 

to optimal harvesting (Moulkar and Peddi 2023). 

Our analysis reveals that winter and monsoon minimum temperatures help reduce risks for 

finger millet (-0.42) and maize (-1.9). However, the winter minimum temperature increases 

risks for maize (0.55). This is because maize thrives best at temperatures above 10°C, so when 

the temperature falls below this threshold, it can result in poor growth and low yield, thereby 

increasing yield risk. Although the summer minimum temperature is generally insignificant, 

extremely high temperatures in summer elevate risks for sorghum (1.7), consistent with 

(Saravanakumar 2015; Saravanakumar and Balasubramanian 2018). 

When examining rainfall, both winter and summer rainfall are mostly insignificant in terms of 

risk. However, extreme winter rainfall increases the risk for maize (1.10), while low extremes 

of winter rainfall increase the risk for sorghum (0.74). Monsoon rainfall tends to reduce the 

risk for maize (-0.014), but low extremes of monsoon rainfall increase the risk (0.711). A 

normal monsoon is crucial for a good crop year, as any deviation, whether positive or negative, 

can be detrimental. Extreme monsoon rainfall, in particular, often leads to crop loss, consistent 

with Beillouin et al. (2020). 
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Figure 5. Variance function estimated coefficients for climate-resilient cereals 

  

  
Source: Authors’ construction. Notes: Significant coefficients are emphasised. For details, see Table A5.  
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In terms of evapotranspiration (evapotranspiration), we find that winter evapotranspiration is 

largely insignificant across crops, but extreme high evapotranspiration reduces the risk for 

finger millet (2.29), and extreme low evapotranspiration reduces the risk for maize (-1.07). 

High evapotranspiration decreases soil moisture, which negatively impacts rainfed crops like 

finger millet, while low evapotranspiration retains soil moisture (Nath et al. 2017), benefiting 

crops like maize. Similarly, summer evapotranspiration is mostly insignificant across crops, 

but extreme high evapotranspiration increases yield risk for pearl millet (2.31), while extreme 

low evapotranspiration reduces risk for sorghum (-1.99) and finger millet (-1.47). The pattern 

of risk impact due to evapotranspiration extremes is consistent across different crops. 

Additionally, monsoon evapotranspiration also increases the risk for maize and finger millet, 

with extreme high evapotranspiration during this period being risk-augmenting for pearl millet 

(1.87), while extreme low evapotranspiration reduces the risk for maize (-1.05). Autumn 

evapotranspiration is generally insignificant, except for its extreme high evapotranspiration, 

which increases the risk for pearl millet (2.32). Overall, evapotranspiration is typically risk-

neutral, but its extreme highs are risk-augmenting, while extreme lows are risk-reducing. 

Finally, the impact of wind speed is mostly insignificant across seasons. However, when wind 

speed is significant, it tends to increase risk. Summer wind speed, particularly its extreme highs 

(Mohapatra et al. 2024), is risk-augmenting for maize and finger millet. Similarly, monsoon 

and autumn wind speeds are risk-augmenting for sorghum and maize. 

3.3 Third-moment determinants 

The traditional analysis of yield variability, often measured using the second moment 

(variance), does not adequately capture the true nature of risk. This approach treats both 

positive and negative deviations from the mean as risks, which is not entirely appropriate. 

Positive deviations, often resulting from favourable climatic conditions or other beneficial 

factors, actually indicate growth and improvement over time. Therefore, the true concern 

should be the negative deviations from historical norms, as these represent the real risks to 

yield, known as downside risk. The second moment fails to differentiate between upside and 

downside risks, which is where the third moment, or skewness, comes into play (Di Falco and 

Chavas 2009). The coefficients of determinants affecting downside yield risk provide a more 

accurate measure of their marginal impact. A positive and significant coefficient increases 

skewness, thereby reducing risk exposure, while a negative coefficient suggests increased risk.  
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When examining the determinants of downside yield risk, it is evident that certain mechanical 

technologies, such as diesel pump sets, electric pump sets and fertiliser applications, have a 

negatively significant impact, thus increasing the risk for kharif crops like sorghum, maize and 

finger millet (see Table A7). These technologies are often used for groundwater irrigation, but 

their reliability is questionable due to the over-extraction of water and the high intensity of 

borewell usage. Consequently, these technologies may inadvertently heighten exposure to 

downside risk. Similarly, the effectiveness of fertilisers has diminished over time (Akber et al. 

2022), leading to an increased risk when these chemical inputs are heavily relied upon.  

On the other hand, certain components of chemical technology, such as the area under HYV 

seeds and irrigation, have been found to reduce risk for crops like sorghum, maize, pearl millet 

and rice. HYV seeds enhance crop productivity, and when coupled with irrigation, their 

positive effect becomes more pronounced, especially for rainfed crops that require minimal 

water. Even a small increase in irrigation can significantly boost yields in these crops. Lastly, 

smallholder density has been identified as a risk-augmenting factor for maize, although it is 

largely insignificant for other crops. The positive coefficient associated with smallholder 

density suggests that the ongoing fragmentation of operational holdings leads to inefficiencies 

and lower productivity (Arokiaraj and Srivel 2017), thereby increasing downside yield risk. 

Analysing the impact of climatic factors reveals that winter maximum temperatures exacerbate 

risks for maize (-1.18) and are particularly detrimental to pearl millet (-6.93). Maize thrives 

within a temperature range of 24-30°C, so when winter maximum temperatures exceed this 

range, it induces heat stress, negatively affecting growth. Extreme temperatures are especially 

harmful. Similarly, we observe that high maximum temperatures in summer and autumn 

increase downside risks for maize and pearl millet, while monsoon maximum temperatures are 

risk-augmenting for both maize and finger millet (see Figures 6 and B2). Overall, maximum 

temperatures pose a risk in every season (Beillouin et al. 2020; Stuch et al. 2021). 
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Figure 6. Skewness function estimated coefficients for climate-resilient cereals 

  

  
Source: Authors’ construction. Notes: Significant coefficients are emphasised. For details, see Table A7.  
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When examining minimum temperatures, we find that winter minimum temperatures decrease 

the downside yield risk for maize (2.72) but significantly increase the risk for finger millet (-

1.01). In contrast, summer minimum temperatures and their extremes negatively impact maize 

yields while reducing the risk for pearl millet and finger millet. However, monsoon minimum 

temperatures positively influence yields by lowering downside risk exposure for pearl millet 

and finger millet, contrasting the findings from Jena and Kalli (2018). Overall, temperatures in 

summer and winter are not conducive to crop growth. Regarding precipitation’s impact on 

downside yield risk, winter rainfall increases the risk for pearl millet (-0.078) and is generally 

insignificant for other crops. Extreme winter rainfall also negatively impacts sorghum and 

maize yields, increasing downside risk. These crops, being rainfed, require less water, making 

excessive winter rainfall detrimental. 

Conversely, monsoon rainfall enhances skewness, reducing downside risk exposure for pearl 

millet (0.028). However, extreme variations in monsoon rainfall increase downside risks for 

maize. Similarly, autumn rainfall raises downside risk for sorghum (-0.018) but reduces it for 

finger millet (0.015). Examining evapotranspiration, we find that winter evapotranspiration 

heightens the downside risk for pearl millet (-0.047), with both high and low extremes 

augmenting the risk for finger millet (-5.89) and maize (-1.98). This is intuitive, following 

Matiu et al. (2017) and Nath et al. (2017), as water and moisture loss through 

evapotranspiration during winter is unfavourable for rainfed crops. Summer and monsoon 

evapotranspiration similarly increase downside yield risk for maize, finger millet and pearl 

millet. High summer evapotranspiration extremes harm pearl millet, while low extremes 

increase downside risk for rice. Interestingly, autumn evapotranspiration benefits maize, 

although its extremes negatively affect maize (-0.039) and pearl millet (-6.22). Finally, wind 

speed generally has an insignificant impact, but when it is significant, along with its extremes, 

it tends to increase risks across all crops. 

3.4 Diagnostic checks 

Despite the relatively short timeframe of our dataset, constrained by data availability, we 

employed a balanced panel data approach. By using this, we control for time-invariant 

characteristics of the units, which enhances the precision of our estimations. By modelling 

climate variation and extremes separately, we further avoid multicollinearity and overfitting 

while also capturing non-linearity. The FGLS method further accounts for heteroscedasticity 
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and serial correlation (P. Kumar et al. 2021), resulting in an accurate confidence interval around 

estimated coefficients. 

Here, we present the post-estimation test results for all three model specifications across 

different crops—the adjusted R-squared values in the mean function range from 0.89 to 0.12 

(see Tables A4, A6 and A8). The first model specification, used for estimating mean yield 

functions across the crops, shows relatively higher adjusted R-squared values compared to the 

second model specification, which incorporates extreme deviations. This suggests that using 

climatic factors in their discrete forms provides a better model fit and more reliable results 

(Kabubo-Mariara and Karanja 2007; Panda and Sahu 2019). Among the crops, maize exhibits 

the highest adjusted R-squared value, while rice shows the lowest in yield function estimation. 

Similarly, when examining the F-statistics for joint significance of the factors, we observe 

relatively higher F-statistics, with all probability values being less than 1%, indicating the 

rejection of the null hypothesis of no joint significance. Considering both the F-test statistics 

and the adjusted R-squared values, we conclude that the first model specification offers a better 

fit. 

For variance and skewness model estimations, the R-squared values are generally high, except 

for the rice yield variance function. The Durbin-Watson statistics across model specifications 

are close to two, suggesting no autocorrelation. The F-statistics for joint significance of the 

regressors also show probability values within the 5% significance level for rejecting the null 

hypothesis, except for rice. This indicates that the variance function does not fit well for the 

rice crop (since distribution is not symmetric, as seen in Figure 2). The skewness function 

follows a similar pattern, but here, we observe relatively higher R-squared values for rice 

compared to the mean and variance functions for the same crop. Overall, the model fit is 

satisfactory for all three functions across the crops. Therefore, the results can be considered 

reliable for policymaking based on this analysis. 

4 Conclusions 

The novelty of this study lies in its comprehensive approach to evaluating the relative impacts 

of climatic and non-climatic factors on the yields of major cereals—finger millet, maize, pearl 

millet and sorghum—in the southern states of India. By disaggregating climate variables into 

their seasonal effects and extremes, this research offers a detailed and nuanced understanding 

of how different weather patterns influence crop yields, yield risks and downside yield risks. 
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Additionally, the study compares more climate-sensitive cereal (rice) and integrates 

socioeconomic determinants such as mechanisation, irrigation practices and farm size, which 

enrich the analysis by providing a more holistic view of the challenges and opportunities facing 

the agricultural sector in this region. This multifaceted approach represents a significant 

contribution to the existing literature on climate change impacts on agriculture, particularly in 

the context of developing regions that are highly vulnerable to climatic variability (Gammans 

et al. 2017; Neupane et al. 2022). 

The main findings of this study highlight the complex interplay between seasonal climate 

factors and crop productivity. Notably, while climate-resilient crops like finger millet, pearl 

millet and sorghum demonstrate a degree of tolerance to temperature extremes, less resilient 

crops such as rice are significantly more vulnerable to these climatic stressors. The research 

indicates that an increase in winter maximum temperature may benefit sorghum, maize and 

finger millet yields, yet it has a detrimental effect on rice yield, underscoring the sensitivity of 

rice to climatic fluctuations (Wang et al. 2018; Guntukula and Goyari 2020). It is observed that 

excessive reliance on irrigation, particularly the intensive use of electric pumps, can contribute 

to increased yield variability and potential crop losses for maize and pearl millet. For these 

largely rainfed crops, planned irrigation may have limited utility—controlling for the actual 

hours of irrigation per pump type further reinforces this observation. Conversely, technological 

advancements such as the adoption of HYV seeds and the use of fertilisers have shown positive 

impacts on crop yields, particularly for water-intensive crops like rice (Aryal et al. 2018; 

Manohar 2022). 

These results suggest several critical policy implications. First, there is a need to promote 

stress-tolerant cereals and crop diversification, encouraging the cultivation of more climate-

resilient cereals such as millet and sorghum in regions prone to climate extremes. This strategy, 

alongside integrated farming, could significantly reduce the risk of crop failure and enhance 

food security, particularly in vulnerable areas (Basson et al. 2021). Given that millets are highly 

drought-tolerant and can thrive in less fertile soils, their promotion as staple crops could offer 

a sustainable solution to the challenges posed by climate change (Talwar et al. 2020). Second, 

with growing climate-induced water stress, policymakers should reconsider the structure of 

irrigation subsidies, particularly in areas where excessive water use could be detrimental to 

rainfed crops. Tailoring subsidies to support more efficient and sustainable water management 

practices, such as drip irrigation or rainwater harvesting, could mitigate some of the negative 
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impacts observed in this study (Veetil and Hitch 2020). Furthermore, aligning these practices 

with climate-smart agricultural techniques and insurance strategies could provide a dual benefit 

of enhancing yields while preserving the environment (Aryal et al. 2018; Teklewold and 

Mekonnen 2020). Last, the study highlights the importance of supporting smallholder farmers 

by addressing farm fragmentation, as higher smallholder density is linked to lower crop yields. 

Policies that encourage land consolidation or cooperative farming could boost productivity 

through economies of scale (Barbier and Hochard 2018). Additionally, managing urbanisation 

is essential to prevent the loss of agricultural land and the disruption of traditional farming 

communities. Implementing zoning laws and promoting urban agriculture can help sustain 

farming in rapidly urbanising areas amid seasonal challenges (Paul et al. 2023). 

However, it is important to acknowledge that this study has certain limitations. The focus on a 

specific region within India may limit the generalisability of the findings to other contexts with 

different climatic, economic and social conditions. For instance, the climatic variability and 

agricultural practices in northern India or other parts of the world may present different 

challenges and opportunities, making the findings less applicable. Additionally, the absence of 

seasonal yield data restricts the analysis to seasonal climate impacts on annual yields, limiting 

insights into crop-specific responses during individual growing seasons. Furthermore, the 

reliance on historical climate data, while valuable for understanding past trends, may not fully 

capture the potential future impacts of climate change, particularly under more extreme 

scenarios projected for the coming decades (Carter et al. 2017). This limitation highlights the 

need for caution when extrapolating these findings to predict future outcomes. 

The study highlights the need for future research to build on its findings by focusing on the 

long-term impacts of climate change on cereal crop yields through predictive modelling that 

includes a broader range of climatic variables and scenarios. This would allow for more 

accurate predictions of crop responses to changing climate conditions. Additionally, localised 

studies are necessary to understand how regional climate variations and farming practices 

affect crop yields, offering specific insights for policymakers and farmers. Future research 

should also consider socioeconomic factors, such as market access, credit and agricultural 

services, which influence farmers’ ability to adapt to climate change. Integrating gender and 

social equity considerations is crucial to ensuring that adaptation strategies are inclusive and 

effective. 
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Appendix A: Tables 

Table A1. Literature matrix synthesising various climate impact assessments on agricultural production 

 Author (Year) Country Data Sources/Types Methods Major Findings 

Climate variations 

 Schmidt and 

Felsche (2024) 

Europe Food and Agriculture Organization Random Forest Machine Learning 

Model 

Increased temperatures resulted in a decrease in crop yields. 

 Sarwary et al. 

(2023) 

Afghanistan Afghanistan Statistical Yearbook, Afghanistan 

Meteorological Department 

Panel Regression Model The average rice production in Afghanistan is projected to decline by 6.10% due 

to elevated temperatures and unpredictable rainfall between 2021 and 2050. 

 Singh (2023) India Tata Cornell Institute, International Crops Research 

Institute for the Semi-Arid Tropics 

Moment-Based Approach A reduction in rainfall led to lower crop yields and increased downside risks. 

 Zhang et al. (2022) China National Meteorological Information Center Regression Analysis Higher temperatures were associated with a reduction in crop yields. 

 Manohar (2022) India International Crops Research Institute for the Semi-Arid 

Tropics 

Descriptive Statistics A 1% variation in temperature led to a 21% decrease in agricultural production. 

 Asfew and Bedemo 

(2022) 

Ethiopia World Bank Database, Food and Agriculture Statistics, 

Central Statistical Authority 

ARDL Bound Test Increased temperatures resulted in lower crop yields, while increased rainfall 

improved yields. 

 Mohapatra et al. 

(2022) 

Eastern India ICRISAT, Directorate of Economics and Statistics (Govt. 

of India) 

Descriptive Statistics, Feasible 

Generalized Least Squares, Panel-

Corrected Standard Errors 

Higher temperatures resulted in decreased crop yields. 

 Kumar et al. (2021) Lower-Middle-

Income Countries 

World Bank Cross-Sectional Dependence, 

Cointegration Test 

A 1% increase in average temperature led to a 0.830% reduction in cereal yields 

in India, while a 1% increase in average rainfall improved cereal yields by 

0.381% in Ghana. 

 Warsame et al. 

(2021) 

Somalia Organization of Islamic Cooperation Statistical Economic 

and Social Research and Training Centre, World Bank 

ARDL Bound Test Higher temperatures caused a reduction in cereal crop yields, while increased 

rainfall improved them. 

 Stuch et al. (2021) Sub-Saharan 

Africa 

Global Data Descriptive Statistics Heat stress and precipitation reduced maize yields by 51% and cereal crop yields 

by 23% in Southern and Eastern Africa. 

 Guntukula & 

Goyari (2020) 

India Directorate of Economics and Statistics (Govt. of 

Telangana) 

Pair-Wise Correlation Increased temperatures resulted in reduced crop yields, while lower temperatures 

led to improved yields. 

 Ketema (2020) Ethiopia National Bank of Ethiopia Autoregressive Distributed Lag Higher rainfall led to improved crop yields, while drought conditions led to 

reduced yields. 

 Chandio et al. 

(2020) 

Turkey World Development Indicators Autoregressive Distributed Lag Increased rainfall resulted in improved cereal crop yields. 

 Panda and Sahu 

(2019) 

India India Meteorological Department Mann–Kendall Test, Sen's Slope 

Estimator 

Higher temperatures were associated with reduced crop yields. 

 Panda (2019) India Directorate of Economics and Statistics, Department of 

Planning, Directorate of Agriculture and Food Production 

(Government of Odisha, Bhubaneswar) 

Correlation, Multiple Linear Regression Increased rainfall led to an improvement in maize yields. 

 Amare et al. (2018) Nigeria Nigerian Living Standards Measurement Study-Integrated 

Surveys on Agriculture 

Descriptive Statistics Increased temperatures were linked to reduced crop yields. 

 Jena and Kalli 

(2018) 

India Department of Agriculture, Directorate of Economics and 

Statistics (Govt. of Karnataka) 

Fixed Effect Panel Regression High temperatures reduced finger millet production by 16% to 23% in Karnataka 

between 1992 and 2013. 

 Saravanakumar 

(2015) 

India India Meteorological Department Panel Regression Rainfall and temperature anomalies caused a 9% reduction in sorghum yield in 

Tamil Nadu. 

 Kilicarslan and 

Dumrul (2017) 

Turkey Time-Series Data Autoregressive Distributed Lag Higher rainfall improved crop yields, while increased temperatures led to reduced 

yields. 

 Bezabih et al. 

(2016) 

Tanzania Primary Data Survey Endogenous Switching Regression 

Model 

A reduction in rainfall and increased downside risk led to decreased crop yields. 



35 

 

 Padakandla (2016) India International Crops Research Institute for the Semi-Arid 

Tropics 

Panel-Corrected Standard Error (PCSE) Increased rainfall improved rice yields, while higher temperatures led to reduced 

yields. 

 Nath et al. (2017) India Indian Meteorological Department Standardized Precipitation 

Evapotranspiration Index 

Increased temperatures resulted in lower crop yields. 

 Loum and 

Fogarassy (2015) 

Gambia Time-Series Data Multiple Regression Climate change caused a 77% reduction in maize productivity and a 44% 

reduction in millet productivity due to extreme weather events. 

 Pattanayak and 

Kumar (2014) 

India International Crops Research Institute for the Semi-Arid 

Tropics 

Fixed Effect Model Higher temperatures led to a reduction in rice yields. 

 Sarker et al. (2013) Bangladesh Time-Series Data Feasible Generalized Least Squares Climate variables had different impacts on rice crops (Aus, Aman, Boro); 

temperature increased the risk for Aus and Aman varieties but reduced it for Boro 

rice. 

 Janjua et al. (2014) Pakistan Pakistan Meteorological Department Autoregressive Distributed Lag Climate change had no short-term or long-term impact on wheat production in 

Pakistan due to temperature and rainfall fluctuations. 

 Gupta et al. (2014) India International Crops Research Institute for the Semi-Arid 

Tropics (ICRISAT) 

Panel-Corrected Standard Error Increased temperatures led to a reduction in maize yields. 

 Barnwal and Kotani 

(2013) 

India Centre for Monitoring Indian Economy Quantile Regression Winter crops were more resilient to changes in temperature and precipitation than 

monsoon-dependent crops in Andhra Pradesh. 

 Kim and Chavas 

(2003) 

USA Primary Data Regression Analysis A 1% increase in climate change and technology led to a 451.51% increase in 

yield skewness. 

Climatic extremes 

 Akpa (2024) Sub-Saharan 

Africa 

Food and Agriculture Organisation, Centre for Research 

on the Epidemiology of Disasters 

Fully Modified Ordinary Least Squares A 1% increase in floods led to a 0.066% decrease in maize yields, cyclones 

caused a 0.395% reduction in rice yields, and sorghum yields decreased by 

1.707%. 

 Simanjuntak et al. 

(2023) 

South Asia South Asia National Land Cover Data Modified Combined Stress Index Drought resulted in a 25% reduction in maize yield, while the combination of 

drought and precipitation caused a 46% reduction. 

 Singh et al. (2023) India All India Coordinated Research Project on 

Agrometeorology 

Descriptive Statistics A 1% increase in heatwaves led to a 15% reduction in crop yield in 2022. 

 Kulkarni (2021) India Tata-Cornell District-Level Database, Climate Research 

Unit 

Moment-Based Approach The occurrence of drought and flood events increased the risks associated with 

agricultural production; both arid and humid conditions heightened crop 

susceptibility. 

 Guan et al. (2021) China National Bureau of Statistics Flood and Drought Comprehensive 

Index 

Drought conditions led to decreased crop yields. 

 Beillouin et al. 

(2020) 

Europe European Statistics Machine Learning Model Erratic precipitation and elevated temperatures accounted for 65% of abnormal 

agricultural conditions. Extreme climatic events in Eastern and Northern Europe 

reduced yields, while increased spring rainfall in Southern Europe improved 

them. 

 Davis et al. (2019) India International Crops Research Institute for the Semi-Arid 

Tropics 

Mixed Effect Model Drought conditions led to a reduction in crop yields. 

 Vogel et al. (2019) North America Harmonized Crop Calendar (Agricultural Model 

Intercomparison and Improvement Project) 

Random Forest Model Drought and heatwaves caused yield anomalies ranging from 18% to 43%; 

elevated temperatures had a more significant impact on productivity than 

precipitation. 

 Chen et al. (2018) China China Meteorological Administration Bayesian Hierarchical Model Floods and droughts accounted for 65% and 88% of grain anomalies, respectively. 

 Lesk et al. (2016) Developing 

Countries 

National Agricultural Production Data Superposed Epoch Analysis Drought and extreme heatwaves reduced global cereal production by 9% to 10%. 

Source: Authors’ review 
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Table A2. Summary statistics 

  
 

Unit Mean SD Mean SD Mean SD Mean SD Mean SD 

Crop-specific 

    Sorghum Maize Finger millet Pearl millet Rice 

 Non-climatic 

  Yield Kg/ha 1124.822 836.840 3165.488 2103.150 1544.478 837.061 1197.204 790.450 2967.800 990.946 

  Diesel pump sets 1000 no 8.390 36.489 16.684 99.424 65.878 280.338 21.182 95.262 0.231 0.825 

  Electric pump sets 1000 no 20.843 130.869 54.004 238.467 246.632 894.117 106.222 486.615 0.982 2.821 

  Power tillers 1000 no 0.450 2.554 1.106 5.093 3.870 16.558 1.774 8.927 0.018 0.072 

  Tractors 1000 no 5.875 38.406 7.974 34.786 22.198 81.646 13.307 92.727 0.115 0.303 

  HYV area 1000 ha 58.279 236.227 217.606 1467.635 716.522 3295.109 244.797 1158.565 2.858 7.252 

  Fertiliser use per ha of GCA Kg/ha 267.416 1324.689 274.272 1221.502 1242.836 4122.786 444.596 2462.493 4.749 11.328 

  Irrigation area Proportion 295.474 1406.522 394.316 1930.757 1151.638 3654.222 432.948 1803.920 5.320 12.052 

  Farmworker 1000 no 1200.595 6144.389 1776.426 8929.117 5173.087 14721.520 2039.366 8391.666 22.688 57.754 

Non-crop-specific 

  Smallholder density Proportion 1.524 0.353         

  Urbanisation rate Percentage 48.458 36.696         

 Climatic 

  Winter max temperature ℃ 30.984 1.321         

  Summer max temperature ℃ 35.984 1.532         

  Monsoon max temperature ℃ 32.511 2.400         

  Autumn max temperature ℃ 29.711 1.022         

  Winter min temperature ℃ 19.192 1.857         

  Summer min temperature ℃ 24.077 1.515         

  Monsoon min temperature ℃ 23.993 2.080         

  Autumn min temperature ℃ 20.375 1.956         

  Winter rainfall mm 9.399 12.691         

  Summer rainfall mm 38.611 19.797         

  Monsoon rainfall mm 118.544 67.821         

  Autumn rainfall mm 108.395 62.681         

  Winter evapotranspiration mm 32.319 23.777         

  Summer evapotranspiration mm 45.372 20.147         

  Monsoon evapotranspiration mm 86.661 29.909         

  Autumn evapotranspiration mm 83.590 22.722         

  Winter windspeed m/s 1.630 0.478         

  Summer windspeed m/s 1.964 0.342         

  Monsoon windspeed m/s 2.626 0.580         

  Autumn windspeed m/s 1.481 0.452         

Source: Authors’ calculation. Note: The study area includes 35 districts (1990-2017; based on 2015 boundaries) from four southern states of India: Andhra Pradesh (including Anantapur, Chittoor, East Godavari, Guntur, Kadapa YSR, 

Prakasam, SPS Nellore, Srikakulam, Visakhapatnam and Vizianagaram), Karnataka (including Belgaum, Bellary, Chitradurga, Dharwad and Tumkur), Tamil Nadu (including Chidambanar Toothukudi, Coimbatore, Dharmapuri, Dindigul 

Anna, Madurai, North Arcot Vellore, Periyar (Erode), Pudukkottai, Ramananthapuram, Salem, South Arcot Cuddalore, Thiruchirapalli Trichy, Thirunelveli, Thiruvannamalai and Virudhunagar Kamarajar) and Telangana (including 

Khammam, Mahabubnagar, Medak, Nizamabad and Rangareddy). 
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Table A3. Mean function estimation 

  Sorghum Maize Finger millet Pearl millet Rice 

 
 

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

 C -34258.100*** 

(6742.240) 

-14786.900** 

(6092.610) 

151273.000*** 

(18333.800) 

56714.100*** 

(16575.200) 

774.381 

(8699.900) 

-1292.780 

(8022.450) 

-24627.200*** 

(6732.210) 

-12806.800 

(55891.500) 

11592.500 

(12688.900) 

7239.750 

(10821.900) 

Non-climatic 

 Diesel pump sets 7.724*** 

(2.372) 

7.393*** 

(2.115) 

0.869 

(1.855) 

16.530*** 

(3.353) 

0.046 

(0.220) 

0.138 

(0.249) 

0.937* 

(0.511) 

0.383 

(0.548) 

-2.736 

(71.003) 

27.728 

(82.982) 

 Electric pump sets 0.205 

(0.589) 

-0.240 

(0.532) 

0.474 

(0.531) 

-1.774*** 

(0.594) 

-0.085 

(0.074) 

-0.115 

(0.074) 

-0.461*** 

(0.162) 

-0.072 

(0.167) 

40.674* 

(21.358) 

14.129 

(23.738) 

 Power tiller -88.010 

(68.458) 

-38.970 

(61.934) 

9.754 

(31.048) 

44.153 

(45.247) 

7.591* 

(4.007) 

7.406* 

(4.303) 

6.643 

(5.709) 

-4.759 

(4.635) 

-63.428 

(847.980) 

708.810 

(720.708) 

 Tractors 2.157 

(1.414) 

2.565* 

(1.542) 

5.447 

(3.417) 

5.294 

(5.119) 

-0.833 

(0.811) 

-1.165 

(0.862) 

1.053** 

(0.510) 

0.020 

(0.588) 

173.549 

(180.156) 

-66.385 

(191.814) 

 HYV area -0.308** 

(0.139) 

-0.074 

(0.119) 

0.963*** 

(0.165) 

0.803*** 

(0.221) 

-0.021 

(0.021) 

-0.035 

(0.022) 

-0.028 

(0.025) 

-0.034 

(0.031) 

20.752*** 

(7.562) 

25.769*** 

(6.929) 

 Fertiliser use -0.041 

(0.055) 

-0.106* 

(0.063) 

-0.263** 

(0.114) 

0.092 

(0.291) 

-0.004 

(0.008) 

0.002 

(0.010) 

-0.011 

(0.016) 

-0.021 

(0.016) 

10.019** 

(4.691) 

7.590* 

(4.036) 

 Irrigation area 0.139* 

(0.079) 

0.247*** 

(0.093) 

-1.293*** 

(0.224) 

-1.043*** 

(0.361) 

0.056 

(0.045) 

0.088* 

(0.051) 

0.007 

(0.048) 

0.066 

(0.060) 

-3.453 

(8.232) 

4.234 

(6.774) 

 Farmworker -0.033* 

(0.020) 

-0.060*** 

(0.021) 

0.108** 

(0.042) 

-0.008 

(0.060) 

6.5E-04 

(0.009) 

-0.005 

(0.010) 

0.003 

(0.015) 

-0.002 

(0.015) 

-3.807** 

(1.691) 

-4.416*** 

(1.624) 

 Smallholder density 668.325*** 

(95.523) 

573.811*** 

(78.390) 

-1325.740*** 

(285.228) 

421.308 

(275.972) 

-357.724*** 

(131.286) 

-124.998 

(109.691) 

-30.024 

(106.141) 

233.589*** 

(83.859) 

-213.553 

(178.395) 

-76.441 

(151.996) 

 Urbanisation rate -2.233*** 

(0.535) 

-1.361*** 

(0.488) 

-17.536*** 

(1.765) 

-0.568 

(1.613) 

-2.529*** 

(0.836) 

-2.626*** 

(0.766) 

-0.113 

(0.390) 

1.227** 

(0.535) 

-3.610*** 

(1.215) 

-1.372 

(1.106) 

 T 17.105*** 

(3.376) 

7.311** 

(3.008) 

-70.079*** 

(9.131) 

-26.302*** 

(8.177) 

2.494 

(4.372) 

1.823 

(3.974) 

13.983*** 

(3.359) 

17.605*** 

(3.242) 

-4.903 

(6.366) 

-1.730 

(5.294) 

Climatic 

 Winter max temperature 43.532* 

(23.390) 

 
211.658** 

(93.388) 

 
240.705*** 

(39.633) 

 
0.693 

(23.015) 

 
-171.024** 

(73.413) 

 

 High winter max temperature extreme 
 

-290.312 

(207.418) 

 
 

-- 

 
-19.047 

(119.424) 

 
-6.360 

(115.742) 

 
1736.880 

(1544.540) 

 Low winter max temperature extreme 
 

141.989** 

(63.820) 

 
-252.947 

(203.998) 

 
31.828 

(102.482) 

 
-113.296 

(70.142) 

 
-84.699 

(136.298) 

 Summer max temperature 26.318 

(34.463) 

 
-118.092 

(98.753) 

 
297.870*** 

(42.507) 

 
-305.348*** 

(28.768) 

 
-184.291*** 

(65.571) 

 

 High summer max temperature extreme 
 

16.895 

(122.742) 

 
-2341.880*** 

(276.390) 

 
131.394 

(128.595) 

 
-392.350** 

(177.960) 

 
149.042 

(152.115) 

 Low summer max temperature extreme 
 

193.994* 

(103.372) 

 
570.400 

(422.181) 

 
438.421*** 

(133.422) 

 
-75.931 

(102.627) 

 
-184.009 

(132.164) 

 Monsoon max temperature -45.719 

(28.563) 

 
-58.270 

(101.248) 

 
-16.395 

(44.038) 

 
265.709*** 

(30.512) 

 
111.598* 

(63.455) 

 

 High monsoon max temperature extreme 
 

-440.345 

(431.224) 

 
 

-- 

 
476.908 

(598.796) 

 
-153.076 

(184.067) 

 
1208.350 

(1644.990) 

 Low monsoon max temperature extreme 
 

85.547 

(61.841) 

 
-296.448 

(205.643) 

 
28.510 

(101.023) 

 
28.737 

(69.417) 

 
-203.452 

(135.700) 

 Autumn max temperature -40.891 

(38.747) 

 
-124.614 

(121.443) 

 
-279.812*** 

(51.901) 

 
128.295*** 

(35.318) 

 
-89.307 

(91.806) 

 

 High autumn max temperature extreme 
 

93.679 

(122.626) 

 
-455.393 

(277.165) 

 
-2.222 

(129.772) 

 
88.045 

(178.251) 

 
269.575* 

(158.242) 
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 Low autumn max temperature extreme 
 

117.195 

(107.780) 

 
223.302 

(436.037) 

 
-45.275 

(147.898) 

 
-50.551 

(96.542) 

 
-171.547 

(147.105) 

 Winter min temperature -28.292 

(29.181) 

 
347.537*** 

(95.245) 

 
49.466 

(40.280) 

 
7.650 

(31.091) 

 
54.509 

(66.333) 

 

 High winter min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
-21971.900 

(56957.100) 

 
 

-- 

 Low winter min temperature extreme 
 

2.163 

(178.082) 

 
-137.373 

(456.262) 

 
227.233 

(221.813) 

 
36.646 

(132.548) 

 
261.179 

(246.422) 

 Summer min temperature 72.024* 

(42.464) 

 
-616.678*** 

(117.745) 

 
-217.969*** 

(52.455) 

 
118.112*** 

(41.926) 

 
-49.151 

(78.657) 

 

 High summer min temperature extreme 
 

-54.356 

(92.324) 

 
-657.081 

(546.652) 

 
26.381 

(201.850) 

 
382.286** 

(187.787) 

 
-385.372* 

(203.741) 

 Low summer min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Monsoon min temperature -40.626 

(37.215) 

 
188.581 

(123.993) 

 
82.224 

(52.144) 

 
-217.823*** 

(40.063) 

 
-172.527** 

(74.993) 

 

 High monsoon min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Low monsoon min temperature extreme 
 

33.535 

(179.849) 

 
-1339.150*** 

(483.296) 

 
180.146 

(225.174) 

 
-483.822*** 

(134.568) 

 
-113.186 

(251.270) 

 Autumn min temperature 5.354 

(36.977) 

 
382.116*** 

(106.237) 

 
216.235*** 

(50.867) 

 
-88.563** 

(34.619) 

 
190.612** 

(93.393) 

 

 High autumn min temperature extreme 
 

103.159 

(96.525) 

 
-1286.630** 

(570.505) 

 
44.235 

(210.142) 

 
403.584** 

(189.887) 

 
-442.149** 

(217.574) 

 Low autumn min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Winter rainfall 4.087* 

(2.373) 

 
9.657 

(8.638) 

 
1.690 

(3.415) 

 
-0.356 

(2.721) 

 
1.842 

(4.414) 

 

 High winter rainfall extreme 
 

97.298 

(111.853) 

 
-1036.650 

(730.004) 

 
18.232 

(236.414) 

 
97.961 

(229.392) 

 
-285.004 

(216.287) 

 Low winter rainfall extreme 
 

79.318 

(75.080) 

 
-648.992** 

(306.081) 

 
-19.997 

(125.933) 

 
135.646 

(104.874) 

 
79.490 

(151.276) 

 Summer rainfall 12.538*** 

(3.537) 

 
29.193** 

(12.123) 

 
5.176 

(5.937) 

 
23.517*** 

(3.801) 

 
7.336 

(7.483) 

 

 High summer rainfall extreme 
 

-172.445 

(215.556) 

 
-971.833 

(713.347) 

 
20.865 

(145.525) 

 
-304.269* 

(180.491) 

 
413.972 

(524.824) 

 Low summer rainfall extreme 
 

28.024 

(165.028) 

 
39.941 

(667.635) 

 
85.034 

(155.702) 

 
10.133 

(86.546) 

 
-60.262 

(231.803) 

 Monsoon rainfall -0.539 

(0.628) 

 
-0.650 

(1.752) 

 
1.788* 

(0.961) 

 
4.501*** 

(0.693) 

 
4.936** 

(1.596) 

 

 High monsoon rainfall extreme 
 

3.306 

(114.506) 

 
-982.275 

(739.148) 

 
-10.335 

(235.823) 

 
-26.661 

(230.610) 

 
-398.661* 

(220.749) 

 Low monsoon rainfall extreme 
 

-64.852 

(69.863) 

 
-625.609** 

(299.567) 

 
12.411 

(120.281) 

 
100.904 

(98.951) 

 
210.934 

(144.113) 

 Autumn rainfall 1.537*** 

(0.570) 

 
-0.744 

(1.801) 

 
-2.656*** 

(0.753) 

 
2.871*** 

(0.603) 

 
-4.263*** 

(1.089) 

 

 High autumn rainfall extreme 
 

-250.873 

(207.931) 

 
-295.294 

(693.344) 

 
8.129 

(160.429) 

 
626.494*** 

(172.228) 

 
452.988 

(481.575) 

 Low autumn rainfall extreme 
 

-34.397 

(177.234) 

 
405.597 

(697.898) 

 
264.957 

(167.755) 

 
-102.324 

(96.503) 

 
-55.629 

(262.835) 

 Winter evapotranspiration 0.464 

(2.128) 

 
-7.915 

(7.394) 

 
0.439 

(3.515) 

 
5.530** 

(2.470) 

 
4.148 

(4.392) 
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 High winter evapotranspiration extreme 
 

97.908 

(528.920) 

 
-338.826 

(570.306) 

 
-48.846 

(150.134) 

 
-275.821 

(1037.300) 

 
289.830 

(251.184) 

 Low winter evapotranspiration extreme 
 

-152.382 

(146.438) 

 
208.844 

(726.714) 

 
199.131 

(141.901) 

 
26.278 

(98.342) 

 
77.596 

(272.188) 

 Summer evapotranspiration -12.288*** 

(4.121) 

 
-45.329*** 

(14.054) 

 
-0.582 

(6.686) 

 
-30.348*** 

(4.272) 

 
-1.369** 

(0.069) 

 

 High summer evapotranspiration extreme 
 

62.466 

(113.874) 

 
-2055.670*** 

(496.192) 

 
-28.828 

(182.521) 

 
-405.815*** 

(75.241) 

 
-618.909** 

(305.471) 

 Low summer evapotranspiration extreme 
 

254.699 

(218.585) 

 
-419.514 

(868.006) 

 
121.620 

(475.692) 

 
249.675 

(210.184) 

 
-126.947 

(522.432) 

 Monsoon evapotranspiration -0.140 

(1.393) 

 
-28.469*** 

(4.163) 

 
-3.821* 

(1.994) 

 
9.026*** 

(1.492) 

 
-3.953 

(3.040) 

 

 High monsoon evapotranspiration extreme 
 

252.291 

(529.340) 

 
-93.216 

(570.196) 

 
-135.850 

(160.521) 

 
-150.229 

(1037.990) 

 
241.961 

(252.784) 

 Low monsoon evapotranspiration extreme 
 

-3.694 

(150.979) 

 
-417.468 

(732.411) 

 
124.652 

(146.299) 

 
38.385 

(106.998) 

 
-312.740 

(271.169) 

 Autumn evapotranspiration -3.037** 

(1.508) 

 
18.613*** 

(5.379) 

 
4.346* 

(2.415) 

 
1.867 

(1.690) 

 
9.067** 

(3.551) 

 

 High autumn evapotranspiration extreme 
 

-221.209** 

(111.218) 

 
-1129.700** 

(484.769) 

 
-32.950 

(183.834) 

 
-342.447*** 

(72.257) 

 
-756.853** 

(301.470) 

 Low autumn evapotranspiration extreme 
 

281.185 

(224.986) 

 
-1635.560* 

(884.862) 

 
-177.497 

(479.825) 

 
127.367 

(214.857) 

 
-441.217 

(536.272) 

 Winter windspeed -58.624 

(74.043) 

 
527.620** 

(231.350) 

 
107.185 

(113.933) 

 
109.267 

(78.695) 

 
-144.351 

(131.342) 

 

 High winter windspeed extreme 
 

61.870 

(155.740) 

 
932.123 

(656.596) 

 
-257.268 

(204.117) 

 
233.320 

(174.296) 

 
-342.085 

(239.438) 

 Low winter windspeed extreme 
 

5.385 

(136.160) 

 
770.283** 

(385.387) 

 
-21.450 

(152.153) 

 
-78.218 

(160.030) 

 
-46.417 

(300.454) 

 Summer windspeed 0.740 

(93.204) 

 
-808.399*** 

(294.856) 

 
-83.039 

(133.550) 

 
381.970*** 

(100.987) 

 
-203.993 

(158.997) 

 

 High summer windspeed extreme 
 

5.112 

(215.446) 

 
-1615.870 

(2366.810) 

 
-142.122 

(148.824) 

 
-371.036** 

(154.855) 

 
-462.753 

(295.758) 

 Low summer windspeed extreme 
 

-171.117 

(404.166) 

 
2856.140*** 

(630.935) 

 
-288.920 

(363.644) 

 
-474.070 

(428.280) 

 
-779.345* 

(455.815) 

 Monsoon windspeed 214.011*** 

(64.334) 

 
-1876.910*** 

(210.305) 

 
-46.156 

(97.658) 

 
-243.849*** 

(71.953) 

 
54.516 

(128.393) 

 

 High monsoon windspeed extreme 
 

121.881 

(163.281) 

 
-1696.840** 

(665.955) 

 
-333.840 

(206.016) 

 
37.600 

(173.746) 

 
-142.432 

(250.056) 

 Low monsoon windspeed extreme 
 

17.307 

(136.861) 

 
-1196.390*** 

(389.806) 

 
1.987 

(156.404) 

 
-88.251 

(160.311) 

 
-58.293 

(303.653) 

 Autumn windspeed -74.297 

(79.889) 

 
28.820 

(257.000) 

 
-72.390 

(122.087) 

 
-276.068*** 

(92.001) 

 
-249.490* 

(135.126) 

 

 High autumn windspeed extreme 
 

-135.790 

(219.405) 

 
-924.345 

(2380.570) 

 
-238.487 

(179.678) 

 
-248.871 

(190.976) 

 
-246.560 

(331.596) 

 Low autumn windspeed extreme 
 

69.188 

(410.874) 

 
2926.710*** 

(647.664) 

 
-359.314 

(362.576) 

 
-407.848 

(429.832) 

 
-987.207** 

(446.883) 

 N 777 777 740 740 728 728 755 755 789 789 

Source: Authors’ calculation. Note: *, ** and *** indicate 10%, 5% and 1%, respectively. SE in parenthesis.  
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Table A4. Post-estimation tests for mean function estimation 

  Sorghum Maize Finger millet Pearl millet Rice 

 
 

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

Based on weighted data 

 Sum squared residual 2687.130 2890.831 2500387.000 2850172.000 2836.400 3140.690 4903.087 4832.909 3859.840 3823.256 

 R-squared 0.283 0.222 0.898 0.899 0.244 0.207 0.723 0.508 0.160 0.187 

 F-stat 9.487 4.413 202.058 137.600 7.239 3.784 61.018 15.163 4.662 3.631 

 Log-likelihood -1584.562 -1612.949 -4056.378 -4104.823 -1528.024 -1565.118 -1777.564 -1772.122 -1745.857 -1742.100 

 Schwarz criterion 3382.097 3545.360 8324.168 8513.552 3266.937 3446.570 3767.184 3868.953 3705.178 3804.396 

 SE of regression 1.899 1.991 59.427 64.085 2.019 2.149 2.604 2.616 2.258 2.271 

 Adjusted R-squared 0.253 0.171 0.894 0.893 0.210 0.153 0.712 0.474 0.126 0.136 

 P-value (F) 1.4E-36 9.0E-19 0.0E+00 0.0E+00 2.5E-26 1.0E-14 7.2E-179 1.4E-79 6.7E-15 6.0E-14 

 Akaike criterion 3233.123 3321.899 8176.755 8301.646 3120.047 3226.235 3619.129 3642.244 3555.713 3580.199 

 Hannan-Quinn 3290.431 3407.861 8233.592 8383.349 3176.726 3311.253 3676.160 3729.573 3613.168 3666.382 

Based on original data 

 Mean dependent var 1182.783 1182.783 3387.369 3387.369 1631.573 1631.573 1288.009 1288.009 2943.202 2943.202 

 Sum squared residual 5.5E+08 5.6E+08 2.4E+09 3.3E+09 3.7E+08 3.9E+08 3.2E+08 3.5E+08 6.9E+08 7.2E+08 

 SD dependent var 874.285 874.285 1962.312 1962.312 752.537 752.537 780.097 780.097 986.793 986.793 

 SE of regression 857.436 877.552 1856.475 2175.322 731.284 752.153 664.415 702.284 952.227 985.974 

Source: Authors’ calculation. 

 

Table A5. Variance function estimation 

  Sorghum Maize Finger millet Pearl millet Rice 

 
 

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

 C -55.047 

(39.078) 

-88.049*** 

(26.872) 

-75.215** 

(37.131) 

-6.606 

(32.288) 

-0.544 

(37.681) 

38.768 

(33.140) 

-147.159*** 

(40.004) 

-130.694*** 

(33.151) 

-50.456 

(42.085) 

3.209 

(34.542) 

Non-climatic 

 Diesel pump sets 0.010 

(0.012) 

0.025** 

(0.010) 

-6.0E-04 

(0.004) 

0.007 

(0.004) 

2.8E-04 

(6.0E-04) 

4.1E-04 

(6.4E-04) 

-4.1E-04 

(0.002) 

-0.002 

(0.002) 

0.211 

(0.182) 

0.147 

(0.180) 

 Electric pump sets -0.006** 

(0.003) 

-0.006** 

(0.003) 

7.4E-04 

(7.2E-04) 

-2.2E-04 

(7.7E-04) 

-4.1E-05 

(2.1E-04) 

-2.3E-05 

(2.2E-04) 

-5.2E-04 

(6.6E-04) 

-2.4E-04 

(6.5E-04) 

-0.131* 

(0.079) 

-0.036 

(0.078) 

 Power tiller 0.795** 

(0.361) 

0.274 

(0.299) 

0.042 

(0.049) 

0.081 

(0.053) 

0.006 

(0.008) 

0.008 

(0.009) 

0.020 

(0.020) 

0.030 

(0.020) 

0.546 

(2.643) 

-2.402 

(2.571) 

 Tractors -0.017** 

(0.009) 

0.006 

(0.008) 

-0.005 

(0.006) 

-0.003 

(0.006) 

0.002 

(0.002) 

0.002 

(0.002) 

-0.001 

(0.003) 

-0.006** 

(0.003) 

-0.770 

(0.675) 

-0.208 

(0.663) 

 HYV area 8.8E-04* 

(4.7E-04) 

0.001*** 

(4.1E-04) 

1.4E-04 

(2.9E-04) 

7.6E-04** 

(3.0E-04) 

1.1E-06 

(5.8E-05) 

2.5E-05 

(6.2E-05) 

-6.1E-06 

(1.6E-04) 

-8.0E-05 

(1.6E-04) 

0.022 

(0.022) 

0.034 

(0.022) 

 Fertiliser use -0.001*** 

(4.5E-04) 

-3.6E-04 

(3.5E-04) 

-6.9E-04* 

(4.1E-04) 

3.7E-04 

(4.3E-04) 

-7.0E-05* 

(3.6E-05) 

-5.4E-05 

(3.7E-05) 

-1.5E-04* 

(8.3E-05) 

-2.3E-04*** 

(8.2E-05) 

-0.013 

(0.015) 

-0.002 

(0.015) 

 Irrigation area 0.001** 

(6.2E-04) 

-2.6E-04 

(5.0E-04) 

-2.8E-05 

(4.7E-04) 

-7.2E-04 

(5.0E-04) 

2.9E-05 

(1.1E-04) 

-4.9E-05 

(1.2E-04) 

1.0E-05 

(2.3E-04) 

9.9E-05 

(2.3E-04) 

-0.008 

(0.029) 

-0.032 

(0.028) 

 Farmworker -3.0E-04** 

(1.3E-04) 

-1.2E-04 

(1.0E-04) 

5.5E-05 

(7.7E-05) 

-7.2E-05 

(8.3E-05) 

1.2E-06 

(2.3E-05) 

7.1E-06 

(2.4E-05) 

4.3E-05 

(3.7E-05) 

4.9E-05 

(3.6E-05) 

0.007 

(0.006) 

0.006 

(0.005) 

 Smallholder density -1.068 

(2.436) 

0.711* 

(0.367) 

-2.150 

(2.451) 

0.423 

(2.545) 

2.800 

(2.421) 

6.132** 

(2.467) 

-4.587* 

(2.554) 

-2.755 

(2.454) 

-1.299 

(2.564) 

-2.690 

(2.458) 
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 Urbanisation rate -0.020** 

(0.009) 

-0.001 

(0.003) 

-0.009 

(0.008) 

-0.006 

(0.009) 

-0.002 

(0.009) 

5.5E-04 

(0.009) 

-0.013 

(0.009) 

-0.002 

(0.009) 

-3.4E-04 

(0.009) 

0.008 

(0.009) 

 T 0.032 

(0.021) 

0.049*** 

(0.013) 

0.039** 

(0.020) 

0.009 

(0.017) 

0.005 

(0.020) 

-0.022 

(0.017) 

0.082*** 

(0.021) 

0.072*** 

(0.017) 

0.024 

(0.023) 

0.006 

(0.018) 

Climatic 

 Winter max temperature -0.481* 

(0.248) 

 
-0.496** 

(0.245) 

 
-0.101 

(0.238) 

 
-0.145 

(0.263) 

 
-0.003 

(0.262) 

 

 High winter max temperature extreme 
 

0.750 

(1.533) 

 
 

-- 

 
4.917*** 

(1.589) 

 
2.517 

(1.646) 

 
-0.476 

(1.681) 

 Low winter max temperature extreme 
 

0.126 

(0.328) 

 
-0.408 

(0.348) 

 
0.323 

(0.364) 

 
0.200 

(0.367) 

 
-0.090 

(0.373) 

 Summer max temperature 0.207 

(0.302) 

 
0.210 

(0.297) 

 
0.562* 

(0.289) 

 
-0.385 

(0.318) 

 
0.298 

(0.321) 

 

 High summer max temperature extreme 
 

0.327 

(0.523) 

 
1.074 

(0.658) 

 
0.417 

(0.578) 

 
-0.191 

(0.608) 

 
0.961 

(0.606) 

 Low summer max temperature extreme 
 

-0.059 

(0.410) 

 
-0.620 

(0.487) 

 
-0.291 

(0.462) 

 
-0.172 

(0.482) 

 
0.298 

(0.480) 

 Monsoon max temperature 0.388 

(0.385) 

 
1.331*** 

(0.374) 

 
-0.437 

(0.374) 

 
-0.050 

(0.407) 

 
0.239 

(0.405) 

 

 High monsoon max temperature extreme 
 

0.513 

(1.943) 

 
 

-- 

 
4.750** 

(1.939) 

 
1.891 

(1.999) 

 
-1.629 

(2.052) 

 Low monsoon max temperature extreme 
 

0.329 

(0.330) 

 
-0.092 

(0.358) 

 
-0.017 

(0.377) 

 
0.402 

(0.377) 

 
-0.125 

(0.385) 

 Autumn max temperature 0.268 

(0.373) 

 
0.847** 

(0.370) 

 
-0.534 

(0.362) 

 
5.3E-04 

(0.391) 

 
0.352 

(0.399) 

 

 High autumn max temperature extreme 
 

0.031 

(0.525) 

 
0.627 

(0.637) 

 
0.283 

(0.567) 

 
-0.572 

(0.588) 

 
0.842 

(0.587) 

 Low autumn max temperature extreme 
 

-0.003 

(0.441) 

 
-1.229** 

(0.488) 

 
0.183 

(0.469) 

 
0.211 

(0.484) 

 
0.143 

(0.484) 

 Winter min temperature 0.324 

(0.233) 

 
0.549** 

(0.226) 

 
-0.418* 

(0.224) 

 
0.318 

(0.246) 

 
0.017 

(0.246) 

 

 High winter min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Low winter min temperature extreme 
 

0.412 

(0.704) 

 
-0.699 

(0.754) 

 
-0.330 

(0.775) 

 
0.268 

(0.800) 

 
0.657 

(0.782) 

 Summer min temperature -0.145 

(0.328) 

 
-0.359 

(0.322) 

 
-0.150 

(0.317) 

 
0.086 

(0.344) 

 
-0.299 

(0.349) 

 

 High summer min temperature extreme 
 

1.705*** 

(0.593) 

 
0.006 

(0.682) 

 
1.032 

(0.780) 

 
-0.099 

(0.825) 

 
-0.113 

(0.725) 

 Low summer min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Monsoon min temperature -0.196 

(0.401) 

 
-1.918*** 

(0.386) 

 
0.573 

(0.393) 

 
0.689 

(0.423) 

 
-0.077 

(0.422) 

 

 High monsoon min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Low monsoon min temperature extreme 
 

0.021 

(0.719) 

 
-1.029 

(0.767) 

 
-0.285 

(0.791) 

 
0.679 

(0.816) 

 
0.598 

(0.808) 

 Autumn min temperature -0.249 

(0.378) 

 
-0.506 

(0.376) 

 
0.238 

(0.364) 

 
-0.318 

(0.400) 

 
-0.184 

(0.408) 

 

 High autumn min temperature extreme 
 

1.010 

(0.617) 

 
0.576 

(0.689) 

 
0.611 

(0.778) 

 
-0.709 

(0.815) 

 
1.062 

(0.729) 

 Low autumn min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 
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 Winter rainfall -0.005 

(0.012) 

 
0.004 

(0.012) 

 
6.6E-04 

(0.012) 

 
-0.005 

(0.013) 

 
-0.001 

(0.013) 

 

 High winter rainfall extreme 
 

0.724 

(0.491) 

 
-1.105** 

(0.509) 

 
-0.259 

(0.552) 

 
-0.572 

(0.544) 

 
0.018 

(0.529) 

 Low winter rainfall extreme 
 

0.736** 

(0.374) 

 
-0.419 

(0.395) 

 
-0.219 

(0.395) 

 
-0.382 

(0.393) 

 
-0.018 

(0.397) 

 Summer rainfall 0.027 

(0.022) 

 
0.008 

(0.021) 

 
0.015 

(0.022) 

 
-0.020 

(0.023) 

 
-0.021 

(0.024) 

 

 High summer rainfall extreme 
 

-0.330 

(0.943) 

 
0.238 

(1.176) 

 
-0.614 

(1.048) 

 
-0.471 

(1.081) 

 
-0.064 

(1.042) 

 Low summer rainfall extreme 
 

0.069 

(0.616) 

 
-0.960 

(0.644) 

 
-0.195 

(0.619) 

 
0.595 

(0.636) 

 
0.413 

(0.652) 

 Monsoon rainfall 0.002 

(0.005) 

 
-0.014*** 

(0.005) 

 
-0.002 

(0.005) 

 
9.4E-04 

(0.005) 

 
4.2E-04 

(0.005) 

 

 High monsoon rainfall extreme 
 

0.350 

(0.501) 

 
-0.610 

(0.533) 

 
-0.381 

(0.569) 

 
-0.399 

(0.567) 

 
-0.168 

(0.552) 

 Low monsoon rainfall extreme 
 

0.711* 

(0.364) 

 
-0.334 

(0.377) 

 
-0.371 

(0.383) 

 
-0.406 

(0.384) 

 
-0.233 

(0.387) 

 Autumn rainfall -4.0E-04 

(0.003) 

 
-0.001 

(0.003) 

 
0.001 

(0.003) 

 
0.003 

(0.003) 

 
0.003 

(0.003) 

 

 High autumn rainfall extreme 
 

-0.162 

(0.865) 

 
0.386 

(1.094) 

 
-1.190 

(0.971) 

 
-0.860 

(1.014) 

 
-0.763 

(0.956) 

 Low autumn rainfall extreme 
 

0.344 

(0.687) 

 
-0.895 

(0.749) 

 
-0.453 

(0.718) 

 
0.715 

(0.738) 

 
-0.058 

(0.762) 

 Winter evapotranspiration 0.016 

(0.012) 

 
0.018 

(0.012) 

 
0.012 

(0.012) 

 
-0.004 

(0.013) 

 
0.008 

(0.013) 

 

 High winter evapotranspiration extreme 
 

-1.497 

(0.955) 

 
0.766 

(0.967) 

 
2.295* 

(1.243) 

 
-1.693 

(1.112) 

 
1.257 

(1.026) 

 Low winter evapotranspiration extreme 
 

-0.756 

(0.564) 

 
-1.069* 

(0.591) 

 
0.837 

(0.642) 

 
0.574 

(0.622) 

 
-0.503 

(0.604) 

 Summer evapotranspiration -0.034 

(0.025) 

 
-0.023 

(0.024) 

 
0.006 

(0.025) 

 
0.015 

(0.027) 

 
0.027 

(0.027) 

 

 High summer evapotranspiration extreme 
 

-0.465 

(0.766) 

 
0.912 

(0.774) 

 
0.396 

(0.771) 

 
2.308*** 

(0.811) 

 
-0.316 

(0.809) 

 Low summer evapotranspiration extreme 
 

-1.996** 

(0.784) 

 
-0.469 

(0.801) 

 
-1.473* 

(0.858) 

 
0.211 

(0.878) 

 
-1.366 

(0.862) 

 Monsoon evapotranspiration -0.006 

(0.010) 

 
0.026** 

(0.010) 

 
0.018* 

(0.010) 

 
-0.003 

(0.011) 

 
-0.001 

(0.011) 

 

 High monsoon evapotranspiration extreme 
 

-1.078 

(0.964) 

 
0.646 

(0.977) 

 
1.851 

(1.261) 

 
1.868* 

(1.125) 

 
1.038 

(1.035) 

 Low monsoon evapotranspiration extreme 
 

-0.370 

(0.568) 

 
-1.052* 

(0.604) 

 
0.455 

(0.653) 

 
0.779 

(0.632) 

 
-0.587 

(0.610) 

 Autumn evapotranspiration -0.004 

(0.011) 

 
0.017 

(0.010) 

 
0.001 

(0.010) 

 
0.009 

(0.011) 

 
-0.004 

(0.011) 

 

 High autumn evapotranspiration extreme 
 

-0.504 

(0.754) 

 
0.490 

(0.746) 

 
0.253 

(0.744) 

 
2.319*** 

(0.788) 

 
0.180 

(0.785) 

 Low autumn evapotranspiration extreme 
 

-1.232 

(0.819) 

 
-0.964 

(0.852) 

 
-1.481 

(0.903) 

 
-0.148 

(0.936) 

 
-0.582 

(0.912) 

 Winter windspeed 0.221 

(0.444) 

 
0.066 

(0.427) 

 
-0.426 

(0.438) 

 
0.034 

(0.467) 

 
-0.537 

(0.472) 

 

 High winter windspeed extreme 
 

-0.073 

(0.599) 

 
-0.695 

(0.649) 

 
-0.334 

(0.611) 

 
-0.602 

(0.621) 

 
-0.707 

(0.638) 



43 

 

 Low winter windspeed extreme 
 

0.099 

(0.638) 

 
0.707 

(0.680) 

 
0.206 

(0.660) 

 
0.218 

(0.671) 

 
0.058 

(0.702) 

 Summer windspeed -0.354 

(0.512) 

 
-0.832* 

(0.501) 

 
0.010 

(0.501) 

 
-0.112 

(0.538) 

 
0.300 

(0.546) 

 

 High summer windspeed extreme 
 

-0.572 

(0.730) 

 
2.321*** 

(0.869) 

 
1.387* 

(0.735) 

 
0.442 

(0.792) 

 
-0.259 

(0.772) 

 Low summer windspeed extreme 
 

0.553 

(1.320) 

 
0.164 

(1.529) 

 
0.586 

(1.460) 

 
0.092 

(1.498) 

 
0.294 

(1.531) 

 Monsoon windspeed -0.740** 

(0.369) 

 
-0.598* 

(0.354) 

 
0.415 

(0.363) 

 
0.613 

(0.390) 

 
0.385 

(0.393) 

 

 High monsoon windspeed extreme 
 

0.264 

(0.613) 

 
-0.409 

(0.663) 

 
0.099 

(0.613) 

 
-0.799 

(0.627) 

 
0.004 

(0.640) 

 Low monsoon windspeed extreme 
 

0.222 

(0.646) 

 
0.792 

(0.693) 

 
0.767 

(0.675) 

 
0.041 

(0.684) 

 
-0.175 

(0.714) 

 Autumn windspeed 1.080** 

(0.444) 

 
-0.344 

(0.430) 

 
-0.119 

(0.443) 

 
0.240 

(0.468) 

 
-0.142 

(0.470) 

 

 High autumn windspeed extreme 
 

-1.040 

(0.797) 

 
-2.216** 

(0.941) 

 
1.116 

(0.801) 

 
0.913 

(0.858) 

 
-0.075 

(0.843) 

 Low autumn windspeed extreme 
 

0.594 

(1.324) 

 
-0.196 

(1.509) 

 
0.447 

(1.443) 

 
0.213 

(1.486) 

 
-0.462 

(1.519) 

 N 777 777 740 740 728 728 755 755 789 789 

Source: Authors’ calculation. Note: *, ** and *** indicate 10%, 5% and 1%, respectively. SE in parentheses.  

 

Table A6. Post-estimation tests for variance function estimation 

  Sorghum Maize Finger millet Pearl millet Rice 

 
 

 (1)  (2)  (1)  (2)  (1)  (2)  (1)  (2)  (1)  (2) 

 Mean dependent var 11.212 11.249 6.823 6.882 11.620 11.601 10.683 10.778 12.088 12.094 

 Sum squared residual 3206.084 2641.703 2683.013 2865.805 2691.110 2818.521 3360.726 3121.806 3748.188 3459.270 

 LSDV R-squared 0.254 0.300 0.597 0.606 0.182 0.187 0.609 0.627 0.105 0.129 

 LSDV F-stat 3.727 3.677 15.389 12.854 2.259 1.834 16.534 13.941 1.308 1.289 

 Log-likelihood -1653.162 -1577.938 -1526.591 -1550.978 -1508.884 -1525.722 -1634.979 -1607.141 -1734.277 -1702.632 

 Schwarz criterion 3745.582 3701.622 3489.222 3630.487 3452.728 3591.849 3707.322 3757.672 3908.824 3952.267 

 Rho 0.072 0.043 0.257 0.268 -0.041 -0.061 0.027 0.031 0.005 -0.048 

 SD dependent var 2.354 2.205 3.003 3.138 2.127 2.184 3.378 3.330 2.306 2.245 

 SE of regression 2.124 1.950 1.995 2.084 2.016 2.089 2.209 2.154 2.277 2.212 

 Within R-squared 0.049 0.107 0.096 0.080 0.075 0.096 0.089 0.107 0.034 0.058 

 P-value (F) 2.6E-18 7.5E-21 2.5E-95 3.6E-90 2.8E-07 3.6E-05 3.2E-102 5.8E-99 5.8E-02 5.2E-02 

 Akaike criterion 3438.323 3319.875 3185.183 3261.955 3149.768 3215.444 3401.959 3378.281 3600.553 3569.264 

 Hannan-Quinn 3556.521 3466.727 3302.409 3404.048 3266.667 3360.682 3519.585 3524.423 3719.054 3716.492 

 Durbin-Watson 1.789 1.828 1.432 1.397 1.923 1.992 1.832 1.835 1.920 2.017 

Joint test on named regressors 

 F-stat 1.171 1.772 2.314 1.273 1.720 1.463 2.167 1.721 0.830 0.920 

 With p-value 0.241 0.001 0.000 0.114 0.010 0.026 0.000 0.002 0.732 0.626 

Test for differing group intercepts - Null hypothesis: The groups have a common intercept 

 F-stat 4.031 5.172 21.478 25.105 2.761 2.288 26.312 26.964 1.328 1.452 

 With p-value 7.8E-13 2.7E-18 2.2E-85 1.7E-96 6.2E-07 6.0E-05 9.5E-102 7.1E-103 1.0E-01 4.8E-02 

Source: Authors’ calculation. 

Table A7. Skewness function estimation 
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  Sorghum Maize Finger millet Pearl millet Rice 

 
 

 (1)  (2)  (1)  (2)  (1)  (2)  (1)  (2)  (1)  (2) 

 C 99.609 

(89.915) 

-91.156 

(77.669) 

302.041*** 

(93.591) 

246.999*** 

(89.606) 

-15.118 

(102.891) 

40.801 

(90.111) 

-201.946** 

(80.717) 

-244.531*** 

(74.532) 

-5.245 

(94.253) 

45.240 

(75.625) 

Non-climatic 

 Diesel pump sets 0.045 

(0.042) 

0.015 

(0.045) 

-0.043** 

(0.017) 

0.015 

(0.019) 

7.0E-04 

(0.002) 

0.001 

(0.002) 

0.005 

(0.006) 

-0.003 

(0.007) 

-0.542 

(0.950) 

0.655 

(0.925) 

 Electric pump sets -0.018** 

(0.008) 

-0.016* 

(0.009) 

0.003 

(0.002) 

-0.001 

(0.003) 

-6.6E-04 

(7.4E-04) 

-3.2E-05 

(7.5E-04) 

-0.002 

(0.002) 

0.002 

(0.002) 

0.032 

(0.253) 

0.233 

(0.240) 

 Power tiller 1.879* 

(0.973) 

2.002* 

(1.101) 

0.367** 

(0.168) 

-0.006 

(0.152) 

0.024 

(0.031) 

-0.005 

(0.032) 

0.056 

(0.104) 

0.250** 

(0.109) 

-4.411 

(8.048) 

-0.655 

(6.263) 

 Tractors -0.031 

(0.024) 

-0.026 

(0.028) 

-0.046** 

(0.020) 

0.023 

(0.020) 

1.9E-05 

(0.008) 

0.011 

(0.008) 

0.003 

(0.009) 

-0.013 

(0.008) 

-2.455 

(2.067) 

-2.747* 

(1.473) 

 HYV area 0.002** 

(0.001) 

0.001 

(0.001) 

-0.001 

(8.5E-04) 

9.9E-04 

(7.5E-04) 

-4.3E-04 

(2.6E-04) 

-1.1E-04 

(2.5E-04) 

-2.1E-06 

(5.2E-04) 

-5.2E-04 

(4.4E-04) 

-0.044 

(0.067) 

0.114** 

(0.058) 

 Fertiliser use -0.002** 

(0.001) 

-8.9E-04 

(0.001) 

-0.002* 

(0.001) 

2.5E-04 

(9.7E-04) 

-2.0E-04** 

(9.8E-05) 

8.2E-05 

(1.5E-04) 

2.5E-04 

(4.9E-04) 

4.6E-05 

(2.4E-04) 

0.043 

(0.076) 

0.018 

(0.054) 

 Irrigation area 0.003** 

(0.002) 

0.002 

(0.002) 

0.003** 

(0.001) 

0.002* 

(0.001) 

5.2E-04 

(3.5E-04) 

4.1E-05 

(3.3E-04) 

-3.1E-04 

(8.2E-04) 

0.002* 

(8.4E-04) 

-0.061 

(0.100) 

-0.064 

(0.073) 

 Farmworker -9.0E-04*** 

(3.4E-04) 

-6.9E-04* 

(3.7E-04) 

-5.6E-04** 

(2.6E-04) 

2.3E-04 

(2.2E-04) 

-1.6E-05 

(6.7E-05) 

-5.5E-05 

(7.4E-05) 

4.8E-07 

(1.0E-04) 

2.0E-04** 

(7.9E-05) 

0.042 

(0.030) 

-0.002 

(0.028) 

 Smallholder density -2.008 

(6.058) 

0.164 

(6.381) 

-17.765** 

(7.093) 

-15.498** 

(6.837) 

4.075 

(6.161) 

2.396 

(6.517) 

-7.409 

(5.866) 

-6.774 

(5.588) 

0.901 

(5.343) 

-5.209 

(5.276) 

 Urbanisation rate -0.019 

(0.022) 

-0.013 

(0.025) 

0.050** 

(0.020) 

0.017 

(0.022) 

0.009 

(0.022) 

-0.002 

(0.025) 

-0.034 

(0.021) 

0.017 

(0.023) 

-0.006 

(0.019) 

0.020 

(0.020) 

 T -0.048 

(0.048) 

0.056 

(0.040) 

-0.165*** 

(0.050) 

-0.126*** 

(0.046) 

0.009 

(0.056) 

-0.018 

(0.046) 

0.139*** 

(0.043) 

0.137*** 

(0.038) 

-0.005 

(0.050) 

-0.004 

(0.038) 

Climatic 

 Winter max temperature 0.048 

(0.613) 

 
-1.187* 

(0.617) 

 
0.072 

(0.613) 

 
0.110 

(0.585) 

 
-0.405 

(0.620) 

 

 High winter max temperature extreme 
 

1.078 

(3.978) 

 
 

-- 

 
-6.932* 

(3.802) 

 
4.211 

(3.494) 

 
-1.312 

(3.454) 

 Low winter max temperature extreme 
 

-0.002 

(0.837) 

 
-0.738 

(0.720) 

 
-0.028 

(0.930) 

 
-0.245 

(0.782) 

 
-0.191 

(0.806) 

 Summer max temperature -0.193 

(0.712) 

 
-1.637** 

(0.679) 

 
0.695 

(0.725) 

 
-1.508** 

(0.664) 

 
0.572 

(0.745) 

 

 High summer max temperature extreme 
 

1.854 

(1.634) 

 
1.545 

(1.432) 

 
0.031 

(1.751) 

 
-1.303 

(1.377) 

 
-2.097 

(1.528) 

 Low summer max temperature extreme 
 

-0.499 

(1.141) 

 
0.390 

(1.050) 

 
-1.522 

(1.213) 

 
-0.411 

(1.017) 

 
1.015 

(1.099) 

 Monsoon max temperature 0.002 

(0.890) 

 
-2.048** 

(0.829) 

 
-1.596* 

(0.875) 

 
-1.204 

(0.824) 

 
0.997 

(0.878) 

 

 High monsoon max temperature extreme 
 

2.861 

(4.583) 

 
 

-- 

 
6.465 

(4.268) 

 
5.311 

(4.546) 

 
-1.764 

(4.582) 

 Low monsoon max temperature extreme 
 

0.095 

(0.886) 

 
-0.580 

(0.782) 

 
0.006 

(0.986) 

 
0.728 

(0.825) 

 
-0.617 

(0.823) 

 Autumn max temperature 0.267 

(0.833) 

 
-2.964*** 

(0.795) 

 
-0.926 

(0.901) 

 
-0.548 

(0.818) 

 
0.732 

(0.904) 

 

 High autumn max temperature extreme 
 

-0.782 

(1.633) 

 
-0.655 

(1.668) 

 
-1.035 

(1.740) 

 
-1.276 

(1.304) 

 
-2.177 

(1.483) 

 Low autumn max temperature extreme 
 

-1.258 

(1.166) 

 
-1.421 

(1.056) 

 
-0.702 

(1.295) 

 
0.290 

(1.015) 

 
0.755 

(1.094) 
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 Winter min temperature 0.014 

(0.539) 

 
2.722*** 

(0.581) 

 
-1.012* 

(0.525) 

 
0.453 

(0.549) 

 
0.660 

(0.586) 

 

 High winter min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Low winter min temperature extreme 
 

-0.799 

(1.736) 

 
-0.760 

(1.850) 

 
-0.180 

(2.124) 

 
1.098 

(1.981) 

 
0.319 

(1.760) 

 Summer min temperature 0.325 

(0.758) 

 
-2.797*** 

(0.808) 

 
-0.058 

(0.787) 

 
0.825 

(0.745) 

 
-0.723 

(0.784) 

 

 High summer min temperature extreme 
 

3.142* 

(1.752) 

 
-5.718*** 

(1.702) 

 
1.816 

(1.913) 

 
-2.435 

(2.088) 

 
-0.762 

(1.615) 

 Low summer min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Monsoon min temperature 0.562 

(0.985) 

 
-5.826*** 

(1.013) 

 
1.833* 

(0.972) 

 
1.595* 

(0.956) 

 
-0.077 

(0.933) 

 

 High monsoon min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Low monsoon min temperature extreme 
 

0.369 

(1.988) 

 
-1.295 

(1.759) 

 
-0.969 

(2.003) 

 
1.272 

(1.908) 

 
1.018 

(1.847) 

 Autumn min temperature -0.086 

(0.824) 

 
-0.407 

(0.758) 

 
1.500 

(0.912) 

 
-0.431 

(0.835) 

 
-1.192 

(0.916) 

 

 High autumn min temperature extreme 
 

3.093* 

(1.726) 

 
1.510 

(1.630) 

 
-0.588 

(1.850) 

 
-2.767 

(2.122) 

 
1.434 

(1.711) 

 Low autumn min temperature extreme 
 

 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 
 

-- 

 Winter rainfall -0.031 

(0.029) 

 
-0.015 

(0.027) 

 
0.014 

(0.033) 

 
-0.078*** 

(0.029) 

 
0.005 

(0.029) 

 

 High winter rainfall extreme 
 

-1.607 

(1.401) 

 
2.447 

(1.547) 

 
0.508 

(1.426) 

 
-1.223 

(1.323) 

 
-0.704 

(1.265) 

 Low winter rainfall extreme 
 

0.002 

(0.941) 

 
-1.286 

(0.842) 

 
0.014 

(1.081) 

 
0.444 

(0.868) 

 
-1.201 

(0.866) 

 Summer rainfall 0.026 

(0.046) 

 
0.061 

(0.047) 

 
-0.018 

(0.061) 

 
0.023 

(0.047) 

 
-0.055 

(0.056) 

 

 High summer rainfall extreme 
 

0.406 

(2.820) 

 
2.970 

(2.741) 

 
0.172 

(2.842) 

 
-0.217 

(2.767) 

 
1.653 

(2.160) 

 Low summer rainfall extreme 
 

-1.692 

(1.401) 

 
-0.803 

(1.355) 

 
-0.690 

(1.725) 

 
1.086 

(1.585) 

 
0.717 

(1.273) 

 Monsoon rainfall -0.003 

(0.013) 

 
-0.018 

(0.012) 

 
3.0E-04 

(0.012) 

 
0.028** 

(0.011) 

 
9.0E-04 

(0.012) 

 

 High monsoon rainfall extreme 
 

-1.391 

(1.474) 

 
3.204** 

(1.560) 

 
0.662 

(1.514) 

 
0.118 

(1.392) 

 
-1.237 

(1.331) 

 Low monsoon rainfall extreme 
 

1.375 

(0.851) 

 
-1.944** 

(0.816) 

 
-0.258 

(0.998) 

 
0.243 

(0.809) 

 
-0.546 

(0.838) 

 Autumn rainfall -0.018** 

(0.008) 

 
0.002 

(0.007) 

 
0.015* 

(0.008) 

 
0.001 

(0.007) 

 
0.005 

(0.006) 

 

 High autumn rainfall extreme 
 

-0.551 

(2.533) 

 
1.459 

(2.573) 

 
-1.347 

(2.372) 

 
-1.957 

(2.501) 

 
0.094 

(1.895) 

 Low autumn rainfall extreme 
 

-1.188 

(1.644) 

 
-1.448 

(1.604) 

 
-0.384 

(1.969) 

 
1.017 

(1.867) 

 
-0.622 

(1.501) 

 Winter evapotranspiration 0.013 

(0.026) 

 
0.032 

(0.026) 

 
0.020 

(0.033) 

 
-0.047* 

(0.026) 

 
0.005 

(0.030) 

 

 High winter evapotranspiration extreme 
 

-4.406 

(3.607) 

 
0.405 

(2.364) 

 
-5.893** 

(2.636) 

 
-4.835 

(3.428) 

 
-3.231 

(3.669) 
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 Low winter evapotranspiration extreme 
 

-0.933 

(1.240) 

 
-1.978* 

(1.050) 

 
0.789 

(1.730) 

 
-0.545 

(1.488) 

 
0.704 

(1.258) 

 Summer evapotranspiration -0.028 

(0.052) 

 
-0.107** 

(0.054) 

 
0.049 

(0.073) 

 
-0.055 

(0.053) 

 
0.088 

(0.065) 

 

 High summer evapotranspiration extreme 
 

-0.224 

(1.778) 

 
-2.056 

(1.745) 

 
0.905 

(2.125) 

 
-6.224*** 

(1.864) 

 
-0.935 

(1.689) 

 Low summer evapotranspiration extreme 
 

0.788 

(2.152) 

 
-2.541 

(1.946) 

 
-1.868 

(2.955) 

 
-0.017 

(2.039) 

 
-3.505* 

(2.060) 

 Monsoon evapotranspiration -0.012 

(0.027) 

 
-0.036 

(0.024) 

 
0.011 

(0.025) 

 
-0.064*** 

(0.023) 

 
-0.013 

(0.024) 

 

 High monsoon evapotranspiration extreme 
 

-4.689 

(3.635) 

 
-0.255 

(2.388) 

 
5.300** 

(2.690) 

 
-5.095 

(3.465) 

 
-3.703 

(3.639) 

 Low monsoon evapotranspiration extreme 
 

-1.305 

(1.275) 

 
-1.624 

(1.069) 

 
0.062 

(1.767) 

 
-0.276 

(1.455) 

 
-0.511 

(1.324) 

 Autumn evapotranspiration 0.026 

(0.025) 

 
0.039* 

(0.023) 

 
-0.009 

(0.027) 

 
0.019 

(0.023) 

 
0.001 

(0.024) 

 

 High autumn evapotranspiration extreme 
 

1.452 

(1.770) 

 
1.021 

(1.550) 

 
0.982 

(2.004) 

 
-6.001*** 

(1.871) 

 
0.609 

(1.596) 

 Low autumn evapotranspiration extreme 
 

0.848 

(2.248) 

 
-3.575* 

(2.011) 

 
-2.667 

(2.940) 

 
-0.785 

(2.096) 

 
-1.944 

(2.205) 

 Winter windspeed -0.188 

(1.045) 

 
0.090 

(0.964) 

 
0.285 

(1.189) 

 
-0.989 

(0.986) 

 
-1.060 

(0.951) 

 

 High winter windspeed extreme 
 

1.503 

(1.724) 

 
-2.238 

(1.501) 

 
0.755 

(1.619) 

 
-2.816* 

(1.579) 

 
-2.259 

(1.410) 

 Low winter windspeed extreme 
 

-0.662 

(1.685) 

 
-0.003 

(1.247) 

 
1.910 

(1.681) 

 
-1.021 

(1.787) 

 
-1.634 

(1.570) 

 Summer windspeed 0.789 

(1.186) 

 
-1.867 

(1.151) 

 
0.099 

(1.271) 

 
0.583 

(1.165) 

 
0.277 

(1.218) 

 

 High summer windspeed extreme 
 

0.593 

(2.119) 

 
-6.709* 

(3.541) 

 
-0.775 

(2.491) 

 
0.020 

(1.706) 

 
-0.711 

(1.545) 

 Low summer windspeed extreme 
 

-2.260 

(4.252) 

 
2.905 

(3.761) 

 
-1.811 

(4.864) 

 
-1.669 

(4.010) 

 
2.440 

(2.800) 

 Monsoon windspeed -0.540 

(0.883) 

 
-0.162 

(0.766) 

 
0.602 

(0.917) 

 
0.594 

(0.780) 

 
1.000 

(0.817) 

 

 High monsoon windspeed extreme 
 

1.801 

(1.788) 

 
-0.769 

(1.545) 

 
0.988 

(1.633) 

 
-3.356** 

(1.529) 

 
-0.022 

(1.456) 

 Low monsoon windspeed extreme 
 

-1.435 

(1.783) 

 
-0.027 

(1.284) 

 
1.880 

(1.699) 

 
-1.842 

(1.797) 

 
-2.006 

(1.602) 

 Autumn windspeed -1.901 

(1.064) 

 
-0.042 

(1.015) 

 
0.541 

(1.165) 

 
0.578 

(0.984) 

 
-1.099 

(1.037) 

 

 High autumn windspeed extreme 
 

-0.227 

(2.231) 

 
-8.056** 

(3.645) 

 
-0.937 

(2.609) 

 
2.042 

(2.013) 

 
-0.830 

(1.720) 

 Low autumn windspeed extreme 
 

-1.535 

(4.317) 

 
1.524 

(3.789) 

 
-1.264 

(4.830) 

 
-2.141 

(4.050) 

 
0.518 

(2.853) 

 N 362 367 369 368 338 330 367 359 398 391 

Source: Authors’ calculation. Note: *, ** and *** indicate 10%, 5% and 1%, respectively. SE in parentheses.  
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Table A8. Post-estimation tests for skewness function estimation 

  Sorghum Maize Finger millet Pearl millet Rice 

 
 

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

 Mean dependent var 16.916 16.823 10.114 10.441 17.386 17.520 15.933 16.126 18.080 18.215 

 Sum squared residual 3010.402 3231.569 2897.357 2641.611 3129.115 2952.199 3034.336 2776.212 3811.559 3155.020 

 LSDV R-squared 0.303 0.307 0.482 0.463 0.237 0.238 0.786 0.801 0.195 0.245 

 LDDV F-stat 1.975 1.556 4.426 3.193 1.299 0.957 17.011 13.768 1.236 1.237 

 Log-likelihood -897.047 -919.929 -903.798 -884.845 -855.704 -829.800 -908.373 -876.570 -1014.347 -963.017 

 Schwarz criterion 2182.943 2324.098 2191.798 2236.428 2095.729 2135.125 2206.500 2235.572 2423.799 2415.469 

 Rho 0.133 0.072 0.474 0.381 -0.014 -0.009 0.041 -0.016 -0.066 0.014 

 SD dependent var 3.458 3.569 3.900 3.661 3.488 3.432 6.225 6.243 3.453 3.273 

 SE of regression 3.189 3.367 3.087 3.023 3.392 3.450 3.175 3.166 3.388 3.195 

 Within R-squared 0.077 0.122 0.270 0.215 0.116 0.123 0.170 0.224 0.091 0.149 

 P-value (F) 7.3E-05 4.5E-03 7.5E-19 7.1E-13 7.9E-02 5.8E-01 1.8E-69 7.6E-62 1.2E-01 1.0E-01 

 Akaike criterion 1926.094 2003.858 1937.596 1927.689 1843.408 1820.000 1948.747 1917.140 2160.693 2090.035 

 Hannan-Quinn 2028.201 2131.100 2038.578 2050.348 1943.968 1947.863 2050.000 2043.768 2260.000 2220.000 

 Durbin-Watson 1.281 1.435 0.890 0.958 1.403 1.301 1.473 1.469 1.425 1.341 

Joint test on named regressors 

 F-stat 0.798 0.840 3.620 1.757 1.147 0.742 1.993 1.700 1.070 1.147 

 With p-value 0.772 0.761 3.6E-09 0.003 0.277 0.890 0.002 0.005 0.370 0.247 

Test for differing group intercepts - Null hypothesis: The groups have a common intercept 

 F-stat 2.0366 2.0621 4.8526 5.1371 1.4719 0.9721 25.8739 25.9959 0.8919 1.0671 

 With p-value 9.4E-04 7.9E-04 2.8E-14 3.6E-15 5.0E-02 5.2E-01 3.4E-70 1.9E-67 6.5E-01 3.7E-01 

Source: Authors’ calculation. 
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Appendix B: Figures 

Figure B1. Cereal crops area distributions over 25 years in southern India districts. 

 

Source: Authors’ construct based on data retrieved from ICRISAT (2024). 
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Figure B2. Mean, variance and skewness function estimated coefficients for rice 

  
 

  

 

 

Source: Authors’ construction. Notes: Significant coefficients are emphasised. For details, see Tables A3, A5 and A7.  
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