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Abstract

Unemployment is one of the most important macroeconomic indicators for eval-
uating economic performance and social well-being. Forecasting unemployment is
crucial for policymakers, yet traditional econometric models often fail to capture
nonlinear and dynamic patterns. This paper presents an experiment applying ar-
tificial neural networks (ANNs) to predict the unemployment rate using macroe-
conomic data. Results show that ANNs outperform traditional ARIMA models,
particularly during stable economic conditions. Implications for policy, limitations,

and future research are discussed.
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1 Introduction

Unemployment remains one of the most critical macroeconomic indicators used to as-
sess the health of an economy. High levels of unemployment reduce aggregate demand,
increase fiscal burdens through social benefits, and contribute to social instability. For
policymakers, the ability to predict unemployment trends is crucial for implementing
effective fiscal and monetary policies, adjusting labor market programs, and mitigating
social consequences.

Traditional forecasting techniques, such as autoregressive integrated moving average
(ARIMA) models or vector autoregressions (VAR), have long been employed to predict
unemployment. While effective in some contexts, these models often fail to capture the
nonlinear relationships, structural breaks, and hidden dynamics inherent in labor market
data. Moreover, economic time series are frequently affected by external shocks such as
global crises, technological change, or pandemics, which reduce the accuracy of linear
models.

The emergence of machine learning, and artificial neural networks (ANNs) in par-
ticular, provides an alternative approach. Neural networks are capable of identifying
complex patterns within data, handling nonlinearities, and adapting to dynamic environ-
ments. This makes them especially suitable for predicting macroeconomic indicators like
unemployment, which are influenced by multiple interacting variables.

This paper investigates the application of an artificial neural network to the prediction
of the unemployment rate. The study has three objectives: (i) to design and implement an
ANN-based forecasting model using macroeconomic data; (ii) to evaluate the accuracy
of ANN predictions relative to traditional statistical models; and (iii) to discuss the

implications of ANN-based unemployment forecasts for economic policy.



2 Literature Review

2.1 Traditional Approaches to Unemployment Forecasting

Forecasting unemployment has traditionally relied on econometric models. Autoregres-
sive (AR), moving average (MA), and autoregressive integrated moving average (ARIMA)
models have been widely used due to their simplicity and their ability to capture tem-
poral dependencies in time series data (Box et al), 2015). However, these models assume
linearity and stationarity, conditions that rarely hold in macroeconomic contexts. Vector
autoregressive (VAR) models extend these frameworks by allowing for multivariate inter-
actions between variables such as GDP growth, inflation, and unemployment, but they
too struggle when nonlinear dynamics dominate the labor market (Patuelli et al|, 2012).

Other approaches, such as the Phillips curve, link unemployment to inflation, and
structural econometric models embed theoretical assumptions into the forecasting pro-
cess. Yet, the breakdown of the Phillips curve in the late 20th century and the limited
robustness of structural models under shocks have highlighted the limitations of these
methods (Zhang et all, 1998). Consequently, while traditional approaches remain valu-
able benchmarks, their predictive power is often inadequate in highly volatile or nonlinear

environments.

2.2 Machine Learning in Economic Forecasting

Machine learning techniques have increasingly been applied to macroeconomic and fi-
nancial forecasting tasks. Decision trees, random forests, and support vector machines
(SVMs) have shown superior performance over linear models when nonlinear relation-
ships are present (Ghosh & Chattopadhyay, 2018). However, these models often require
extensive feature engineering and can be sensitive to parameter choices.

Artificial neural networks (ANNs) have gained attention due to their ability to approx-
imate any nonlinear function given sufficient complexity. Early applications in the 1990s
demonstrated that neural networks could outperform linear time-series models in forecast-

ing financial markets, exchange rates, and inflation (Zhang et all, 1998). More recently,



recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) have
proven effective for time-series forecasting, particularly where long-term dependencies are
present. Their use has expanded into macroeconomic forecasting, where the relationships

between variables are both nonlinear and dynamic.

2.3 ANNSs for Unemployment Prediction

Despite advances in machine learning, relatively few studies have focused specifically on
forecasting unemployment with ANNs. Patuelli et al| (2012) applied neural networks to
European labor market data, demonstrating that ANNs improved short-term unemploy-
ment forecasts compared to ARIMA models. Ghosh & Chattopadhyay (2018) studied
unemployment in India using a multilayer perceptron (MLP) architecture and found that
ANNSs captured patterns missed by econometric models, although performance declined
during periods of extreme volatility. In the United States, Choudhry et al, (2019) showed
that ANNs could identify hidden cycles in labor market dynamics, providing more robust
forecasts during stable periods.

Nevertheless, limitations persist. ANNs are often described as “black-box” models,
making it difficult for policymakers to interpret how forecasts are generated. Moreover,
they require large amounts of high-quality data, which are not always available for all
countries or labor market segments. These challenges underscore the need for further
experiments and comparative studies to evaluate whether ANNs can complement or even

replace traditional unemployment forecasting methods.

3 Theoretical Foundations

3.1 Overview of Artificial Neural Networks

Artificial neural networks are computational models inspired by the human brain’s neural
architecture. They consist of interconnected layers of nodes (neurons) that process input

data and generate outputs through weighted connections.



3.2 Learning and Training

Neural networks learn by adjusting weights using backpropagation combined with op-
timization algorithms such as stochastic gradient descent (SGD) or Adam. Training
involves minimizing a loss function, typically mean squared error (MSE) in regression

tasks.

3.3 Architectures for Time-Series Forecasting

Different ANN architectures exist: feed-forward networks (suitable for static mappings),
recurrent neural networks (RNNs) that capture sequential dependencies, and long short-
term memory (LSTM) networks that resolve vanishing gradient issues and are well-suited

for unemployment forecasting.

3.4 Advantages and Limitations

ANNSs are flexible, nonlinear, and robust to noise, but they face challenges such as inter-

pretability, large data requirements, and risk of overfitting.

4 Data and Methodology

4.1 Data Sources

Data were obtained from the World Bank, International Labour Organization (ILO),
and national statistics offices. The dataset covers 1995-2023, with quarterly unemploy-
ment rates and macroeconomic indicators: GDP growth, inflation, industrial production,

interest rates, and labor force participation.

4.2  Preprocessing

Missing values were imputed using linear interpolation, and data were normalized using
min-max scaling. The dataset was divided into 70% training, 15% validation, and 15%

testing.



4.3 ANN Architecture

The ANN used was a multilayer perceptron with two hidden layers (64 and 32 neurons,
ReLU activation). The output layer used linear activation. The model was trained for

500 epochs with early stopping, Adam optimizer, and MSE loss function.

4.4 Evaluation Metrics

Performance was measured using mean absolute error (MAE), root mean squared error

(RMSE), and R?. ARIMA(2,1,2) was used as a baseline.

5 Experimental Results

5.1 Training Performance

The ANN converged after 250 epochs. Training and validation loss stabilized without

overfitting.

5.2  Forecast Accuracy

On the test set, the ANN achieved MAE = 0.42, RMSE = 0.55, and R? = 0.89. The
ARIMA model achieved MAE = 0.68, RMSE = 0.81, and R? = 0.74.

5.3 Robustness Checks

Tests with alternative ANN architectures showed deeper models improved accuracy but

increased computation. LSTMs slightly outperformed MLPs but required careful tuning.

6 Discussion

The ANN experiment demonstrated improved forecasting compared to ARIMA, confirm-
ing the value of machine learning in labor market analysis. Still, extreme shocks (2008

crisis, 2020 pandemic) were not fully captured. Hybrid approaches combining ANNs



with scenario analysis or econometric models may enhance performance. Policymakers

can benefit from ANN-based forecasts, but interpretability remains a concern.

7 Conclusion and Policy Recommendations

This study shows that ANNs can effectively predict unemployment rates, outperforming
traditional models. They are particularly valuable in stable conditions, though less so
during extreme shocks.

Policy recommendations:

o Integrate machine learning models into central bank and government forecasting

systems.
o Complement ANN forecasts with expert judgment and scenario analysis.
o Invest in high-quality labor market data to improve model accuracy.

Future research should test hybrid models, explore LSTMs and attention-based archi-
tectures, and integrate explainability tools to increase transparency.International Labour

Organization| (2024)
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