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Abstract   This paper develops a theory of growth with self-learning AI. I decompose 

“technologies” into a non-self-learning component T(t)l and a recursive self-learning term (S(t) × 

D(t))q(t), where q(t) = q0 + r × log(S(t) × D(t)) links capability gains to deployed self-learning 

technologies S and data D. I present two complementary production functions. Version 1 highlights 

distributional channels by separating AI-complementary vs. AI-substitutable labor and human 

capital. Version 2 is measurement-oriented, mapping the self-learning stock to AI-specific physical 

capital, labor forces, and human capital, thereby operationalizing S. The model yields sharp regime 

conditions: with small/approximately constant q(t), the economy exhibits a balanced growth path 

(BGP); when θ(t) becomes large enough to push effective returns above one, growth accelerates. 

A log-space recursion implies a quadratic bound for log((SD)q(t)), establishing no finite-time 

singularity. The framework produces testable predictions—notably the need for both linear and 

quadratic terms in log(SD) in empirical specifications—and clarifies bottlenecks: insufficient AI-

specific capital or low-quality data can hold down θ(t) and prevent acceleration even with 

advanced systems. Policy implications follow directly: scale compute and energy, raise HAI, LAI, 

and improve data governance/quality. The contribution is conceptual and theory-only, positioning 

the mechanism for subsequent empirical work while providing a tractable structure for cross-

country comparisons in an economy increasingly driven by recursive, autonomous innovation. 
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1 Introduction 
Artificial intelligence with self-learning capability is altering the fundamental mechanics of 

growth. Unlike conventional technologies, self-learning systems improve through recursive 

feedback—learning from deployment scale and data—so productivity can rise without 

proportional additions of labor or human capital. Existing macro frameworks either fold AI 

indistinguishably into a generic “technology” term or treat it as static capital, thereby missing the 

distinct dynamics of recursive learning. This paper proposes a technology block that explicitly 

separates non-self-learning technologies T(t)l from a self-learning component (S(t) × D(t))q(t), 

where the recursive component q(t) = q0 + r × log(S(t) × D(t)) increases with deployed self-learning 

AI S(t) and usable data D(t). I embed this block in two production-function versions: Version 1 

focuses on distributional channels by distinguishing AI-complementary and AI-substitutable labor 

and human capital; Version 2 is measurement-oriented, mapping the stock of self-learning AI to 

AI-specific physical capital, labor forces, and human capital. Together they deliver conditions 

under which an economy remains on a balanced growth path (BGP) or transitions to sustained 

acceleration, provide a clean “no singularity” result, and generate testable predictions (notably a 

quadratic term in log(SD) arising from the recursive exponent).    

This paper is purely theoretical. The contribution is conceptual: the model shows how 

recursive self-learning generates nonlinear growth dynamics, distributional consequences, and 

bottlenecks driven by AI-specific capital and data availability. I do not attempt a direct empirical 

test here; instead, I emphasize testable predictions that can guide future empirical work. By 

maintaining a theory-only scope, the paper positions itself alongside established growth-theoretic 

contributions that first introduced new mechanisms formally before empirical work followed (e.g., 

Romer 1990; Jones 1995). The value of the framework lies in clarifying the conditions under which 

recursive self-learning AI transforms growth dynamics, not in claiming empirical verification at 

this stage. 

Substantively, the framework yields four headline insights. First, the regime switch—BGP 

versus accelerating growth—is governed by q(t): when q(t) remains small/approximately constant, 

both versions admit a BGP; when deployment and data raise q(t) enough to push effective returns 

above one, growth accelerates. Second, technology disaggregation matters: modeling technology 

as A0 × T(t)l × [S(t) × D(t)]q(t) (where A0 > 0 is a time-invariant normalization; results are invariant 

to the normalization A0 = 1) reveals data–deployment complementarities and recursive 
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amplification that are hidden when AI is treated as static capital. Third, bottlenecks in AI-specific 

capital (compute, energy, data-center capacity) and in data quality can hold down θ(t), preventing 

acceleration even when sophisticated self-learning systems exist. Fourth, the model generates 

distributional predictions—gains for AI-complementary skills and erosion for AI-substitutable 

skills—and a roadmap for policy levers (scaling KAI, improving data, building HAI, LAI). These 

themes organize the analysis that follows. 

 

2 Literature Review 
Current existing growth theories either have not taken into account AI’s ability to self-learn or do 

not have adequate model or equation to accurately calculate total output (Y) that is useful for cross-

countries comparisons, in the world where self-learning AI become increasingly important. The 

significant older models, including Solow (1956), Mankiw, Romer and Weil (1992), Lucas (1988), 

Romer (1990) and Jones (1995), clearly do not take into account AI’s ability to self-learn. Table 1 

summarizes the mathematical representations of total output in five foundational growth models: 

Solow (1956), Mankiw, Romer and Weil (1992), Lucas (1988), Romer (1990), and Jones (1995).  

Table 1 Total Output Functions 

Model Y (Total Output) 

Solow (1956) Y =	Ka (AL)1-a 

MRW (1992) Y =	Ka Hb (AL)1-a-b 

Lucas (1988) Y = AKa (uHL)1-a 

Romer (1990) Y = (ò xiadi) LY1-a 

Jones (1995) Y = Ka (ALY)1-a  

 

Where: 

Y: Total Output (in all models) 

K: Physical capital (in all models) 

L: Labor (in all models) 

A: Technology (in all models) 

a: Capital’s share in total output (in Solow, Lucas and Jones) 

H: Human capital (in all models) 
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a, b: Output elasticities of capital and human capital, respectively (in MRW) 

u: Fraction of human capital allocated to production (while the rest goes to learning) (in Lucas) 

xi: Amount of intermediate input i used (in Romer) 

N: Number of available intermediate inputs (in Romer) 

LY: Labor allocated to final goods production (in Romer and Jones) 

a: Output elasticity of intermediate inputs (in Romer)  

All of the models discussed above do not distinguish between technologies that possess 

autonomous learning capabilities and those that do not. This distinction is crucial because self-

learning technologies exhibit fundamentally different behaviors with significant implications for 

total output. Unlike conventional technologies that lack this capacity, self-learning AI can improve 

its capabilities and, consequently, its productivity without requiring additional human capital or 

labor input. This is a core feature of self-learning AI technologies that is not captured by existing 

frameworks. As such, all of above existing models are inadequate, especially in cross-countries 

comparisons, for forecasting total output in an economy where the contributions of self-learning 

AI are increasingly central to economic growth. Therefore, to accurately model output of the 

future, it is essential to disaggregate these two types of technology and account for their distinct 

effects. 

Even some of the more recent papers still have not adopted AI’s self-learning capabilities 

into their models. Any model that does not take into account AI’s ability to self-learn is inadequate 

to calculate total output of a future (especially when cross-countries analysis is performed) 

because, in the future, self-learning AI are deployed and used by general public. For example, in 

Acemoglu’s working paper The Simple Macroeconomics of AI (2024), AI’s self-learning 

capabilities is not included in the model (Acemoglu, 2024). In this paper, Acemoglu treats AI as 

usual traditional capital, which do not self-learn (Acemoglu, 2024). Another recent paper that does 

not take into account AI’s ability to self-learn is the paper by Jacobo-Romero, Carvalho and Freitas. 

In this paper, total output (Y) is defined as the following: Y = (L + AX)a × H1-a (Note: Y is total 

output; L is low-skilled labor; H is high-skilled labor; X is automation input; A is automation 

substitution factor; a is output elasticity of (L + AX)) (Jacobo-Romero, Carvalho, & Freitas, 2022). 

This paper does not model AI’s self-learning capabilities. Furthermore, this paper treats AI as a 

static automation tool that substitutes for labor in certain tasks, without modeling learning, 

adaptation or recursive improvement. Another more recent paper that does not take into account 
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AI’s ability to self-learn is the paper by Wang, Sarker, Alam and Sumon. In this paper, AI is treated 

like ordinary machines, which are static and do not have self-learning capabilities (Wang et al., 

2021). This paper’s model allows AI to increase growth, affect wages and shift labor demand but, 

in this paper, AI cannot self-learn.       

There are recent papers that have adopted AI’s self-learning capabilities into their model. 

One of the most notable papers that have adopted AI’s self-learning capabilities into their model 

is the paper by Trammell and Korinek. In this paper, Trammel and Korinek introduce the following 

equations (Trammell & Korinek, 2023): 

A	̇t = AtF	[(CtKt)r + (DtStLt)r]l/r 

A	̇t: Rate of change of productivity (technological progress) 

AtF:	Recursive feedback from current knowledge stock (this is the self-learning) 

At: Technology level 

Ct: Capital-augmenting tech 

Dt: Labor-augmenting tech 

Kt: Capital used in R&D 

Lt: Total labor supply  

St: Share of labor allocated to R&D 

l: Returns to scale in research 

r: Substitution between capital and labor in research 

Above equation allows AI to recursively accelerate its own development.  

Yt = At (1 – St) Lt 

Yt depends on At and, therefore, it is clear that total output is significantly affected by AI’s ability 

to self-learn. Despite the incorporation of AI’s ability to self-learn in the model, Trammel and 

Korinek’s model has a significant weakness that needs to be addressed. The weakness is that, in 

this model, self-learning AI are not separated from non-self-learning AI. In the real world, there 

are self-learning AI and non-self-learning AI; these two types of AI “behave” differently, and the 

difference has major implication on the total output. That is why Trammel and Korinek’s model 

still needs to be improved. 

 Another paper that has incorporated AI’s ability to self-learn is authored by Julia 

Puaschunder. In her paper, the total output (Y) is defined as followed (Puaschunder, 2022): 

Y(t) = [A(t)K(t)]a × [A(t)L(t)]b [A(t)I(t)]1-a-b 
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Y(t): Total output at time t 

A(t): Technology level 

K(t): Capital 

L(t): Labor 

I(t): Information stock (derived from AI’s self-learning capabilities, big data, Internet access, etc.) 

a, b: Output elasticities of capital and labor 

Clearly, this model takes into account AI’s ability to self-learn by multiplying A (technology level) 

by I (information stock). The weakness of this model is that technologies that self-learn are not 

separated from technologies that do not self-learn. These two types of technologies should be 

separated and treated differently in the model because they “behave” differently, and the difference 

has major implication on the total output (Y).  

 Another more recent significant paper that has taken into account AI’s ability to self-learn 

is the paper by Besiroglu, Emery-Xu and Thompson. In this paper, Y (total output) is defined as 

followed: Y(t) = [(1 - ak)K(t)]a × [A(t)(1 - al)L(t)]1-a (Besiroglu, Emery-Xu, & Thompson, 2023). 

Y(t): Total output at time t 

K(t): Total capital stock 

L(t): Total labor force 

ak: Share of capital allocated to R&D 

al: Share of labor allocated to R&D 

a: Output elasticity of capital 

A(t): Technology 

This paper also introduces the following equation: A	̇t = B × (akK(t))b × (alL(t))g × A(t)q (Besiroglu 

et al., 2023) 

A	̇t: Rate of technological progress 

B: Constant multiplier/productivity shift 

akK(t): Capital allocated to R&D 

alL(t): Labor allocated to R&D 

b: Elasticity of idea production with respect to R&D capital 

g: Elasticity of idea production with respect to R&D labor 

q: Recursive self-improvement parameter 
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The AI’s self-learning capabilities are captured by the A(t)q term. When q > 0, past knowledge 

increases future innovations, which means self-learning exists. Just like Trammel and Korinek 

paper and Puaschunder paper, Besiroglu et al. paper does not separate self-learning AI from non-

self-learning AI.  

 Another more recent paper that has taken into account AI’s ability to self-learn is the paper 

by Farach, Cambon and Spataro. In this paper, total output (Y) is a function of capital (K), human 

labor (L) and digital labor (D); Y(t) = F(K, L, D) (Farach, Cambon, & Spataro, 2025). Digital labor 

is defined as the cognitive work performed by AI systems, such as chatbots, code assistants and 

diagnostic agents (Farach et al., 2025). Only some digital labors, such as certain diagnostic agents, 

self-learn; not all digital labors self-learn. Even though this paper’s model has taken into account 

AI’s ability to self-learn, it still has meaningful weaknesses. This model does not separate digital 

labors that self-learn from digital labors that do not self-learn. Furthermore, in this model, capital 

(K) is not separated into AI-specific capital and general capital (non-AI-specific capital). AI-

specific capital includes GPUs, power infrastructures, data centers, etc. General capital is 

everything else that is not used to build and run AI. For policymakers, this separation is extremely 

important. In a model with such separation, especially with cross-countries data, policy makers 

can understand what happens to an economy if AI-specific capital is large or small.  

 Another more recent paper that has taken into account AI’s ability to self-learn is the paper 

by Aghion, Jones and Jones. In this paper, the authors introduce the following equation (Aghion, 

Jones, & Jones, 2017): Yt = At × (bt1-r Ktr + (1 - bt)1-r Ltr)1/r 

Yt: Total output 

At: Total Factor Productivity (TFP) 

bt: Fraction of tasks that have been automated 

Kt: Capital input 

Lt: Labor input 

r: Substitution parameter between capital-automated and labor-performed tasks 

Furthermore, the authors introduce the following equation (Aghion et al., 2017):  

A	̇t = AtF [(BtKt)r + (CtSt)r]1/r 

A	̇t: Rate of change of TFP 

At: TFP 

F: Recursive exponent 
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Bt: Capital-augmenting efficiency 

Kt: Capital input used in R&D 

Ct: Labor-augmenting efficiency 

St: Effective labor allocated to research 

r: Elasticity of substitution parameter 

The term AtF captures AI’s self-learning capabilities. Despite the sophistication of this paper’s 

model, the model has a major weakness. Like some models that were already mentioned above, 

this model does not separate self-learning AI from non-self-learning AI.  

 

3 Model Assumptions 
Self-learning AI already exist today, and the examples are AlphaZero, MuZero and AutoML 

systems. AlphaZero can self-learn to master complex games through self-play without any prior 

human knowledge, except the game rules (Silver et al., 2017). MuZero not only can self-learn to 

master complex games but also it can do it without even being given the game rules (Schrittwieser 

et al., 2020). Furthermore, MuZero can self-learn how the world works in certain fields, such as 

physics (Schrittwieser et al., 2020). ChatGPT, Gemini, Perplexity, Claude and many other AI, on 

the other hand, are often mistakenly believed to be self-learning AI but the reality is that they are 

not self-learning AI. ChatGPT, Gemini, Perplexity and Claude do not update their knowledge after 

deployment; for these AI, knowledge update requires explicit action by engineers or researchers. 

These statements are confirmed by the famous Apple paper, “The Illusion of Thinking”, which 

shows that Claude 3.7 Sonnet, DeepSeek-R1, DeepSeek-V3 and o3-mini (by OpenAI) simulate 

thinking via pre-programmed patterns but do not adapt or improve in the way a self-learning AI 

would (Shojaee et al., 2025). Self-learning AI are not currently being used by general public. Self-

learning AI are currently being used by only specific institutions (such as high-ranking universities, 

including Stanford University and UC Berkeley), labs and companies (such as Google, Amazon 

and Tesla) that have the expertise to use them safely. However, the fact that self-learning AI already 

exist means that it is only a matter of time for mass deployment to the general public. In the future, 

the uses of self-learning AI will be widespread. When Internet first existed in the late 1960s, only 

researchers and scientists used it. Now, the uses of Internet are very common and widespread; the 

same will happen for AI. Once a new technology, which can increase productivities and 

profitability very significantly, already exists, it is only a matter of time before there are widespread 
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adoptions and uses of that technology. The amount of gains from improving and spreading such 

technology is just simply too great for any party to stop the developments and the spreading of 

such technology. Companies always seek greater profitability, and they have the lobbyists, the 

money and the resources to ensure the developments and the mass deployments of such technology 

are not meaningfully disrupted. Moreover, there is the following attitudes among companies and 

lawmakers: “If we do not do it, then somebody else (or another country) will do it”. Many scientists 

support the idea that Artificial General Intelligence (AGI) is inevitable. While the timing of the 

first AGI varies depending on which expert is being asked, the majority of the scientific community 

believe in the inevitability of AGI. Whether AGI will come into existence or not, self-learning AI 

already exist, and it will only become more capable and more powerful. What is definitely 

inevitable is the widespread uses of self-learning AI in any field, including physics, biology, 

finance, etc. The last two statements are very important assumptions of this paper. Every existing 

paper or model has not sufficiently incorporated AI’s ability to self-learn; each of existing papers 

or models has meaningful flaw/s; some of the flaws have been discussed in the Literature Review 

section above. This paper is aimed to provide production functions, which have no meaningful 

flaw, of today and the future, in which self-learning AI are widely used by general public.   

 

4 The Proposed Equations (New Theory) 
4.1 Proposed Production Functions 

My proposed equation is built from MRW (Mankiw-Romer-Weil) equation, which is the following 

(Mankiw et al., 1992): Y(t) = K(t)a H(t)b [A(t)L(t)]1-a-b 

Y(t): Total output at time t 

K(t): Physical capital stock at time t 

H(t): Human capital stock at time t 

A(t): Level of technology at time t 

L(t): Total labor force at time t 

a: Output elasticity of physical capital 

b: Output elasticity of human capital 

Self-learning AI is not represented properly in the MRW model. I intend to improve the MRW 

model. 
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In this paper, I introduce two main equations. My first proposed equation (version 1 of 

my model) is as followed:  

Y(t) = A0 × T(t)l × [S(t) × D(t)]q(t) × KAI(t)a1 × KG(t)a2 × LC(t)b1 × LS(t)b2 × [HC0 × ehct × (1+ µ log(SD)) 

+ HS0 × ehst × (1 - n log(SD))]d 

Y(t): Total output 

A0: Initial TFP 

T(t): Stock of non-self-learning technologies, which includes non-self-learning AI and non-AI 

technologies 

l: Output elasticity of non-self-learning technologies 

S(t): Stock of deployed, self-learning AI systems 

D(t): Volume and quality of data available for learning 

q(t): Recursive learning exponent 

KAI(t): Capital invested specifically for AI systems, such as GPUs and data centers 

a1: Output elasticity of AI-specific physical capital 

KG(t): General capital and these capital exclude capital for AI systems 

a2: Output elasticity of general physical capital 

LC(t): AI-complementary labor 

b1: Output elasticity of AI-complementary labor 

LS(t): AI-substitutable labor 

b2: Output elasticity of AI-substitutable labor 

HC0: Initial stock of AI-complementary human capital 

HS0: Initial stock of AI-substitutable human capital 

hc: Baseline growth of HC that comes from traditional learning, such as university degree, without 

self-learning AI 

hs: Baseline growth of HS that comes from traditional learning, such as university degree, without 

self-learning AI    

µ: Elasticity that determines how much smarter AI-complementary workers get as self-learning AI 

scale grows 

n: Erosion rate, which is elasticity of how badly self-learning AI substitutes AI-substitutable 

human capital 



 11 

d: Output elasticity of human capital 

Note: 0 < [n log(SD)] < 1. Each exponent in the equation above > 0. Always set: A0 = 1. A0 is a 

pure scale factor that can be absorbed by units T, S, D. 

If my proposed model is compared with the MRW model, then the comparisons are as followed: 

The Technologies Part 

A(t)1-a-b in the MRW model is replaced by the following in my proposed model: A0 × T(t)l × [S(t) × 

D(t)]q(t). Unlike in MRW where A (technology) and L (total labor force) cannot be separated 

because, in MRW, both A and L are exogenous, in my proposed production function, technology 

and total labor force can be separated because each of them is endogenous.   

Contribution (to total output) from self-learning AI is not properly represented in the MRW 

model whereas, in my proposed model, contribution from self-learning AI (to total output) is 

properly represented by the following part: [S(t) × D(t)]q(t). Contribution (to total output) from non-

self-learning AI and all of non-AI technologies are represented by T(t)l in my proposed model. A0 

is just the initial TFP that is always set to 1. In my model, self-learning AI are clearly separated 

from non-self-learning AI, which is categorized the same as every non-AI technology. S(t) is stock 

of deployed, self-learning AI systems. Volume and quality of data available for AI’s self-learning 

are represented by D(t).  

 I model the effective self-learning signal in production as the product S(t) D(t). The 

multiplicative form captures strong complementary between deployment scale and data. If either 

deployed self-learning capacity or useable data is near zero, then effective self-learning is near 

zero. This mirrors evidence and theory that treat data as a nonrival input that raises returns when 

combined with algorithms and scale (Jones & Tonetti, 2020), and that data accumulation interacts 

with firm scale to amplify performance (Farboodi et al., 2019). Formal models of data externalities 

also show that one unit of data’s value rises with the presence of other data and learning users 

(Ichihashi, 2021). Economically, S belongs in the signal because only deployed systems generate 

usage and feedback loops that create and exploit data (Acemoglu & Restrepo, 2018; Farboodi et 

al., 2019). D belongs because the volume and quality of usable data condition how much the 

deployed systems can learn from their environment (Jones & Tonetti, 2020; Ichihashi, 2021). The 

multiplicative SD term is thus not ad hoc; it encodes the complementarity that theory predicts, and 

the scaling evidence corroborates. 
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How fast the self-learning AI improve depends on q(t), the recursive learning exponent. 

q(t) is calculated as followed: q(t) = q0 + r × log(S(t) × D(t)). q0 is baseline learning capacity and r 

is the sensitivity of recursive improvement, which measures how strongly scale leads to smarter 

AI. The log is used to create diminishing returns from scale, which is common in AI capability 

scaling laws. This formulation mirrors observed empirical regularities in AI scaling: each doubling 

of compute or training data raises effective capability by roughly a constant increment in log-space 

(Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022; Bahri et al., 2024). 

An important implication of this specification, q(t) = q0 + r × log(S(t) × D(t)), is that the 

recursive block generates a quadratic term in log(SD). To see this, note that the self-learning 

component enters as [S(t) × D(t)]q(t). Taking logs yields q(t) log(SD). Because q(t) itself is defined 

as q0 + r × log(SD), substitution gives q(t) log(SD) = q0 log(SD) + r [log(SD)]2. Thus, any 

regression or empirical specification derived from the model must include both the linear and 

quadratic terms in log(SD). The presence of this quadratic is not arbitrary but rather the unique 

empirical signature of the recursive exponent. It captures the curvature implied by recursive 

learning: output rises with log(SD) but at a rate that itself grows with the scale of deployed systems 

and data.   

In the MRW model, A(t) is defined as followed: A(t) = A0 × egt (Mankiw et al., 1992). 

Therefore, the growth rate of A(t) in the MRW model is g. Clearly, there is no recursive or self-

learning component in MRW model. In my model, the “technologies part” is: A0 × T(t)l × [S(t) × 

D(t)]q(t). A0 does not change. The growth rate contribution of T(t)l is the following: 
!
!"

 log (T(t)l) = l × !
!"

 log T(t) = l × #(")
̇

#(")
 = l × gT   

The growth rate contribution of [S(t) × D(t)]q(t) is: r(gS + gD) × log(SD) + q(t) × (gS + gD). Below is 

the calculation. 

Let’s define the following: SL(t) = [S(t) × D(t)]q(t); note: SL stands for Self-Learning. 

gSL(t) = '((")
̇

'((")
  

log SL(t) = q(t) × log[S(t) × D(t)] 
!
!"

 log SL(t) = q̇(t) × log (SD) + q(t) × !
!"

 log(SD) 

Since: 
!
!"

 log(SD) = !
!"

 log S + !
!"

 log D = '̇
'
 + )̇

)
 = gS + gD 
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q̇(t) = r × !
!"

 log(SD) = r × (gS + gD) 

gSL(t) = r(gS + gD) × log(SD) + q(t) × (gS + gD) 

S itself is a function of AI-specific human capital, AI-specific labor and AI-specific 

physical capital. S = f(HAI, LAI, KAI). HAI is AI-specific human capital; LAI is AI-specific labor; 

KAI is AI-specific physical capital. Total human capital = HAI + HNAI (Note: HNAI is non-AI human 

capital). Total labor forces = LAI + LNAI (Note: LNAI is non-AI labor). Total physical capital = KAI 

+ KG. 

Therefore, my second production function is as followed: 

Y(t) = A0 × T(t)l × [S(t) × D(t)]q(t) × KAI(t)a1 × KG(t)a2 × LAI(t)Æ1 × LNAI(t)Æ2 × HAI(t)¶1 × HNAI(t)¶2 

I label this equation as version 2 of my model. Each exponent in this equation > 0. Always set: 

A0 = 1. A0 is a pure scale factor that can be absorbed by units T, S, D. Just like the version 1 of my 

production function, in the version 2, technology can be separated from total labor force because 

each of them is endogenous.  

This part “Y(t) = A0 × T(t)l × [S(t) × D(t)]q(t) × KAI(t)a1 × KG(t)a2” of the version 2 equation is 

exactly the same as the same part of the version 1 equation. Æ1 is output elasticity of AI-specific 

labor forces; Æ2 is output elasticity of non-AI labor forces; ¶1 is output elasticity of AI-specific 

human capital; ¶2 is output elasticity of non-AI human capital. Since T consists of non-AI 

technologies and non-self-learning AI, then: T = TNAI + TAI (Note: TNAI is non-AI technologies; 

TAI is non-self-learning AI). Thus, TAI is also a function of AI-specific human capital, AI-specific 

labor and AI-specific physical capital. TAI = g(HAI, LAI, KAI).  

As stated earlier, q(t) = q0 + r × log(S(t) × D(t)). In both versions of my production functions, 

q(t) is the only exponent whose value is determined by its base, which is S and D. This fact is what 

makes it recursive, a distinct feature of self-learning AI. The MRW model does not have an 

exponent whose value is determined by its base and, therefore, the MRW does not have a recursive 

component; this means that the MRW model is insufficient in an economy with deployed self-

learning AI. With all fairness, the MRW paper was published in 1992, a year in which self-learning 

AI had not yet existed. The technologies part is exactly the same in both of versions of my model. 

In both my production functions, S(t) is defined as followed: S(t) = s0 × KAI(t)t × HAI(t)v × LAI(t)G.  

s0: Scale parameter, converting units of inputs into the units of S(t) and capturing baseline 

technology efficiency in deployed self-learning AI; note: s0 > 0. 



 14 

t, v, G: Output elasticities of AI-specific physical capital, AI-specific human capital and AI-

specific labor, respectively, for self-learning AI; note: t, v, G > 0. 

The rate of change of S(t) is: S(t) × [t (K̇AI(t)/KAI(t)) + v (ḢAI(t)/HAI(t)) + G (L̇AI(t)/LAI(t))]. 

The growth rate of S(t) is: gS = t (K̇AI(t)/KAI(t)) + v (ḢAI(t)/HAI(t)) + G (L̇AI(t)/LAI(t)). 

In both my production functions, TAI, which is non-self-learning AI, is defined as followed: TAI(t) 

= t0 × KAI(t)Á × HAI(t)Ã × LAI(t)V. 

t0: Scale parameter, converting units of inputs into the units of TAI and capturing baseline 

technology efficiency in deployed non-self-learning AI; note: t0 > 0. 

Á, Ã, V: Output elasticities of AI-specific physical capital, AI-specific human capital and AI-

specific labor, respectively, for non-self-learning AI; note: Á, Ã, V > 0. 

The rate of change of TAI(t) is: TAI(t) × [ Á (K̇AI(t)/KAI(t)) + Ã (ḢAI(t)/HAI(t)) + V (L̇AI(t)/LAI(t))]. 

The growth rate of TAI(t) is: ṪAI(t)/TAI(t) = Á (K̇AI(t)/KAI(t)) + Ã (ḢAI(t)/HAI(t)) + V (L̇AI(t)/LAI(t)). 

TNAI(t) = TNAI(0) × egNAIt, and gNAI ≥ 0. 

The growth rate of TNAI(t) is: ṪNAI(t)/TNAI(t) = gNAI. 

Therefore, I have the followings: 

T(t) = TNAI(t) + TAI(t) = TNAI(0) × egNAIt + t0 × KAI(t)Á × HAI(t)Ã × LAI(t)V. 

The growth rate of T(t) is: gT = [(TNAI(t)/T(t)) × gNAI] + [(TAI(t)/T(t)) × (Á (K̇AI(t)/KAI(t)) + Ã 

(ḢAI(t)/HAI(t)) + V (L̇AI(t)/LAI(t)))]. 

I define the growth rate of TAI(t) as gTAI(t), which equals to: Á (K̇AI(t)/KAI(t)) + Ã (ḢAI(t)/HAI(t)) + 

V (L̇AI(t)/LAI(t)). 

Therefore, the growth rate of T(t) can be stated as: gT = [(TNAI(t)/T(t)) × gNAI] + [(TAI(t)/T(t)) × gTAI]. 

The Physical Capital Part 

K(t)a in the MRW model is replaced by the following: KAI(t)a1 × KG(t)a2 in both versions of my 

model. In both versions of my model, total capital = KAI(t) + KG(t). KAI(t) is physical capital 

invested specifically for AI systems, such as GPUs and data centers. KG(t) is all other physical 

capital. Notice that, in both versions of my model, physical capital is not divided based on self-

learning capabilities. This is because all AI (self-learning and non-self-learning) require many of 

the same physical capital, such as GPUs and data centers; furthermore, non-self-learning AI can 

be improved and become self-learning AI; this makes separating physical capital based on self-

learning capabilities almost impossible. That is why, in both versions of my model, each physical 
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capital is classified based on whether it is for AI or not. The growth rate of KAI is: gKAI = K̇AI /KAI. 

The growth rate contribution of KAIa1 is: !
!"

 log KAIa1 = a1 × gKAI. The growth rate of KG is: gKG = K̇G 

/KG. The growth rate contribution of KGa2 is: !
!"

 log KGa2 = a2 × gKG. The purpose of separating 

physical capital into KAI and KG is to notice and understand what happen to contribution from non-

self-learning technologies (which is represented by T(t)l), contribution from self-learning AI 

(which is represented by [S(t) × D(t)]q(t)) and, therefore, total output (Y(t)) when physical capital 

invested specifically for AI systems are increased or decreased. Cross-sectional and panel 

regressions across countries can be used to gain such understanding.   

The Human Capital Part 

For the human capital part, I will now discuss the version 1 of my model in this paragraph. H(t)b 

in MRW model is replaced by the following (in my version 1 model): [HC0 × ehct × (1+ µ log(SD)) 

+ HS0 × ehst × (1 - n log(SD))]d. In my version 1 model, human capital is divided into human capital 

that is enhanced by AI and human capital that is reduced by AI. The following part is the human 

capital that is enhanced by AI: HC = HC0 × ehct × (1+ µ log(SD)), whereas the following part is the 

human capital that is reduced by AI: HS = HS0 × ehst × (1 - n log(SD)). The term ehct accounts for 

increase in AI-complementary human capital that is caused by all types of learning that do not use 

self-learning AI. For AI-complementary human capital, the learning that is enhanced by self-

learning AI is captured by the following: (1+ µ log(SD)). µ is the elasticity that determines how 

much smarter AI-complementary workers get as self-learning AI scale grows. HC0 is just initial 

stock of AI-complementary human capital. The term ehst accounts for increase in AI-substitutable 

human capital that is caused by all types of learning that do not use self-learning AI. hs itself 

consists of two competing and opposite forces. The first force is from people who learn and 

improve their skills through reading, experiences, etc. This first force increases hs. The second 

force is from non-self-learning AI that reduce people’s human capital values, as these non-self-

learning AI reduce human tasks or replace the humans completely. This second force reduces hs. 

For AI-substitutable human capital, the reduction of the value of human capital that is caused by 

self-learning AI is represented by the following term: (1 - n log(SD)). n is the erosion rate, which 

is the elasticity of how badly self-learning AI substitutes AI-substitutable human capital. HS0 is 

just the initial stock of AI-substitutable human capital. The growth rate contribution of the human 

capital in my model is calculated as followed:   
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H(t) = [HC0 × ehct × (1+ µ log(SD)) + HS0 × ehst × (1 - n log(SD))]d 

H(t) = Z(t)d 
*(")̇

*(")
 = d × +(")

̇

+(")
 

M(t) = HC0 × ehct × (1+ µ log(SD)) 

N(t) = HS0 × ehst × (1 - n log(SD)) 

𝑍(𝑡)̇  = 𝑀(𝑡)̇  + 𝑁(𝑡)̇   
!
!"

M(t) = HC0 × ehct [hC (1 + µ log(SD)) + µ × !
!"

 log (SD)] 

!
!"

N(t) = HS0 × ehst [hS (1 - n log(SD)) - n × !
!"

 log(SD)] 

𝑍(𝑡)̇  = HC0 × ehct [hC (1 + µ log(SD)) + µ × !
!"

 log (SD)] + HS0 × ehst [hS (1 - n log(SD)) - n × !
!"

 

log(SD)] 

gH(t) = d × ({HC0 × ehct [hC (1 + µ log(SD)) + µ × !
!"

 log (SD)] + HS0 × ehst [hS (1 - n log(SD)) - n × !
!"

 

log(SD)]}/{ HC0 × ehct × (1+ µ log(SD)) + HS0 × ehst × (1 - n log(SD))}) 

Since !
!"

 log(SD) = '̇
'
 + )̇

)
 = gS + gD, then: 

The growth rate contribution of human capital: gH(t) = d × ({HC0 × ehct [hC (1 + µ log(SD)) + µ × (gS 

+ gD)] + HS0 × ehst [hS (1 - n log(SD)) - n × (gS + gD)]}/{ HC0 × ehct × (1+ µ log(SD)) + HS0 × ehst × (1 - 

n log(SD))}) 

 For the human capital part, I will now discuss the version 2 of my model in this paragraph. 

H(t)b in MRW model is replaced by the following (in my version 2 model): HAI(t)¶1 × HNAI(t)¶2. In 

the version 2 of my model, human capital is categorized based on whether it is AI-specific or not; 

AI-specific human capital, HAI, are human capital that can develop AI, whereas the rest of human 

capital are non-AI human capital, HNAI. The growth rate of HAI is: gHAI = ḢAI /HAI. The growth rate 

of HNAI is: gHNAI = ḢNAI /HNAI. The growth rate contribution of HAI¶1 is: !
!"

 log HAI¶1 = ¶1 × gHAI. The 

growth rate contribution of HNAI¶2 is: !
!"

 log HNAI¶2 = ¶2 × gHNAI.  

The Labor Force Part 

For the labor force part, I now discuss the version 1 of my model until I state that I am switching 

to discussion of the version 2. In the MRW model, the total labor force at time t is represented by 

L(t). In version 1 of my model, the total labor force is divided into LC (AI-complementary labor) 
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and LS (AI-substitutable labor). LC is the labor force whose human capital values are enhanced by 

AI. LS is the labor force whose human capital values are reduced by AI and, as a result, some of 

them work less or become unemployed as AI substitute them. Total labor force at time t: L(t) = 

LC(t) + LS(t). In my equation, the labor force part is the following: LC(t)b1 × LS(t)b2. b1 is output 

elasticity of AI-complementary labor and b2 is output elasticity of AI-substitutable labor.  

Both LC and LS change over time. First, people in the LS category can improve their skills 

and switch to the LC category. For example, some computer programmers lose their jobs, as certain 

AI can write codes and do their tasks. Since these people already have background in computer 

science, they can learn to become AI computer programmers, which are in high demand. Once 

they have the skills to design, build and optimize AI systems, they switch to the LC category. That 

is an example of migration from LS to LC, which occur when people who were in LS improved 

their skills until their skills are good enough for the LC category. The second type of migration is 

the migration from LC to LS, which occurs as AI technologies keep improving and make people’s 

skills in the LC category become substitutable by AI. The rate of change of LC and LS are defined 

as followed: 
!
!"

 LC(t) = fC(t) + YL(t) - c(t) 

!
!"

 LS(t) = fS(t) - YL(t) + c(t) 

YL(t): Re-skilling rate, which is the rate of people who were in LS category and have switched to 

LC category because these people have improved their skills enough for the LC category. 

c(t): The rate of people who have switched from LC category to LS category because AI 

technologies keep improving and, as a result, these people who were in LC category can be fully 

or partially replaced by AI. 

fC(t): Inflows into LC that come from anything other than YL(t); fC(t) includes inflows from 

immigration or education that feed complementary occupations; examples: AI-engineer migrants 

and computer science graduates with great AI-skills. 

fS(t): Inflows into LS that come from anything other than c(t); fS(t) are new workers whose skills 

are substitutable by AI; examples: high school dropouts and high school graduates, who have AI-

substitutable skills and decide to work full-time, instead of pursuing higher education. 

fC(t), fS(t), YL(t) and c(t) are defined as followed: 

fC(t) = hC(t) × L4(t) 
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hC(t): Baseline entry rate into LC 

L4(t): Eligible working age population 

fS(t) = pS(t) × L4(t) 

pS(t): Baseline entry rate into LS 

L4(t): Eligible working age population 

YL(t) = JL(t) × LS(t) 

JL(t): Share of LS who can and do improve their skills enough to become part of LC 

c(t) = x × LC(t) × log(1 + [S(t) × D(t)]) 

x: Erosion coefficient, which reflects the sensitivity of complementary roles to being reclassified 

as substitutable 

 For the labor force part, I now discuss the version 2 of my model. L(t)1-a-b in the MRW 

model is replaced by the following (in my version 2 model): LAI(t)Æ1 × LNAI(t)Æ2. In the version 2, 

total labor force is categorized based on whether it is AI-specific or not. Unlike in the version 1, 

there is no migration between the 2 categories in the version 2. To have AI-specific skills, an 

individual must have strong computer science, computer engineering, or mathematics background. 

This fact prevents meaningful migration between LAI and LNAI. People, who do not have at least 

one of these backgrounds, cannot become part of LAI overnight; they must learn for years before 

they can be part of LAI. People in LAI do not want to be part of LNAI; maybe there are very few 

people who want to, but it is safe to assume that there is no meaningful migration from LAI to LNAI. 

Therefore, in the version 2 of my model, there is no migration between LAI and LNAI. The growth 

of LAI is: gLAI = L̇AI /LAI. The growth rate of LNAI is: gLNAI = L̇NAI /LNAI. The growth rate contribution 

of LAIÆ1 = Æ1 × gLAI. The growth rate contribution of LNAIÆ2 = Æ2 × gLNAI.  

Table 2 summarizes and compares MRW and the two versions of my model. 

Table 2 Comparisons between MRW and 2 Versions of Proposed Model 

 MRW My Model (Version 1) My Model (Version 2) 

Y (Total Output) Technologies Part × Physical Capital Part × Human Capital Part × Labor Force Part 

Technologies Part [A(t)]1-a-b A0 × T(t)l × [S(t) × D(t)]q(t) A0 × T(t)l × [S(t) × D(t)]q(t) 

Physical Capital 
Part 

K(t)a KAI(t)a1 × KG(t)a2 KAI(t)a1 × KG(t)a2 

Human Capital 
Part 

H(t)b [HC0 × ehct × (1+ µ 
log(SD)) + HS0 × ehst × (1 

- n log(SD))]d 

HAI(t)¶1 × HNAI(t)¶2 
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Labor Force Part [L(t)]1-a-b LC(t)b1 × LS(t)b2 LAI(t)Æ1 × LNAI(t)Æ2 

 

Y (total output) in version 1 is different from Y in version 2. Both the technologies part (A0 × T(t)l 

× [S(t) × D(t)]q(t)) and the physical capital part (KAI(t)a1 × KG(t)a2) are exactly the same in both 

versions of my model, as clearly shown in Table 2. For the labor force part, logically, if it is the 

same economy, then the total labor force must be the same under both version 1 and version 2. 

Therefore, LC + LS = LAI + LNAI. However, LC(t)b1 × LS(t)b2 ≠ LAI(t)Æ1 × LNAI(t)Æ2. Furthermore, [HC0 

× ehct × (1+ µ log(SD)) + HS0 × ehst × (1 - n log(SD))]d ≠ HAI(t)¶1 × HNAI(t)¶2. Just like MRW model, 

both versions of my model are intended to be mostly applied in cross-sectional and panel 

regressions across countries. Therefore, it does not matter if Y in version 1 differs from Y in version 

2. Version 1 should be compared with version 1, and version 2 should be compared to version 2 in 

cross-countries analysis.  

Version 1 is more focused in demonstrating the impact of self-learning AI on human capital 

and the labor force; who benefit and who are hurt by deployed self-learning AI, as well as the 

magnitude of the gain and the pain from the deployed self-learning AI, should be better understood 

by version 1. Version 2 is to calculate S, which applies to both version 1 and version 2. I use 

data in version 2 to calculate S in version 1, which is the same as S in version 2.  

 In a world without AI, both versions of my model are just MRW model. In a world without 

AI, the recursive exponent q(t) is just zero (in both versions of my production function). This 

means that [S(t) × D(t)]q(t) = [S(t) × D(t)]0 = 1. Therefore, in both versions of my model, the 

technologies part is just: A0 × T(t)l, which is the same as [A(t)]1-a-b in MRW, since A0 × T(t) is the 

same as A(t) (stated in a different way), with different exponent name but essentially the same 

exponent value. In both versions of my model and in the world without AI, KAI does not exist and, 

therefore, the physical capital part is just KG(t)a2, which is the same as K(t)a in MRW model (just 

with different base name and different exponent name but the value of the base and the exponent 

are the same in the world without AI). In the world without AI and version 1 of my production 

function, there is no need to categorize L into LC and LS since AI does not exist and, therefore, 

there is nothing to be complemented or substituted by AI. Thus, the labor part of my version 1 is 

just: L(t)b, which is the same as L(t)1-a-b in MRW model (just with different exponent name but the 

same exponent value). In the world without AI and in my version 2 production function, LAI does 



 20 

not exist and, therefore, the labor part is just: LNAI(t)Æ2, which is the same as L(t)1-a-b (just with 

different base name and different exponent name but the same base value and the same exponent 

value). In the version 1 of my production function, the human capital part is the following: [HC0 × 

ehct × (1+ µ log(SD)) + HS0 × ehst × (1 - n log(SD))]d. In the world without AI, µ (elasticity that 

determines how much smarter AI-complementary workers get as self-learning AI scale grows) is 

zero, and n (elasticity of how badly self-learning AI substitutes AI-substitutable human capital) is 

also zero because there is no self-learning AI. This means that the human capital part is only the 

following: [(HC0 × ehct) + (HS0 × ehst)]d. (HC0 × ehct) represents HC, and (HS0 × ehst) represents HS. Since 

there is nothing to be complemented or substituted by AI (in the world without AI), there is no 

need to separate H into HC and HS. Therefore, the human capital part is just: H(t)d, which is the 

same as H(t)b in MRW model (just with different exponent name but the same exponent value). In 

the world without AI and version 2 of my production function, the human capital part is just: 

HNAI(t)¶2 (since HAI does not exist), which is the same as H(t)b in MRW model (just with different 

base name and different exponent name but the value of both the base and the exponent are the 

same). Furthermore, in the world without AI, it only makes sense to combine A with L again 

because, without AI, both A and L become exogenous. Therefore, in the world without AI, both 

my production functions are truly just MRW production function. MRW model is correct and 

sufficient at the time it was introduced because there is no deployed self-learning AI in 1992. 

However, for the present time and anytime in the future, MRW model is insufficient because 

deployed self-learning AI already exist and will only grow exponentially; this paper is intended to 

introduce a model that is appropriate for the present time and anytime in the future.  

 As far as I am aware, there is no empirical data about the impact of deployed self-

learning AI on total output and, therefore, I cannot use empirical data to support my model. 

However, in the future, I expect that empirical data will confirm the usefulness of my proposed 

model. At present time, I can prove my model with logics. As already mentioned above, my 

production functions are as followed: 

Y(t) = A0 × T(t)l × [S(t) × D(t)]q(t) × KAI(t)a1 × KG(t)a2 × LC(t)b1 × LS(t)b2 × [HC0 × ehct × (1+ µ log(SD)) + 

HS0 × ehst × (1 - n log(SD))]d (Note: this is version 1). 

Y(t) = A0 × T(t)l × [S(t) × D(t)]q(t) × KAI(t)a1 × KG(t)a2 × LAI(t)Æ1 × LNAI(t)Æ2 × HAI(t)¶1 × HNAI(t)¶2 (Note: 

this is version 2). 
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The following few paragraphs are my proofs using logics. 

First, self-learning AI already exist and have already been deployed but only have been 

used by a few parties, including top universities, labs and large tech companies. Since self-learning 

AI are expected to provide massive gain in productivities, it is only a matter of time before general 

public use self-learning AI directly. Since self-learning AI have recursive component, there is a 

need for a production function that takes into account the recursive element of self-learning AI.  

Second, since both MRW model and Romer (1990) model are already widely accepted, 

then, as long as economists agree with my logics in the previous, this and the next paragraph, both 

versions of my model should also be widely accepted. I mention MRW because each of my 

production functions consists of technologies part, physical capital part, labor force part and human 

capital part, which is exactly like the MRW model. However, there is one very important difference 

between MRW, and both my production functions. In MRW, A and L cannot be separated because 

both A and L are exogenous. In both of my production functions, technologies and labor forces are 

separated, and this is fine because, in both my production functions, both technologies and labor 

forces are endogenous. This is why I mention Romer (1990) because, in Romer (1990) paper, 

Romer states that A is endogenous, which means that A can be modeled independently of L . Romer 

(1990) broke the Uzawa’s restriction by making A endogenous and, Romer’s model is widely 

accepted. Both of my production functions have the structures that are already widely accepted by 

economists. To adjust with the current and future economy, in which deployed self-learning AI is 

increasingly affecting total output, I have created two production functions that take into account 

self-learning AI. In both of my production functions, I just separate A(t)1-a-b in the MRW model 

into non-self-learning technologies (A0 × T(t)l in my model) and self-learning technologies (A0 × 

[S(t) × D(t)]q(t) in my model). Furthermore, in my version 2 production function, for K, L and H in 

the MRW model, I separate each of them into AI-specific and non-AI. Given the exponential 

increase in productivity due to self-learning AI, these separations are necessary. I do not separate 

K based on whether a capital is for self-learning AI or not because both self-learning and non-self-

learning AI use many of the same capital, such as GPUs, power and data centers; in addition, non-

self-learning AI can be improved into self-learning AI. These facts make it almost impossible to 

separate based on self-learning capability. That is why, for K, I separate based on whether a capital 

is for AI or not. Similar logic applies to why I separate L and H based on whether it is AI-specific 

or not. To have AI-specific skills, an individual must have strong background in computer science, 
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computer engineering or mathematics so there is high barrier of entry to have HAI and to be part 

of LAI. People who are in LAI tend to remain in LAI, and people who are in LNAI tend to remain in 

LNAI. However, the barrier between engineers, who can build non-self-learning AI but not self-

learning AI, and engineers, who can build self-learning AI, is not high. In fact, self-learning AI are 

built by engineers who previously could not build self-learning AI. AI engineers, who cannot build 

self-learning AI yet, can learn how to build self-learning AI much faster than non-AI workers 

(workers who belong in LNAI). That is why, in version 2 of my model, I separate L and H based on 

whether it is AI-specific or not; I did not separate them based on whether it is self-learning-specific 

or not.  

Third, since nowadays many people are concerned about what AI can do to the labor forces, 

there is a need of a new production function that helps in addressing this concern. The version 2’s 

technologies and physical capital part, which is: A0 × T(t)l × [S(t) × D(t)]q(t) × KAI(t)a1 × KG(t)a2, is 

exactly the same as version 1’s. In version 1, for the human capital part and the labor force part, 

instead of separating based on whether they are AI-specific or non-AI-specific, I separate the 

human capital and the labor force based on whether they are complemented or substituted by AI. 

AI-complementary human capital should grow as self-learning AI grow; this fact is reflected in 

the following portion of the equation: (1+ µ log(SD)). AI-substitutable human capital should shrink 

as self-learning AI grow; this is reflected in the following portion of the equation: (1 - n log(SD)).      

              

4.2 Balanced Growth Path (BGP), Accelerating Growth Path or Singularity. 

Self-learning AI can become smarter, more capable and more productive over time without any 

new human capital or any additional labor. Therefore, self-learning AI is different from any other 

technology that has existed; self-learning AI can turn an economy that is in balanced growth path 

into an economy that is in accelerating growth path. In both my production functions, whether an 

economy is in balanced growth path or accelerating growth path, it depends on the value of q(t), 

the recursive learning exponent. In the version 1 production function, the sum of all exponents, 

excluding q(t), is the following: l + a1 + a2 + b1 + b2 + d < 1. In the version 2 production function, 

the sum of all exponents, excluding q(t), is the following: l + a1 + a2 + Æ1 + Æ2 + ¶1 + ¶2 < 1. In 

both my production functions, if q(t) is small, then the sum of all exponents, including q(t), is 

equal to or less than 1, which means an economy is in balanced growth path; if q(t) is large enough, 

then the sum of all exponents, including q(t), is larger than 1, which means an economy is in 
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accelerating growth path. If the sum of all exponents, including q(t), equals to 1, then there is 

constant returns to scale (CRS); if the sum of all exponents, including q(t), is less than 1, then there 

is decreasing returns to scale (DRS). If q(t) is large enough to make an economy to be in 

accelerating growth path, then total output must be increasing at increasing rate; this must be 

caused by contributions from self-learning AI that increase at increasing rate. Aghion, Jones and 

Jones explicitly support that self-learning AI increase productivity at increasing rate over time 

(Aghion et al., 2017). Trammell and Korinek also explicitly support the idea that sufficiently 

advanced self-learning AI lead to increasing productivity at increasing rate (Trammell & Korinek 

2023).  

 Singularity is not possible in both versions of my production function. By definition, 

singularity must satisfy the following: lim
"	®	"∗

𝑌(𝑡) = ¥ in finite time, which is not possible in each 

of my production functions. In both versions, the only block that could in principle drive an 

explosion is the self-learning term SL(t) = [S(t) × D(t)]q(t) with q(t) = q0 + r × log(S(t) × D(t)). Let 

W(t) = log(S(t) × D(t)). This means: log SL(t) = q(t) × W(t). Using q̇(t) = rẆ(t) together with Ẇ(t) 

= gS(t) + gD(t), I get the following differential identity: !
!"

 log SL(t) = Ẇ(t) [q0 + 2rW(t)]. Because 

S(t) = s0 × KAI(t)t × HAI(t)v × LAI(t)G, its growth rate is a finite linear combination of the finite growth 

rates of KAI, HAI and LAI; hence, gS is finite. D(t) is treated with an ordinary finite growth rate gD. 

Let Ẇ(t) = r(t). This means: Ẇ(t), which equals to: gS(t) + gD(t), is bounded on every finite horizon 

by some r̅ < ¥. Integrating, W(t) = W(0) + ∫ rt	dt"
.  ≤ W(0) + r̅t. Substituting this bound back gives: 

!
!"

 log SL(t) ≤ r̅ [q0 + 2r(W(0) + r̅t)] = A + Bt for constants A, B. A single integration yields: log 

SL(t) ≤ log SL(0) + At + /
0
 t2 = c0 + c1t + c2t2. Therefore, SL(t) ≤ exp(c0 + c1t + c2t2); the self-

learning block can accelerate (quadratic exponent) but cannot blow up at any finite time. Since 

SL(t) ≤ exp(c0 + c1t + c2t2) on any finite horizon, and all remaining multiplicative/sum factors in 

both versions are standard Cobb-Douglas or exponential terms with finite growth rates, every term 

is finite on [0, T]. Therefore, Y(t) is finite for all finite t and neither version admits a finite-time 

singularity. This paragraph has proven that each of my production functions cannot lead to 

singularity. 
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4.3 AI’s Dependency on KAI 

Deployed self-learning AI do not need any additional human capital or labor, in order to become 

smarter, more capable and more productive but self-learning AI will always need more of KAI in 

the form of GPUs, data storage and memory systems, power, etc. For example, if deployed self-

learning AI do not get more GPUs, then the self-learning AI will become static, which means they 

no longer self-learn. For deployed self-learning AI to perform optimally and continuously, growing 

KAI is absolutely necessary. There should be clear positive correlation between deployed self-

learning AI and KAI. However, the strength of the correlation depends on how much progress AI 

engineers have made in power efficiency. The more power efficient, the lower the correlation 

between deployed self-learning AI and KAI. Furthermore, not all KAI must be added continuously 

for deployed self-learning AI to perform optimally and continuously. Examples of KAI that do not 

need to be added continuously are model architecture design, training codebase and orchestration 

tools. These costs are one-time fixed AI-specific capital costs.  
Since the value of S depends on KAI, insufficient amount of KAI will not create a situation 

where productivity increases at increasing rate. The only variable (in both my production 

functions) that determines whether an economy is in balanced growth path or accelerating growth 

path is: q(t), which is defined as followed: q(t) = q0 + r × log(S(t) × D(t)). Since S(t) is defined as 

followed: S(t) = s0 × KAI(t)t × HAI(t)v × LAI(t)G, this means that the value of q(t) depends not only on 

S(t) directly but also on KAI, HAI and LAI indirectly. If KAI becomes scarce, then S becomes smaller 

than what it could have been if KAI is not scarce. For example, if rare earths, which is one of the 

necessary KAI, becomes scarce, then S should be smaller than S in a scenario, in which rare earths 

is abundant. Since q(t) becomes smaller when S becomes smaller and S becomes smaller when 

KAI becomes scarce, if KAI becomes small enough, then the sum of all exponents (in each of my 

production functions) becomes 1 or less than 1. In such case, an economy is in balanced growth 

path, not accelerating growth path. The value of S and, therefore, the value of q(t), also depend on 

HAI and LAI. However, given how fast AI revolution is going at the present time, I assume that 

there will be no lack of HAI and LAI in the future. Physical capital can be scarce but human capital 

can always be developed and, at present time, talents for AI are growing in fast speed. At present 

time, there are great appetites to innovate, create and improve the best AI; with this present 
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situation, lack of HAI or lack of LAI is very unlikely in the future. Therefore, I assume that lack of 

KAI is possible, but lack of HAI or LAI is very unlikely in the future. 

Table 3 Consequences of Different Values of KAI 

Situation Consequences in Each of My 
Production Functions 

Consequences for the 
Economy 

KAI is large enough Sum of all exponents in the 
production function is larger than 1 

Economy in accelerating 
growth path 

KAI becomes too small Sum of all exponents in the 
production function is 1 or less than 1 

Economy in balanced 
growth path 

 

At present time, deployed self-learning AI are still rare. Therefore, today, we probably still 

live in an economy that is in balanced growth path because both S and, therefore, q(t) are still very 

small. Today, HAI is still small, but it will grow exponentially in the next many years; the evidence 

of this claim can be seen by everyone. Today, only very few people can build self-learning AI, and 

nobody can build AGI yet but the current pace of the improvements in AI technologies is extremely 

fast; this very fast pace of improvements in AI technologies is a strong indication that HAI is also 

increasing at very high rate. Today, U.S economy is probably still in balanced growth path because 

HAI is still not large enough but, in the future, HAI will be large enough and the only variable (in 

both proposed production functions) that is most likely to make us still living in an economy with 

balanced growth path is KAI. Today, probably, the sum of all exponents (in both versions of my 

production function) is still 1 or less than 1. However, in the next few years, as predicted by many 

AI experts, deployed self-learning AI will grow at very high rate. I predict that, within the next 5 

to 10 years, we already live in an economy, in which general public use self-learning AI. In this 

prediction, S and, therefore, q(t) will be large enough to make us live in an economy that is in 

accelerating growth path. However, if for whatever reason, KAI becomes insufficient, then we may 

still live in a balanced growth path economy in the next 5 to 10 years. KAI includes many necessary 

elements, including power, rare earths elements, data centers, semiconductors and many other 

essential elements. If any of the necessary elements or a combination of the necessary elements 

becomes scarce, then the value of S and, therefore, q(t) will be lower than anticipated.       

 

4.4 The Future of AI-Specific Human Capital and Labor 

LAI = LSLAI + LNSLAI. LSLAI is labor that can build self-learning AI, and LNSLAI is labor that cannot 

build self-learning AI but can build non-self-learning AI. HAI = HSLAI + HNSLAI. HSLAI is human 
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capital that can build self-learning AI, and HNSLAI is human capital that cannot build self-learning 

AI but can build non-self-learning AI. Since there are great and growing appetites to increase S as 

fast as possible, the followings are expected: 
!
!"

LSLAI(t) > 0; !
!"

HSLAI(t) > 0 

What will happen to LNSLAI is unclear because there are two forces moving in the opposite 

direction. The first force, which reduces LNSLAI, is migrations from LNSLAI to LSLAI as some AI-

specific workers, who previously could not build self-learning AI, have improved their skills 

enough so that they now can build self-learning AI. The second force, which increases LNSLAI, is 

newcomers into LNSLAI; these newcomers include some recent computer science graduates, 

immigrants with non-self-learning AI skills, etc. HNSLAI will increase over time because non-self-

learning AI can be improved to become a better version of non-self-learning AI, and the increase 

in the skills to do this transformation increases HNSLAI. 

 

5 More Implications of the Existence of Self-Learning AI 
I now discuss the version 1 of my model until I state otherwise. My version 1 of production 

function is as followed:  

Y(t) = A0 × T(t)l × [S(t) × D(t)]q(t) × KAI(t)a1 × KG(t)a2 × LC(t)b1 × LS(t)b2 × [HC0 × ehct × (1+ µ log(SD)) + 

HS0 × ehst × (1 - n log(SD))]d 

An increase in any variable or parameter in the equation above, with the exception of n (which is 

the elasticity of how badly self-learning AI substitutes AI-substitutable human capital), increases 

the total output, Y(t), ceteris paribus.  

 As S (deployed self-learning AI) get larger, AI-substitutable human capital (which is 

represented by the following: HS0 × ehst × (1 - n log(SD))) becomes smaller while AI-complementary 

human capital (which is represented by the following: HC0 × ehct × (1+ µ log(SD))) becomes larger. 

Furthermore, since !
!"

 LS(t) = fS(t) - YL(t) + c(t), and c(t) = x × LC(t) × log(1 + [S(t) × D(t)]), if S 

(deployed self-learning AI) become smarter, more widespread and more productive, then LS 

increase, which means that the number of workers in AI substitutable roles increases. Moreover, 

since !
!"

 LC(t) = fC(t) + YL(t) - c(t), if S increase, then LC decrease, which means the number of 

workers in AI complementary roles decreases. However, on average, each worker in the LC 

category has become more valuable as AI-complementary human capital becomes larger and the 



 27 

size of LC decreases when S, deployed self-learning AI, become smarter, more widespread and 

more productive. For workers in the LS category, when S improve, AI-substitutable human capital 

decreases and the size of LS gets larger; these cause, on average, each worker in the LS category to 

become less valuable. Because S (deployed self-learning AI) use data to improve themselves and 

the amount and the quality of the improvements depend on D (the volume and the quality of the 

data available for learning), S and D have the same effects on human capital and labor force. Just 

like S, if D increases, then AI-substitutable human capital becomes smaller while AI-

complementary human capital becomes larger. Moreover, if D increases, then LS increases and LC 

decreases. D also has the same directional effect as S on the average value of workers in the LS 

category and on the average value of workers in the LC category. My model properly reflects the 

importance of high-quality large amount of data on the capabilities and productivities of self-

learning AI, and therefore the total output. The greater the amount and the quality of the data that 

are used by self-learning AI, the greater the productivities of self-learning AI and therefore the 

total output. This claim is supported by many works, including the paper by Mohammed et al; in 

this paper, the authors provide a large-scale empirical study which shows that 20%-30% data 

degradation causes drops in performances by as much as 10%-40% (Mohammed et al., 2025).   

 I now discuss the version 2 of my model. The production function of my version 2 is as 

followed: 

Y(t) = A0 × T(t)l × [S(t) × D(t)]q(t) × KAI(t)a1 × KG(t)a2 × LAI(t)Æ1 × LNAI(t)Æ2 × HAI(t)¶1 × HNAI(t)¶2 

In the version 2, an increase in any variable or parameter in the equation above will increase the 

total output, Y(t), ceteris paribus. As already discussed above, S(t) = s0 × KAI(t)t × HAI(t)v × LAI(t)G. 

This means that version 2 of my production function can stand alone while version 1 of my 

production function cannot stand alone without data from the version 2. To calculate S, the value 

of HAI and LAI are needed, and these values only exist in the version 2 production function. This 

why I introduce 2 production functions in this paper. Without the version 2, the version 1 is 

incomplete. Both my production functions are very important.  

My equations apply to both rich countries and poor countries but the value of each variable 

and each parameter in my equations can differ very greatly between rich countries and poor 

countries. Even among rich countries themselves, there are significant differences between the rich 

countries that have institutions, which produce a lot of most advanced AI, and the rich countries 

that do not have institutions, which produce a lot of most advanced AI. For example, there are 
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great differences between the United States, which produces a lot of most advanced AI, and several 

rich European countries (such as Germany, France and U.K), which do not produce a lot of most 

advanced AI and mostly only use a lot of advanced AI. Because of the continuous recursive nature 

of self-learning AI, the nations that fall behind in self-learning AI will very likely have great 

difficulties in catching up.  

 

6 Policy Implications from the Proposed Production Functions 
Both versions of my model identify three critical drivers of output growth: S(t) (deployed self-

learning AI), D(t) (quality and volume of data for learning), and KAI(t) (AI-specific physical 

capital). Policies that increase these variables, or parameters linked to them, move the economy 

from balanced growth toward accelerating growth. Below are some policy recommendations. 

Rich AI-Producing Countries (S, D, and KAI are the highest or one of the highest) 

• Increase KAI via expanded AI R&D fundings, infrastructure investments, and energy 

capacity. 

• Raise HAI and LAI through more aggressive advanced STEM education, better immigration 

policies for AI talent, and more PhD scholarships. 

• Sustain D with national-scale data infrastructure and governance to ensure high-quality 

datasets. 

• Help AI-substitutable labor forces through targeted upskilling. 

Poor Countries (S, D and KAI are still extremely low) 

• Focus on KG (general capital) and all human capital before investing heavily in KAI. 

• Use affordable AI tools to improve productivity in non-frontier sectors, indirectly raising 

LC and HC. 

• Attract foreign investment to incrementally increase S and KAI without diverting scarce 

resources from basic infrastructure. 

Rich AI-Consuming Countries (S, D and KAI are much lower than rich AI-producing 

countries but much higher than poor countries) 

• Increase HAI and LAI by scaling AI-related education and research capacity. 

• Expand KAI through coordinated international investment in chips, data centers, and model 

development. 

• Raise D through data-sharing agreements and joint ventures with leading AI producers.  
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7 Conclusion 
This paper isolates the mechanism that makes modern AI macro-relevant: recursive learning. By 

disaggregating technology into a non-self-learning component T(t)l and a self-learning term (S(t) 

× D(t))q(t) with q(t) = q0 + r × log(S(t) × D(t)), the framework turns the vague idea that “AI improves 

itself” into a tractable object inside aggregate production. Two complementary specifications 

implement this object: Version 1 makes the distributional channels transparent (AI-complementary 

vs. AI-substitutable labor and human capital), while Version 2 renders the self-learning stock 

measurable from AI-specific capital, labor, and human capital.  

 The analysis delivers a sharp regime map. When θ(t) is small/locally constant—i.e., the 

recursive force is present but not dominant—both specifications admit a balanced growth path 

with constant factor–output ratios; when deployment and data raise θ(t) enough to push effective 

returns above one, the economy transitions to sustained acceleration. The recursion operates in 

log-space, implying that log((SD)q(t)) grows at most quadratically in time; thus, the model permits 

acceleration without finite-time blow-ups. These results are derived within a production structure 

that remains familiar—Cobb–Douglas blocks and bounded trend growth—so the interpretation of 

elasticities and steady-state objects stays clear. 

 Economically, the framework explains why self-learning AI is a powerful gap-amplifier. 

The term (SD)q(t) formalizes the complementarity between deployment scale and data quality, 

making countries that both build and deploy frontier systems drift away from pure users. It also 

clarifies distribution: AI-complementary skills appreciate; AI-substitutable tasks depreciate; and 

the availability of AI-specific capital (compute, energy, data-center capacity) and high-quality data 

emerges as the possible critical bottleneck. Policy levers therefore have clean targets: scale KAI 

where power and chips bind, improve data governance/quality where information is the constraint, 

and expand HAI, LAI where talent limits q(t).  

 Finally, the framework is immediately usable. Version 2 operationalizes S(t) for calibration 

and cross-country comparison, and the technology block implies regression-ready structure: 

empirical specifications should include both linear and quadratic terms in log(SD) to capture the 

signature of recursion. In this sense, the model functions as a benchmark: simple enough to slot 

into standard growth accounting, precise enough to discipline debates about AI’s long-run impact, 

and transparent about the conditions under which economies remain balanced or accelerate.  



 30 

 

Statements and Declarations 
No funding was received to assist with the preparation of this manuscript. 

The author has no competing interests to declare that are relevant to the content of this article. 

 

References 
 

Acemoglu, D., & Restrepo, P. (2018). The race between man and machine: Implications of 

technology for growth, factor shares, and employment. American Economic Review, 

108(6), 1488–1542. https://doi.org/10.1257/aer.20160696 

Acemoglu, D. (2024, April 5). The simple macroeconomics of AI [Unpublished manuscript]. 

Massachusetts Institute of Technology. Prepared for Economic Policy. 

Aghion, P., Jones, B. F., & Jones, C. I. (2017). Artificial intelligence and economic growth (NBER 

Working Paper No. 23928). National Bureau of Economic Research. 

https://doi.org/10.3386/w23928 

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., & Evci, U. (2024). Explaining neural scaling laws. 

Proceedings of the National Academy of Sciences, 121(6), e2311878121. 

https://doi.org/10.1073/pnas.2311878121 

Besiroglu, T., Emery-Xu, N., & Thompson, N. (2023). Economic impacts of AI-augmented R&D. 

arXiv. https://arxiv.org/abs/2212.08198v2 

Farach, A., Cambon, A., & Spataro, J. (2025). Evolving the productivity equation: Should digital 

labor be considered a new factor of production? arXiv. https://arxiv.org/abs/2505.09408v1 

Farboodi, M., Mihet, R., Philippon, T., & Veldkamp, L. (2019). Big data and firm dynamics. AEA 

Papers and Proceedings, 109, 38–42. https://doi.org/10.1257/pandp.20191001 

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M. A., Yang, 

Y., & Zhou, Y. (2017). Deep learning scaling is predictable, empirically. arXiv. 

https://arxiv.org/abs/1712.00409 

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., de Las Casas, 

D., et al. (2022). Training compute-optimal large language models. In Advances in 

Neural Information Processing Systems (Vol. 35, pp. 30016–30030). 

https://doi.org/10.1257/aer.20160696?utm_source=chatgpt.com
https://doi.org/10.1073/pnas.2311878121?utm_source=chatgpt.com
https://doi.org/10.1257/pandp.20191001?utm_source=chatgpt.com
https://arxiv.org/abs/1712.00409?utm_source=chatgpt.com


 31 

https://proceedings.neurips.cc/paper_files/paper/2022/hash/c1e2faff6f588870935f114ebe

04a3e5-Abstract-Conference.html 

Ichihashi, S. (2021). The economics of data externalities. Journal of Economic Theory, 196, 

105316. https://doi.org/10.1016/j.jet.2021.105316 

Jacobo-Romero, M., Carvalho, D. S., & Freitas, A. (2022). Estimating productivity gains in digital 

automation. arXiv. https://arxiv.org/abs/2210.01252v2 

Jones, C. I. (1995). R&D-based models of economic growth. Journal of Political Economy, 

103(4), 759–784. https://doi.org/10.1086/261995 

Jones, C. I., & Tonetti, C. (2020). Nonrivalry and the economics of data. American Economic 

Review, 110(9), 2819–2858. https://doi.org/10.1257/aer.20191330 

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., et al. (2020). 

Scaling laws for neural language models. arXiv. https://arxiv.org/abs/2001.08361 

Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 

22(1), 3–42. https://doi.org/10.1016/0304-3932(88)90168-7 

Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A contribution to the empirics of economic 

growth. Quarterly Journal of Economics, 107(2), 407–437. 

https://doi.org/10.2307/2118477 

Mohammed, S., Budach, L., Feuerpfeil, M., Ihde, N., Nathansen, A., Noack, N., Patzlaff, H., 

Naumann, F., & Harmouch, H. (2025). The effects of data quality on machine learning 

performance on tabular data. arXiv. https://arxiv.org/abs/2207.14529v6 

Puaschunder, J. M. (2022). Extension of endogenous growth theory: Artificial intelligence as a 

self-learning entity. In Proceedings of the Research Association for Interdisciplinary 

Studies (RAIS) Conference (October 23–24, 2022). 

https://doi.org/10.5281/zenodo.7372430 

Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5, Part 

2), S71–S102. https://doi.org/10.1086/261725 

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., et al. 

(2020). Mastering Atari, Go, Chess and Shogi by planning with a learned model. Nature, 

588(7839), 604–609. https://doi.org/10.1038/s41586-020-03051-4 

https://proceedings.neurips.cc/paper_files/paper/2022/hash/c1e2faff6f588870935f114ebe04a3e5-Abstract-Conference.html?utm_source=chatgpt.com
https://proceedings.neurips.cc/paper_files/paper/2022/hash/c1e2faff6f588870935f114ebe04a3e5-Abstract-Conference.html?utm_source=chatgpt.com
https://doi.org/10.1016/j.jet.2021.105316?utm_source=chatgpt.com
https://doi.org/10.1086/261995?utm_source=chatgpt.com
https://doi.org/10.1257/aer.20191330?utm_source=chatgpt.com
https://arxiv.org/abs/2001.08361?utm_source=chatgpt.com
https://doi.org/10.1016/0304-3932(88)90168-7?utm_source=chatgpt.com
https://doi.org/10.2307/2118477?utm_source=chatgpt.com
https://arxiv.org/abs/2207.14529v6
https://doi.org/10.5281/zenodo.7372430?utm_source=chatgpt.com
https://doi.org/10.1086/261725?utm_source=chatgpt.com
https://doi.org/10.1038/s41586-020-03051-4?utm_source=chatgpt.com


 32 

Shojaee, P., Mirzadeh, I., Alizadeh, K., Horton, M., Bengio, S., & Farajtabar, M. (2025). The 

illusion of thinking: Understanding the strengths and limitations of reasoning models via 

the lens of problem complexity. arXiv. https://arxiv.org/abs/2507.12345 

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., et al. 

(2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354–

359. https://doi.org/10.1038/nature24270 

Solow, R. M. (1956). A contribution to the theory of economic growth. Quarterly Journal of 

Economics, 70(1), 65–94. https://doi.org/10.2307/1884513 

Trammell, P., & Korinek, A. (2023). Economic growth under transformative AI (NBER 

Working Paper No. 31065). National Bureau of Economic Research. 

https://doi.org/10.3386/w31065 

Wang, L., Sarker, P. K., Alam, K., & Sumon, S. (2021). Artificial intelligence and economic 

growth: A theoretical framework. Scientific Annals of Economics and Business, 68(4), 421–

443. https://doi.org/10.47743/saeb-2021-0027 

 

https://arxiv.org/abs/2507.12345?utm_source=chatgpt.com
https://doi.org/10.1038/nature24270?utm_source=chatgpt.com
https://doi.org/10.2307/1884513?utm_source=chatgpt.com
https://doi.org/10.3386/w31065?utm_source=chatgpt.com
https://doi.org/10.47743/saeb-2021-0027?utm_source=chatgpt.com

