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Abstract 

 

The paper discusses the role of memory in asset pricing models with heterogeneous beliefs. 

In particular, we were interested in how memory in the fitness measure affects stability of 

evolutionary adaptive systems and survival of technical trading. In order to obtain an 

insight into this matter two cases were analyzed; a two-type case of fundamentalists versus 

contrarians and a three-type case of fundamentalists versus opposite biases. It has been 

established that increasing memory strength has a stabilizing effect on dynamics, though it 

is not able to eliminate speculative traders’ short-run profit seeking behaviour from the 

market. Furthermore, opposite biases do not seem to lead to chaotic dynamics, even when 

there are no costs for fundamentalists. Apparently some (strong) trend extrapolator beliefs 

are needed in order to trigger chaotic asset price fluctuations. 
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1 Introduction 

 

There is an important paradigm shift taking place in economics and finance in the last 

decade; from the representative, rational agent approach towards a behavioural, agent-

based approach with heterogeneous boundedly rational agents (cf. Sargent, 1993; 

Thaler, 1994; Hommes, 2006). While the traditional approach makes use of simple, 

analytically tractable models with a representative, perfectly rational agent, the new 

behavioural approach utilizes computational and numerical methods on agent-based 

simulation models. By now, there is a rather extensive literature available on 

computationally oriented agent-based simulation models of artificial markets (cf.

LeBaron, 2006). However, there is also an important stream developing in the literature, 

which endeavours to maintain at least to same extent analytically tractable 

heterogeneous agent models, for which theoretical results are obtained supporting 

numerical simulation results (cf. Hommes, 2006). Such an approach uses a mixture of 

analytical and computational tools of nonlinear economic dynamics. 

 

Heterogeneous agent models are present in various fields of economic analysis, such as 

market maker models, exchange rate models, monetary policy models, overlapping 

generations models and models of socio-economic behaviour. Yet the field with the 

most systematic and perhaps most promising nonlinear dynamic approach seems to be 

asset price modelling. Contributions of Brock and Hommes (1998), LeBaron (2000), 

Hommes et al. (2002), Chiarella and He (2002), Chiarella et al. (2003), Gaunersdorfer 

et al. (2003), Brock et al. (2005), Hommes et al. (2005), and Brock and Hommes (2006) 

thoroughly demonstrate how a simple standard pricing model is able to lead to complex 

dynamics that makes it extremely hard to predict the evolution of prices in asset 

markets. The main framework of analysis of such asset pricing models constitutes a 

financial market application of the evolutionary selection of expectation rules, 

introduced by Brock and Hommes (1997a) and called the adaptive belief system. 

 

As a model in which different agents have the ability to switch beliefs, the adaptive 

belief system in a standard discounted value asset pricing set-up is derived from mean-

variance maximization and extended to the case of heterogeneous beliefs (Hommes, 

2006, p. 47). It can be formulated in terms of deviations from a benchmark fundamental 

and therefore used in experimental and empirical testing of deviations from the rational 

expectations benchmark. Agents are boundedly rational, act independently of each other 

and select a forecasting or investment strategy based upon its recent relative 
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performance. The key feature of such systems, which often incorporate active learning 

and adaptation, is endogenous heterogeneity (cf. LeBaron, 2002), which means that 

markets can move through periods that support diverse population of beliefs, and others 

where these beliefs and strategies might collapse down to a very small set. 

 

As such, these models are highly nonlinear systems, generating a wide range of 

dynamical behaviours, ranging from simple convergence to a stable steady state to very 

irregular and unpredictable fluctuations, which are highly sensitive to noise. 

Sophisticated traders, such as fundamentalists or rational arbitrageurs typically act as a 

stabilizing force, pushing prices in the direction of the rational expectations fundamental 

value. Technical traders, such as feedback traders, trend extrapolators and contrarians 

typically act as a destabilizing force, pushing prices away from the fundamental. When 

the proportion of chartists believing in a trend exceeds some critical value, the price 

trend becomes reinforced and the belief becomes self-fulfilling, causing prices to 

deviate from fundamentals. Nonlinear interaction between fundamental traders and 

chartists can lead to deviations from the fundamental price in the short run, when price 

trends are reinforced due to technical trading, and mean reversion in the long run, when 

more agents switch back to fundamental strategies when the deviation from fundamental 

price becomes too large. 

 

The mixture of different trader types therefore leads to diverse dynamics exhibiting 

some stylized, qualitative features observed in practice on financial markets (cf. Beja 

and Goldman, 1980; Campbell et al., 1997; Johnson et al., 2003), e.g. persistence in 

asset prices, unpredictability of returns at daily horizon, mean reversion at long 

horizons, excess volatility, clustered volatility, and leptokurtosis of asset returns. The 

important finding so far was that irregular and chaotic behaviour is caused by rational 

choice of prediction strategies in the bounded-rationality framework, and that this also 

exhibits quantitative features of asset price fluctuations, observed in financial markets. 

Namely, due to differences in beliefs these models generate a high and persistent trading 

volume, which is in sharp contrast to no trade theorems in rational expectations models. 

Fractions of different trading strategies fluctuate over time and simple technical trading 

rules can survive evolutionary competition. On average, technical analysts may even 

earn profits comparable to the profits earned by fundamentalists or value traders. 

 

While recent literature on asset price modelling focuses mainly on impacts of 

heterogeneity of beliefs in the standard adaptive belief system as set up by Brock and 
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Hommes (1997a) on the market dynamics and stability on one hand, and the possibility 

of survival of such ‘irrational’, speculative traders in the market on the other, several 

crucial issues regarding the foundations of asset price modelling and its underlying 

theoretical findings remain open and indeterminate. According to LeBaron (2002), one 

of those issues is related to heterogeneity in investors’ time horizon; both their planning 

and their evaluation perspective. Namely, it has been scarcely addressed so far how 

memory in the fitness measure, i.e. the share of past information that boundedly rational 

economic agents take into account as decision makers, affects stability of evolutionary 

adaptive systems and survival of technical trading. The motivation behind this paper is 

therefore to lay foundations for a competent and critical theoretical analysis of setting 

this modelling assumption in a simple, analytically tractable asset pricing model. 

 

Memory strength represents the share of past fitness in the performance measure of an 

asset pricing model, which determines fractions of respective belief types and 

consequently affects the asset price. Memory strength is thus one of the parameters of 

the asset pricing model that could decisively influence our inferences on stability of 

evolutionary adaptive systems and survival of technical trading (cf. Verbič, 2006). The 

cause of much of the above described dynamics can be related to the interaction between 

traders with differing views of the past. Agents with a short-term perspective are 

expected to both influence the market in terms of increasing volatility and create an 

evolutionary space where they are able to prosper. Changing the population to more 

long-memory types should lead to a reliable convergence in strategies, which would be a 

useful benchmark test. Memory or perhaps better said – lack thereof – is therefore an 

important aspect of the market that is likely to keep it from converging and prevent the 

elimination of ‘irrational’, speculative strategies from the market. 

 

The main research hypothesis to be analyzed in the paper thus states that additional 

memory in the fitness measure of an asset pricing model with heterogeneous beliefs has 

stabilizing effects on evolutionary adaptive systems and unfavourable consequences for 

survival of technical trading. In so doing, one needs to have in mind that both short and 

long term perspective are equally important in economics and finance. In order to be 

able to adequately examine our research hypothesis, both analytical and numerical 

analysis will have to be employed and complemented. Therefore, we shall first expand 

the asset pricing model to include more memory, and then solve it both analytically and 

numerically. Two cases are going to be analyzed, hopefully sufficiently general to cover 

some main aspects of financial markets; (1) a two-type case of fundamentalists versus 
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contrarians and (2) a three-type case of fundamentalists versus opposite biased beliefs. 

Complementing the stability analysis with local bifurcation theory, we will also be able 

to analyze numerically the effects of adding different amounts of additional memory to 

fitness measure on stability of the standard asset pricing model and survival of technical 

trading. Thus the analysis of both local and global stability can be performed for 

different combinations of trader types in the market. 

 

The outline of the paper is as follows. In Chapter 2, after a brief description of typical 

results in such heterogeneous agent models, a short overview is given of the scarce 

contributions on memory analysis to date. In Chapter 3 an asset pricing model with 

heterogeneous beliefs with endogenous evolutionary switching of strategies is presented, 

forming the groundwork for analysis of economic fluctuations and the underlying rules 

relating to the formation of expectations. In so doing, the role of memory in the fitness 

measure and possible consequences for the outcomes of such models are stressed. In 

Chapters 4 and 5 the two aforementioned cases are being examined both analytically 

and numerically; the main results regarding effects of the different types of market 

traders on market stability are presented, together with effects of changing memory on 

market movements of different economic categories. In the final chapter the essential 

findings of the paper are summarized. 

 



5

2 Memory and Performance of Heterogeneous Agents 

 

In order to demonstrate how different types of market traders can affect market stability, 

we shall briefly employ some results from asset pricing models with heterogeneous, 

adaptive beliefs for different simple, linear predictors, except with no additional 

memory being included or analyzed. Particularly, two cases with two trader types are 

going to be taken into consideration; fundamentalists versus trend chasers and 

fundamentalists versus contrarians. Both were already quite extensively analyzed in 

Brock and Hommes (1998, pp. 1248-1258), but will serve us henceforth in analyzing 

and explaining our analytical and numerical results. 

 

In the first case the asset pricing model consists of fundamentalists with some 

information gathering costs that are necessary in general to obtain understanding of how 

markets work and to be able to price according to the efficient market hypothesis 

fundamental value (cf. Fama, 1991), and trend chasers that follow previous asset price 

movements with given intensity of trend extrapolation. When trend chasers extrapolate 

weakly, we have a unique, globally stable steady state, which is called the fundamental 

steady state. If costs for predictor of fundamentalists are equal to zero, both types have 

equal weight, while when these costs are nonzero the mass of fundamentalists decreases 

to zero with costs of predictor or intensity of choice approaching infinity. This is 

understandable, since at the fundamental price additional cost carries no extra profit, and 

therefore the mass of the most profitable strategy increases. When trend chasers 

extrapolate strongly and intensity of choice increases, we get a primary bifurcation, i.e. a 

pitchfork bifurcation of the fundamental steady state, in which two additional non-

fundamental (stable) steady states arise; one above and the other below the fundamental. 

As intensity of choice further increases, a secondary bifurcation occurs, viz. a Hopf 

bifurcation, where the non-fundamental steady states also become unstable and two 

attracting invariant circles are created around them. 

 

The question was whether invariant circles break into strange attractors (cf. Eckmann 

and Ruelle, 1985; Hommes, 1991; Palis and Takens, 1993) when intensity of choice 

further increases. In fact, it can be shown that the system has a homoclinic point that 

indicates chaotic dynamics when intensity of choice increases. It can be demonstrated 

with the use of bifurcation diagrams and largest Lyapunov exponent plots (cf. Brock and 

Hommes, 1998, pp. 1250-1253) that the quasi-periodic dynamics evolve to chaotic 

dynamics. It can also be illustrated with the use of time series plots that prices are 
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characterized by switching between an unstable phase of (depending on initial state) 

upward or downward trend and stable phase with prices close to the fundamental value. 

Without noise, this is quite regular, but with small dynamic noise added to the IID 

dividend process, switching becomes highly irregular and unpredictable. Trend chasers 

in the presence of fundamentalists therefore trigger irregular switching between phases 

of optimism and pessimism. 

 

In the second case the asset pricing model consists of fundamentalists (again with some 

information gathering costs) and contrarians, where the latter quote the asset price 

contra previous asset price movements with given intensity of trend extrapolation. In 

case of weak contrarians we again have a unique, globally stable fundamental steady 

state. But in case of strong contrarians and increasing intensity of choice we get a 

period-doubling bifurcation of the fundamental steady state in which a (stable) two-

cycle is created, with one point above and the other one below the fundamental. We 

therefore get oscillations of prices around the fundamental value. As intensity of choice 

further increases, a secondary bifurcation occurs, again a Hopf bifurcation, where the 

stable period two-cycle becomes unstable and two attracting invariant circles are created 

around each of two unstable period two-points; one lying above and the other below the 

fundamental price. The dynamics at this stage is either periodic or quasi-periodic, 

jumping back and forth between the two circles. 

 

We can again ask ourselves, whether invariant circles break into strange attractors, when 

intensity of choice further increases. Using the phase plot one can demonstrate (cf.

Brock and Hommes, 1998, pp. 1255-1257) that large intensity of choice leads to a 

system that is close to having a homoclinic intersection between stable and unstable 

manifolds of the fundamental steady state. In fact, it can be shown that the system has 

homoclinic orbits, which indicates chaotic dynamics. It can be shown by the use of 

bifurcation diagrams and largest Lyapunov exponent plots that the periodic and quasi-

periodic dynamics evolve to chaotic dynamics after the secondary bifurcation. Similarly, 

it can be demonstrated with the use of time series plots that prices are characterized by 

irregular switching between a stable phase with value close to the fundamental and an 

unstable phase of up and down price oscillations with increasing amplitude. Contrarians 

therefore trigger irregular fluctuations around the fundamental. 

 

Now we can introduce some of the scarce contributions of authors that were analyzing 

memory in such heterogeneous agent models to date. LeBaron (2002) was using 
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simulated agent-based financial markets of individuals following relatively simple 

behavioural rules that are updated over time. Actually, time was an essential and critical 

feature of the model. It has been argued that someone believing that the world is 

stationary should use all available information in forming his or her beliefs, while if one 

views the world as constantly in a state of change, then it will be better to use time 

series reaching a shorter length into the past. The dilemma is thus seen as an 

evolutionary challenge where long-memory agents, using lots of past data, are pitted 

against short-memory agents to see who takes over the market. Essentially, results of 

two market simulations were presented. The first one was consisting of traders with 

many different memory lengths, drawn from a uniform distribution between six months 

and twenty years, while the second simulation restricted the agents’ memory lengths to 

be between 16-20 years. Four variables were examined; logarithms of the price series, 

trading volume in units of shares subjected to trade, returns, and dividend-price ratio. 

 

In the first simulation with horizons between six months and twenty years the price 

series indeed exhibited the expected linear trend driven by the constant dividend growth, 

but the prices seemed to take large deviations around this trend. Furthermore, volume 

was not a large fraction of the shares outstanding, but it was not going to zero as it 

should if the agents’ beliefs had been converging to each other. Returns also 

demonstrated some features of actual markets, since there were large spikes 

corresponding to large up and down movements in the market. These movements 

corresponded to the well documented nongausseineity of financial return series. Also, 

the volatility in the market seemed to be clumped with periods of relative calm and 

periods of large activity. The dividend-price ratio, which compared movements of the 

equity price series with its underlying fundamental, should have been a constant if there 

were no changes in the underlying riskiness of the equity security. Yet from the 

simulation results it was clear that large and persistent deviations had occurred. 

 

With the use of the second simulation, where the population of agents was long memory 

(with horizons between sixteen and twenty years), the author examined whether much of 

the variability and instability in the market was really coming from the presence of 

short-memory traders. The conjecture was generally being confirmed. Namely, the price 

series was much more stable, while the trading volume was near zero, except for a few 

brief jumps. Moreover, the returns were also generally stable with the exception of a 

few jumps, and the dividend-price ratio was very close to being constant. Numerical 

results were claimed to be checked by theoretical calculations, where the market was 
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apparently approaching the theoretical benchmark of the well-defined homogeneous 

agent equilibrium. 

 

Honkapohja and Mitra (2003) provided basic analytical results for dynamics of adaptive 

learning when the learning rule had finite memory and the presence of random shocks 

precluded exact convergence to the rational expectations equilibrium. Authors focused 

on the case of learning a stochastic steady state. Even though their work is not done in 

the heterogeneous agent setting, the results they obtained are interesting for our analysis. 

Their fundamental outcome was that the expectational stability principle, which plays a 

central role in situations of complete learning, as discussed e.g. in Evans and 

Honkapohja (2001), retains its importance in the analysis of incomplete learning, though 

it takes a new form. In the models that were analyzed expectational stability guaranteed 

stationarity of the dynamics of the learning economy and unbiasedness of the forecasts. 

 

The authors also noted that their approach to incomplete learning was quite different 

from that of Hommes and Sorger (1998), who introduced the notion of consistent 

expectations equilibrium in a similar nonlinear setup. In the consistent expectations 

equilibrium the perceived law of motion was linear and thus misspecified, but it was 

required that the sample mean and autocorrelations coincide with their theoretical 

counterparts. There could be different types of consistent expectations equilibria, such 

as steady states, period cycles or even chaotic solutions. The relationship between 

bounded memory learning and consistent expectations equilibria were not clear-cut, but 

it was implied that such processes were approximately consistent expectations equilibria 

when the memory length was sufficiently large. This follows since the sample mean is 

unbiased and the covariances are small for memory length large enough. 

 

Besides memory in the fitness measure we can also have memory in the expectation 

rules of the model. As we shall observe in the next chapter, the latter is somewhat less 

analytically tractable phenomenon, since including more preceding price deviations 

immediately increases the dimension of the system. This is indeed also the case with 

memory in the fitness measure, but there the performance measure can be written as 

weighted sum of contemporaneous realized profits and past fitness, thus keeping the 

increase in dimension under control. Usually only one memory lag is taken into account 

in the expectation rule to attain analytical tractability, but an appropriate numerical 

analysis could always be employed. Due to the lack of existing analyses we can 

currently mainly speculate about the effects of changing memory in expectation rules on 
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stability of evolutionary adaptive systems and survival of technical trading; especially in 

interaction with changing memory in the fitness measure. We could expect that 

incorporating much memory in the expectation rule with more or less equal weights 

given to past prices produces an average price forecast close to the fundamental value. 

On the other hand, with most weight given to the last observations, the expectation rule 

is likely to be more of the trend following kind with all the accompanying results. 

 

In this manner Chiarella et al. (2006) proposed a dynamic financial market model in 

which demand for traded assets had both a fundamentalist and a chartist component in 

the boundedly rational framework. The chartist demand was governed by the difference 

between current price and a (long-run) moving average. By examining the price 

dynamics of the moving average rule they found out that an increase of the window 

length of the moving average rule can destabilize an otherwise stable system, leading to 

more complicated, even chaotic behaviour. The analysis of the corresponding stochastic 

model was able to explain various market price phenomena, including temporary 

bubbles, sudden market crashes, price resistance and price switching between different 

levels. However, in this paper we will focus on the memory in the fitness measure. 

 

In the end of our overview let us mention the effects of changing memory in a cobweb 

model, since this could be beneficial for analysis of properties of heterogeneous agent 

models in general. Chiarella et al. (2003) studied the dynamics of the traditional cobweb 

model with risk averse heterogeneous producers who seek to learn the distribution of 

asset prices using a geometric decay processes, with both finite and infinite fading 

memory. With constant absolute risk aversion the dynamics of the model has been 

characterized with respect to the length of memory window and the memory decay rate 

of the process. It was found that an increase of the memory decay rate played a 

stabilizing role in the local stability of the steady state price when memory was infinite, 

but this role became less clear when memory was finite. It has been shown that 

(quasi-)periodic solutions and strange or even chaotic attractors could be created 

through a Hopf bifurcation when memory was infinite, but also through a flip 

bifurcation in case of finite memory. 
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3 The Heterogeneous Agents Model 

 

The adaptive belief system employs a mechanism, which deals with interaction between 

fractions of market traders of different types, and distance between the fundamental and 

the actual price. Financial markets are thus viewed as an evolutionary system, where 

price fluctuations are driven by an evolutionary dynamics between different expectation 

schemes. Pioneering work in this field has been done by Brock and Hommes (1997a), 

who attempted to conciliate the two main perspectives concerning economic 

fluctuations, i.e. the new classical and the Keynesian view (cf. Hommes, 2006, pp. 1-5), 

and the underlying rules relating to the formation of expectations. In order to get some 

insight into possible ways of theoretical analysis to follow, we shall describe a simple, 

analytically tractable version of the asset pricing model as constructed by Brock and 

Hommes (1998). The model can be viewed as composed of two simultaneous parts; 

present value asset pricing and evolutionary selection of strategies, resulting in 

equilibrium pricing equation and fractions of belief types equation. We shall also make 

an indication of where memory in the fitness measure (and in expectation rules) enters 

the model and how it might affect the analysis. 

 

3.1 Present Value Asset Pricing 

 

The model incorporates one risky asset and one risk free asset. The latter is perfectly 

elastically supplied at given gross return R, where R = 1 + r. Investors of different types 

h have different beliefs about the conditional expectation and the conditional variance of 

modelling variables based on a publicly available information set consisting of past 

prices and dividends. The present value asset pricing part of the adaptive demand 

system is used to model each investor type as a myopic mean variance maximizer of 

expected wealth demand, Wh,t, for the risky asset: 

 

, 1 , 1 1 ,( )h t h t t t t h tW RW p y Rp z+ + += + + − , (1) 

 

where pt is the price (ex dividend) at time t per share of risky asset, yt is an IID dividend 

process at time t of the risky asset, zh,t is number of shares purchased at date t by agent 

of type h, and 1 1 1t t t tR p y Rp+ + += + − is the excess return. 
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In order to perform myopic mean variance maximization of expected wealth demand for 

risky asset of type h, we seek for zh,t that solves: 

 

, , 1 , 1

1
max

2h tz h t t h t tE W aV W+ +

 − 
 

(2) 

 

and thus: 

 

[ ]
[ ]

[ ], 1 1

, , 1 12

, 1 1

1h t t t t

h t h t t t t

h t t t t

E p y Rp
z E p y Rp

aV p y Rp aσ
+ +

+ +

+ +

+ −
= = + −

+ −
, (3) 

 

where the belief about expected value of wealth at time t + 1, conditional on all publicly 

available information at time t, for a trader of type h is , 1h t tE W + , the belief about 

conditional variance is , 1h t tV W + , and there is a risk factor 
2

1
k

aσ
= present. Beliefs about 

the conditional variance of excess return are assumed constant and the same for all types 

of investors, i.e. 2

,h tV σ= . All traders are assumed to be equally risk averse with a given 

risk aversion parameter a, which is constant over time. Gaunersdorfer (2000) 

investigated the case of time varying variance and supported the assumption of a 

constant and homogeneous variance term. 

 

Solving this optimization problem produces quantities of shares purchased by agents of 

different types, which enables us to seek for the equilibrium between the constant 

supply of the risky asset per trader z
s

and the sum of demands: 

 

[ ], , 1 1

1

H
s

h t h t t t t

h

n kE p y Rp z+ +

=

+ − =∑ , (4) 

 

where the fraction of traders of type h out of altogether H types at time t is denoted by 

nh,t, where ,1
1

H

h th
n

=
=∑ . The price of the risky asset is determined by market clearing, 

which can be seen by rewriting expression (4) in the form: 

 

[ ] 2

, , 1 1

1

H
s

t h t h t t t

h

Rp n E p y a zσ+ +

=

= + −∑ , (5) 
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where 2 sa zσ is the risk premium. The latter is an extra amount of money that traders 

get for holding the risky asset. Traders will only purchase the risky asset if its expected 

value is equal or higher than the expected value of the risky asset. Since the outcome of 

the risky asset is uncertain, a risk premium is associated with it. 

 

In the simplest case of IID dividends with mean y and with traders having correct 

beliefs about dividends, i.e. [ ], 1h t tE y y+ = , the market price of the risky asset pt at time t

is determined by: 

 

[ ] 2

, , 1

1

H
s

t h t h t t t

h

Rp n E p y a zσ ε+

=

= + − +∑ , (6) 

 

where a noise term εt is included, which represents random fluctuations in the supply of 

risky shares. Considering a special case with constant zero supply of outside shares, i.e. 

z
s

= 0, we obtain: 

 

[ ], , 1

1

H

t h t h t t t

h

Rp n E p y ε+

=

= + +∑ .

If we instead consider for a moment the case of homogeneous beliefs with no noise and 

all traders being rational, the pricing equation simplifies to: 

 

[ ] 2

1

s

t t tRp E p y a zσ+= + − . (7) 

 

Since the effects of dividend beliefs on realized dividends have shown to be less notable 

than the effects of price beliefs on realized prices, rational expectations are imposed on 

the former. 

 

In equilibrium the expectations of the price will be the same and equal to the 

fundamental price. The constant fundamental value of the price of the risky asset p* in 

the case of homogeneous beliefs is derived from the expression: 

 

2* * sRp p y a zσ= + − . (8) 
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By imposing a transversality condition to expression (7) with infinitely many solutions 

we exclude bubble solutions (cf. Cuthbertson, 1996) and expression (8) now has only 

one solution. We are thus able to derive the fundamental price as the discounted sum of 

expected future dividends: 

 

21
*

1

sp y a z
R

σ = − −
. (9) 

 

By simplification of the fundamental price equation for the case of the IID dividend 

process with constant conditional expectation we thus obtain the standard benchmark 

notion of the ‘fundamental’, i.e. *t

y
p

r
= , to be used in the model hereinafter. 

 

Taking into account the appropriate form of heterogeneous beliefs of future prices, i.e. 

including some deterministic function fh,t, which can differ across trader types: 

 

[ ] [ ]* *

, 1 1 , 1 1 1( ,..., )h t t t t h t t t h t t LE p E p E x p f x x+ + + + − − = + = +  ,

we restrict beliefs about the next deviation of the actual from the fundamental price, xt,

to deterministic functions of past deviations from the fundamental: 

 

[ ], 1 1* ( ,..., )h t t h t t LE p p f x x+ − −= + , (10) 

 

where L is the number of lags of past information, taken into account. Since the 

deterministic function in the expectation rule depends on preceding price deviations, it 

can also be seen as including memory. However, due to rapidly increasing analytical 

complexity, viz. including more preceding price deviations rapidly increases the 

dimension of the system, this issue has so far mainly been neglected. In this paper we 

are focusing on the memory in the fitness measure and will thus include only one lag in 

the memory in the expectation rule, i.e. 1( )h tf x − .

The equilibrium pricing equation itself can thus finally be rewritten in terms of 

deviations from the fundamental price, xt = pt – p*: 
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[ ], , 1 , ,

1 1

H H

t h t h t t h t h t

h h

Rx n E x n f+

= =

= =∑ ∑ . (11) 

 

The particular form of deterministic function in the forecasting or expectation rule is 

thus what determines different types of heterogeneous agents in an adaptive belief 

system. In general, we distinguish between two typical investor types; fundamentalists 

and ‘noise traders’ or technical analysts. Fundamentalists believe that the price of an 

asset is defined solely by its efficient market hypothesis fundamental value (Fama, 

1991), i.e. the present value of the stream of future dividends. Since they have no 

knowledge about other beliefs and fractions, fh,t ≡ 0. Actual financial data show that 

fundamentalists have a stabilizing effect on prices (De Grauwe and Grimaldi, 2006). 

 

Technical analysts or chartists, on the other hand, believe that asset prices are not 

completely determined by fundamentals, but may be predicted by inferences on past 

prices. Depending on the purpose of analysis, it is possible to distinguish between (pure) 

trend chasers with expectation rule , 1 ; 0h t h t hf g x g−= > , (pure) contrarians with 

expectation rule , 1 ; 0h t h t hf g x g−= < , and (pure) biased beliefs with expectation rule 

,h t hf b= , where gh is the trend and bh is the bias (difference between p* and trader’s 

belief of p*) of the trader of type h.

3.2 Evolutionary Selection of Strategies 

 

In order to be able to understand the dynamics of fractions of different trader types, we 

consider the appropriate formulations of realized excess return Rt from expression (1), 

and demand of different types of market traders, , 1h tz − , defined by expression (3). 

Taking again into account the nature of the dividend process t ty y δ= + with constant 

conditional expectation, [ ]1ty E y += , and assumed distribution 2IID N(0, )ty ϑ∼ , we 

are thus able to formulate profits for a particular type of traders in each period as the 

product of realized excess return and number of shares purchased by traders of that type: 

 

[ ], , 1 1 , 1 1( )h t t h t h t t t h t t t t hR z C p y Rp kE p y Rp Cπ − − − −= − = + − + − − , (12) 
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where Ch represents the costs traders have to pay to use strategy h. Albeit introducing 

additional analytical complexity, we usually take into account the costs for predictor of 

particular trader type, since more information-intense predictors are evidently more 

costly. It is of course convenient to rewrite profits of different types of traders in terms 

of deviations from the benchmark fundamental: 

 

[ ], 1 , 1 1( )h t t t t h t t t hx Rx kE x Rx Cπ δ− − −= − + − − . (13) 

 

The fitness function or performance measure of each trader type can now be defined in 

terms of its realized profits. In fact, it can be expressed as the weighted sum of realized 

profits, i.e. as the sum of current realized profits and a share of past fitness, which is in 

turn defined as past realized profits: 

 

, , 1 ,(1 )h t h t h tU wU w π−= + − , (14) 

 

where current realized profits are defined in the following final form: 

 

, 1 , 1 1( )( )h t t t h t t hk x Rx f Rx Cπ − − −= − − − . (15) 

 

The fitness function can also be rewritten in the following expanded form with 

exponentially declining weights: 

 

1 2

, ,1 ,2 , 1 ,(1 ) (1 ) ... (1 ) (1 )t t

h t h h h t h tU w w w w w w wπ π π π− −
−= − + − + + − + − .

In case of the equilibrium pricing equation, herein formulated as the sum over trader 

types of products of a fraction of particular trader type and its deterministic function, the 

fitnesses enter the adaptive belief system before the equilibrium price is observed. This 

is suitable for analyzing the asset pricing model as an explicit nonlinear difference 

equation. Even though nonlinear asset pricing dynamics can be modelled either as a 

deterministic or a stochastic process, only the latter enables investigating the effects of 

noise upon the asset pricing dynamics. 

 

The share of past fitness in the performance measure is expressed by the parameter w;

0 ≤ w ≤ 1, called memory strength. When the value of this parameter is zero (w = 0), 

the fitness is given by most recent net realized profit. Due to analytical tractability this is 



17

presently for the most part the case in the existing literature on asset pricing models with 

heterogeneous agents, though not in this paper. Namely, the main contribution of this 

paper is to analyze the case of nonzero memory in the fitness measure. When the 

memory strength parameter takes a positive value, some share of current realized profits 

in any given period is taken into account when calculating the performance measure in 

the next time period. In case that the value of memory strength parameter amounts to 

one of course the entire accumulated wealth is taken into account. 

 

The expression (14) for the fitness function is somewhat different that the one used in 

Brock and Hommes (1998), where the coefficient of the current realized profits was 

fixed to 1. Namely, if we rewrite the memory strength parameter as 
1

1w
T

= − , where T

is considered to be a specific number of time periods, we obtain the following 

expression for the fitness function: 

 

, , 1 ,

1 1
1h t h t h tU U

T T
π−

 
= − + 
 

, (16) 

 

which is equivalent to taking the last T observations into account with equal weight (as 

benchmark). When T approaches infinity, memory parameter approaches 1 and the 

entire accumulated wealth is taken into account. We thus believe the expression (14) to 

be a more suitable formulation of the fitness measure than the one used in Brock and 

Hommes (1998), and in several other contributions. 

 

Finally, we can express fractions of belief types, nh,t, which are updated in each period, 

as a discrete choice probability by a multinomial logit model: 

 

, 1

,

, 11

exp

exp

h t

h t H

i ti

U
n

U

β

β
−

−=

  
=

  ∑
, (17) 

 

by using parameter β, determining the intensity of choice. The latter measures how fast 

economic agents switch between different prediction strategies; if the value of intensity 

of choice is zero then all trader types have equal weight and the mass of traders 

distributes itself evenly across the set of available strategies, while on the other hand the 

entire mass of traders tends to use the best predictor, i.e. the strategy with the highest 

fitness, when the intensity of choice approaches infinity (the neoclassical limit). 
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Trader fractions are therefore determined by fitness and intensity of choice. Rationality 

in the asset pricing model is evidently bounded, since fractions are ranked according to 

fitness, but not all agents choose the best predictor. To ensure that fractions of belief 

types depend only upon observable deviations from the fundamental at any given time 

period, fitness function in the fractions of belief types equation may only depend on past 

fitness and past return. This indeed ensures that past realized profits are observable 

quantities that can be used in predictor selection. 

 

This completes the overview of the simple, analytically tractable asset pricing model in 

the adaptive belief system framework. Since it primarily represents the share of past 

fitness in the performance measure, memory can also be thought of as a share of past 

information that boundedly rational economic agents take into account as decision 

makers. When the value of the memory strength parameter is nonzero, past realized 

profits take an active role in determining the asset price in the simultaneous adaptive 

belief system. Though memory strength indeed appears in the fitness measure equation, 

memory in fact spreads through the model using appropriate deterministic functions 

representing different belief types. Namely, with memory affected fitness measure of 

each trader type enters discrete choice probability equation, which determines fractions 

of respective belief types, consequently affecting the asset price, which is modelled as 

the sum over trader types of products of a fraction of particular trader type and its 

deterministic function. Memory strength is thus one of the parameters of the asset 

pricing model that could decisively influence our inferences on stability of evolutionary 

adaptive systems and survival of technical trading. 
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4 Fundamentalists versus Contrarians 

 

The first case we are going to examine is a two-type heterogeneous agents model with 

fundamentalists and contrarians as market participants. Fundamentalist exhibit 

deterministic function of the form: 

 

1, 0tf ≡ (18) 

 

and have some positive information gathering costs C, i.e. C > 0. Contrarians exhibit 

deterministic function: 

 

2, 1; 0t tf gx g−= < (19) 

 

and zero information gathering costs. It is thus the case of fundamentalists versus pure 

contrarians. We have the following fractions of belief types equation: 

 

, 1

,

1, 1 2, 1

exp
; 1, 2

exp exp

h t

h t

t t

U
n h

U U

β

β β
−

− −

  
= =

   +   
. (20) 

 

For convenience we shall also introduce difference in fractions mt:

( )1, 1 2, 1

1, 2, 1, 1 2, 1

1, 1 2, 1

exp exp
tanh

2exp exp

t t

t t t t t

t t

U U
m n n U U

U U

β β β
β β

− −
− −

− −

   −     
= − = = −    +     

. (21) 

 

Finally, we have the fitness measure equation of each type: 

 

( )1, 1, 1 1 1(1 )t t t t tU wU w kRx x Rx C− − −= + − − − −   , (22) 

 ( )( )2, 2, 1 1 2 1(1 )t t t t t tU wU w k x Rx gx Rx− − − −= + − − −   . (23) 

 

In order to be able to analyze memory in our heterogeneous asset pricing model, we 

shall first determine the position and stability of the steady state and the period two-

cycle in relation to the memory strength parameter. We will also examine the possible 

qualitative changes in dynamics. Then we will perform some numerical simulations to 

combine global stability analysis with local stability analysis. 
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4.1 Position of the Steady State 

 

In our two-type heterogeneous agents model of fundamentalists versus contrarians the 

equilibrium pricing equation has the following form: 

 

2, 1 1

1

2

t
t t t t

m
Rx n gx gx− −

−
= = , (24) 

 

where 1, 2,t t tn n m− = and 1, 2, 1t tn n+ = . The difference in fractions of belief types 

equation, on the other hand, has the following form: 

 

( ) ( ) ( )( )( )1, 2 2, 2 3 1 2tanh 1
2

t t t t t tm w U U w kgx x Rx C
β

− − − − −
 

= − − − − +  
. (25) 

 

All equations are of course rewritten in terms of the deviations from the fundamental 

price, xt = pt – p*, as in Brock and Hommes (1998) and Brock et al. (2005), because the 

computation is then more convenient. 

 

A steady state price deviation x is a fixed point of the system, if it satisfies x = f(x) for 

mapping f(x). In our two-type heterogeneous agents model of fundamentalists versus 

contrarians this implies: 

 

1

2

m
Rx gx

−
= , (26) 

 

where either 0eqx = , or
*1

2

m
R g

−
= and thus * 2

1
R

m
g

= − . In the former case we get 

the fundamental steady state, where the price is equal to its fundamental value and the 

difference in fractions is: 

 

( ) ( )( )1 2tanh 1
2

eq eq eqm w U U w C
β 

= − − −  
.

Since it follows from expressions (22) and (23) that 1

eqU C= − and 2 0eqU = , the steady 

state difference in fractions simplifies: 
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( )tanh (1 ) tanh
2 2

eq C
m wC w C

β β   
= − − − = −      

. (27) 

 

Possible other (non-fundamental) steady states should satisfy: 

 

( )( )( )* * * * * *

1 2tanh ( ) (1 )
2

m w U U w kgx x Rx C
β 

= − − − − +  
. (28) 

 

Since it can be derived that ( )* 2*
1 1U kRx R C= − − − and ( )( )* 2*

2 1U kx R g R= − − , we 

obtain the following expression: 

 

( )( ) ( ) ( ) ( ) ( )( )( )* 2 2 2* * *tanh 1 1 1 1
2

m w kRx R C wkx R g R w kgx R C
β 

= − − − − − − − − +  
,

which further simplifies: 

 

( )( )* 2*tanh 1
2

m kgx R C
β 

= − − +  
. (29) 

 

x

m
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Figure 1: Difference in the fractions of belief types for values of parameters 

β = 1, k = 1.0, g = –3.0, R = 1.1 and C = 1.0 
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Therefore we can write the following lemma. 

 

Lemma 1: The fundamental steady state in case of fundamentalists versus contrarians is 

a unique steady state of the system. Memory does not affect the position of this steady 

state. 

 

Proof of Lemma 1: Since g < 0,
2

0
R

g
> holds and expression * 2

1
R

m
g

= − is always 

greater than 1. On the other hand, the value of the hyperbolic tangent function is by 

definition between –1 and 1. In fact, since k > 0, g < 0, R > 1, C > 0 and the variable x is 

squared, the right-hand side of expression (29) is always between –1 and 0 (see Figure 

1). Expression (29) thus never gives a solution and the fundamental steady state 

(0, )eqm is a unique steady state of the system. Since there is no memory strength 

parameter in expression (27) and thus also in expression (26), memory does not affect 

the position of this steady state. QED 

4.2 Stability of the Steady State 

 

In order to be able to analyze stability of the steady state we shall rewrite our system as a 

difference equation: 

 

( )1 1t tX F X −= , (30) 

 

where ( )1 1, 1 2, 1 3, 1 1, 1 2, 1, , , ,t t t t t tX x x x u u− − − − − −= is a vector of new variables, which are 

defined as:  1, 1 1:t tx x− −= ;

2, 1 2:t tx x− −= ;

3, 1 3:t tx x− −= ;

1, 1 1, 2:t tu U− −= ;

2, 1 2, 2:t tu U− −= .

We therefore obtain the following 5-dimensional first-order difference equation: 
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1, 2, 1, 1

1
t t t tx x n gx

R
−= = =

2, 1 2,

1, 1 1, 1

1, 1 2, 1 1, 2,

exp exp1 1

exp exp exp exp

t t

t t

t t t t

U u
gx gx

R RU U u u

β β

β β β β
−

− −
− −

      
= =

       + +       
, (31) 

 

2, 1 1, 1t t tx x x− −= = , (32) 

 

3, 2 2, 1t t tx x x− −= = , (33) 

 

( )1, 1, 1 1, 1 2, 1 1, 1 2, 1(1 )t t t t t tu U wu w kRx x Rx C− − − − −
 = = + − − − −  , (34) 

 

( )( )2, 2, 1 2, 1 1, 1 2, 1 3, 1 2, 1(1 )t t t t t t tu U wu w k x Rx gx Rx− − − − − −
 = = + − − −  . (35) 

 

The local stability of a steady state is determined by the eigenvalues of the Jacobian 

matrix. Thus we shall first compute the Jacobian matrix JF1 of the 5-dimensional map, 

given by expression (30): 

 

1, 1, 1, 1, 1,

1, 1 2, 1 3, 1 1, 1 2, 1

1

1, 1,

1, 1 2, 1

2, 2, 2,

1, 1 2, 1 3, 1

1 0 0 0 0

0 1 0 0 0

0 0

0

t t t t t

t t t t t

t t

t t

t t t

t t t

x x x x x

x x x u u

JF
u u

w
x x

u u u
w

x x x

− − − − −

− −

− − −

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ 
 
 
 

=  ∂ ∂
 
∂ ∂ 

 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

, (36) 

 

with different derivatives given by the expressions hereinafter. 

 

( )
( )

2, 1, 2,1,

1, 1 3, 1 2

1, 1 1, 2,
1, 2,

exp exp exp1
1

exp exp exp exp

t t tt

t t

t t t
t t

u u ux
g w kg x x

x R u u u u

β β β
β

β β β β
− −

−

      ∂       = + −
 ∂    +    +        

( )
1, 2,1, 2

1, 1 3, 1 2

2, 1
1, 2,

exp exp
(1 )

exp exp

t tt

t t

t
t t

u ux
g k w x x

x u u

β β
β

β β
− −

−

   ∂    
= − −

∂    +   
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( )
( )

1, 2,1, 2

1, 1 1, 1 2, 1 2

3, 1
1, 2,

exp exp1
(1 )

exp exp

t tt

t t t

t
t t

u ux
g k w x x Rx

x R u u

β β
β

β β
− − −

−

   ∂    
= − −

∂    +   

( )
1, 2,1,

1, 1 2

1, 1
1, 2,

exp exp1

exp exp

t tt

t

t
t t

u ux
g wx

u R u u

β β
β

β β
−

−

   ∂    
= −

∂    +   

( )
1, 2,1,

1, 1 2

2, 1
1, 2,

exp exp1

exp exp

t tt

t

t
t t

u ux
g wx

u R u u

β β
β

β β
−

−

   ∂    
=

∂    +   

( )1,

2, 1

1, 1

1
t

t

t

u
w kRx

x
−

−

∂
= −

∂

( ) ( )1,

1, 1 2, 1

2, 1

1 2
t

t t

t

u
w kR x Rx

x
− −

−

∂
= − −

∂

( ) ( )2,

3, 1 2, 1

1, 1

1
t

t t

t

u
w k gx Rx

x
− −

−

∂
= − −

∂

( ) ( )2,

1, 1 3, 1 2, 1

2, 1

1 2
t

t t t

t

u
w kR x gx Rx

x
− − −

−

∂
= − − − +

∂

( ) ( )2,

1, 1 2, 1

3, 1

1
t

t t

t

u
w kg x Rx

x
− −

−

∂
= − −

∂

At the fundamental steady state X
eq

 = (0, 0, 0, –C, 0) the Jacobian matrix becomes: 

 

2

1

1
0 0 0 0

1 0 0 0 0
( )

0 1 0 0 0

0 0 0 0

0 0 0 0

eq

eq

n g
R

JF X

w

w

 
 
 
 

=  
 
 
 
 

, (37) 

 

where 
[ ]2

1

exp 1

eqn
Cβ

=
− +

. A straightforward computation shows that the characteristic 

equation, ( )1det 0eqJF X λ − Ι =  , is in our case given by: 

 

( )
22

2

1
( ) 0eqg n g w

R
λ λ λ λ 
= − − = 
 

, (38) 
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with solutions (eigenvalues): 1 2

1 eqn g
R

λ = , 2,3 0λ = and 4,5 wλ = . The steady state X
eq

 is 

stable for 1λ < ; therefore in cases 2

eqR gn R− < < and 1w < .

For the case of infinite memory, w = 1, the fitness remains fixed and therefore the 

fractions remain fixed. Given these fixed fractions, the price dynamics is generated by a 

linear system. This can be stable, unstable or have eigenvalues on the unit circle, 

depending on the initial fractions. In fact, our Jacobian matrix (37) reduces to the form: 

 

2

1

1
0 0

( 1) 1 0 0

0 1 0

eq

eq

n g
R

JF X w

 
 
 
 = =
 
 
 
  

, (39) 

 

which has the characteristic equation given by 2

2

1
0eqn g

R
λ λ − = 

 
, with eigenvalues 

1 2

1 eqn g
R

λ = and 2,3 0λ = , and with stability condition 2

eqR gn R− < < .

Thus we can write the following lemma. 

 

Lemma 2: The fundamental steady state in case of fundamentalists versus contrarians is 

globally stable for –R < g < 0. Memory does not affect the stability of this steady state. 

 

Proof of Lemma 2: From the characteristic equation (38) we can observe three 

eigenvalues, where two of them are in fact double eigenvalues. The first eigenvalue 

assures stability when 2

eqR gn R− < < , while the second and third (double) eigenvalue 

always assure stability. The fundamental steady state is stable for 
2 2

eq eq

R R
g

n n
− < < , but 

since 2

eqn depends on other parameters of the system and g < 0, stability is (more 

conveniently) guaranteed at least for 0R g− < < . Since the memory strength parameter 

is represented (only) by the third (double) eigenvalue, memory does not affect the 

stability of the steady state, as has been shown by the reduced system. QED 
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4.3 Bifurcations and the Period Two-cycle 

 

A bifurcation is a qualitative change of the dynamical behaviour that occurs when 

parameters are varied (Brock and Hommes, 1998). A specific type of bifurcation that 

occurs when one parameter is varied is called a co-dimension one bifurcation. There are 

several types of such bifurcations, viz. period doubling, saddle-node and Hopf 

bifurcations. The first type has eigenvalue –1 of the Jacobian matrix, the second type 

has eigenvalue 1 and the third type has complex eigenvalues on the unit circle. 

 

If we take a look at the eigenvalue λ1, which we are in our case interested in, we can 

observe that a saddle-node bifurcation can never occur. Namely, the expression: 

 

2

1
1 eqn g

R
= (40) 

 

can never hold, since the left-hand side is a positive constant and the right-hand side is 

always negative for g < 0, R > 0 and 2 0eqn > . On the other hand, the expression: 

 

2

1
1 eqn g

R
− = (41) 

 

may be satisfied for 2 0eqn ≠ , since both sides of the expression are then negative. Thus a 

(primary) period doubling bifurcation may occur in our model for the following β-value: 

 

1
* ln

R

C R g
β

 
= − 

+ 
, (42) 

 

which has been computed by plugging in 
[ ]2

1

exp 1

eqn
Cβ

=
− +

into expression (41) and 

solving for the memory strength parameter β.

Now we can check the existence of a period two-cycle { }* * * *( , ), ( , )x m x m− . Taking into 

account that ( )* 2*
1 1U kRx R C= + − and ( ) ( )** 2

2 1U kx R g R= + + , a period two-cycle 

occurs when 
*1

2

m
R g

−
− = and thus * 2

1
R

m
g

= +  satisfies: 
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( )( ) ( )( ) ( ) ( )( )( )* * ** 2 2 2tanh 1 1 1 1
2

m w kRx R C wkx R g R w kgx R C
β 

= + − − + + − − + +  
,

which further simplifies to the form: 

 

( )( )* 2*tanh 1
2

m kgx R C
β 

= − + +  
. (43) 

 

Therefore we can write the following lemma. 

 

Lemma 3: In case of fundamentalists versus contrarians the fundamental steady state 

(0, m
eq

) is unstable for g < –2R and there exists a period two-cycle { }* * * *( , ), ( , )x m x m− .

For –2R < g < –R there are two possibilities: (1) if * 2
1 eqR

m m
g

= + <  then (0, m
eq

) is the 

unique, globally stable steady state, while (2) if * 2
1 eqR

m m
g

= + >  then the steady state 

(0, m
eq

) is unstable and there exists a period two-cycle { }* * * *( , ), ( , )x m x m− . Memory 

does not affect the position of the period two-cycle. 

 

Proof of Lemma 3: For g < –2R it is clear from the expression for eigenvalue λ1 of the 

characteristic equation (38) that the fundamental steady state is unstable. Furthermore, 

since 0 < m
*

< 1, the expression (43) has two solutions, x
*

and –x
*
. If expression (41) is 

satisfied, it then follows from expressions * 2
1

R
m

g
= +  and (43) that 

{ }* * * *( , ), ( , )x m x m− is a period two-cycle. Finally, for –2R < g < –R, the fundamental 

steady state is unstable and expression (43) has solutions *x± if and only if 

* tanh
2

eq C
m m

β 
> = −  

(see Figure 2). Since the memory strength parameter does not 

affect the difference in fractions of belief types, memory does not affect the position of 

the period two-cycle. QED 
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Figure 2: Difference in the fractions of belief types for values of parameters 

β = 1, k = 1.0, g = –3.0, R = 1.1 and C = 0.2

As in the paper of Brock and Hommes (1998), very strong contrarians with g < –2R may 

lead to the existence of a period two-cycle, even when there are no costs for 

fundamentalists (C = 0). When the fundamentalists’ costs are positive (C > 0), strong 

contrarians with –2R < g < –R may lead to a period two-cycle. As the intensity of choice 

increases to β = β*, a period doubling bifurcation occurs in which the fundamental 

steady state becomes unstable and a (stable) period two-cycle is created, with one point 

above and the other one below the fundamental. 

 

When the intensity of choice further increases, we are likely to find a value β = β**, for 

which the period two-cycle becomes unstable and a Hopf bifurcation of this period two-

cycle occurs, as in Brock in Hommes (1998). The model would then get an attractor 

consisting of two invariant circles around each of the two (unstable) period two-points, 

one lying above and the other one below the fundamental. Immediately after such a 

Hopf bifurcation, the price dynamics is either periodic or quasi-periodic, jumping back 

and forth between the two circles. The proof of this phenomenon is not straightforward 

due to the non-zero period points, although the 5-dimensional system (31) – (35) is still 

symmetric with respect to the origin. We shall thus demonstrate the occurrence of the 

Hopf bifurcation and the emergence of the attractor numerically in the next section. 
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4.4 Numerical Analysis 

 

Our numerical analysis in case of fundamentalists and contrarians is going to be 

conducted for fixed values of parameters R = 1.1, k = 1.0, C = 1.0 and g = –1.5. We 

shall thus vary the intensity of choice parameter { }4,9,25β = and of course the 

memory strength parameter { }0,0.3,0.6,0.9w = . Four analytical tools will be used from 

the ones that are available in nonlinear economic dynamics; bifurcation diagrams, 

largest Lyapunov characteristic exponent (LCE) plots, phase plots, and time series plots. 

However, we will not discuss them here in more detail, since they are fairly well-known; 

instead we will direct the interested reader to more detailed discussions in Arrowsmith 

and Place (1990), Shone (1997), Brock and Hommes (1998), and Hommes (2004). 

 

Bifurcation Diagrams 

 

Dynamical behaviour of the system can first and foremost be determined by 

investigating bifurcation diagrams. In Figure 3 the bifurcation diagrams for four 

different values of the memory strength parameter are presented. We can observe that 

for low values of β we have a stable steady state, i.e. the fundamental steady state. As 

has been proven in Lemma 1, the position of this steady state, i.e. x
eq

 = 0, is independent 

of the memory, which is clearly demonstrated by the simulations. For increasing β a

(primary) period doubling bifurcation occurs at β = β*; the steady state becomes 

unstable and a stable period two-cycle appears, as proven in Lemma 3. As can be seen 

from the simulations, this bifurcation value is also independent of the memory and by 

the use of expression (42) it amounts to β* = 1.01. Stability of the steady state is thus 

unaffected by the memory, as proven in Lemma 2. 

 

For further increasing β indeed a (secondary) Hopf bifurcation occurs at β = β**, as has 

been claimed in Section 4.3; the period two-cycle becomes unstable and an attractor 

appears consisting of two invariant circles around each of the two (unstable) period two-

points, one lying above and the other one below the fundamental. It is a supercritical 

Hopf bifurcation, where the steady state gradually changes either into an unstable 

equilibrium or into an attractor (cf. Guckenheimer and Holmes, 1983; Frøyland, 1992; 

Brock, 1993; Kuznetsov, 1995). The position of the period two-cycle is independent of 

the memory, but it is not independent of the intensity of choice, as can be seen from 
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expression (43). In our case of fundamentalists versus contrarians, the position of the 

period two-cycle is 1* 0.126 20 20.232x β −= ± − , which approximately amounts to 

* 0.5x ≈ ± in all three cases with regard to the intensity of choice. 

 

Figure 3: Bifurcation diagrams in case of fundamentalists versus contrarians 
 

Notes: Horizontal axis represents the intensity of choice (β). Vertical axis represents deviations of the 

price from the fundamental value (x). The diagrams differ with respect to the memory strength parameter 

w; upper left corresponds to w = 0, upper right to w = 0.3, lower left to w = 0.6 and lower right to w = 0.9. 

 

Numerical simulations suggest that the secondary bifurcation value also does not vary 

with changing memory strength parameter and approximately amounts to ** 3β ≈ . For 

β > β** chaotic dynamical behaviour appears, which is interspersed with many (mostly 

higher order) stable cycles. Such a bifurcation route to chaos was also called the rational 

route to randomness (Brock and Hommes, 1997a), while the last part of it has been 

referred to as the breaking of an invariant circle (Hommes, 2004, pp. 40-43). 
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Largest LCE Plots 

 

By examining largest Lyapunov characteristic exponent (LCE) plots of β we arrive to 

the same conclusions about the dynamical behaviour of the system. Namely, it can be 

seen from Figure 4 that the largest LCE is smaller than 0 and the system is thus stable 

until the primary bifurcation, which happens at β* = 1.01 and is independent of 

memory. At the bifurcation value, a qualitative change in dynamics occurs, i.e. a period 

doubling bifurcation and we obtain a stable period two-cycle. Largest LCE is again 

smaller than 0 and the system is thus stable until the secondary bifurcation, which 

occurs at ** 3β ≈ . At this bifurcation value, again a qualitative change in dynamics 

occurs, i.e. a Hopf bifurcation, but the dynamics hereon is more complicated. 

 

Figure 4: Largest LCE plots of β in case of fundamentalists versus contrarians 
 

Notes: Horizontal axis represents the intensity of choice (β). Vertical axis represents the value of the 

largest LCE. The plots differ with respect to the memory strength parameter w; upper left corresponds to 

w = 0, upper right to w = 0.3, lower left to w = 0.6 and lower right to w = 0.9. 

 

We can observe that for { }0,0.3,0.6w = the largest LCE after β** is non-positive, but 

close to 0, which implies quasi-periodic dynamics. After some transient period the 
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largest LCE becomes mainly positive with exceptions, which implies chaotic dynamics, 

interspersed with stable cycles. In fact, the largest LCE plot has a fractal structure (cf.

Brock and Hommes, 1998, p. 1258). In case of w = 0.9 the global dynamics after β** 

immediately becomes chaotic. Memory thus certainly affects the dynamics after the 

secondary bifurcation. Since the latter is a period doubling bifurcation, we are talking 

about period doubling routes to chaos. 

 

Figure 5: Largest LCE plots of w in case of fundamentalists versus contrarians 
 

Notes: Horizontal axis represents the memory strength (w). Vertical axis represents the value of the 

largest LCE. The plots differ with respect to the intensity of choice parameter β; upper left corresponds to 

β = 0, upper right to β = 4, lower left to β = 9 and lower right to β = 25. 

 

Besides the already observed distinction with respect to w we should also point out that 

the largest LCE indeed reaches lower maximum value for higher memory strength, but 

also has higher volatility. Therefore, at first sight, at higher intensity of choice there 

seems to be less divergence of nearby initial states in case of less memory in the model. 

This has been examined by largest Lyapunov characteristic exponent (LCE) plots of w.

As can be seen from Figure 5, the statement is only partially correct. Namely, the 

interval of increasingly chaotic behaviour at high values of β, i.e. w = (0.9, 1), is quite 
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narrow, though it broadens with increasing β. The rest of the interval, i.e. w = (0, 0.9), 

exhibits decreasingly chaotic dynamics at high values of β.

Phase Plots 

 

Next, we shall examine plots of the attractors in the (xt, xt–1) plane and in the (xt, n1,t)

plane without noise and with IID noise added to the supply of risky shares. Attractors in 

the (xt, n2,t) plane are just flipped (rotated by 180 degrees) images of attractors in the 

(xt, n1,t) plane and will thus not be separately examined. In the upper left plot of each of 

the four parts of Figures 6 and 7 we can first observe the appearance of an attractor for 

the intensity of choice beyond the secondary bifurcation value. The orbits converge to 

such an attractor consisting of two invariant ‘circles’ around each of the two (unstable) 

period two-points, one lying above and the other one below the fundamental value. 

Though we are topologically speaking about circles, the actual shape of such an attractor 

can be quite diverse, as seen from the figures. 

 

As the intensity of choice increases, the circles ‘move’ closer to each other. In the upper 

right and lower left plot of each of the four parts of Figures 6 and 7 we can observe that 

the system seems to be already close to having a homoclinic orbit. The stable manifold 

of the fundamental steady state, (0, )s eqW m , contains the vertical segment, x
eq

 = 0, 

whereas the unstable manifold, (0, )u eqW m , has two branches, one moving to the right 

and one to the left. Both of them are then ‘folding back’ close to the stable manifold.  

 

Namely, as Brock and Hommes (1998, p. 1254) have proven for the asset pricing model 

without additional memory, at infinite intensity of choice and strong contrarians, g < –R,

that unstable manifold (0, 1)uW − is bounded and all orbits converge to the saddle point 

(0, –1). In particular, all points of the unstable manifold converge to (0, –1) and are thus 

also on the stable manifold. Consequently, the system has homoclinic orbits for infinite 

intensity of choice. In case of strong contrarians and high intensity of choice it is 

therefore reasonable to expect that we obtain a system that is close to having a 

homoclinic intersection between the stable and unstable manifolds of the fundamental 

steady state. This is indeed what can be observed from the lower left plot of each of the 

four parts of Figures 6 and 7 and it suggests the occurrence of chaos for high intensity of 

choice. As can be seen from the lower right plot of each of the four parts of Figures 6 

and 7, adding small dynamic noise to the system does not alter our findings. 
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β = 4 β = 9 β = 4 β = 9

β = 25 (without noise)    β = 25 (with small noise)   β = 25 (without noise)    β = 25 (with small noise) 

 

β = 4 β = 9 β = 4 β = 9

β = 25 (without noise)    β = 25 (with small noise)   β = 25 (without noise)    β = 25 (with small noise) 

 

Figure 6: Phase plots of (xt, xt–1) in case of fundamentalists versus contrarians 
 

Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis 

represents lagged deviations of the price from the fundamental value (xt–1). The groups of four diagrams 

differ with respect to the memory strength parameter w; upper left corresponds to w = 0, upper right to 

w = 0.3, lower left to w = 0.6 and lower right to w = 0.9. 

 

The observed dynamic behaviour is quite similar to the chaotic price fluctuations in the 

cobweb model with costly rational versus free naive expectations in Brock and Hommes 

(1997a). In particular, the geometric shape of the (strange) attractors of the 5-dimenional 

asset pricing model with costly fundamentalism versus contrarians is very similar to the 

geometric shape of the strange attractors in the 2-dimensional cobweb demand-supply 

model with costly rational versus naive expectations. Similar finding was already 
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established by Brock and Hommes (1998) for their 3-dimenional asset pricing model 

with costly fundamentalism versus contrarians. 

 

β = 4 β = 9 β = 4 β = 9

β = 25 (without noise)    β = 25 (with small noise)   β = 25 (without noise)    β = 25 (with small noise) 

 

β = 4 β = 9 β = 4 β = 9

β = 25 (without noise)    β = 25 (with small noise)   β = 25 (without noise)    β = 25 (with small noise) 

 

Figure 7: Phase plots of (xt, n1,t) in case of fundamentalists versus contrarians 
 

Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis 

represents the fraction of fundamentalists (n1,t). The groups of four diagrams differ with respect to the 

memory strength parameter w; upper left corresponds to w = 0, upper right to w = 0.3, lower left to 

w = 0.6 and lower right to w = 0.9. 

 

Again, we can observe from Figures 6 and 7 that memory has an impact on the global 

dynamics of the system. Namely, both the convergence of the system to an attractor 

consisting of two invariant ‘circles’ around each of the two unstable period two-points 

and the ‘moving’ of the circles closer to each other seem to be happening faster (at 

lower intensity of choice) when more memory is present in the model. Moreover, at the 
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same intensity of choice we seem to be closer to obtaining a system that has a 

homoclinic intersection between the stable and unstable manifolds of the fundamental 

steady state when the memory strength is higher. When there is no additional memory 

(w = 0), this homoclinic intersection is just being indicated, even for β = 25, but when 

the memory strength increases considerably, the homoclinic intersection between the 

stable and unstable manifolds of the fundamental steady state becomes distinctive. 

 

Time Series Plots 

 

Finally, we shall examine time series plots of deviations of the price from the 

fundamental value and of the fraction of fundamentalists. Since the fraction of 

contrarians is just the unity complement of the fraction of fundamentalists, i.e. 

n1,t + n2,t = 1, the former will thus not be separately graphically examined. Figures 8a 

and 8b show some time series corresponding to the attractors in Figures 6 and 7, with 

and without noise added to the supply of risky shares. Similarly to the findings of Brock 

and Hommes (1998), we can observe that the asset prices are characterized by an 

irregular switching between a stable phase with prices close to their (unstable) 

fundamental value and an unstable phase of up and down price fluctuations with 

increasing amplitude. 

 

This irregular switching is of course reflected in the fractions of fundamentalists and 

contrarians in the market. Namely, when the oscillations of the price around the unstable 

steady state gain sufficient momentum, it becomes profitable for the trader to follow 

efficient market hypothesis fundamental value despite the costs that are involved in this 

strategy. The fraction of fundamentalists approaches unity and the asset price stabilizes. 

But then the nonzero costs of fundamentalists bring them into position where they are 

unable to compete in the market; the fraction of fundamentalists rapidly decrease to 

zero, while the fraction of contrarians with no costs approaches unity with equal speed. 

The higher the intensity of choice, ceteris paribus, the faster this transition is complete; 

when β approaches the neoclassical limit, the entire mass of traders tends to use the best 

predictor with respect to costs, i.e. the strategy with the highest fitness. 
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Figure 8a: Time series of prices and fractions in case of fundamentalists versus contrarians 
 

Notes: Horizontal axis represents the time (t). Vertical axis in each pair of time series plots first represents 

deviations of the price from the fundamental value (xt), and then the fraction of fundamentalists (n1,t). The 

plots on the left-hand side and the right-hand side of the figure differ with respect to the memory strength 

parameter w; the ones on the left correspond to w = 0, while the ones on the right to w = 0.3. 
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Figure 8b: Time series of prices and fractions in case of fundamentalists versus contrarians 
 

Notes: Horizontal axis represents the time (t). Vertical axis in each pair of time series plots first represents 

deviations of the price from the fundamental value (xt), and then the fraction of fundamentalists (n1,t). The 

plots on the left-hand side and the right-hand side of the figure differ with respect to the memory strength 

parameter w; the ones on the left correspond to w = 0.6, while the ones on the right to w = 0.9. 
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Additional memory does not change the pattern of asset prices per se, but it does affect 

its period. Namely, at the same intensity of choice and higher memory strength the 

period of this irregular cycle appears to be elongated on average, in a way that the stable 

phase with prices close to their fundamental value lasts longer, while the duration of the 

unstable phase of up and down price fluctuations does not change significantly. The 

effect of including more memory thus mainly appears to be stabilizing with regard to 

asset prices. With regard to fractions of different trader types we could say that 

including additional (though still finite amount of) memory affects the transition from 

the short period of fundamentalists’ dominance to the longer period of contrarians’ 

dominance in the market. This transition takes more time to complete at the same 

intensity of choice. More but finite memory thus causes the traders to stick longer to the 

strategy that has been profitable in the past, but might not be so profitable in the recent 

periods. Addition of small dynamic noise to the supply of risky shares makes the effects 

of additional memory in the model less distinct, though they can still be observed. 
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5 Fundamentalists versus Opposite Biased Beliefs 

 

The second case we are going to examine is a three-type heterogeneous agents model 

with fundamentalists and opposite biased beliefs as market participants. Fundamentalist 

again exhibit deterministic function of the form: 

 

1, 0tf ≡ , (44) 

 

though this time with no information gathering costs, i.e. C = 0. Biased beliefs exhibit 

deterministic functions: 

 

2, 2 2; 0tf b b= > , (45) 

 3, 3 3; 0tf b b= < , (46) 

 

for optimist and pessimist biases, respectively. In this paper we will mainly focus on the 

symmetric case. Biases also exhibit zero information gathering costs. We have the 

following fractions of belief types equation: 

 

, 1

, 3

, 11

exp
; 1, 2,3

exp

h t

h t

i ti

U
n h

U

β

β
−

−=

  
= =

  ∑
. (47) 

 

Finally, we have the fitness measures of each type: 

 

( )1, 1, 1 1 1(1 )t t t t tU wU w kRx x Rx− − −= + − − −   , (48) 

 ( )( )2, 2, 1 1 2 1(1 )t t t t tU wU w k x Rx b Rx− − −= + − − −   , (49) 

 ( )( )3, 3, 1 1 3 1(1 )t t t t tU wU w k x Rx b Rx− − −= + − − −   . (50) 

 

In order to be again able to analyze memory in our heterogeneous asset pricing model, 

we shall first determine the position and stability of the steady state, and then examine 

the possible qualitative changes in dynamics; all in relation to the memory strength 

parameter. Then we shall perform some numerical simulations to combine global 

stability analysis with local stability analysis. 
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5.1 Position of the Steady State 

 

In our three-type heterogeneous agents model of fundamentalists versus biased beliefs, 

we shall again start by rewriting our system as a difference equation: 

 

( )2 1t tX F X −= , (51) 

 

where ( )1 1, 1 2, 1 1, 1 2, 1 3, 1, , , ,t t t t t tX x x u u u− − − − − −= is a vector of new variables, defined as: 

1, 1 1:t tx x− −= ;

2, 1 2:t tx x− −= ;

1, 1 1, 2:t tu U− −= ;

2, 1 2, 2:t tu U− −= ;

3, 1 3, 2:t tu U− −= .

We therefore obtain the following 5-dimensional first-order difference equation: 

 

( ) 2, 1 3, 1

1, 2, 2 3, 3 2 33 3

, 1 , 11 1

exp exp1 1

exp exp

t t

t t t t

i t i ti i

U U
x x n b n b b b

R R U U

β β

β β
− −

− −= =

        = = + = + =
        ∑ ∑

 

2, 3,

2 33 3

, ,1 1

exp exp1

exp exp

t t

i t i ti i

u u
b b

R u u

β β

β β
= =

        = +
        ∑ ∑

, (52) 

 

2, 1 1, 1t t tx x x− −= = , (53) 

 

( )1, 1, 1 1, 1 2, 1 1, 1 2, 1(1 )t t t t t tu U wu w kRx x Rx− − − − −
 = = + − − −  , (54) 

 

( )( )2, 2, 1 2, 1 1, 1 2, 1 2 2, 1(1 )t t t t t tu U wu w k x Rx b Rx− − − − −
 = = + − − −  , (55) 

 

( ) ( )3, 3, 1 3, 1 1, 1 2, 1 3 2, 1(1 )t t t t t tu U wu w k x Rx b Rx− − − − −
 = = + − − −  . (56) 

 

Our three-type heterogeneous agents model of fundamentalists versus biased beliefs in 

general can have the following steady state price deviations: 
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( )2 2 3 3

1
x n b n b

R
= + . (57) 

 

We obtain the fundamental steady state for 2 3 0b b b= − = > (opposite biased beliefs), 

where 0eqx = . This is implied by 1 2 3 0eq eq equ u u= = = and consequently by 

1 2 3

1

3

eq eq eqn n n= = = , originating from the rewritten expression (47). 

 

By performing a generalization we can write the following lemma. 

 

Lemma 4: The fundamental steady state in case of fundamentalists versus opposite 

biased beliefs is a unique steady state of the system. Memory does not affect the position 

of this steady state. 

 

Proof of Lemma 4: We will prove a more general result for the case with h = 1, …, H

purely biased types bh (including fundamentalists with b1 = 0). Proceeding from the non-

transformed variables the system is: 

 

,

1

H

t h t h

h

Rx n b
=

=∑ , (58) 

 
( )( )( )
( ) ( )( )

, 2 1 2 2

, 3

, 2 1 2 21

exp (1 )
; 1 .

exp (1 )

h t t t h t

h t
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n h H

wU w k x Rx b Rx

β

β
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 + − − −   = ≤ ≤
 + − − −   ∑

(59) 

 

After subtracting off identical terms from the exponents of both numerator and 

denominator in expression (59) we obtain a new expression for the fractions: 

 

( )( )

( )( )
, 2 1 2

,

, 2 1 21

exp (1 )
; 1 ,

exp (1 )

h t t t h

h t H

i t t t ii
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n h H
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β

β

− − −
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 + − − ∑

�

�

(60) 

 

where ,h tU � is the fitness of trader type h, adjusted by subtracting off identical terms as 

above. The dynamic system defined by (58) and (60) is thus of the form: 

 

1 2( )t k t tRx V x Rxβ − −= − , (61) 
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where the right-hand side function is defined as: 

 

( )

( )
, 2 1

1

, 2 11

exp ( ) (1 )
( )

exp ( ) (1 )

h t t h t H

k t h h hH h

i t t i ti

wU y w kb y
V y b n b

wU y w kb y
β

β

β

− −

=

− −=
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= = =

 + − 
∑

∑

�

�

. (62) 

 

Since it follows from (55) and (56) that ( )( )* * *1h hU kx R b Rx= − − , steady states of 

expressions (58) and (60) or expression (61) are determined by: 

 

* * * *( ) ( )k kRx V x Rx V rxβ β= − = − , (63) 

 

where r = R – 1. Since a steady state has to satisfy expression (63), following Brock and 

Hommes (1998, p. 1271), a straightforward computation shows that: 
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( ) ( )2 2

1 1 1

H H H

h h h h h h h h h h hh h h
kn b kn b n b kn b kn b bβ β β β

= = =
= − = − =∑ ∑ ∑  

22 0h hk b bβ  = − >  , (64) 

 

where the inequality follows from the fact that the term between square brackets can be 

interpreted as the variance of the stochastic process, where each bh is drawn with 

probability nh. Therefore, ( )kV yβ is increasing and *( )kV rxβ − decreasing in x*. It then 

follows from expression (63) that the steady state x* has to be unique. From expression 

(62) we obtain 
1

(0)
H h

k h

b
V b

H
β =

= =∑ , so that x* equals the fundamental steady state if 

and only if 0b = , i.e. when all biases are exactly balanced. Since there is no memory 

strength parameter left in expressions (63) and (0)kVβ , memory does not affect the 

position of this steady state. It has to be mentioned though, that our derivation holds for 

finite intensity of choice, since fractions are only then all positive. QED 
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5.2 Stability of the Steady State and Bifurcations 

 

The local stability of a steady state is again determined by the eigenvalues of the 

Jacobian matrix. Thus we shall first compute the Jacobian matrix JF2 of the 

5-dimensional map, given by expression (51): 

 

1, 1, 1, 1, 1,

1, 1 2, 1 1, 1 2, 1 3, 1
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, (65) 

 

with different derivatives given by the expressions hereinafter. 
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At the fundamental steady state X
eq

 = (0, 0, 0, 0, 0) the Jacobian matrix becomes: 
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The characteristic equation, ( )2det 0eqJF X λ − Ι =  , is in this case given by: 
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which has the following five solutions, with one of them being double: 1 0λ = , 2,3 wλ =

and ( )
2

2 2 2 2
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1
2 (1 ) 3 2 ( 1) 3 24 (1 )

6
b k w Rw b k w Rw b k w R

R
λ β β β 

= − + ± − − − − 
 

.
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The fundamental steady state is stable for 1λ < , which in our case limited to the 

product of eigenvalues 4,5λ being smaller than one, i.e. 22
( 1) 1

3
k b wβ− − < . In terms of 

the intensity of choice this happens for 
2

3

2 ( 1)kb w
β < −

−
, while in terms of the memory 

strength this is guaranteed for 
2

3
1

2
w

k bβ
< − .

For the case of infinite memory, w = 1, our Jacobian matrix (66) reduces to the form: 

 

( ) ( )2 2

2

2 2
1 1

( 1) 3 3

1 0

eq w k b w k b
JF X w R

β β − − − = =
 
 

, (68) 

 

which has the characteristic equation given by ( )2 22 1
1 1 0

3
w k b

R
λ β λ − − − = 

 
, with 

eigenvalues ( )( )2 2 2

1,2

1
2 (1 ) 2 ( 1) 2 ( 1) 12

6
b k w b k w b k w R

R
λ β β β= − ± − − + .

Thus we can write the following lemma. 

 

Lemma 5: The fundamental steady state in case fundamentalists versus opposite biased 

beliefs is globally stable for 
2

3

2 ( 1)kb w
β < −

−
. Memory affects the stability of this 

steady state by restricting it to the given interval of the parameter value. 

 

Proof of Lemma 5: From the characteristic equation (67) we can observe five 

eigenvalues. The first three eigenvalues always assure stability, while the last two 

eigenvalues limit stability. Given k > 0, b > 0, β ≥ 0, R > 1 and 0 ≤ w ≤ 1, the condition 

for stability in terms of β implies 
2

3

2 ( 1)kb w
β < −

−
. Similarly, the condition for 

stability in terms of w indicates 
2

3
1

2
w

k bβ
< − . Memory therefore affects the stability of 

the steady state as shown. QED 
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If we now take a look at the eigenvalues λ4,5 of the characteristic equation (67), which are 

of interest in our case, we can observe that a saddle-node bifurcation would occur for: 

 

2

3

2 (1 )

R

b k R
β =

−
. (69) 

 

This can never hold, since 0β ≥ and the left-hand side is always non-negative, while 

1R > and the right-hand side is always negative. On the other hand, a period doubling 

bifurcation would occur for: 

 

2

3 ( 1)

2 ( 1)( 1)

R w

b k R w
β

+
=

+ −
. (70) 

 

This can never hold either, since 0β ≥ and the left-hand side is again always non-

negative, while 0 1w≤ ≤ and the right-hand side is either negative or not defined. 

 

The only qualitative change left of the three discussed in Section 4.3 is the Hopf 

bifurcation. For this to occur, a complex conjugate pair of eigenvalues has to cross the unit 

circle. Eigenvalues λ4,5 are complex for ( )
2

2 2 22 ( 1) 3 24 (1 ) 0b k w Rw b k w Rβ β− − − − < ,

which produces the following interval of values: 

 

( ) ( )
2 2

3 6 2 ( ) 3 6 2 ( )

2 ( 1) 2 ( 1)

R w R R R w R w R R R w

b k w b k w
β

− − − − + −
< <

− −
. (71) 

 

We therefore have the following lemma. 

 

Lemma 6: There exists an intensity of choice value β* such that the fundamental steady 

state, which is stable for 0 *β β≤ < , becomes unstable and remains such for *β β> .

For 
2

3
*

2 ( 1)kb w
β = −

−
the system exhibits a Hopf bifurcation. Memory affects the 

emergence of this bifurcation, viz. with more memory the bifurcation occurs later. 

 

Proof of Lemma 6: When β increases, terms with β in the expressions for the 

eigenvalues λ4,5 increase as well, and one of the eigenvalues has to cross the unit circle 

at some critical *β β= . The fundamental steady state thus becomes unstable. Since it is 
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obvious from the characteristic equation (67) that for all 0β ≥ we have (1) 0g > and 

( 1) 0g − < , a bifurcation has to occur. At the moment of the bifurcation the product of 

eigenvalues 4,5λ has to be equal one, i.e. 22
( 1) 1

3
k b wβ− − = . This happens either when 

we have two real eigenvalues with product equal to one or a complex conjugate pair of 

eigenvalues. Since 
2

3
*

2 ( 1)kb w
β = −

−
falls into the interval (71) for any given finite 

memory strength, we can conclude that for *β β= the eigenvalues have to be complex 

and thus a Hopf bifurcation occurs. Since the memory strength parameter is present in 

the expression for β*, memory affects the emergence of this bifurcation; the higher the 

value of this parameter, the higher the bifurcation value. QED 

As we have just established, in case of fundamentalists versus opposite biased beliefs 

increasing intensity of choice to switch predictors destabilizes the fundamental steady 

state. This happens through a Hopf bifurcation. We can thus conclude, as did Brock and 

Hommes (1998) for the simpler version of the model, that in the presence of biased 

agents the first step towards complicated price fluctuations is different from that in the 

presence of contrarians. This fact does not change when we take memory into account. 

 

5.3 Numerical Analysis 

 

Our numerical analysis in case of fundamentalists and opposite biased beliefs is going to 

be conducted for fixed values of parameters R = 1.1, k = 1.0, b2 = 0.2 and b3 = –0.2. We 

shall thus vary the memory strength parameter { }0,0.3,0.6,0.9w = and the intensity of 

choice parameter β. The latter is going to be varied with regard to the memory strength 

parameter in the interval [ ]50,...,35000β = , because memory in this case substantially 

affects the bifurcation value (see Figure 9). The same four analytical tools will be used 

from the ones that are available in nonlinear economic dynamics than in the case of 

fundamentalists versus contrarians; bifurcation diagrams, largest Lyapunov 

characteristic exponent (LCE) plots, phase plots, and time series plots. 
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Bifurcation Diagrams 

 

Dynamical behaviour of the system can again first and foremost be determined by 

investigating bifurcation diagrams. In Figure 9 the bifurcation diagrams for four 

different values of the memory strength parameter are presented. We can observe that 

for low values of β we have a stable steady state, i.e. the fundamental steady state. As 

has been proven in Lemma 4, the position of this steady state, i.e. x
eq

 = 0, is independent 

of the memory, which is clearly demonstrated by the simulations. For increasing β a

(primary and only) bifurcation occurs at β = β*, i.e. a Hopf bifurcation; the steady state 

becomes unstable and an attractor appears consisting of an invariant circle around the 

(unstable) steady state. It is again a supercritical Hopf bifurcation, where the steady state 

gradually changes either into an unstable equilibrium or into an attractor. 

 

Figure 9: Bifurcation diagrams in case of fundamentalists versus opposite biased beliefs 
 

Notes: Horizontal axis represents the intensity of choice (β). Vertical axis represents deviations of the 

price from the fundamental value (x). The diagrams differ with respect to the memory strength parameter 

w; upper left corresponds to w = 0, upper right to w = 0.3, lower left to w = 0.6 and lower right to w = 0.9. 

 

The bifurcation value varies with changing memory strength parameter, as given by 

expression in Lemma 6; for w = 0 it amounts to β* = 37.5, for w = 0.3 it is equal to β* =
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53.57, for w = 0.6 it amounts to β* = 93.75 and for w = 0.9 it is equal to β* = 375. As 

can also be seen from Figure 9, at higher memory strength the bifurcation occurs later. 

For β > β* complex dynamical behaviour appears, which is interspersed with stable 

cycles. As we have already discovered in Section 5.2, irrespective of the amount of 

additional memory that is taken into account such a (bifurcation) route to complicated 

dynamics is different from that in the presence of contrarians, where we observed period 

doubling route to chaos (rational route to randomness). We shall now examine this route 

more thoroughly with other analytical tools of nonlinear economic dynamics. 

 

Largest LCE Plots 

 

By examining largest Lyapunov characteristic exponent (LCE) plots of β we arrive to 

more precise conclusions about the dynamical behaviour of the system. Namely, it can 

be seen from Figure 10 that the largest LCE is smaller than 0 and the system is thus 

stable until the primary (and only) bifurcation, which happens at β = β* and is 

dependent on memory. At the bifurcation value, a qualitative change in dynamics 

occurs, i.e. a Hopf bifurcation. The dynamics hereon is somewhat more complicated. 

Namely, we can observe that the largest LCE after β = β* is non-positive, but mainly 

close to 0, which implies periodic and quasi-periodic dynamics, i.e. for high values of 

the intensity of choice only regular (quasi-)periodic fluctuations around the unstable 

fundamental steady state occur. An important finding is that the predominating quasi-

periodic dynamics does not seem to evolve to chaotic dynamics and the route to 

complex dynamics is indeed different from the routes examined so far. 
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Figure 10: Largest LCE plots of β in case of fundamentalists versus opposite biased beliefs 
 

Notes: Horizontal axis represents the intensity of choice (β). Vertical axis represents the value of the 

largest LCE. The plots differ with respect to the memory strength parameter w; upper left corresponds to 

w = 0, upper right to w = 0.3, lower left to w = 0.6 and lower right to w = 0.9. 

 

The amount of memory affects the dynamics of the system primarily by determining its 

bifurcation value, while the dynamics of the system after the Hopf bifurcation is 

qualitatively not changed much by additional memory. The bifurcation value can be 

clearly observed not only on Figure 10, where the steady state is stable until the value of 

the largest LCE approaches 0, but for { }100,500,1000β = also on Figure 11, where the 

steady state is stable after the value of the largest LCE digresses from 0 for the last time 

(at high memory strength value). As can be seen from Figures 10 and 11, after the 

incidence of the bifurcation higher value of the memory strength parameter causes the 

dynamics to be less periodic and more quasi-periodic; consequently there tends to be 

less interspersion of the quasi-periodic dynamics with stable cycles. The dynamics 

therefore converges to the purely quasi-periodic behaviour with increasing memory 

strength. 
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Figure 11: Largest LCE plots of w in case of fundamentalists versus opposite biased beliefs 
 

Notes: Horizontal axis represents the memory strength (w). Vertical axis represents the value of the 

largest LCE. The plots differ with respect to the intensity of choice parameter β; upper left corresponds to 

β = 100, upper right to β = 500, lower left to β = 1000 and lower right to β = 5000. The largest LCE is 

calculated for 0 ≤ w ≤ 0.995, since no numerical convergence could be achieved for w = 1. 

 

Phase Plots 

 

Next, we shall examine plots of the attractors in the planes, determined by (xt, xt–1), 

(xt, n1,t) and (xt, n2,t). Attractors in the (xt, n3,t) plane are just mirror images of attractors 

in the (xt, n2,t) plane and will thus not be separately examined. In the upper left plot of 

each of the four parts of Figures 12 and 14 we can first observe the appearance of an 

attractor for the intensity of choice beyond the bifurcation value. The orbits converge to 

such an attractor consisting of an invariant ‘circle’ around the (unstable) fundamental 

steady state. Though we are again topologically speaking about circles, the actual shape 

of such an attractor can be quite diverse, as seen from the figures. The attractor obtained 

in the (xt, n1,t) plane is somewhat different. Namely, the unstable steady state dissipates 

into numerous points and evolves into a ‘loop’ shape, as shown in Figure 13. 
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β = 50              β = 100   β = 100   β = 450 
 

β = 450             β = 1500                β = 1500             β = 5000 

 

β = 100               β = 450    β = 450              β = 1500 
 

β = 2500             β = 8000               β = 10000              β = 35000 

 

Figure 12: Phase plots of (xt, xt–1) in case of fundamentalists versus opposite biases 
 

Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis 

represents lagged deviations of the price from the fundamental value (xt–1). The groups of four diagrams 

differ with respect to the memory strength parameter w; upper left corresponds to w = 0, upper right to 

w = 0.3, lower left to w = 0.6 and lower right to w = 0.9. 

 

As the intensity of choice increases, the dynamics remains periodic or quasi-periodic; in 

case of past deviations of prices from the fundamental value and fractions of biased 

beliefs the invariant circle slowly changes its shape into a ‘(full) square’ (see Figures 12 

and 14), while in case of fractions of fundamentalists the loop slowly changes into a 

‘three-sided square’ (see Figure 13). For high values of intensity of choice we seem to 

obtain (stable) higher period cycles; in case of past deviations of prices from the 

fundamental value and fractions of biased beliefs we seem to attain a stable period four-

cycle, while in the case of fractions of fundamentalists it is difficult to obtain any solid 
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indications based solely on numerical simulations due to convergence problems for very 

high values of intensity of choice. In the latter case we can observe stable period four- 

and six-cycles, though (see lower right plot of each of the four parts of Figure 13). 

 

β = 50              β = 100   β = 100   β = 450 
 

β = 450             β = 1500                β = 1500             β = 5000 

 

β = 100               β = 450    β = 450              β = 1500 
 

β = 2500             β = 8000               β = 10000              β = 35000 

 

Figure 13: Phase plots of (xt, n1,t) in case of fundamentalists versus opposite biases 
 

Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis 

represents the fraction of fundamentalists (n1,t). The groups of four diagrams differ with respect to the 

memory strength parameter w; upper left corresponds to w = 0, upper right to w = 0.3, lower left to 

w = 0.6 and lower right to w = 0.9. 

 

Indeed, Brock and Hommes (1998) proved for the case of exactly opposite biased 

beliefs and infinite intensity of choice in their simpler version of the model without 

additional memory that the system has a stable four-cycle attracting all orbits, except for 
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hairline cases converging to the unstable fundamental steady state. Additionally, they 

discovered that for all three trader types average profits along the four-cycle equal b
2
.

β = 50              β = 100   β = 100   β = 450 
 

β = 450             β = 1500                β = 1500             β = 5000 

 

β = 100               β = 450    β = 450              β = 1500 
 

β = 2500             β = 8000               β = 10000              β = 35000 

 

Figure 14: Phase plots of (xt, n2,t) in case of fundamentalists versus opposite biases 
 

Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis 

represents the fraction of optimistic biased beliefs (n2,t). The groups of four diagrams differ with respect to 

the memory strength parameter w; upper left corresponds to w = 0, upper right to w = 0.3, lower left to 

w = 0.6 and lower right to w = 0.9. 

 

Again, we can observe from Figures 12–14 that the memory has an impact on the 

dynamics of the system. Namely, both the convergence of the system to an attractor and 

the further development of such an attractor seem to be dependent on the value of the 

memory strength parameter. The precise impact of memory is somewhat more difficult 

to establish due to the dependence of the bifurcation value on memory strength and 
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subsequent need to choose higher intensities of choice with higher memory strength in 

order to demonstrate different nature of attractors of the system. However, we can still 

establish that at the same intensity of choice (after the bifurcation value) the system 

apparently needs less additional memory in order to develop a specific stage of an 

attractor or even a (stable) higher period cycle. This is in accordance with Figure 11, 

where we can observe that at higher intensity of choice (after the bifurcation value) we 

are more likely to obtain purely periodic dynamics with less memory and that we need 

more memory to obtain purely quasi-periodic dynamics. Nonetheless, it has to be 

emphasized that the model generates no strange (chaotic) attractors, as indicated before. 

 

Time Series Plots 

 

Finally, we shall examine time series plots of deviations of the price from the 

fundamental value and of the fractions of all three types of traders. Figures 15a and 15b 

show some time series corresponding to the attractors in Figures 12-14. Similarly to the 

findings of Brock and Hommes (1998), we can observe that opposite biases may cause 

perpetual oscillations around the fundamental, even when there are no costs for 

fundamentalists, but can not lead to chaotic movements. Furthermore, as has already 

been indicated by appearance of stable higher period cycles for high intensities of 

choice, in a three type world, even when there are no costs and memory is infinite, 

fundamentalist beliefs can not drive out opposite purely biased beliefs, when the 

intensity of choice to switch strategies is high. 

 

Hence, following the argumentation of Brock and Hommes (1998, p. 1260), the market 

can protect a biased trader from his own folly if he is part of a group of traders whose 

biases are ‘balanced’ in the sense that they average out to zero over the set of types. 

Centralized market institutions can make it difficult for unbiased traders to prey on a set 

of biased traders provided they remain ‘balanced’ at zero. On the other hand, in a pit 

trading situation unbiased traders could learn which types are balanced and simply take 

the opposite side of the trade. In such situations biased traders would be eliminated, 

whereas a centralized trading institution could ‘protect’ them. 
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Figure 15a: Time series of prices and fractions in case of fundamentalists versus opposite biases 
 

Notes: Horizontal axis represents the time (t). Vertical axis in each set of time series plots represents 

deviations of the price from the fundamental value (xt), and the fractions of fundamentalists (n1,t), 

optimistic biased beliefs (n2,t) and pessimistic biased beliefs (n3,t). The plots on the left-hand side and the 

right-hand side of the figure differ with respect to the memory strength parameter w; the ones on the left 

correspond to w = 0, while the ones on the right to w = 0.3. 
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Figure 15b: Time series of prices and fractions in case of fundamentalists versus opposite biases 
 

Notes: Horizontal axis represents the time (t). Vertical axis in each set of time series plots represents 

deviations of the price from the fundamental value (xt), and the fractions of fundamentalists (n1,t), 

optimistic biased beliefs (n2,t) and pessimistic biased beliefs (n3,t). The plots on the left-hand side and the 

right-hand side of the figure differ with respect to the memory strength parameter w; the ones on the left 

correspond to w = 0.6, while the ones on the right to w = 0.9. 
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Additional memory does not change the pattern of asset prices and trader fractions per 

se, but it does affect its period. Namely, at the same intensity of choice and higher 

memory strength the period of these cycles appears to be elongated on average, in a way 

that both the negative and the positive deviation of the price from the fundamental value 

last longer. The same is valid for fractions ob biased traders, while in the case of 

fractions of fundamentalists the prolongation of the period of the irregular cycle appears 

in the form of less frequent ‘spikes’, which is understandable, since more persistent 

deviations of prices from the fundamental imply more space for biased traders and less 

chance for appearance of the fundamentalists. More memory causes the traders to stick 

longer to the strategy that has been profitable in the past, but might not be so profitable 

in the recent periods; therefore the system approaches purely quasi-periodic dynamics 

when the memory strength increases at given intensity of choice. 
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6 Conclusion 

 

Computational models are becoming increasingly important in economics, since they 

allow many aspects at the micro level and details of the interaction among agents to be 

modelled and simulated. Heterogeneity is likely to play a key role in this approach, and 

agent-based computational asset pricing models thus deserve high priority in research. 

We have investigated an asset pricing model with heterogeneous beliefs where agents 

select a predictor from a finite set based upon past performance as measured by realized 

profits. If all traders had been identical and rational, the model would have essentially 

reduced to Lucas (1978) asset pricing model and under the additional assumption of the 

IID dividend process the asset price dynamics would have been extremely simple, viz.

there would have been one constant price equal to the efficient market hypothesis 

fundamental value at each and every point in time. 

 

On the other hand, in a heterogeneous agent financial market evolutionary dynamics 

may lead to persistent deviations from the fundamental price and highly irregular, even 

chaotic asset price fluctuations, when the intensity of choice to switch prediction 

strategies becomes high. However, a problem becomes increasingly apparent with such 

simulation models, i.e. there tend to be too many degrees of freedom and too many 

parameters. One of such issues that we pursued in this paper to make less indeterminate 

and unresolved relates to memory strength. Memory strength represents the share of past 

fitness in the performance measure of an asset pricing model and can also be thought of 

as the share of past information that boundedly rational economic agents take into 

account as decisions makers. We were interested in how this parameter affects stability 

of evolutionary adaptive systems and survival of technical trading. In order to obtain an 

insight into this matter two cases were analyzed; a two-type case of fundamentalists 

versus contrarians and a three-type case of fundamentalists versus opposite biases. 

 

In a market with fundamentalists and contrarians the fundamental steady state is the 

unique steady state of the system, which arises for low values of intensity of choice. 

Memory affects neither the position of this steady state nor its stability. For increasing 

intensity of choice a primary bifurcation, i.e. a period doubling bifurcation occurs; the 

steady state becomes unstable and a stable period two-cycle appears. Both the primary 

bifurcation value and the position of the period two-cycle are independent of the 

memory. For further increasing intensity of choice a secondary bifurcation, i.e. a 

supercritical Hopf bifurcation occurs; the period two-cycle becomes unstable and an 
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attractor appears consisting of two invariant circles around each of the two (unstable) 

period two-points, one lying above and the other one below the fundamental. For high 

intensity of choice chaotic asset price dynamics occurs, interspersed with many stable 

period cycles. Such a bifurcation route to chaos is often called the rational route to 

randomness. 

 

In case of strong contrarians and high intensity of choice it is reasonable to expect that 

we obtain a system that is close to having a homoclinic intersection between the stable 

and unstable manifolds of the fundamental steady state, which indicates the occurrence 

of chaos. There exists a certain limited interval of memory strength values, for which at 

a given intensity of choice we are more likely to obtain such a system with more 

additional memory in the model. A rational choice between fundamentalists’ and 

contrarians’ beliefs triggers situations that do not reach fruition due to practical 

considerations and are thus unattainable; the so-called ‘castles in the air’, as Brock and 

Hommes (1998, p. 1258) would put it. As a consequence we obtain market instability, 

characterized by irregular up and down oscillations around the unstable efficient market 

hypothesis fundamental price. Additional memory lengthens on average the period of 

this irregular cycle and mainly appears to be stabilizing with regard to asset prices. 

 

In a market with fundamentalists and opposite biases the fundamental steady state is 

again the unique steady state of the system, arising for low values of intensity of choice. 

Memory does not affect the position of this steady state, but it affects its stability. For 

increasing intensity of choice a supercritical Hopf bifurcation occurs; the steady state 

becomes unstable and an attractor appears. Memory affects the emergence of this 

bifurcation; the higher the memory strength, the higher the bifurcation value. More 

memory thus has a stabilizing effect on dynamics. For high intensity of choice the 

dynamical behaviour is more complex. However, irrespective of the amount of 

additional memory such a route to complicated dynamics is different from that in the 

presence of contrarians. Namely, after the bifurcation value only regular (quasi-)periodic 

fluctuations around the unstable fundamental steady state occur. Consequently, an 

important finding is that the predominating quasi-periodic dynamics does not seem to 

evolve to chaotic dynamics. 

 

After the incidence of the bifurcation higher value of the memory strength parameter 

causes the dynamics to be less periodic and more quasi-periodic; the dynamics therefore 

converges to the purely quasi-periodic behaviour with increasing memory strength. 
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Opposite biases may cause perpetual oscillations around the fundamental, even without 

costs for fundamentalists, but can not lead to chaotic movements. Furthermore, in a 

three type world, even when there are no costs and memory is infinite, fundamentalist 

beliefs can not drive out opposite purely biased beliefs, when the intensity of choice to 

switch strategies is high. Hence, following the argumentation of Brock and Hommes 

(1998, p. 1260), the market can protect a biased trader from his own folly if he is part of 

a group of traders whose biases are balanced. 

 

In conclusion, both our analytical work and our numerical simulations suggest that 

biases alone do not trigger chaotic asset price fluctuations. Sensitivity to initial states 

and irregular switching between different phases seem to be triggered by trend 

extrapolators; in our case by contrarians. Apparently, some (strong) trend extrapolator 

beliefs are needed, such as strong trend followers or strong contrarians, in order to 

trigger chaotic asset price fluctuations. A key feature of our heterogeneous beliefs model 

is that the irregular fluctuations in asset prices are triggered by a rational choice in 

prediction strategies, based upon realized profits, viz. the observed deviations from the 

fundamentals are driven by short-run profit seeking. We can also talk about rational 

animal spirits that, according to Brock and Hommes (1997b), exhibit some qualitative 

features of asset price fluctuations in the actual financial markets, such as the 

autocorrelation structure of prices and returns. 

 

The analyzed model is quite simple and stylized. One may thus question the validity and 

generality of the results. Do similar results also hold for asset pricing model with more 

than two assets or even in a general equilibrium framework, with a higher-dimensional 

equilibrium pricing equation? Brock and Hommes (1998, p. 1266) suggested an 

affirmative answer. How would a non-constant conditional variance of excess return 

change the results? Would the dynamics change dramatically with an increase in the 

number of trader types? These and some other issues exceed the purpose of this paper 

and are left for further research. When the consequences of changing memory on 

stability of evolutionary adaptive systems and survival of technical trading are well 

understood, we will be able to formulate asset pricing models in a more consistent and 

efficient manner. Optimistically, expanded and improved these models may yield further 

(seemingly) counter-intuitive results in terms of methods to stabilize, predict, or 

improve on current market institutions. 
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