
MPRA
Munich Personal RePEc Archive

A Theoretical Framework for Crude Oil
Price Evolution: Insights from the
Financial Crisis and Beyond

Boughabi, Houssam

National Institute of Statistics and Applied Economics

16 July 2025

Online at https://mpra.ub.uni-muenchen.de/126287/
MPRA Paper No. 126287, posted 10 Oct 2025 01:34 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/126287/


A Theoretical Framework for Crude Oil Price
Evolution: Insights from the Financial Crisis and

Beyond

Houssam BOUGHABI
National Institute of Statistics and Applied Economics

Rabat, Morocco
hboughabi@insea.ac.ma

July 15, 2025

Abstract

This study develops a theoretical model to understand the dynamics of crude
oil prices, integrating Keynesian insights on imperfect competition and long-
memory volatility through the FIGARCH framework. The model incorporates
both demand and supply-side factors, with a particular focus on firm expectations
and production costs, to explain price fluctuations. By calibrating the model to
historical oil price data, we examine how demand dynamics, driven by expectations
of future demand and current production costs, influence oil price movements. The
study highlights the limitations of relying solely on demand as a predictor for price
changes, particularly in the context of global disruptions such as the COVID-19
pandemic. Our results reveal that the exclusion of supply-side factors, including
production costs and geopolitical risks, leads to significant discrepancies in price
predictions, especially during periods of crisis. The findings emphasize the need
for a more comprehensive approach to modeling oil prices, incorporating both de-
mand and supply dynamics, to better capture market behavior during times of
global shocks.
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1 Introduction

The evolution of crude oil prices has long been a subject of interest in economic and
financial research. While numerous models have sought to explain the dynamics of
oil prices, the financial crisis of 2008 and subsequent market disruptions have raised
critical questions about the adequacy of traditional price determination theories. Ex-
isting frameworks often assume that markets naturally adjust to equilibrium through
the interplay of supply and demand, following classical models of perfect competition.
However, such assumptions fail to account for the complexities of real-world markets,
where factors like imperfect competition, uncertainty, and informational asymmetries
often play significant roles Hamilton, 2009. This discrepancy has led to increasing in-
terest in alternative models that can better explain price volatility, particularly in the
context of market failures and financial crises Kilian, 2009.

Joan Robinson’s work in Keynesian economics provides a valuable foundation for
addressing these challenges. In her influential texts, Robinson critiques the assumption
of perfect competition, arguing that many markets, including those for commodities like
crude oil, are characterized by imperfect competition and uncertainty Robinson, 1933.
According to Robinson, firms in such markets set prices based on expectations about
future demand and production costs, rather than responding passively to market forces.
This perspective highlights the importance of understanding not only current market
conditions but also the expectations and anticipations that drive firms’ pricing decisions
Robinson, 1973.

Incorporating Robinson’s insights, our model seeks to provide a comprehensive the-
oretical framework for understanding the evolution of crude oil prices in the aftermath
of the financial crisis. We propose that the adjustment of oil prices is driven by both
firms’ expectations about future demand and current production costs, with an em-
phasis on the long-memory characteristics of market volatility. Previous models of oil
price dynamics, such as those relying on standard supply and demand curves, fail to fully
capture the persistence and unpredictability observed in oil price fluctuations, especially
during periods of crisis Baumeister & Kilian, 2012. Moreover, many models neglect the
role of firm expectations and supply-side factors, focusing solely on demand-driven price
dynamics Ciferri et al., 2021.

A key gap in the existing literature is the failure to integrate long-memory volatility
models, such as FIGARCH (Fractionally Integrated Generalized Autoregressive Con-
ditional Heteroskedasticity), into the analysis of crude oil price dynamics. While FI-
GARCHmodels have been successfully applied in other commodity markets, their poten-
tial for capturing the persistence of volatility in crude oil prices remains underexplored
Baillie et al., 1996. By combining Robinson’s insights with modern volatility modeling
techniques, we aim to fill this gap and provide a more accurate representation of oil
price evolution, particularly in the wake of the 2008 financial crisis and the COVID-19
pandemic Ciferri et al., 2021.
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Despite the model’s incorporation of key demand dynamics, our results suggest that
the model’s reliance on demand alone, without accounting for supply-side factors, fails
to fully capture the complexities of crude oil price fluctuations, particularly during
times of crisis. The COVID-19 pandemic highlighted this limitation, as the model did
not adjust for production disruptions or changes in geopolitical risks, which played
a significant role in the oil market during the crisis. In particular, the exclusion of
production costs and supply-side shocks, such as the OPEC+ production cuts, led to
discrepancies between the model’s predictions and the actual market behavior. For
instance, during the pandemic, oil prices experienced unprecedented volatility, including
the negative prices seen in April 2020, a phenomenon that the model could not account
for. This underscores the need for a more comprehensive approach that incorporates
both demand and supply factors to improve the predictive power of crude oil price
models, especially in times of global disruptions.

The primary research questions guiding this study are as follows: (1) How can the
interplay between demand, production costs, and firm expectations be modeled to ex-
plain crude oil price movements? (2) How does the long-memory volatility of crude oil
prices, captured by the FIGARCH model, contribute to a better understanding of price
dynamics during times of market stress? (3) What role do supply-side factors, including
production costs and geopolitical risks, play in shaping oil price movements, especially
during periods of crisis Arouri et al., 2012?

To address these questions, we develop a theoretical model that incorporates both
demand and supply-side factors, with a focus on the role of firm expectations and volatil-
ity. The model builds on Robinson’s ideas of imperfect competition and incorporates a
volatility component based on the FIGARCH framework Baillie et al., 1996. We then
estimate the deterministic parameter δ, which represents the price sensitivity to volatil-
ity, by calibrating the model to historical oil price data. Through this approach, we aim
to provide a more nuanced understanding of the forces driving oil price fluctuations and
offer a more robust tool for analyzing market behavior in the context of financial crises.

Boughabi, 2025 had started this work and layed the foundations of this model earlier
on, the empirical part had been developed in this work and all the thinking was due to
the effort of my model to capture such a Keynesian theory which aims at addressing the
gap between actual prices and theoretical prices for our precious thinking.

2 The Model and the Methodology

Our model investigates the market’s inability to effectively guide prices toward equilib-
rium, a concept that resonates with Joan Robinson’s critiques of traditional economic
theories. Robinson, a prominent figure in Keynesian economics, challenged the conven-
tional wisdom of perfect competition, emphasizing the prevalence and implications of
imperfect competition in real-world markets (Robinson, 1933).
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2.1 Joan Robinson’s Perspective on Market Dynamics

Joan Robinson’s seminal work, *The Economics of Imperfect Competition*, introduced
the notion that markets are often characterized by firms with price-setting power, lead-
ing to outcomes that deviate from those predicted by models of perfect competition
(Robinson, 1933). She argued that firms’ expectations about future demand and pro-
duction costs play a crucial role in price determination, highlighting the significance of
historical time and uncertainty in economic analysis (Robinson, 1973).

Robinson also emphasized that the interplay between demand and production costs
is central to understanding market dynamics. She pointed out that demand influences
production costs through economies of scale: as firms anticipate higher demand, they
may increase production, leading to lower average costs and potentially affecting pricing
strategies (Robinson, 1973). This interdependence challenges the traditional separation
of demand and supply functions, suggesting a more integrated approach to analyzing
market behavior.

Furthermore, Robinson critiqued the notion that markets naturally adjust to equi-
librium. She contended that due to factors like uncertainty and imperfect information,
markets often fail to reach equilibrium states as predicted by classical theories. This
perspective underscores the importance of considering historical time and path depen-
dency in economic modeling, as past events and decisions can have lasting impacts on
market outcomes (Robinson, 1973).

2.2 Model Framework

Building upon Robinson’s insights, we propose a model where firms set prices based
on their expectations of future demand and current production costs. Specifically, firms
forecast future demand, denoted as E[Dt+1|Ft], and consider current production costs ct
in their pricing decisions. This approach acknowledges the limitations of the market in
processing and responding to information about demand and costs, leading to potential
inefficiencies.

The price evolution in our model is described by the equation:

pt+1 = pt + g(ct, Dt+1), (1)

where g(ct, Dt+1) represents the adjustment function based on production costs and
demand.

Demand dynamics are modeled as:

Di+1 = δh
1
n
i Di, (2)

where ht denotes the variance of crude oil prices, reflecting market volatility, and
δ > 0 is a scaling parameter.
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2.3 Hypothesis and Functional Forms

We hypothesize that the adjustment function g(ci, Di+1) takes the linear form:

g(ci, Di+1) = A(i, T )ci +B(i, T )Di+1, (3)

where A(i, T ) and B(i, T ) are deterministic functions that capture the sensitivity of
price adjustments to production costs and demand, respectively.

We further assume that the sequence (g(ci, Di+1))i≥t follows a martingale process
under the information filtration Ft when A(i, T ) = 0, meaning that price changes are
driven solely by demand expectations. In this case, the adjustment function simplifies
to:

g(ci, Di+1) = B(i, T )Di+1. (4)

This formulation implies that price adjustments are unpredictable given the available
information set, aligning with the concept of market inefficiency. It also suggests that
incorporating production costs (ci) introduces predictability into the model, reflecting
the informational content of supply-side factors in real markets.

2.4 Volatility Modeling with FIGARCH

To capture the long-memory characteristics of crude oil price volatility, we employ the
Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity (FI-
GARCH) model. This approach allows us to model the persistence in volatility observed
in commodity markets, providing a more accurate representation of market dynamics.

The FIGARCH model is specified as:

Φ(L)(1− L)d(lnσ2
t − ω) = Ψ(L)g(zt−1), (5)

where ω represents the mean variance, Φ(L) and Ψ(L) are polynomials in the lag
operator L, and g(zt) captures the impact of past returns on current volatility [3].

By integrating the FIGARCH model into our framework, we aim to provide a com-
prehensive analysis of price dynamics that accounts for both the role of firm expectations
and the persistent nature of market volatility.

2.5 Economic Interpretation

In traditional economic models of perfect competition, prices are determined by the
intersection of supply and demand curves, with firms acting as price takers. However,
Robinson’s work highlights that in many real-world markets, firms possess some degree
of price-setting power due to product differentiation and market imperfections [1]. In
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such contexts, firms’ expectations about future demand and production costs become
pivotal in pricing decisions.

Our model encapsulates this by proposing that firms adjust their prices based on
anticipated future demand E[Dt+1|Ft] and current production costs ct. This reflects the
reality that firms, operating under uncertainty and imperfect information, rely on fore-
casts and expectations to make pricing decisions. The adjustment function g(ct, Dt+1)
represents the combined effect of these factors on price changes, acknowledging that
prices are not solely dictated by current market conditions but are influenced by firms’
strategic anticipations.

2.6 Statistical Interpretation

Statistically, the model suggests that price changes are influenced by both observable
factors—such as current production costs—and unobservable expectations of future de-
mand. The adjustment function is expressed as:

g(ci, Di+1) = A(i, T )ci +B(i, T )Di+1,

and we assume that the sequence (g(ci, Di+1))i≥t follows a martingale process with
respect to the information filtration Ft only when A(i, T ) = 0, meaning price changes
are driven solely by demand expectations.

In this case, the simplified form of the adjustment function becomes:

g(ci, Di+1) = B(i, T )Di+1,

and the martingale condition implies that, given current information, the expected
future price adjustment equals the current one:

E[g(cT , DT+1)|Ft] = g(ct, Dt+1).

This property aligns with the efficient market hypothesis (EMH), suggesting that
when only demand is considered, price changes are unpredictable based on the available
information. However, when A(i, T ) ̸= 0 and production costs are incorporated, the
process may deviate from the martingale structure, indicating that price adjustments
could become partially predictable. This reflects the presence of market inefficiencies due
to asymmetric information, firm-level strategic behavior, and other real-world frictions.

3 Estimation

We derive the expectation of g(ci, Di+1) given the filtration Ft:
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E[g(ci, Di+1)/Ft] = B(i, T )E[δh
1
n
i Di/Ft]

= B(i, T )δmi+1

mi∏
j=0

E[hi−j/Ft]
1
nDt.

Since

mi∏
j=0

E[hi−j/Ft] = (

mi∏
j=0

ϕi−j)hmi+1
t ,

it follows that:

B(i, T )(

mi∏
j=0

ϕi−j)δmi+1Φmi+1hmi+1
t = B(t, T )δh

1
n
t .

After estimating B(i, T ), we calibrate the model to determine δ such that the theo-
retical price aligns with the market price of crude oil, known for its long-memory volatil-
ity [3][4][5]. This highlights that market price predictability improves when additional
factors, such as production costs, are incorporated.

4 Estimation of the Deterministic Parameter Delta:

Methodology

In this section, we present the algorithm used to estimate the deterministic parameter,
δ, which represents the time-varying price sensitivity in the theoretical model of spot
oil prices. The estimation of δ relies on the application of optimization techniques to
minimize the discrepancy between the theoretical and actual observed spot prices. The
approach follows the principles of a volatility model that accounts for market dynamics
and adjusts δ to reflect the changes in market conditions over time.

4.1 Step-by-Step Algorithm for Estimating δ

4.1.1 1. Initialization

The starting value of δ is initialized to 1, representing an initial assumption that the
price sensitivity remains constant over time. A baseline volatility parameter, ϕ, is
estimated using a FIGARCH model applied to historical spot price data. This model
captures the persistent volatility of the oil market, which is crucial for understanding
price fluctuations.
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4.1.2 2. Theoretical Price Calculation

The theoretical price, Ptheory(t), at each time point t is computed using the specified
theoretical spot price model. The price formula incorporates the estimated ϕ and the
deterministic parameter δ:

Ptheory(t+ 1) =
B(t, T )δh

1
n
t

(
∏mt

j=0 ϕ
i−j)δmt+1Φmt+1hmt+1

t

Dt+1 + Ptheory(t) (6)

where:

� B(t, T ) is the term for the market bond price or any relevant market indicator.

� ht represents the market’s historical volatility.

� Φ and mi are parameters related to the volatility process.

� δ is the price sensitivity to changes in volatility over time, which we aim to esti-
mate.

4.1.3 3. Loss Function Definition

The core of the estimation procedure lies in minimizing a loss function that measures
the discrepancy between the theoretical prices and the observed spot prices, denoted by
Pobs(t). The loss function, L(δ), is defined as:

L(δ) =
T∑
t=1

(Ptheory(t, δ)− Pobs(t))
2 (7)

The goal is to find the value of δ that minimizes this loss function, i.e., the value of δ
that minimizes the sum of squared differences between the predicted and actual prices
over the given time series.

4.1.4 4. Optimization Procedure

To estimate δ, the optimization process employs numerical methods, specifically the
Nelder-Mead method, which is a popular derivative-free optimization technique. This
method iteratively adjusts δ to minimize the loss function L(δ). The steps in the opti-
mization process are as follows:

� Step 1: Initialization – The initial guess for δ is set to 1, and the loss function
is computed using this initial value.
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� Step 2: Iterative Search – The Nelder-Mead algorithm performs a series of re-
flections, expansions, and contractions of the simplex (a set of potential solutions)
to search for the value of δ that minimizes the loss function.

� Step 3: Convergence – The algorithm continues iterating until the loss function
converges to a minimum or until a stopping criterion (e.g., maximum iterations or
tolerance level) is reached. The final value of δ corresponds to the optimal value
that best aligns the theoretical prices with the observed market prices.

4.1.5 5. Post-Optimization

After the optimization process concludes, the estimated δ values over time are examined.
These values reflect the variation in price sensitivity corresponding to fluctuations in
volatility and market conditions. The resulting values of δ are stored and analyzed to
capture the temporal dynamics of price sensitivity in the oil market.

4.1.6 6. Graphical Representation

A time series plot of the estimated δ values is generated to visualize how the price
sensitivity evolves over time. This plot provides insights into the periods of heightened
volatility (e.g., financial crises or market recoveries) and helps in understanding the role
of volatility in influencing spot price behavior.

4.1.7 7. Analysis and Interpretation

The estimated δ values are then analyzed in the context of historical events in the oil
market, such as the financial crisis of 2008, the post-crisis recovery, and the impact of
the COVID-19 pandemic. A well-fitting δ curve should reflect the general trends in
market dynamics, including the periods of market stability and volatility.
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5 Discussion of the Result

Figure 2: The Estimated values of δ by the Nelder-Mead method using Software
Python

The results of our model provide valuable insights into the dynamics of crude oil
price evolution and highlight the role of market volatility and demand in shaping price
movements. Our model successfully captures the financial crisis of 2008, as evidenced by
the linear descent in the parameter δ from 2008 to 2009, which reflects the contraction
in demand during the crisis. However, the model’s ability to capture the effects of
the COVID-19 pandemic is limited, as the estimated δ values from 2009 to 2023 show
a steady linear increase. This behavior indicates that demand and market conditions
have returned to a pre-crisis growth trajectory, with little to no evident impact from the
pandemic in terms of price sensitivity.

5.1 Model Performance: Limitations and Insights

The model’s adjustment function, g(ct, Dt+1), incorporates both production costs and
demand dynamics to explain price changes over time. However, the failure of the model
to account for the COVID-19 crisis raises important questions about the sufficiency of
demand as a sole predictor for crude oil prices. The COVID-19 pandemic caused a dra-
matic, short-term reduction in demand for oil due to lockdowns, travel restrictions, and
economic slowdown. However, the model, which assumes that price dynamics are driven

solely by demand variations through Di+1 = δh
1
n
i Di, does not incorporate the necessary
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adjustments for supply-side factors, such as disruptions to production or changes in
geopolitical risks. In particular, the exclusion of production costs, represented by ci,
leads to the model’s failure to capture supply-side shocks, which were significant during
the pandemic.

This suggests that while demand is an essential determinant of crude oil prices,
it is not sufficient on its own to account for the full complexity of market behavior,
especially during periods of global disruption. For instance, during the early stages of
the pandemic, oil production was severely impacted by restrictions on production in key
oil-producing countries (e.g., OPEC+ production cuts). This supply-side shock was not
reflected in our model due to the assumption A(i, T ) = 0, which renders price changes
driven exclusively by demand.

Furthermore, the absence of production costs in the model means that price adjust-
ments based on supply-side constraints are not captured. As δ remains relatively stable
from 2009 onward, the model fails to account for the volatility spikes observed during
the pandemic, when oil prices experienced extreme fluctuations. For example, in April
2020, the price of WTI crude oil even turned negative for the first time in history, largely
due to storage constraints and the collapse in demand. This illustrates the complexity
of oil price determination, where demand alone is insufficient for accurate predictions.

5.2 Comparison with Existing Literature

Our results are consistent with existing studies that highlight the multifaceted nature
of oil price formation. Several scholars have emphasized the importance of both de-
mand and supply factors in determining crude oil prices. For example, Hamilton (2009)
discusses how supply-side shocks, such as geopolitical events and production cuts, have
historically played a crucial role in driving oil price volatility. Similarly, Kilian (2009)
argues that oil price fluctuations are the result of a combination of demand shocks and
supply disruptions, which suggests that a model that neglects supply factors may miss
key dynamics.

In contrast, the use of demand-only models has been critiqued in the literature for its
inability to account for supply-side disturbances. Baumeister and Kilian (2012) explore
the role of both demand and supply shocks in the context of crude oil prices and find that
oil prices are significantly affected by both factors. The authors argue that while demand
shocks drive long-term trends, supply-side factors, such as production constraints and
geopolitical risks, often lead to short-term price volatility. Our model, by focusing solely
on demand, fails to incorporate these short-term dynamics, which could explain why it
does not capture the impact of the COVID-19 crisis.

Moreover, the failure of the model to account for the COVID-19 pandemic is a
reflection of the limitations of purely demand-driven models in times of severe market
disruptions. As noted by Ciferri et al. (2021), the pandemic caused unprecedented
shifts in both supply and demand for oil, which cannot be fully captured by a model
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that assumes a constant relationship between demand and price sensitivity. The authors
argue for the inclusion of both supply and demand factors in models of oil price behavior,
particularly during periods of crisis.

5.3 Conclusion and Future Directions

While our model succeeds in capturing the effects of the 2008 financial crisis, its failure
to account for the COVID-19 pandemic highlights the limitations of using demand as
the sole explanatory factor for oil price dynamics. The linear increase in the estimated
δ from 2009 to 2023 suggests that the model has oversimplified the complexities of
oil price formation by ignoring supply-side factors. To improve the model’s predictive
power, future work should incorporate both supply and demand dynamics, as well as
other factors such as geopolitical risks, storage constraints, and market speculation.
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