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Abstract

A Bartlett-type formula is proposed for the asymptotic distribution of the sample
autocorrelations of nonlinear processes. The asymptotic covariances between sample
autocorrelations are expressed as the sum of two terms. The first term corresponds to
the standard Bartlett’s formula for linear processes, involving only the autocorrelation
function of the observed process. The second term, which is specific to nonlinear
processes, involves the autocorrelation function of the observed process, the kurtosis
of the linear innovation process and the autocorrelation function of its square. This
formula is obtained under a symmetry assumption on the linear innovation process.

An application to GARCH models is proposed.

Keywords : Bartlett’s formula, nonlinear time series model, sample autocorrelation, GARCH

model, weak white noise.

1 Introduction

In time series analysis, the estimation of the autocorrelation function plays a crucial role, in

particular for identification problems (see e.g. Brockwell and Davis (1991)). Bartlett (1946)



derived an explicit formula for the asymptotic covariance between sample autocorrelations. This
formula is given in most time series textbooks, and most time series software packages plot the
sample autocorrelation function with significance limits obtained from this formula!. Bartlett’s
formula was obtained for linear processes and it is well known (see e.g. Berlinet and Francq
(1997), Diebold (1986), Romano and Thombs (1996)) that Bartlett’s formula may be completely
wrong for series exhibiting conditional heteroscedasticity or any other form of nonlinearity. In
particular, Kokoszka and Politis (2008) show that the use of Bartlett’s formula is unwarranted for
ARCH or stochastic volatility processes. The aim of this paper is to generalize Bartlett’s formula
to a wide class of nonlinear processes.

In order to give a precise definition of a linear process, first recall that the Wold decomposition
(see Brockwell and Davis (1991), Section 5.7) states that any purely non deterministic stationary

process can be written in the form

Xe= Y ¢verv, (&) ~ WN(0,07) (1.1)

l=—o00

where Y°, ¢7 < co. The process (e;) is called the linear innovation process of the process X = (X,),
and the notation (e;) ~ WN(0, 02) signifies that (e;) is a weak white noise, that is a stationary se-
quence of centered and uncorrelated random variables with common variance o2. An independent
and identically distributed (iid) sequence of random variables with mean 0 and common variance
o? is sometimes called a strong white noise, and will be denoted by IID(0, 02). Obviously a strong
white noise is also a weak white noise, because independence entails uncorrelatedness, but the
reverse is not true. The process X is said to be linear when (e;) ~ IID(0,02), and is said to
be nonlinear in the opposite case. The autoregressive moving average (ARMA) model with iid
noise is the leading example of linear process (see e.g. Brockwell and Davis, 1991). Examples
of nonlinear models include, among many others, the self-exciting threshold autoregressive (SE-
TAR) model (see Tong, 1990), the smooth transition autoregression (STAR) model (see Terdsvirta
(2004) and the references therein), the exponential autoregressive (EXPAR) model introduced by
Haggan and Ozaki (1981), the bilinear model (see Granger and Andersen, 1978) and the general-
ized autoregressive conditional heteroscedastic (GARCH) model introduced by Engle (1982) and
Bollerslev (1986). Because numerous real time-series, in particular stock market returns, exhibit
dynamics which can not be well mimicked by ARMA models with iid noises, nonlinear models are
becoming more and more employed (see Tong (1990) and Fan and Yao (2003) for reference books
on nonlinear time series analysis).

Before fitting any time series model to real data, it is common practice to draw the empirical

autocovariances and analyze their significance. Because the standard Bartlett’s formula can be

!See e.g. the function acf() of the statistical software R, with its argument ci.type = c("white",

nmau) 3



unreliable when the underlying series is non linear, it is important to have an appropriate tool
which could be used in very general settings. A question is therefore whether the standard Bartlett
formula can be extended. More precisely, our aim in this paper is to derive a formula giving the
asymptotic covariances between empirical autocovariances, in function of characteristics of the
underlying processes. As we will see, the theoretical autocorrelations of the observed process will
not suffice to characterize those asymptotic covariances, as is the case in the linear framework.
It will also be of interest to know whether the standard Bartlett’s formula can provide good
approximations of the asymptotic autocovariances when the underlying process is non linear.
The plan of the paper is as follows. In Section 2 we begin by recalling the standard Bartlett’s
formula. Section 3 states a generalized Bartlett’s formula which can be applied to both linear and
nonlinear processes. Section 4 illustrates the generalized Bartlett’s formula with GARCH models.

Proofs are relegated to Section 5.

2 Notation and Bartlett’s formula for linear processes

The autocorrelation function of a real-valued stationary process X = (X;) is defined by

px () 0x () , vx (i) = Cov(X, X¢4) for all integers ¢, 4.
7x(0)
Assume that X is centered and that the observations are Xi,..., X,,. The autocorrelation px ()

and autocovariance yx (i), for 0 <14 < n, are generally estimated by their sample versions

px (i) = px(—i) = 7X(i) . Ax (i) = Ax (=) = %Z_:thm.

Ax(0)

For fixed m > 1, let us consider the following vectors of sample and theoretical autocovariances

and autocorrelations

Ym = (7x(0), ., yx(m)),  Am = (3x(0),...,4x(m)),

P = (px (s px(m))  and  pm = (px (1), px (m)).

The following theorem is standard (see Brockwell and Davis (1991), Chapter 7) and gives the
asymptotic distribution of /1 (% — Vm) and v/n (pm — pm) in the case where X is a linear process.

Theorem 2.1 Let X = (X;) be a linear process, that is a process satisfying (1.1) with (e;) ~

1ID(0,0?), 0* > 0. Assume also that E(e}) = ko' < oo and > ;o |be| < co. The vec-

— 00

tors \/n (Ym — vm) and /1 (pm — pm) are asymptotically normally distributed with mean zero and

variance given by Bartlett’s formulas

lim nCov{¥x (i), ¥x(j)} = vij, lim nCov{px (i), px ()} = wij,
n—00 n—0o0



where fori,j >0

vig = (E=3)x(yxG)+ Y O {yx(C+i—i) +yx(C—j—i)}, (2.1)
{=—0c0
wij = > px(O){2px@)px(i)px(£) = 2px(i)px (L + j)
{=—0c0
—2px()px(L+1) +px(U+j—i)+px(L—j—1i)}. (2.2)

It is important to note that the iid assumption on (e;) is very restrictive. Only linear models,
essentially the ARMA models with iid noises, are covered by Theorem 2.1. In view of Wold’s
decomposition, if one can replace the assumption (¢;) ~ IID(0,02) by the assumption (e;) ~

WN(0,5?) , then one can cover almost all the stationary nonlinear processes.

3 Bartlett’s formula for non linear processes

Standard Bartlett’s formula (2.2) only depends on the autocorrelation function of the process
X = (Xi), but is restricted to linear processes. The following theorem provides an extension of
Bartlett’s formula to nonlinear processes which, under a symmetry assumption, involves in addition

the Kurtosis of the linear innovations ¢; of X and the autocorrelation function p.> of (¢?).

Theorem 3.1 We consider the framework and assumptions of Theorem 2.1, but we relax the

linearity assumption (e;) ~ IID(0,02) and we make the following symmetry assumption

Eey €ry€t56r, =0 when t1 # ta, t1 # t3 and t1 # ty. (3.1)
Then pe = Z:Loo pez(h) exists, and we have the generalized Bartlett’s formula for autocovari-
ances
lim nCov{yx(i),yx(j)} = v;,5 + UZ]-, (3.2)
n—oo

where v; ; is defined by (2.1) and
vy = (= D{(pe = 3)1x()1x ()

+ ) ax(t—i) {'Vx(fj)+7x(€+j)}pa(€)}- (33)

l=—o00

If
\/ﬁ(;ym - ’)/m) ﬁ’ N(Oa E’Ym) when n — oo, (34)

where the elements of ¥, are given by (3.2), then

\/ﬁ (ﬁm - pm) £) N(O’ Zﬁm) ) (35)



where the elements of ¥;,,, for i,j > 0, are given by the generalized Bartlett’s formula for auto-

correlations

lim nCov{px (i), px (j)} = wi; +wy ;, (3.6)

n—00

where w; ; is defined by (2.2) and

oo

wi; = (k=1) Y pe(l) [20x(0)px(7)p% (€)= 20x (7)px (£)px (£ + i)
l=—o0
—2px(1)px(O)px (L +7) + px (€ + i) {px (L +j) + px (£ —j)}]. (3.7)

We now give a series of remarks.

Remark 3.1 Following Remark 1 of Theorem 7.2.2 in Brockwell and Davis (1991), w; ; can also

be written as
wij = wi(Ow;(€), where w;(€) = {2px(D)px (¢) — px (L +1i) — px (=)}
=1

Similarly we have
wiy = (5 —=1) Y per(Owi(£)w; (0),
=1

which shows that, whenever px(:), k and p.(:) are available, the standard and generalized

Bartlett’s formulas are computed very similarly.

Remark 3.2 Even for non linear processes, standard Bartlett’s coeflicients v; ; and w; ; provide
good approximations of v/nCov(¥x (i), ¥x (7)) and \/nCov(px (i), px(j)) when ¢ or j is very large,
because

*

7;—0 and  w;; —0 when ¢—o00 or j— oo.
; ;

v
Note however that, for fixed (i, j), it is easy to find examples of nonlinear processes such that

v} ;/vij and wf ; /w; j are arbitrarily large.
The following remark concerns the technical assumptions of the theorem.

Remark 3.3 The proof of the theorem reveals that the symmetry assumption (3.1) is only needed
to obtain a tractable form for the asymptotic covariances, but is not required for their existence.
Note also that (3.4) is not entailed by the assumptions made in Theorem 3.1, but general assump-
tions, such as mixing assumptions, are available in the literature in order to obtain a central limit
theorem implying (3.4) and (3.5) (see e.g. Berlinet and Francq (1997) or Romano and Thombs
(1996)).

The following remark shows that the validity of the standard Bartlett’s formulas is actually not

limited to the case where ¢; is a strong noise.



Remark 3.4 When the €2’s are uncorrelated the standard Bartlett formulas apply because

*

vy ;= —2(k— Dyx(D)yx(4) + (k= Dyx () {7x(4) + 7x(=5)} =0

*x
and w; ; = 0.

We now consider the particular case where X is a weak white noise.

Corollary 3.1 (Weak white noise) If X = (e;), where (e;) satisfies the assumptions of Theo-

rem 3.1, then for i,j > 0, the generalized Bartlett’s formula for autocovariances (3.2) holds with

vij =v;; =0 if i #J
vii =72(0)  and i, = pe(i)ye(0) if >0
V0,0 = Ve2 (0) and US,O = (p€2 - 1)762 (0)

Under the addition assumption (3.4), then for i,j > 0, the generalized Bartlett’s formula for
autocorrelations (3.6) holds with

wij = w;; =0 if 1F£ ]

wi; =1 and wi;= 1522((01')) if i>0.

(3.8)

Remark 3.5 In the case of GARCH processes, Kokoszka and Politis (2008) established the lim-

iting distribution of p,,. Their formula for the asymptotic variance coincide with (3.8).

It should be noted that the additional term w;; can be arbitrarily large, as the next example

shows.

Example 3.1 Romano and Thombs (1996) considered weak white noises of the form ¢ =

2

NeNe—1 - MN—k+1 where () ~ 1ID(0,0?), with 02 > 0, Ent = uy < co and k > 1. Tt is clear

that (3.1) is satisfied for such noises. We have v.(0) = o2* and
o (g — o)kt fori=0,...,k—1

Ye2 (Z) =
0 for i >k

Moreover, it can be seen that (3.4) is verified, using the central limit theorem for m-dependent
processes (see e.g. Theorem 6.4.2, Brockwell and Davis, 1991). It follows that the conclusion of

Corollary 3.1 holds with

1 k—1i
wi; = %22@ - (% - 1)
" 42(0)

ol
when ¢ < k and w;; = 0 when 7 > k. Note that w}; > 0, showing larger variances for the sample
autocorrelations than would be expected from the use of the standard Barlett formula. The next

example shows that this is not always the case.



Example 3.2 Romano and Thombs (1996) also considered weak white noises of the form e; =

n¢/ni—1 where (1) ~ IID(0,02) andEn; * < co. It is interesting to note that (3.1) may not hold

2 1 2
Eé%e; 164 9=F 727t Mt—1M—2 _ {E (_)} '
Mi—1 Nt—2 Mt—3 m

When the marginal distribution of 7; is symmetric (3.1) is however satisfied. In this case we have

b () {8 ()} ori=o
V(i) =  o2E (n%) - {J2E (n%) }2 fori =1
0 for i > 2.

because

Note that (3.4) is satisfied, for the reasons given in the previous example, and that Corollary 3.1
holds with

wi, = —-1<0,

1
2 (%)
by Jensen’s inequality. In this case, application of the standard Bartlett formula would lead to an

over-evaluation of the asymptotic variance of \/ng.(1).

The next result shows that Bartlett’s formula is also particularly simple for the autocorrelations

of MA(q) at lags i > q.

Corollary 3.2 (Moving average with non independent linear innovations) If X; = ¢ +
Or€t—1 + -+ + Oq€1—q, where (¢;) satisfies the assumptions of Theorem 3.1, then the asymptotic

covariances w; j + w; ; defined in Theorem 3.1 are such that
9 P

1
72(0)

S yeli— 0ok (0)

l=—q

q
wii = > px(0) and wi, =
t=—q

for all i > q.

4 Application to ARMA-GARCH models

The following lemma shows that the symmetry assumption (3.1) is satisfied for GARCH models

with a symmetric innovation process.
Lemma 4.1 Let (e¢;) be a GARCH(p, q) process defined by

€ = \/h_mt

(4.1)
hy =w—+ ZZ=1 Oéiet2_i + Z?:l ﬂjh’tfja

where w >0, a; >0 (i =1,...,9), 3; >0 (j =1,...,p), and where (n;) ~ 1ID(0,1), En} < oo,
with 0y independent of {e,, u < t}. Assume also that Ee¢; < oo. If the distribution of 11 is
symmetric then (8.1) holds true.



From Ling and McAleer (2002), there exists a solution to (4.1) such that Ee} < oo if p(A?)) < 1,
where p(A(?)) denotes the spectral radius of A?) = EA; ® A;, the symbol ® standing for the

Kronecker product, and

2 7 2 2 g/ 2
Ny Oq—1 N Qq Un 51:;;—1 i Bp

qul Oqfl O(q—l)x(p—l) Oqfl
At - , , )
Qg1 Qq /31:p71 Bp
Op-1)x(q—1) Op-1 I, Op—1

with aq:4-1 = (a1,. .. ,aq_l)/, and By, 1 = (B, - - ,ﬁp_l)'. Note that A; is written for p > 2
and ¢ > 2, but can be straightforwardly modified when p < 2 or ¢ < 2. It is well known that the
square of a GARCH process admits an ARMA representation of the form

PAg P

2 2

€ — Z(ai + B =w+ v — Zﬁi”t—m
i=1 i=1

where vy = €2 — hy = (n? — 1)h; is a weak white noise. From this ARMA equation, the autocorrela-
tion function p.2(-) can be easily computed (see e.g. Section 3.3 in Brockwell and Davis, 1991). It
can be shown that p(h) > 0 for all . Thus, in view of the form of w; ; given in Remark 3.1, the
presence of GARCH effects makes the autocorrelations more difficult to estimate. More precisely,

we have the following result.

Proposition 4.1 Under the assumptions of Theorem 3.1, if the linear innovation process (e;) is

a GARCH process satisfying the assumptions of Lemma 4.1 then

wi;, >0 foral i>0.

i,
Moreover, if a; > 0, if Var(n?) # 0 and ZZ::OO px(h) # 0 we have

*
w;;

>0 forall i>0.

To compute the generalized Bartlett’s formula, we also need k — 1 = 7.2(0)/72(0), where v.(0) =
w{l =3P (o + @')}71 and 7.2 (0) = Fe} — ~v2(0). It can be shown that

-1
Eef = e (I(p+q)2 - A(2)> {9(2) +7:(0) (BA; @ by + Eb, @ Ay) 1p+q}

where e; = (1,05, ,-1)", by = (wne, 0,1, w,05,_4)", b® = Eb, @b, and 1,4, = (1,...,1) € RPHa.
It is then easy to compute Bartlett’s coefficients v; ; + v ; and w; ; +w; ;. An approximate of
the standard deviation of px (i) is then given by o5, (s = |/(wi,; +wj,;)/n. Using the delta method
(see e.g. Proposition 6.4.3 in Brockwell and Davis, 1991), one can also obtain asymptotic standard
deviations for the sample partial autocorrelations 7x (i), or for any other statistic depending on

a finite number of sample autocovariances/autocorrelations. Statistical issues are not considered



in the present paper, but it is clear that o, ;) and all the other theoretical moments must be
replaced by estimates in statistical applications.

As an illustration, consider the following ARMA(2,1)-GARCH(1,1) model

Xt — O.SXt_l + O.8Xt_2 = €t — 0.8€t_1
€t = O¢Mt, Nt iid N(O, 1) (42)
0?2 =1+02¢ , +0.60% ;.

Figure 1 displays the autocorrelation and partial autocorrelation functions, as well as bands in full
lines, in which the sample autocorrelations and sample partial autocorrelations should be included
with a probability approximately equal to 95%, when n = 1,000. The bands in dotted lines are
obtained by the standard Bartlett formula. It is seen that the variability of the autocorrelations is

strongly underestimated when this formula is used.

0.5
0.25

-0.25
-0.5
-0.75

Figure 1: The left panel displays the autocorrelations px (i) of Model (4.2) and the band
px (i) £ 1.960,, ;) in full lines, for n = 1,000. The right panel is similar for the partial
autocorrelations rx (). The bands in dotted lines are obtained by the standard Bartlett

formula.

5 Proofs
Proof of Theorem 3.1. Using (3.1) and setting ¢¢, ¢,.05,0, = Pty ey PesPe,, We Obtain

EXtXt+iXt+hXt+j+h = E (bll,é%ég,&;Efthl€t+i7£2€t+h723€t+j+hfé4
£1,02,03,04

_ 2 2 2 2
= E ¢21,41+i,Z3,53+jE€t7€1€t+h7Z3 + E ¢41751+h752752+h+]‘*iE€t7€1€t+ifé2
41763 le?

2 2 4
+ E ¢217€1+h+]}527€2+h*iE€t7€1€t+ifl2 - 2E€t E ¢41,51+i,51+h,51+h+j' (51)
£1,82 41

The last equality is obtained by summing over /¢1,/05,¢3,¢4 such that the indices of

{€t—t1, €timts, €t4h—tys €t4j+h—t, ; are equal two-by-two, which corresponds to the first three sums,



and then removing two times the sum in which the four indices are equal. We have also

D)= bt Ee i erriot, =7(0)D br,beti- (5.2)
01,02 £y
By stationarity,
Jim_nCov {7x(4), x (7) } Z Cov { X Xiti, XepnXesjon}-
h=—00

In view of (5.1) and (5.2), the existence of the last sum is guaranteed by the conditions > |¢y, | < 0o
and > |pez(h)| < 0o, and this sum is equal to

2 2 2
E Gty 0y +i b 05+] E {Eet Z1€t+h 03 (0)}+ E ¢€1,21+h7@2752+h+]'*iE€t7€1€t+ifl2

£1,03 h,ly,L2
4
+ 5 Bty 0y +hti o tath—i B g €44i_g, — 2E€; § Gty 01 +i 00 +h b+t
h,l1,02 h,lq

= 0)pe2 Z¢el¢el+zz¢es¢es+g + > b 0BG i, Z¢el+h¢62+h+y i

£y £1,62

+ Y bu b Bel_ €6y, Z Gty +htjPlath—i — 2E¢] Z Pey P, vi Z Per+hPeithts

£1,L2 £y
using Fubini’s theorem for the permutation of summation symbols. Using again (5.2) and ~.2(0) =

(k — 1)72(0) we obtain

lim nCov {yx(2),4x(4)}

= 72 (0)p2 20 1x (Dx () + D, ¢ 06 Bt etvi 7 (O yx (la+§ — i — £1)
£1,82
+ ) be b Bl ety 0,77 0)yx (b — j — i — 61) — 2Beiy2(0)7x (i)vx (4)
£1,02

= {(k=1)pe — 2} vx(1)7x(4)
+7710) Y b b, {rx (a5 —i— ) +yx(la —j — i — )} {re (i — b2+ £1) +72(0)} -
L1,
Setting £ = £5 — {1, we finally obtain
lim nCov {¥x (i), ¥x ()} = {(k — D)pez — 26} vx () 7x (4)

n—oo
oo

+720) Y ax () {yx (45— i) +x (0 =5 — i)} {ve (i =€) +72(0)}

{=—o0

= (pa = 3)(k — Dyx(D)vx(4) + (8 = 3)vx (1)vx (4)

+Z’)’X Y{yx(l+j—i)+yx(—j5—1)}

l=—o0
Fro 1) S w0 (G — i)+ (-G — )} pali — )
l=—c0
Setting h = i — £ and using the parity of the autocorrelation functions, the last sum can be written

as

oo

> ax(=h+ i) {yx(=h+§) +yx (=h = §)} per (),

h=—o00

10



which gives (3.2).

The vector (px (i), px(j)) is a function of (9x(0),4x(7),¥x(4)). The Jacobian of this transfor-

mation is
_ax (@) 1 0
J = %)  vx(0) _
_ax(4) 0 1
7% (0) vx (0)

Let X be the variance matrix of (9x(0),4x(2),%¥x(j)). By the delta method, we obtain

Vx (D)vx (4) x4 x(d)
e () R AR E AT E0)

Using (3.2) to determine the elements of X, this asymptotic covariance is

2(2,1) + 2(2,3).

((k— 1)pes — 26} { x(1x () 2 () - 2x (i))WX(O)VX )

7% (0) 7% (0
-2 @ (0) + ()
+20) Y [VX(?V LN Y0 ) {7e2 (=€) +72(0)}
. 7x(0)
T (0 frx(t+) + 1= )} (=0 + 200}
IO (€= i)+ x (= 0} {rali = 049700}
+7§(1(0)7x(€){vx(£+jz‘)+yx(ejz‘)}{7€2(z‘e)+~y§(o)} _

As function of the autocorrelations, the previous quantity is written as

> [20x(1)px (4)pX () — px (i)px () {px (L + j) + px (£ — j)}
l=—o0
—px(Npx () {px (¢ — i) + px (L =)} + px (O) {px (€ + j — i) + px (£ — j — i)}]
H(r=1) Y pe0) 20xD)px (G)px (0) — px (D)px () {px (£ + ) + px (£ = )}
l=—00

—px(F)px (=) {px () + px (O)} +px(i — €) {px(—L+j) + px (=L —j)}].

Noting that

3 px(Opx (¢ + ) > px(@)px (L - ),

L L

we obtain, with w; ; given by (2.2) and w; ; given by (3.7),

lim nCov {p(i),p(j)} = wi;+wj;.

n—oo

11



Proof of Corollary 3.1. When X = (e;),

vig = (8= 3)7e()7e()) +7e(0) {ve (G — 1) + ve(—5 —9)}
0 i ity
= 72(0) if i=3>0
(k —1)72(0) if  i=j=0,
wij = =2pe(J)pe(i) + pe(j — i) + pe(—j — 1)
o i iy
I I it i=j>0,
vi; = (per = 3)(k = D)Ye(i)ve(d) + (5 = 1)7e(0) {7e(i = 5) + e (i +5)} pez (i)
0 it i
= 9 (k=1)72(0)pe(3) it i=3j>0
(pez = 1)(r — 1)72(0) if i=j=0,
wi; = (5 =1)[=2pe(1)pe()) + pez (i) {pe(i + j) + pe(i = 5)}]
] if i
] k= Dpe(i) it i=j>0.

The conclusion then follows from (k — 1) = .2(0)/72(0).

O
Proof of Corollary 3.2. Because px(¢) = 0 for |¢| > ¢, we have
q
wij = Y px(0)[20x(i)px (§)px (0) = 2px(D)px (£ + )
t=—q
—2px(J)px (U + i) + px (L +j — i) + px (£ — j — )]
and for i,j > q
q
wij = > pxOpx(L+j—1).
l=—q
The expression of w; ; follows. Similarly, for ¢ > ¢
oo
wi, = (k=1) > pe@px(t+1i){px (€ +i)+px(t—i)}
l=—00
q
— -1 Y pali— 05 (0).
l=—q
O

Proof of Lemma 4.1. It is shown in Francq and Zakoian (2004) that, if the distribution of 7 is

symmetric then

Vi, E {g(ef, e ... Yer—j f(€t—j—1,€t—j—2, ... )} =0, (5.3)
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for any functions f and g such that the expectation exists. Let four indices ¢;, i = 1,...,4, such
that ¢t <ty < t3 < t4. We will show that Fe;, e, €er,6;, = 0 when one of the indices is different
from the three others.

Ift3 < t4, then
E€t1€t2€t3€t4 = F [E (€t16t26t3€t4 | {eua u < t4})] =F [€t1€t2€t3ht4E (77154 | {ewu < t4})] =0,

because h¢, is measurable with respect to the o-field generated by {e,,u < t4} and because 7, is

centered and independent of {€,,u < t4}. The result can also be obtained from (5.3) with g = 1,
t *] = t4 and f(€t471; €ty—2y -« ) = €¢, €ty €45

Assume therefore that t1 < tg < t3 = t4. Applying (5.3) with g(x) = f(z) = z, we have

Eey e er,e, = E{g(€},)er, f(er,)} =0

and the conclusion follows.

Proof of Proposition 4.1. Because

oo
wi; = (k=1)>_ pex(O)wi (0),
=1
the first result follows from Lemma 5.1 below. To prove the second part, note that Vare; =
Eh?Var(n?) + Varh, > w?Var(n?) > 0. Thus x — 1 > 0. Note also that the condition Y, |¢¢| < co

oo

implies Y~ |px(i)| < co. The conclusion thus follows from Lemmas 5.1-5.2 below.
Lemma 5.1 If (¢;) is a GARCH process and Ee} < oo then

Ye2(h) = Cov(e?, e7_;) > 0 Vh,
with strict equality if aq > 0.

Proof. It suffices to show that we have a MA(c0) of the form

&G =ctu+ Y iy, with ¢>0 VL
=1

Indeed, v; := €2 — hy = (n? — 1)h; being a weak white noise, we have

[ee]
Ye2(h) = Ev? Z GeDitin); with the notation ¢¢ = 1.
=0

Denoting by B the backshift operator, and introducing the notation a(z) = > | a;2", 8(z) =

?;1 ﬁjzj and ¢(z) = Zzl ¢eZ€, we obtain
E={l—(a+B)N)} w+{l—(a+B)B)}(1-BB) =c+d(B)u.

13



Since 1 — B(B) = 1 — (a + (8)(B) + a(B), we obtain ¢, as the coefficient of z* in the division of
a(z) by 1 — (a+ B)(z) according to the increasing powers of z. By recurrence on /, it is easy to
see that these coefficients are positive because the polynomials «(z) and («a + 5)(z) have positive

coefficients. It is sufficient to show the positivity of the coefficients ¢; in the expansion

B &
@ 2P

By induction we prove that

ci > ai(ar+ /) P> 1 (5.4)
We have ¢; = ;. Moreover, with by convention o; =0 if i > g and §; =0 if j > p,
Cit1 =ci(a; +Bi) + ... +ciloa + Br) + i

Thus if (5.4) holds up to the order i, using the positivity of the GARCH coefficients, we have

¢i+1 > a1(ag + B1)". The conclusion follows.

O

Lemma 5.2 Let p(-) be an autocorrelation function. If Z;{f_o@ p(h) exists and is not equal to

zero, for all i > 0 we have
wi(£) :==2p(D)p(l) —p(l+1i) —p(l —i) #0  for some £ >0.
Proof. Suppose that for some ¢ > 0,
2p(i)p(£) = p(€+ i) + p(€ —i), VL=1.

Then, the equality also holds for any ¢ € Z. Moreover, summing over £ yields
20(i) Y p(0) = p(l+i)+p(t —i) =2 p(0).
— 0o — 0o — 00

It follows that p(i) = 1. But taking ¢ = ¢ in the relation then yields p(2¢) = 1. By induction

p(ni) = 1. Letting n — oo we have a contradiction.
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