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Abstract 
 

Although the economy of China has grown very strongly over the last few decades, this 

spectacular performance has come at the expense of rapid environmental deterioration. Amidst 

animated debate on the issue of global warming, this study attempts to explore the determinants 

of CO2 emissions in China using aggregate data for more than half a century. Adopting an 

analytical framework that combines the environmental literature with modern endogenous 

growth theories, the results indicate that CO2 emissions in China are negatively related to 

research intensity, technology transfer and the absorptive capacity of the economy to assimilate 

foreign technology. Our findings also indicate that more energy use, higher income and greater 

trade openness tend to cause more CO2 emissions.  
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1. Introduction 

The debate over global climate change has attracted copious attention from academic 

researchers and policy makers in recent years. As the major new global player, China’s 

spectacular economic growth has been widely observed over the past few decades. Since the 

economic reforms of 1978, China has recorded an average real growth rate exceeding nine 

percent a year. Per capita real income has increased almost tenfold during this period. Alongside 

this strong growth performance, there has been an associated rapid rise in energy consumption 

and pollution emissions. Energy use in China grew at an annual average rate of 7.2 percent 

during the period 1953-2006. Annual pollution emissions, measured by CO2 in metric tons of 

carbon, increased from just 36.6 million in 1953 to 1625.7 million in 2006, representing a more 

than forty-fold increase.  

In a recent study, Auffhammer and Carson (2008) highlight that the slowing of China's 

CO2 per capita emissions growth rates, as previously predicted, is unlikely to materialize in the 

near future. In contrast, their forecasts suggest that China's CO2 emissions are likely to increase 

dramatically over the short to medium term, and significantly exceed the amount required in the 

Kyoto Protocol. With rapid growth in pollution emissions, there has been increasing concern 

about their impact on China and the global economy. According to a recent study by Nielsen 

and Ho (2007), the aggregate national environmental health damage is estimated to be in the 

range of 3 percent to 7.7 percent of GDP. Moreover, The World Bank (2007) reports that the 

environmental pollution cost in China is estimated to be about 5.8 percent of its GDP. 

 While the importance of global warming issues is widely recognized among economists 

and policy makers, there has so far been little effort attempting to examine environmental 

performance in China, despite it currently being responsible for about one-fifth of global 

emissions. Most previous studies on this subject have focused on examining the future trends of 

energy consumption or CO2 emissions in China (see, e.g., Chan and Lee, 1996; Sinton and 

Fridley, 2000; Crompton and Wu, 2005; Auffhammer and Carson, 2008). An important 

exception to this is the study by Cole et al. (2008), who focus on examining the determinants of 

environmental pollution for China using industry-level data for the period 1997-2003. Their 

results show that energy use and human capital have a positive impact on industrial pollution 

whereas productivity improvements and research activity tend to reduce emissions.  

Our study differs from Cole et al. (2008) in several aspects. First, we utilize time series 

data for China going back as far as 1950. The use of a sufficiently long dataset enables us to 

analyze the long-run determinants of pollution as well as the short-run dynamics. Second, to the 

best of our knowledge, this is the first attempt that satisfactorily combines the environmental 
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literature with modern endogenous growth theories. By doing so, it allows us to focus on the 

roles of R&D activity and technology transfer in reducing CO2 emissions. This is done by 

incorporating factors that could induce higher productivity growth, as suggested by modern 

growth literature, into the pollution function. The rest of the paper is organized as follows. 

Section 2 sets out the analytical framework. Section 3 discusses construction of variables, data 

sources and the estimation techniques. Section 4 performs the empirical analysis and presents 

the results. The last section summarizes the results and concludes. 

 

2. Theoretical Framework  

This section sets out the analytical framework underlying our empirical modeling 

strategy. Assuming a standard neoclassical production function with constant returns, we can 

write the aggregate output (yt ) function at time t as: 

 

( , )
t t t t

y A f K L=            (1) 

 

where At is total factor productivity (TFP), Kt is the capital stock and Lt is the number of 

workers. Bernard and Jones (1996a, b) assume that TFP growth (gA) depends on technological 

catch-up so that:  

 

1( )t

A t

t

A
g f DTF

A
−= =            (2) 

 

where DTFt is a variable measuring the technology gap between the frontier and the domestic 

economy (or distance to the frontier). The underlying principle in this simple model is that 

countries which are relatively backward can grow faster by utilizing technologies developed in 

the leading country. Therefore, a positive effect of DTFt is expected due to the role of 

technology transfer in productivity growth. However, the above formulation of productivity 

catch-up is inadequate to explain the complex evolution of the growth rate in TFP. In this 

connection, we modify the above simple TFP growth specification in the following ways.  

First, there is now an extensive literature on endogenous growth that emphasizes the 

importance of R&D efforts as an engine of growth. The key argument of the research-induced 

growth models is that TFP growth moves closely with R&D activity. For instance, the models of  
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Romer (1990), Segerstrom et al. (1990), Grossman and Helpman (1991b) and Aghion and 

Howitt (1992)) suggest that the rate of productivity growth (
A

g ) depends on the growth rate of  

the R&D stock of knowledge: 

 

t t
A

t t

A SK
g

A SK
ρ

• •

= =                       (3) 

 

where 
t

SK  is the stock of R&D knowledge. For low rates of depreciation of R&D stock, we can 

write the above as: 

 

t t

t

X
A A

Q
υ

• ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
            (4) 

 

where 
t

X  is R&D input and 
t

Q  represents the variety of products in the economy. The ratio 

( / )
t

X Q  is commonly referred to as research intensity. The above framework is in line with the 

Schumpeterian version of the R&D-based growth models of Aghion and Howitt (1998), 

Dinopoulos and Thompson (1998), Peretto (1998) and Howitt (1999). These models suggest the 

effectiveness of R&D is diluted due to the proliferation of products when an economy expands 

so that we can assume constant returns to the stock of R&D knowledge. 

Second, there is a growing literature suggesting that domestic research activity plays a 

crucial role in facilitating the transfer of foreign technology (see Howitt, 2000;  Griffith et al. 

2003, 2004; Cameron et al., 2005; Hu et al., 2005). For instance, using a general equilibrium 

model of endogenous growth, Griffith et al. (2003) combine the above two strands of literature 

and show that R&D, in addition to its direct effect, has an indirect effect on productivity growth 

that operates through the speed of technological catch-up. Specifically, a lagged interaction term 

between 
t

DTF  and ( / )
t

X Q  is introduced to capture the second facet of R&D activity. It is 

postulated that the effect of R&D efforts on TFP growth will be greater for countries that lie 

further behind the technological frontier. As such, this interaction term, also known as the 

absorptive capacity, is expected to have a positive influence on TFP growth. 

Third, recent studies have found that greater openness in the trade sector is positively 

associated with higher productivity growth-enhancing effects (see, e.g., Coe et al., 1997; Ades 

and Glaeser, 1999; Alesina et al., 2000; Choudhri and Hakura, 2000). In the models developed 
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by Grossman and Helpman (1990, 1991a), trade openness affects firms’ decisions to develop 

new products, which in turn depend on international competition and market size. Thus, 

international trade can promote more innovative activities in the domestic market and lead to 

higher productivity.  

An augmented equation for TFP growth that incorporates these considerations can be 

given as follows:   

 

[ ]1 1 1 1( / ) ,  ,  ( / ) x ,  t

A t t t t t

t

A
g f X Q DTF X Q DTF TO

A
− − − −= =              (5) 

 

The literature suggests that per capita energy use (
t

E ) and per capita real output (
t

Y ) are 

the key determinants of pollutant emissions (see, e.g., Liu, 2005; Ang, 2007). However, an 

unproductive economy can also generate more pollution. This is because a country which is 

more productive is able to use resources more efficiently (see Cole et al., 2005, 2008). In 

principle, higher productivity growth induced by technology transfer and more R&D efforts can 

improve environmental performance. This would be the case when a large proportion of the 

imported technology focuses on pollution abatement and R&D activities relate to the creation of 

clean technology that better protects the environment. Therefore, a more complete 

characterization of the pollution function should include productivity growth as a key 

determinant. Incorporating the role of TFP growth in abating pollution, we can write the 

environmental pollution function as:
1
  

 

[ ,  ,  ( )]
t t t A

C h E Y f g=            (6) 

  

 Using the above TFP growth specification in Eq. (5), we can write the pollution equation 

as: 

 

                                                 
1 We have also attempted to model the pollution function using the environmental Kuznets curve (EKC) 

framework. The results are, however, less satisfactory. This is not surprising given that an EKC specification may 

not be appropriate for a developing country like China. In fact, previous studies by Ang (2007, 2008) have shown 

that such a specification is appropriate for France but not Malaysia. Moreover, Auffhammer and Carson (2008) 

show that an EKC specification for China yields sub-optimal forecast results. See also Wagner (2008) who show 

that the inverted U-shaped relationship found in the literature appears to be spurious and disappears once the 

observations have been appropriately de-factored. 
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1 2 3 4 1 5 1

6 1 7

ln ln ln ln ln( / ) ln

           [ln( / )x ln ]

t t t t t t

t t

C E Y TO X Q DTF

X Q DTF Reg

α β β β β β
β β ε

− −

−

= + + + + +
+ + +

       (7) 

 

where 
t

C  refers to an indicator of environmental quality for China (proxied by per capita CO2 

emissions), ' sβ  represent the long-run elasticities and 
t
ε  is Gaussian errors. 1β  and 2β  are 

expected to be positive according to the literature. Greater trade openness is likely to result in 

more competition, causing the least productive and least energy-efficient firms to leave the 

market. However, Antweiler et al. (2001) and Cole and Elliott (2003), among others, postulate 

that the environmental impact of trade liberalization can be decomposed into scale (size of 

economy), technique (production methods) and composition (specialization) effects. While more 

pollution may occur due to the scale effect, the technique effect is likely to be beneficial to the 

environment. The composition effect depends on the country's comparative advantage. Hence, 

the net effect of free trade on the environment depends on the relative strength of each opposing 

force, and is therefore ultimately an empirical issue. Thus, the expected sign for 3β  is 

indeterminate. The expected signs for 4β , 5β  and 6β  are negative since R&D activity, 

technology gap and the absorptive capacity of technology transfer are expected to reduce 

pollution. Finally, following Cole et al. (2008), the empirical specification of the pollution 

function presented above also considers a legal dummy variable (Reg), which captures the effect 

of adoption of the Environmental Protection Law since 1979. Eq. (7) will be estimated using 

annual data for China over the period 1953-2006.  

 

3. Data and Estimation Techniques 

3.1 Measurement and data sources   

This section describes the construction of variables, data sources and econometric 

techniques employed in the analysis. Long historical data on pollution for China are not 

available from any domestic official source. Therefore, we have obtained the data from an 

international source compiled by the Carbon Dioxide Information Analysis Center.
2
 Following 

most prior studies (see, e.g., Holtz-Eakin and Selden, 1995; Friedl and Getzner, 2003; Martinez-

Zarzoso and Bengochea-Morancho, 2004; Liu, 2005; Ang, 2007, 2008; Auffhammer and 

Carson, 2008), we consider per capita CO2 emissions (Ct) as the measure for the level of 

pollution. It refers to the total emissions from fossil-fuel burning, cement manufacture and gas 

flaring. Data for other types of emissions going back as far as the 1950s are unfortunately not 

                                                 
2 The data are available for download at: http://cdiac.ornl.gov/ftp/trends/emissions/prc.dat. 
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available. Real GDP and energy consumption data are directly obtained from the China 

Statistical Yearbook. In line with CO2 emissions, these two series are divided by population. We 

use the standard trade intensity measure, i.e., the sum of exports and imports over GDP, as the 

proxy for trade openness (TOt).   

 In the literature, it is common to use either R&D labor or real R&D expenditure as the 

proxy for R&D input (
t

X ). However, data for R&D personnel are only available from 1978. 

The lack of R&D personnel data for the entire estimation period prompts us to consider using 

only R&D expenditure in the analysis. R&D expenditure, which is available continuously from 

1953, is proxied by total scientific research expenditure. This is obtained from the National 

Bureau of Statistics of China (1999), and more recent data are taken from the China Statistical 

Yearbook. Largely due to the lack of R&D data for developing countries, almost all previous 

work on R&D-based growth models has focused only on OECD countries (see, e.g., 

Zachariadis, 2003; Guellec and De la Potterie, 2004; Ha and Howitt, 2007).  

 Distance to the frontier can be measured as follows: 

 

L

t t

t L

t

A A
DTF

A

−
=            (8) 

 

where L

t
A  is the level of total factor productivity of the technological leader at time t. Following 

the general practice in the literature, we take the United States as the technological frontier (see, 

e.g., Cameron et al., 2005; Madsen et al., 2008). The further China lies behind the technological 

leader, the larger the technology gap and therefore the greater the potential for technology 

transfer to benefit productivity growth and thereby reduce pollution. 

Total factor productivity is computed as 1/t t tY K L
π π− . We use gross domestic product at 

constant price as the measure of real output (
t

Y ). Real capital stock (
t

K ) is computed using the 

perpetual inventory method (i.e., 1(1 )
t t t

K I Kδ −= + − ). In line with Coe and Helpman (1995), a 

depreciation rate (δ ) of 5% and the growth rate of gross capital formation (g) at constant prices 

during the sample period, 1953-2006, are used to obtain the initial stock ( 0K ) for the year 1953, 

so that 0 0 /( )K I g δ= + , where 0I  is real gross capital formation in 1953. Following the 

established practice in the literature, capital’s share of income (π ) is set at 0.3. National account 

statistics for the U.S. are collected from the Bureau of Economic Analysis whereas labor data 

are taken from the Bureau of Labor Statistics. Data for Yt, Kt and Lt for China covering the 
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period 1953-1999 are obtained from Wang and Yao (2003). We extend the data using more 

recent data points available from the China Statistical Yearbook. 

  

Figure 1: Time series plots of variables (1953-2006) 
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To measure R&D expenditure in real terms, we deflate by an unweighted average of a 

wage index and the GDP deflator. The former is constructed using data for average earnings of 

workers in urban units available from the China Statistical Yearbook. Data before 1978 are 

backdated by assuming that the growth rate of wages can be approximated by the sum of the rate 

of inflation and the growth rate in labor productivity ( /
t t

Y L ). Product variety (
t

Q ) is measured 
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by number of workers (
t

L ) and real output (
t

Y ). However, some adjustments for the measure of 

product variety are necessary given that there is a tendency for decreasing returns to R&D due 

to the increasing complexity of innovation (Ha and Howitt, 2007). Thus, labor is adjusted for 

productivity and human capital so that the following two additional measures of research 

intensity are also considered: /
t t t

R A L  and /
t t t t

R A H L , where 
t

A  is total factor productivity, and 

t
H  is the stock of human capital, which is proxied by the average years of schooling. These 

additional measures therefore account for productivity or human capital adjustments or both. 

Data on human capital stock are obtained from Wang and Yao (2003) and extended accordingly 

using the methodology therein.
3
  

The time series plots of the variables used in the empirical analysis are presented in 

Figure 1. It is evident that per capita CO2 emissions (
t

C ), per capita energy use (
t

E ), per capita 

real output (
t

Y ) and trade openness (
t

TO ) all show a strong increasing trend over time. The 

measures of research intensity ( /
t t

R Y , /
t t t

R A L  and /
t t t t

R A H L ) increase sharply during the 

1950s and peak in the early 1960s. Since then, the series have been associated with a mild 

decreasing trend. The decline in the measure for distance to the frontier (
t

DTF ) indicates that 

the Chinese economy is catching up with the world technological leader. 

 

3.2 Econometric Techniques 

We adopt the traditional ARDL approach to the estimation of the long-run relationship 

and the short-run dynamics for environmental pollution and its determinants. Pesaran and Shin 

(1999) have shown that the OLS estimators of the short-run parameters are consistent, and the 

ARDL based estimators of the long-run coefficients are super-consistent in small sample sizes. 

Hence, valid inferences on the long-run parameters can be made using standard normal 

asymptotic theory. Moreover, this estimator is applicable irrespective of whether the regressors 

are I(0) or I(1). The optimal orders of the ARDL model are selected using the SIC by allowing 

for one lag in the estimation. In order to test the robustness of the results, all estimations are 

subject to various diagnostic tests. To provide for robustness checks, the environmental 

pollution equation is also estimated using three alternative single-equation estimators, namely 

the fully-modified OLS (FM-OLS) estimator of Phillips and Hansen (1990), the fully-modified 

unrestricted error-correction model (FM-UECM) of Inder (1993) and the dynamic ordinary least 

squares (DOLS) technique of Stock and Watson (1993).  

                                                 
3 These data are also available from Rawski and Perkins (2008). 
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Using the Wald tests, the resulting test statistics from the FM-OLS procedure are "fully-

modified" by semiparametric corrections for serial correlation and for endogeneity. This “fully 

modified” procedure has been found to work well in finite samples, a feature which is 

particularly appealing given the small sample size used in the present study. In implementing the 

FM-UECM procedure, we follow Bewley (1979) by using the instrumental variable technique to 

correct the standard errors so that valid inferences can be drawn. Inder (1993) suggests that 

lagged level variables can be used as the instruments for the first-different current terms to 

correct for endogeneity bias. The key advantage of the DOLS procedure is that it allows for the 

presence of a mix of I(0) and I(1) variables in the cointegrated system. The estimation involves 

regressing one of the I(1) variables on the remaining I(1) variables, the I(0) variables, leads (p) 

and lags (-p) of the first difference of the I(1) variables, and a constant. By doing so, it corrects 

for potential endogeneity problems and small sample bias, and provides estimates of the 

cointegrating vector which are asymptotically efficient.
4
  

 

4.  Estimation Results 

4.1 Long-run and short-run ARDL estimates 

Table 1 presents the results for the pollution function estimated using the ARDL 

estimator. The table shows the results obtained for three models, where each model corresponds 

to the estimation results using different measures of research intensity. In view of sample size, 

we consider only one lag in the estimation. The choice of this lag length appears to be consistent 

with the optimal lag suggested by standard information criteria such as AIC and SBC.  

It is evident that energy consumption enters the long-run pollution equation significantly 

at the one percent level with the expected sign. Specifically, the coefficients of ln
t

E  are found 

to be in the range of 1.073 to 1.104. Using the Wald tests, the null that the parameter of energy 

consumption is equal to one (or 0 1: 1H β =  in Eq. 7) cannot be rejected at the five percent 

significance level, suggesting that there is a one-to-one relationship between energy use and 

CO2 emissions in China. The finding of a positive effect of energy use is consistent with Liu 

(2005) and Ang ( 2007, 2008), among others. The income variable ( ln
t

Y ), however, is found to 

have no statistically significant impact on the level of pollution, regardless of how research 

intensity is measured.  

                                                 
4 All underlying variables are found to be either I(0) or I(1), and this allows legitimate use of the ARDL and DOLS 

estimators. The unit root test results are not reported here to conserve space, but they are available upon request. 
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Trade openness ( ln
t

TO ) is found to have a positive impact on pollution, suggesting that 

a more liberalized trade sector tends to harm the environment. This finding is highly plausible 

for China given that the negative scale effect associated with trade liberalization on the 

environment is likely to outweigh the positive technique effect. Moreover, given China's status 

as a developing country, the pollution haven hypothesis suggests that its composition effect of 

trade is likely to degrade the environment. Hence, the overall effect of free trade on the 

environment is likely to be negative (see also Antweiler et al., 2001; Cole and Elliott, 2003). 

Turning to the measures of R&D intensity ( 1ln( / )
t

X Q − ) and distance to the frontier 

( 1ln
t

DTF − ), the results strongly suggest that more R&D activity and the transfer of foreign 

technology are effective mechanisms for abating pollution. Our estimates show that research 

intensity has both direct and indirect effects on CO2 emissions. Holding the indirect effect 

constant, the results show that research intensity is found to have a direct negative effect on CO2 

emissions in China, with a negative long-run elasticity in the range of 0.154 – 0.281. With 

regard to its indirect effect, the interaction term is found to be statistically significant and has the 

expected negative sign.  

In this connection, it can be inferred that China’s ability to assimilate foreign technical 

know-how can be enhanced through more R&D investment, and this highlights the important 

role of local R&D capability as an effective channel for tapping into technology developed in 

the frontier countries (see Hu et al., 2005). This interpretation is obvious when we obtain the 

derivative of ln
t

C  with respect to 1ln( / )
t

X Q − . In Model A, this gives 

10.179 1.767 ln( / )
t

X Q −− − . Our results imply that more R&D spending will result in lower 

pollution via two channels: 1) directly mitigating the environmental damage by facilitating the 

innovation of new production techniques that help abate pollutant emissions; and 2) enabling 

firms to more effectively assimilate green technology developed elsewhere, thus helping narrow 

the technology gap between the frontier and the domestic economy. With regard to the direct 

effect of distance to the frontier, a one percent increase in the technology gap tends to reduce 

pollution by 5.639 to 9.720 percent, holding research intensity constant. This finding suggests 

that China can gain significant benefits by using technology developed elsewhere to help 

combat pollution. The coefficients associated with Reg are found to be negative and significant 

in all models. Thus, environmental regulation appears to be an effective device in containing 

CO2 emissions. 
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Table 1: ARDL estimates of the CO2 emissions equation (1953-2006) 
 

 Model A 

( / ) ( / )
t t

X Q R Y=  

Model B 

( / ) ( / )
t t

X Q R AL=  

Model C 

( / ) ( / )
t t

X Q R AHL=  

 Coeff. p-value Coeff. p-value Coeff. p-value 

I. The long-run relationship ( . ln
t

Dep C= ) 

Intercept -2.206
***

 0.000 -2.327
**

 0.013 -2.055
***

 0.000 

ln
t

E  1.104
***

 0.000 1.081
***

 0.000 1.073
***

 0.000 

ln
t

Y  0.008 0.889 0.057 0.484 0.012 0.820 

ln
t

TO  0.128
***

 0.000 0.138
***

 0.002 0.140
***

 0.000 

1ln( / )
t

X Q −  -0.179
***

 0.000 -0.281
***

 0.001 -0.154
***

 0.000 

1ln
t

DTF −  -9.720
***

 0.000 -6.989
**

 0.010 -5.639
***

 0.000 

1ln( / )
t

X Q − x 1ln
t

DTF −  -1.767
***

 0.000 -3.186
***

 0.001 -1.381
***

 0.000 

Reg  -0.083
**

 0.024 -0.118
*
 0.053 -0.092

***
 0.008 

II. The short-run dynamics ( . ln
t

Dep C= Δ ) 

Intercept -1.197
***

 0.003 -0.800
*
 0.053 -1.166

***
 0.002 

ECTt-1 -0.545
***

 0.000 -0.344
***

 0.001 -0.567
***

 0.000 

ln
t

EΔ  0.601
***

 0.000 0.617
***

 0.000 0.609
***

 0.000 

ln
t

YΔ  0.004 0.890 0.020 0.508 0.007 0.822 

ln
t

TOΔ  0.070
***

 0.000 0.047
**

 0.015 0.080
***

 0.000 

1ln( / )
t

X Q −Δ  -0.097
***

 0.000 -0.097
***

 0.000 -0.087
***

 0.000 

1ln
t

DTF −Δ  -5.293
***

 0.000 -2.404
***

 0.001 -3.200
***

 0.000 

[ln( / )X QΔ x

]
1

ln
t

DTF
−

 
-0.962

***
 0.000 -1.096

***
 0.000 -0.784

***
 0.000 

RegΔ  -0.045
**

 0.013 -0.040
**

 0.036 -0.052
***

 0.003 

III. Diagnostic checks Test-stat. p-value Test-stat. p-value Test-stat. p-value 

2

SERIALχ  1.028 0.311 1.205 0.272 1.613 0.204 
2

WHITEχ  3.732 0.881 3.736 0.880 4.177 0.841 
2

ARCHχ  0.208 0.649 0.293 0.588 0.203 0.652 
2

RESETχ  0.256 0.613 0.159 0.690 0.672 0.413 
 

Notes: 2

NORMALχ refers to the Jarque-Bera statistic of the test for normal residuals, 2

SERIALχ  is Breusch-Godfrey LM 

test statistics for no first-order serial correlation, respectively, 2

WHITEχ  denotes the White’s test statistic to test for 

homoskedastic errors, 2

ARCHχ is the Engle’s test statistic for no autoregressive conditional heteroskedasticity and 

2

RESETχ is the Ramsey’s test statistic for no functional misspecification. *, ** and *** indicate 10%, 5% and 1% 

levels of significance, respectively. 
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The short-run dynamics of the CO2 emissions function are reported in panel II of Table 

1. Similar to the long-run results, income growth is found to have no statistically significant 

impact on the increase in pollution. In first-differenced form, the variables have expected signs, 

consistent with the results obtained for the long-run models. The magnitudes of all the 

coefficients are smaller than their long-run counterparts, suggesting that these variables have 

stronger effects on pollution in the long run. For instance, in Model A, a one unit increase in 

research intensity is associated with a 0.179 unit reduction in pollution in the long run. 

However, in the short run, a one percentage point increase in the growth rate of research 

intensity is correlated with only a 0.097 percentage point decrease in the growth rate of CO2 

emissions. 

The error-correction term (ECT) captures the evolution process on the variable of 

concern, in this case ln tEΔ , by which agents adjust for prediction errors made in the last period. 

The coefficients on 1t
ECT − , which measure the speed of adjustment back to the long-run 

equilibrium value, are statistically significant at the one percent level and correctly signed, i.e., 

negative. This implies that an error-correction mechanism exists in the CO2 emissions function 

so that the deviation from long-run equilibrium has a significant impact on the growth rate of 

pollution. This provides some evidence supporting the presence of the underlying relationship in 

the long run. It is found that the economy will adjust at a speed of 34.4 percent to 56.7 percent a 

year to restore equilibrium when there is a shock to the steady-state relationship.   

 

4.2 Robustness checks 

The results reported in panel III of Table 1 show that the regression specifications fit 

remarkably well. In particular, in all models, we do not find any evidence of serial correlation, 

heteroskedasticity, autoregressive conditional heteroskedasticity and functional misspecification 

at the conventional levels of significance. The structural stability of the emissions function is 

examined using the cumulative sum (CUSUM) tests on the recursive residuals.
5
 The test is able 

to detect systematic changes in the regression coefficients. Figure 2 shows that the statistics 

generally lie within or on the five percent confidence interval bands, suggesting no structural 

instability in the residuals of the emissions equation. 

                                                 
5 We have also tested for the presence of structural breaks by interacting all variables (except trade openness) in the 

equation with a dummy variable (d) to capture the effects of the reforms that took place since 1978. d equals 1 for 

the post-reform period and is set to zero before the reform. The reform date is alternatively assumed to be 1978, 

1980 and 1982. With no exception, all these interaction terms turn out to be statistically insignificant, providing 

some support that our results are not distorted by the regime shifts that have occurred following the reform episode. 
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Figure 2: Plots of cumulative sum of recursive residuals 

 
Notes: The straight lines represent critical bounds at the 5% significance level. 

 

4.3 Alternative estimators 

The sensitivity of the results is further assessed using three other estimators, namely the 

FM-OLS procedure of Phillips and Hansen (1990), the FM-UECM estimator of Inder (1993) 

and the DOLS procedure of Stock and Watson (1993). As Table 2 shows, these approaches give 

very similar results compared to those estimated using the ARDL approach. Although the 

magnitude of the coefficients shows some small variations, the qualitative aspects of the results 

are, by and large, consistent with those obtained using the ARDL estimator. An exception is that 

income is found to have a statistically positive effect on pollution when the models are estimated 

using the approaches that involve a fully-modified procedure. Importantly, the key findings that 

research intensity, distance to the frontier and their interaction help reduce CO2 emissions 

remain unaltered. The results are insensitive to choice of the research intensity measures. The 
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short-run results and diagnostic tests are also similar to those obtained using the ARDL 

estimation technique, and hence not reported here for brevity. We therefore conclude that the 

results are quite robust overall to the choice of estimators. 

 

Table 2: Alternative estimates for the CO2 emissions equation (1953-2006) 
 

 Model A 

( / ) ( / )
t t

X Q R Y=  

Model B 

( / ) ( / )
t t

X Q R AL=  

Model C 

( / ) ( / )
t t

X Q R AHL=  

I. FM- OLS Coeff. p-value Coeff. p-value Coeff. p-value 

Intercept -2.800
***

 0.000 -2.925
***

 0.000 -2.641
***

 0.000 

ln
t

E  1.076
***

 0.000 1.048
***

 0.000 1.054
***

 0.000 

ln
t

Y  0.098
**

 0.019 0.150
***

 0.002 0.091
**

 0.024 

ln
t

TO  0.109
***

 0.000 0.112
***

 0.000 0.118
***

 0.000 

1ln( / )
t

X Q −  -0.133
***

 0.000 -0.133
***

 0.000 -0.121
***

 0.000 

1ln
t

DTF −  -5.770
***

 0.000 -1.245 0.193 -3.060
***

 0.001 

1ln( / )
t

X Q − x 1ln
t

DTF −  -1.285
***

 0.000 -1.337
***

 0.001 -1.038
***

 0.000 

Reg  -0.037 0.153 -0.029 0.318 -0.049
**

 0.046 

II. FM-UECM       

Intercept -2.699
***

 0.000 -2.775
***

 0.000 -2.478
***

 0.000 

ln
t

E  1.088
***

 0.000 1.064
***

 0.000 1.067
***

 0.000 

ln
t

Y  0.094
***

 0.000 0.141
***

 0.000 0.077
***

 0.000 

ln
t

TO  0.097
***

 0.000 0.099
***

 0.000 0.106
***

 0.000 

1ln( / )
t

X Q −  -0.130
***

 0.000 -0.131
***

 0.000 -0.122
***

 0.000 

1ln
t

DTF −  -5.634
***

 0.000 -1.196
***

 0.000 -3.045
***

 0.000 

1ln( / )
t

X Q − x 1ln
t

DTF −  -1.247
***

 0.000 -1.267
***

 0.000 -0.993
***

 0.000 

Reg  -0.026
*
 0.073 -0.016 0.279 -0.036

**
 0.012 

III. DOLS       

Intercept -0.912 0.322 -1.879
*
 0.096 -1.090 0.166 

ln
t

E  1.175
***

 0.000 1.101
***

 0.000 1.128
***

 0.000 

ln
t

Y  -0.121 0.216 0.032 0.756 -0.081 0.325 

ln
t

TO  0.153
***

 0.000 0.144
***

 0.001 0.160
***

 0.000 

1ln( / )
t

X Q −  -0.193
***

 0.000 -0.201
***

 0.001 -0.162
***

 0.000 

1ln
t

DTF −  -12.295
***

 0.000 -5.001
**

 0.028 -7.541
***

 0.000 

1ln( / )
t

X Q − x 1ln
t

DTF −  -1.978
***

 0.000 -2.273
***

 0.001 -1.592
***

 0.000 

Reg  -0.079
***

 0.006 -0.075
**

 0.027 -0.084
***

 0.002 
 

Notes: the short-run dynamics and the diagnostic test results are not reported to conserve space. They are available 

upon request. *, ** and *** indicate 10%, 5% and 1% levels of significance, respectively. 
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4.3 Alternative specification 

Our underlying model assumes so far that all the right-hand-side variables in Eq. (7) 

have a direct effect on CO2 emissions. However, the model may be misspecified since some of 

these variables may act indirectly on CO2 emissions through the channel of energy demand 

rather than operating directly on CO2 emissions once we control for energy demand. In light of 

this, we also estimate a simultaneous equation system to further examine the robustness of the 

results.
6
 For the first equation, we assume that per capita pollutant emission (Ct) is a function of 

per capita energy consumption (Et), trade openness (TOt), research intensity [(X/Q)t] and a 

dummy variable capturing the effect of environmental regulation (Reg), as follows: 

 

0 1 2 3 1 4ln ln ln ln( / )
t t t t t

C E TO X Q Regχ χ χ χ χ μ−= + + + + +          (9) 

 

The second equation, i.e., the energy demand function, is postulated to take the form of 

Eq. (10). Here, per capita energy consumption (Et) is specified as a function of per capita real 

income (Yt), distance to the frontier (DTFt) and absorptive capacity [(X/Q)t-1 x DTFt-1], as 

follows:
7
 

 

0 1 2 1 3 1ln ln ln [ln( / )x ln ]
t t t t

E Y DTF X Q DTFδ δ δ δ ν− −= + + + +               (10) 

 

Under this simultaneous framework, we assume that more R&D investment encourages 

the innovation of new production techniques or green technology that helps curb CO2 emissions, 

and hence 3χ  is expected to be negative. Both technological backwardness and absorptive 

capacity of the domestic economy enables the adoption of energy-efficient technology 

developed by the frontier countries, and this effectively reduces energy consumption. Thus, both 

2δ  and 3δ  are expected to carry a negative sign.  

Eqs. (9) and (10) are jointly estimated using the seemingly unrelated regression (SUR) 

(or Zeller's method) and the full information maximum likelihood (FIML) estimators to obtain 

the parameter estimates of the system. The former accounts for both heteroskedasticity and 

                                                 
6 We thank an anonymous referee for drawing our attention to this point and for recommending this alternative 

modelling approach. 

 
7 We have also considered research intensity in the energy demand equation due to Fisher-Vanden et al. (2004) and 

Fisher-Vanden and Jefferson (2008). However, the inclusion of this variable gives unsatisfactory regression results 

and therefore it is omitted in the specification.  
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contemporaneous correlation in the residuals across all equations whereas the latter is a fully 

efficient estimator which assumes that the contemporaneous errors have a joint normal 

distribution. The estimates reported in Table 3 show that our earlier results are, by and large, 

insensitive to this alternative modelling framework. Although the legal dummy and distance to 

the frontier become insignificant in some cases, all variables continue to have their expected 

signs and are highly significant. The system estimates are also robust to different measures of 

research intensity and the choice of estimators.  

 

Table 3: SUR and FIML estimates for the simultaneous equation system 
 

 Model A 

( / ) ( / )
t t

X Q R Y=  

Model B 

( / ) ( / )
t t

X Q R AL=  

Model C 

( / ) ( / )
t t

X Q R AHL=  

 SUR FIML SUR FIML SUR FIML 

I. The Emissions Function (Dep. = ln
t

C ) 

Intercept 
-1.228

***
 

(0.000) 

-1.095
***

 

(0.000) 

-1.101
***

 

(0.000) 

-0.985
***

 

(0.000) 

-1.329
***

 

(0.000) 

-1.239
***

 

(0.000) 

ln
t

E  
1.128

***
 

(0.000) 

1.152
***

 

(0.000) 

1.134
***

 

(0.000) 

1.153
***

 

(0.000) 

1.115
***

 

(0.000) 

1.130
***

 

(0.000) 

ln
t

TO  
0.127

***
 

(0.000) 

0.112
***

 

(0.000) 

0.131
***

 

(0.000) 

0.119
***

 

(0.000) 

0.113
***

 

(0.000) 

0.103
***

 

(0.000) 

1ln( / )
t

X Q −  
-0.031

***
 

(0.000) 

-0.035
***

 

(0.003) 

-0.035
***

 

(0.000) 

-0.040
***

 

(0.006) 

-0.040
***

 

(0.000) 

-0.043
***

 

(0.002) 

Reg  
-0.152

**
 

(0.041) 

-0.107 

(0.245) 

-0.128
*
 

(0.052) 

-0.101 

(0.232) 

-0.081 

(0.317) 

-0.048 

(0.678) 

II. The Energy Demand Function (Dep. = ln
t

E ) 

Intercept 
-14.326

***
 

(0.000) 

-14.237
***

 

(0.000) 

-13.769
***

 

(0.000) 

-13.747
***

 

(0.000) 

-15.651
***

 

(0.000) 

-15.571
***

 

(0.000) 

ln
t

Y  
0.971

***
 

(0.000) 

0.962
***

 

(0.000) 

0.905
***

 

(0.000) 

0.905
***

 

(0.000) 

1.181
***

 

(0.000) 

1.170
***

 

(0.000) 

1ln
t

DTF −  
-10.792

***
 

(0.000) 

-10.167
***

 

(0.009) 

-1.572 

(0.365) 

-1.124 

(0.677) 

-3.466 

(0.178) 

-3.443 

(0.282) 

1ln( / )
t

X Q − x 1ln
t

DTF −  
-3.219

***
 

(0.000) 

-3.171
***

 

(0.000) 

-3.464
***

 

(0.000) 

-3.424
***

 

(0.000) 

-3.284
***

 

(0.000) 

-3.310
***

 

(0.000) 

Notes: Figures in parenthesis indicate the p-values. *, ** and *** indicate 10%, 5% and 1% levels of significance, 

respectively. 

 

 

5. Summary and Conclusions 

This study was motivated by the observation of a rapid deterioration in the 

environmental quality of China in recent years along with its strong growth performance, and 

the lack of any previous attempts to analyze the underlying forces influencing CO2 emissions at 
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the aggregate level. Amidst active debate on global warming issues, the present study provides 

timely information to guide policy formulation for China as well as other developing countries.  

The analytical framework combines modern growth theoretical underpinnings with the 

environmental literature so that we can focus the analysis on the roles of R&D activity and 

technology transfer in reducing pollution. Using aggregate data for China for more than half a 

century, the empirical results show that an increase in energy use and trade intensity contribute 

to higher CO2 emissions in China. On the other hand, CO2 emissions decrease with increases in 

research activity, distance to the technological frontier and their interaction that reflects the 

ability of China to absorb foreign technology. Given the significant interaction between R&D 

intensity and the technology gap, increased domestic R&D activity will help the domestic 

economy to assimilate technology developed in the leading countries more effectively. Thus, 

research intensity exerts both direct and indirect beneficial influences in abating CO2 emissions. 

There is also some evidence that higher aggregate demand induces more CO2 emissions but the 

adoption of more stringent environmental regulations helps in abating them.  

However, it should be highlighted that since the estimation results are based on time 

series aggregate data, our estimates may not be consistent with analysis conducted at the 

provincial level, which provides more degrees of freedom in estimation but involves a much 

shorter time horizon. The use of provincial data is beyond the scope of the present paper and 

will be left for future research. Notwithstanding this limitation, the findings of this paper are 

broadly in line with the literature and have important implications for policy design. To the 

extent that research intensity and its interaction with distance to the frontier technology have a 

positive effect in reducing CO2 emissions, policies that encourage more research activity will 

not only help contain pollution directly through facilitating more innovation in production 

techniques that emit less pollutions, but will also enable China to more effectively absorb 

technology developed elsewhere and thereby catch up to the frontier’s green technology. Thus, 

increasing research efforts have dual positive effects in containing pollution. These effects are 

expected to continue given that China is unlikely to surpass the world technological leader in the 

near future. Finally, the results in this study also highlight that modern R&D-based endogenous 

growth models can be applied to understand issues related to environmental pollution even in 

the context of developing economies. 
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