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Abstract: We consider a possible game-theoretic foundation of Forch-
heimer’s model of dominant-firm price leadership based on quantity-setting
games with one large firm and many small firms. If the large firm is the exoge-
nously given first mover, we obtain Forchheimer’s model. We also investigate
whether the large firm can emerge as a first mover of a timing game.
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1 Introduction

In Forchheimer’s model of dominant-firm price leadership (see for example
Scherer and Ross, 1990, p. 221) it is assumed that there is one large and
many small firms. The large firm is assumed to determine the price in the
market and the firms in the competitive fringe act as price takers. There-
fore, the large producer sets its price by maximizing profit subject to its
residual demand curve. More specifically, the large firm’s residual demand
curve can be obtained as the horizontal difference of the demand curve and
the aggregate supply curve of the competitive fringe. However, this usual
description of Forchheimer’s model is not derived from the firms’ individual
profit maximization behavior.

Ono (1982) provided a theoretical analysis of price leadership by investi-
gating a model in which one firm sets the market price, the remaining firms
choose their outputs and the price setter serves the residual demand. Hence,
one firm uses price as its strategic variable while the remaining firms use
quantity as their strategic variable. Under these circumstances Ono demon-
strated that there is a firm that accepts the role of the price setter, while
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version of this paper. The author gratefully acknowledges financial support from the Hun-
garian Academy of Sciences (MTA) through the Bolyai János research fellowship.
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the remaining firms prefer to set their quantities. However, Ono leaves the
question open as to why the price-setting firm serves the residual demand in
the market since this is assumed in Ono’s model.

Deneckere and Kovenock (1992) have given a price-setting game-theoretic
foundation of dominant-firm price leadership in the framework of a capacity-
constrained Bertrand-Edgeworth duopoly game. Tasnádi (2000) provides an-
other game-theoretic foundation of Forchheimer’s model based on a price-
setting game with one large firm and a nonatomic fringe in which all firms
have strictly convex cost functions. Tasnádi (2004) shows that the large firm
will not accept the role of the leader by a simple two-period timing game.1

In this paper we seek for a game-theoretic foundation of the dominant-firm
model of price leadership based on quantity-setting games; but in this case
the term “price leadership” may not be appropriate since we use quantity
as the strategic variable. Nevertheless, we will establish that if the large
firm is the exogenously specified first mover, then the equilibrium prices and
quantities of the appropriate sequence of quantity-setting games will converge
to the same values determined by the dominant-firm model of price leadership
(Proposition 1).2

A similar result has been obtained by Sadanand and Sadanand (1996)
in the presence of a sufficiently small but nonvanishing amount of demand
uncertainty in the market.3 This paper adds to Sadnanad and Sadanand
by showing that nonvanishing demand uncertainty plays a crucial role in
obtaining the large firm as the endogenous leader (Proposition 2) and by
relaxing their assumption of identical small firms.

The remainder of this paper is organized as follows. In Section 2 we de-
scribe the framework of our analysis. Section 3 presents a game-theoretic
foundation of dominant-firm price leadership based on quantity-setting
games, while Section 4 shows that the exogenously given order of moves
in Section 3 cannot be endogenized. Finally, Section 5 contains concluding
remarks.

1We refer to Rassenti and Wilson (2004) for an experimental investigation of the
dominant-firm model of price leadership.

2Tesoriere (2008) shows for a market with infinitely many quantity-setting firms, in
which the firms have identical and linear cost functions, that only first movers produce a
positive amount. Of course, his findings cannot support Forchheimer’s model since because
of the symmetric setting there is no firm with a clear cost advantage.

3For a recent contribution on quantity-setting timing games with demand uncertainty
see Caron and Lafay (2008).
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2 The framework

The demand is given by the function D : R+ → R+ on which we impose the
following assumptions in order to ensure the existence of equilibrium in the
oligopoly games:

Assumption 1. There exists a positive price b such that D(b) > 0 if p < b,
and D(p) = 0 if p ≥ b. The demand function D is strictly decreasing on [0, b],
twice continuously differentiable on (0, b) and concave on [0, b].

Let a be the horizontal intercept of the demand function, i.e., D (0) = a.
Clearly, the firms will not produce more than a. Let us denote by P the
inverse demand function; that is, P (0) = b, P (q) = D−1(q) for all q ∈ (0, a),
and P (q) = 0 for all q ≥ a.

The result in Section 3 will be asymptotic in nature and therefore, we will
consider a sequence of oligopoly markets O = (On)∞n=1

. The demand function
D is assumed to be the same in every oligopoly market of the sequence O.
The cost and supply functions in the oligopoly market On will be denoted
by cn

i : R+ → R+ and sn
i : R+ → R+, respectively (i ∈ {0, 1, . . . , n}).

Thus, the nth oligopoly market of the sequence O is described by On =
〈{0, 1, . . . , n}, (cn

0 , c
n
1 , . . . , c

n
n), D〉. We shall denote by N the set of positive

integers.
In order to ensure the existence and at some points also the uniqueness of

the equilibrium through our analysis we impose on the firms’ cost functions
the following assumptions:

Assumption 2. The cost functions cn
i are twice continuously differentiable,

there are no fixed costs and the cost functions are strictly increasing and
strictly convex. Furthermore, (cn

i )′ (0) = limq→0+(cn
i )′ (q) = mcn

i (0) = 0 and
limq→∞ mcn

i (q) = ∞ for all i ∈ {0, 1, . . . , n}.

Assumption 2 implies that the competitive supply, henceforth briefly sup-
ply, at price level p of firm i can be given by sn

i (p) := (mcn
i )−1 (p) be-

cause the supply of firm i at price level p is a solution of the problem
sn

i (p) = arg maxq≥0 pq − cn
i (q), which has a unique solution for all p ≥ 0

because of Assumption 2.
So far we have not made any distinction between the firms. We call firm

0 the large firm and the remaining firms small firms. The usage of this ter-
minology is justified by the following two assumptions.

Assumption 3. The (competitive) supply of firm 0 as well as the aggregate
(competitive) supply of firms 1, . . . , n remain the same in every oligopoly
market of the sequence O. Hence, we can denote by s0 = sn

0 the supply of the
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large firm, by c0 = cn
0 the cost function of the large firm, by Sc =

∑n

i=1
sn

i

the aggregate supply of the small firms and by MCc := S−1
c its inverse.

Assumption 4. There exists a positive real value α such that

sn
i (p) <

α

n
Sc (p)

holds true for any p ∈ (0, b], for any n ∈ N and for any firm i ∈ {1, . . . , n}.

Assumptions 3 and 4 jointly imply that the supply of any small firm can
be made arbitrarily small compared to the large firm’s supply if n is increased
sufficiently. This justifies the qualifiers large and small.

Now we briefly describe Forchheimer’s model of dominant-firm price lead-
ership (for more details we refer to Scherer and Ross, 1990). The dominant
firm sets its price by maximizing profit with respect to its residual demand
curve, which can be obtained as the horizontal difference of the demand curve
and the aggregate supply curve of the competitive fringe. Hence, the residual
demand curve is given by Dd (p) := (D (p) − Sc (p))+ and the dominant firm
has to maximize the residual profit function:

πd (p) := Dd (p) p − c0 (Dd (p)) , (1)

where we used cost function c0 because in our model firm 0 shall play the
role of the dominant firm. We can obtain the prices maximizing πd by solving

π′
d (p) = Dd (p) + D′

d (p) (p − mc0 (Dd (p))) = 0, (2)

by Assumptions 1 and 2. It can be verified that each stationary point of (1)
has to be a strict local maximum, and therefore, the first-order condition
(2) gives us the unique solution to the profit maximization problem of a
Forchheimer type dominant firm. We call the price maximizing πd, denoted
by p∗, the dominant-firm price. According to Forchheimer’s dominant-firm
model of price leadership, the dominant firm chooses price p∗, the small firms
set also price p∗ and the competitive fringe supplies Sc (p∗).

3 The quantity-setting games

In this section we consider a sequence of quantity-setting games Oq =(
On

q

)∞
n=1

corresponding to a sequence of oligopoly markets O = (On)∞n=1
.

The firms choose the quantities of production and the market clearing price
is determined through an unspecified market-clearing mechanism in each
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quantity-setting game. Usually, the presence of an auctioneer4 is assumed in
such types of models (for more details see for instance Tirole, 1988).

The quantity actions of the firms in the nth oligopoly market are given
by a vector q = (q0, q1, . . . , qn) ∈ [0, a]n+1 that we call from now on a
quantity profile. The nth quantity-setting game is described by the structure

On
q :=

〈
{0, 1, . . . , n} , [0, a]n+1 , (πn

i )n

i=0

〉
,

where
πn

i (q) := P (q0 + q1 + · · · + qn) qi − cn
i (qi)

for any i ∈ {0, 1, . . . , n}.
In this section we make the following assumption on the timing of deci-

sions:

Assumption 5. Let firm 0 be the exogenously specified first mover. The
remaining firms move simultaneously following firm 0.

We will establish a link between our sequence of quantity-setting games
and Forchheimer’s model of dominant-firm price leadership. In particular the
sequence of equilibrium prices of the quantity-setting games converges to the
dominant-firm price p∗ and the aggregate output of the small firms converges
to the output of the competitive fringe in Forchheimer’s model. This is stated
more formally in the following proposition.

Proposition 1. Let Oq =
(
On

q

)∞
n=1

be a sequence of quantity-setting oligopoly
market games satisfying Assumptions 1-5. Then for any n ∈ N the game On

q

has a subgame perfect Nash equilibrium and for any sequence of subgame
perfect Nash equilibrium profiles (qn)∞n=1

we have

lim
n→∞

P

(
n∑

i=0

qn
i

)
= p∗, lim

n→∞
qn
0 = s0 (p∗) and lim

n→∞

n∑

i=1

qn
i = Sc (p∗) .

Proof. We start with demonstrating that every two-stage game On
q has a sub-

game perfect Nash equilibrium. Suppose that firm 0 produces an amount of
q0 ∈ [0, a] in stage one. Then by our assumptions it follows from Szidarovszky
and Yakowitz (1977) that for any n the subgame has a unique Nash equilib-
rium. For the game On

q we shall denote by fni (q0) (i ∈ {1, . . . , n}) the unique
equilibrium solution of stage two in response to the large firm’s first-stage

4For a model that does not assume an auctioneer and explains the price formation mech-
anism see Kreps and Scheinkman (1983). One has to mention that Kreps and Scheinkman’s
result crucially depends on their imposed assumptions on rationing and cost (see for in-
stance Davidson and Deneckere, 1986; and Deneckere and Kovenock, 1992).
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action q0. Furthermore, let fnc (q0) :=
∑n

i=1
fni (q0). The equilibrium of the

subgame has to satisfy the first-order conditions

P (q0 + fnc (q0)) + P ′ (q0 + fnc (q0)) fni (q0) − mcn
i (fni (q0)) = 0, (3)

(i ∈ {1, . . . , n)}. The Implicit Function Theorem implies that the functions
fni and fnc are continuous and differentiable. Thus, the large firm’s first-stage
profit function

π̂0 (q0) := π0(q0, fn1(q0), . . . , fnn(q0)) = P (q0 + fnc (q0)) q0 − c0 (q0) (4)

is continuous, and therefore, it follows that the game On
q has a subgame

perfect Nash equilibrium.
We take a sequence of subgame perfect Nash equilibrium quantity profiles

qn. Let the small firms aggregate production be qn
c :=

∑n

i=1
qn
i . The sequence

(qn
0 , qn

c )∞n=1
has at least one cluster point since it is bounded. We pick an ar-

bitrary convergent subsequence form the sequence (qn
0 , qn

c )∞n=1
. For notational

convenience we suppose that (qn
0 , qn

c )∞n=1
is already convergent. We shall de-

note by (q0, qc) its limit point. Note that qn
i = fni (q

n
0 ) and qn

c = fnc (qn
0 ).

The small firms’ equilibrium actions (qn
i )n

i=1
in stage two have to satisfy the

following first-order conditions

∂πi

∂qi

(qn) = P (qn
0 + qn

c ) + P ′ (qn
0 + qn

c ) qn
i − mcn

i (qn
i ) = 0. (5)

We claim that limn→∞ qn
i = 0, where in case of a double sequence an

i with
i, n ∈ N and i ≤ n we write limn→∞ an

i = a if

∀ε > 0 : ∃n0 ∈ N : ∀n ≥ n0 : ∀i ∈ {1, 2, . . . , n} : |an
i − a| < ε.

From (5) and Assumption 4 we obtain that

qn
i = sn

i (P (qn
0 + qn

c ) + P ′ (qn
0 + qn

c ) qn
i ) < (6)

<
α

n
Sc (P (qn

0 + qn
c ) + P ′ (qn

0 + qn
c ) qn

i ) ≤
α

n
Sc (b)

for any i ∈ {1, . . . , n}. Thus, we have limn→∞ qn
i = 0.

Let pn := P (qn
0 + qn

c ), rn := P ′ (qn
0 + qn

c ), and un := P ′′ (qn
0 + qn

c ). Note
that pn ≥ 0, rn < 0 and un ≤ 0 for all n ∈ N. We shall denote by p, r, and
u the corresponding limit points of sequences (pn)∞n=1

, (rn)∞n=1
, and (un)∞n=1

.
By taking limits in (5) we obtain

p = lim
n→∞

mcn
i (qn

i ) . (7)
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The following three auxiliary statements can be derived5:

p = MCc (qc) , (8)

f ′
nc = −1 +

1

1 +
∑n

i=1

P ′+P ′′fni

P ′−(mc
n

i )
′

. (9)

and

lim
n→∞

n∑

i=1

rn + unqn
i

rn − (mcn
i )′ (qn

i )
= −

r

MC ′
c (qc)

. (10)

Now, substituting (10) into (9) yields

lim
n→∞

f ′
nc (qn

0 ) = −
r

r − MC ′
c (qc)

, (11)

which we need for determining the large firm’s behavior.
The sequence of the large firm’s decisions (qn

0 )∞n=1
has to satisfy the fol-

lowing first-order condition derived from (4):

π̂′
0 (qn

0 ) = P (qn
0 + qn

c ) + P ′ (qn
0 + qn

c ) (1 + f ′
nc (qn

0 )) qn
0 − mc0 (qn

0 ) = 0. (12)

If we take limits in equation (12), then in consideration of (11)

p = mc0 (q0) − r

(
1 −

r

r − MC ′
c (qc)

)
q0 (13)

must hold. From (8) and (13) we can easily obtain that p is a solution to (2):

π′
d (p) = q0 +

(
1

r
−

1

MC ′
c (qc)

)(
rMC ′

c (qc)

r − MC ′
c (qc)

)
q0 = 0.

Thus, p is indeed a solution of equation (2). Since equation (2) has a unique
solution we also conclude that the sequence (pn)∞n=1

has only one cluster point.
Therefore, p∗ = p. Furthermore, it follows that the sequence (qn

0 , qn
c )∞n=1

has
also only one cluster point by equation (8), which implies limn→∞ qn

0 = s0 (p∗)
and limn→∞

∑n

i=1
qn
i = Sc (p∗).

5The calculations of (8), (9) and (10) are quite tedious and therefore, relegated to the
Appendix.
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4 Endogenous timing

In this section we consider the timing in quantity-setting games for which we
apply Matsumura’s (1999) result. This allows us to investigate a quite com-
plex timing game. We have to emphasize that the outcome of the quantity-
setting timing game is independent of the supply structure of the firms and
thus, we will not have to consider a sequence of quantity-setting games as in
Section 3. Let us briefly sketch Matsumura’s (1999) timing game and result.
Suppose that there are n+1 firms and m+1 stages. In the first stage (period
0) each firm selects its production period t ∈ {1, 2, . . . ,m}. A firm i produc-
ing qi in period ti ∈ {2, . . . ,m} observes any production decision qj made in
period tj ∈ {1, . . . , ti−1} and firm i does not know the set of firms producing
in the same period ti, which means that this timing game can be regarded
as an extension of the ‘extended game with action commitment’ investigated
by Hamilton and Slutsky (1990).6 At the end of period m the market opens
and each firm sells its entire production at the market clearing price. That
is, firm i achieves πi(q0, q1, . . . , qn) = P (

∑n

j=0
qj)qi − ci(qi) profits.

In order to determine the outcome of the introduced timing game Mat-
sumura (1999) imposes three assumptions on two-stage games with exogenous
timing. The set of leaders, denoted by SL, consisting of those firms produc-
ing in period 1, and the set of followers, denoted by SF , consisting of those
firms producing in period 2, are exogenously given. Firms moving in the same
period move simultaneously and the followers observe the production quan-
tities of the leaders. The production qi of a firm i ∈ {0, 1, . . . , n} \ (SL ∪ SF )
is exogenously given and common knowledge. Matsumura assumes that all
two-stage games with exogenous sequencing have a unique equilibrium in
pure strategies (Matsumura, 1999, Assumption 1), every firm strictly prefers
moving simultaneously with the other firms to being the only follower (Mat-
sumura, 1999, Assumption 2), and every firm strictly prefers moving before
the other firms to moving simultaneously with them (Matsumura, 1999, As-
sumption 3). Under these three assumptions Matsumura (1999, Proposition
3) shows that in any equilibrium of the m + 1 period timing game at most
one firm does not move in the first period.

We will establish that our assumptions imposed on the cost functions and
the demand curve in Section 2 imply Matsumura’s second and third assump-
tions.7 Thus, we have to assume explicitly only the following assumption.

6At the end of this section we will also consider the ‘extended game with observable
action delay’ in which the firms know the set of firms moving in the same time period.

7Matsumura (1996) gives a sufficient condition which ensures that these two Assum-
tions are satisfied. However, we cannot apply this latter result in our framework without
imposing further assumptions.

8



Assumption 6. Any two-stage game with exogenous sequencing possesses
a unique equilibrium in pure strategies.

Assumption 6 is needed because there is no simple condition in our frame-
work, which guarantees the existence and uniqueness of the equilibrium for
two-stage games. Sherali (1984) provides sufficient conditions for the exis-
tence and uniqueness of the subgame perfect equilibrium. However, Sherali’s
(1984) conditions for uniqueness cannot be applied in our model since we have
to allow asymmetric cost functions, while Sherali (1984, Theorem 5) requires
that the firms’ moving in the first period have identical cost functions.

The next proposition determines the endogenous order of moves in
quantity-setting games.

Proposition 2. Let Oq be a quantity-setting oligopoly game satisfying As-
sumptions 1, 2, and 6. Then in an equilibrium of the m+1 period Matsumura
timing game at most one firm does not set its output in the first period.

Proof. In order to demonstrate the proposition we have only to verify that
our Assumptions 1, 2 and 6 imply Matsumura’s (1999) Assumptions 2 and 3.
Hence, we have to consider three different two-stage games with exogenous
timing. In particular, the Cournot game in which each firm moves in the
same time period, the game with only one leader and the game with only
one follower.

Since the Assumptions 1 and 2 ensure the existence of a unique Nash
equilibrium in pure strategies8 (see for instance Szidarovszky and Yakowitz,
1977) the first-order conditions below determine the outcome of the Cournot
game.

∂

∂qi

πi(q0, q1, . . . , qn) = P

(
n∑

j=0

qj

)
+ P ′

(
n∑

j=0

qj

)
qi − mci(qi) = 0 (14)

Regarding that our assumptions imply that (14) has an interior solution, by
rearranging (14) we can obtain the next useful equation:

P ′

(
n∑

j=0

qj

)
=

mci(qi) − P
(∑n

j=0
qj

)

qi

< 0. (15)

We shall denote the Cournot solution by (qc
i )

n
i=0.

8Note that this is also guaranteed by Assumption 6, but we wanted to emphasize that
Assumption 6 is not needed at this stage of the proof.

9



Next we investigate the game with only one leader. Suppose that firm i is
the leader. Clearly, the leader achieves the same profit as in the Cournot game
by setting its production to qc

i . Hence, it remains to show that the leader earns
more as a leader than by moving simultaneously with the other firms. Given
the production qi of firm i the followers play in the subgame a simultaneous-
move quantity-setting game subject to the inverse demand curve P̃ (q) =
P (q + qi). Thus, the subgame has a unique Nash equilibrium because of
Assumptions 1 and 2. Let us denote by Q−i(qi) the aggregate production of
the followers in response of the leader’s output qi. Then firm i maximizes the
function π̃i(qi) := P (qi + Q−i(qi)) qi − ci(qi). It can be easily checked9 that
Q′

−i(qi) ∈ (−1, 0) holds for all qi ∈ (0, a). Therefore, in consideration of (14)
and qc

i + Q−i(q
c
i ) =

∑n

j=0
qc
j it follows that

π̃′
i(q

c
i ) = P (qc

i + Q−i(q
c
i )) +

(
1 + Q′

−i(q
c
i )
)
P ′ (qc

i + Q−i(q
c
i )) qc

i − mci(q
c
i ) > 0,

which in turn implies that firm i makes more profits by producing more than
qc
i . This means that Matsumura’s (1999) Assumption 3 is fulfilled.

Finally, we have to investigate the two-stage game with only one follower.
Suppose that firm i is the follower. Again we denote by Q−i the aggregate
production of the other firms but now qi depends on Q−i. For a given amount
Q−i firm i has to maximize the function π̂i(qi) := P (qi + Q−i) qi − ci(qi),
which has a unique solution determined by

π̂′
i(qi) = P (qi + Q−i) + P ′ (qi + Q−i) qi − mci(qi) = 0. (16)

From this first-order condition we obtain that

dqi

dQ−i

= −
P ′ (qi + Q−i) + P ′′ (qi + Q−i) qi

2P ′ (qi + Q−i) + P ′′ (qi + Q−i) qi − mc′i(qi)
, (17)

which implies that dqi/dQ−i ∈ (−1, 0) and d (qi + Q−i) /dQ−i ∈ (0, 1) for
any Q−i ∈ [0, a). This means that an increase in the first-stage aggregate
output decreases the followers output and increases the total output. Let us
remark that dqi/dqj = dqi/dQ−i holds true for any firm j 6= i. The first-stage
quantities of firms {0, 1, . . . , n} \ {i} are determined (because of Assumption
6) by the first-order conditions

P (qi(Q−i) + Q−i) +

(
1 +

dqi

dqj

)
P ′ (qi(Q−i) + Q−i) qj − mcj(qj) = 0. (18)

9Note that by deriving (9) we have carried out the necessary calculations since (9) does
not depend on the special role played by firm 0 in Proposition 1.
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Clearly, for an equilibrium profile we must have qi + Q−i ∈ [0, a) and qj > 0
for all j 6= i. Hence, by rearranging (18) we obtain

(
1 +

dqi

dQ−i

)
P ′ (qi(Q−i) + Q−i) =

mcj(qj) − P (qi(Q−i) + Q−i)

qj

< 0 (19)

for all j 6= i. We shall denote the solution to equations (16) and (18) by
(q∗i )

n

i=0
.

We claim that qc
i +Qc

−i < q∗i +Q∗
−i. Suppose that this is not the case; i.e.,

qc
i +Qc

−i ≥ q∗i +Q∗
−i holds true. Then we must have Qc

−i ≥ Q∗
−i and therefore,

we can find a firm j 6= i for which we have qc
j ≥ q∗j . For this firm j we can

derive the following inequalities:

(
1 +

dqi

dQ−i

)
P ′
(
q∗i + Q∗

−i

)
> P ′

(
q∗i + Q∗

−i

)
≥ P ′

(
qc
i + Qc

−i

)
=

=
mcj(q

c
j) − P

(
qc
j + Qc

−j

)

qc
j

≥

≥
mcj(q

c
j) − P

(
q∗j + Q∗

−j

)

qc
j

≥

≥
mcj(q

∗
j ) − P

(
q∗j + Q∗

−j

)

q∗j
,

by applying dqi/dQ−i = dqi/dqj ∈ (−1, 0), Assumption 1, (15), Assumption
1 and by observing that the function f(q) := (mcj(q) − P (q∗j + Q∗

−j))/q is
strictly increasing on [q∗j , q

c
j ]. But this contradicts (19).

Since qc
i + Qc

−i < q∗i + Q∗
−i and (17) imply qc

i > q∗i and P (qc
i + Qc

−i) >
P (q∗i + Q∗

−i) we can deduce that firm i realizes more profits in the Cournot
game than in the game in which it plays the role of the only one follower.
Thus, Matsumura’s (1999) Assumption 2 is also satisfied.

Proposition 2 implies for quantity-setting games satisfying the assump-
tions in Proposition 2 that none of the firms will become the unique leader
in the market if there are at least three firms and therefore, Forchheimer’s
model will not emerge.

If we consider the extended timing game with observable action delay,
then we will not have an equilibrium with one follower, while every firm
moving in the first period will be an equilibrium. This follows immediately
from Matsumura’s (1999) Assumption 2.
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5 Concluding remarks

The intuition behind Proposition 1 is quite straightforward: If we consider
the Cournot game which occurs after firm 0 has chosen its quantity q0, then
the outcome of the subgame played by the remaining firms will converge
to the competitive one in the residual market as n becomes large under
appropriate assumptions. Thus, in the limit the price in the market must
equal the marginal costs of the small firms and therefore, if we were allowed
to exchange the order of the limits, then Proposition 1 would follow. In
particular, the order of maximizing the profits of the large firm and taking
infinitely many small firms has to be exchanged.

Of course, it is not at all clear that we can exchange the order of the
limits in the intuitive proof described above. Nevertheless, if we would like
to apply existing convergence results for Cournot games (see, for instance,
Ruffin, 1971 and Novshek, 1985), then these convergence results would need
to be extended substantially. In particular, to exchange the order of the
limits we would need to prove that the convergence is uniform in the large
firm’s action q0. Hence, working out the described intuitive proof does not
necessarily result in a shorter proof of Proposition 1.

Finally, let us remark that Proposition 1 can be very easily demonstrated
in the case of linear demand, quadratic cost functions and the small firms
having identical cost functions, because then (2), (5) and (12) can be solved
explicitly. Hence, this special case would be suitable to illustrate in textbooks
on Industrial Organization how Forchheimer’s model could be implemented.

Appendix

Proof of (8). In order to verify (8) note that by (7) we have

∀ε > 0 : ∃n0 ∈ N : ∀n ≥ n0 : ∀i ∈ {1, . . . , n} : |mcn
i (qn

i ) − p| < ε. (20)

Select values q̂n
i and q̃n

i such that mcn
i (q̂n

i ) = p−ε and mcn
i (q̃n

i ) = p+ε. From
q̂n
i ≤ qn

i ≤ q̃n
i it follows that q̂n

c ≤ qn
c ≤ q̃n

c , which in turn implies MCc (q̂n
c ) ≤

MCc (qn
c ) ≤ MCc (q̃n

c ). Since MCc (q̂n
c ) = p − ε and MCc (q̃n

c ) = p + ε we
obtain, by the continuity of MCc, equation (8).

Proof of (9). Differentiating (3) with respect to q0 we obtain

(1 + f ′
nc) P ′ + f ′

niP
′ + (1 + f ′

nc) P ′′fni − f ′
ni (mcn

i )′ = 0, (21)
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where we have omitted the arguments of the functions in order to shorten
the expression. Rearranging (21) yields

f ′
ni = −

P ′ + P ′′fni

P ′ − (mcn
i )′

(1 + f ′
nc) . (22)

Summing (21) for all i ∈ {1, . . . , n} we get

nP ′ + P ′′fnc + ((n + 1) P ′ + P ′′fnc) f ′
nc −

n∑

i=1

f ′
ni (mcn

i )′ = 0. (23)

Substituting (22) for f ′
ni in (23) we can express f ′

nc and after the necessary
rearrangements we obtain (9).

Proof of (10). First, we prove

lim
n→∞

n∑

i=1

1

(mcn
i )′ (qn

i )
=

1

MC ′
c (qc)

. (24)

Let pn
i := mcn

i (qn
i ), p̂n := mini=1,...,n pn

i and p̃n := maxi=1,...,n pn
i . Then, by

(20) and the continuity of S ′
c we can find to all ε > 0 an n0 ∈ N such that

for all n ≥ n0 we have

S ′
c (p) − ε ≤ S ′

c (p̂n) ≤
n∑

i=1

(sn
i )′ (pn

i ) ≤ S ′
c (p̃n) ≤ S ′

c (p) + ε. (25)

Thus,

lim
n→∞

n∑

i=1

1

(mcn
i )′ (qn

i )
= lim

n→∞

n∑

i=1

(sn
i )′ (pn

i ) = S ′
c (p) =

1

MC ′
c (qc)

,

where the second equality follows from (25) while the last from (8).
Finally, we check (10). Consider

n∑

i=1

rn + unqn
i

rn − (mcn
i )′ (qn

i )
=

n∑

i=1

rn

rn − (mcn
i )′ (qn

i )
+

n∑

i=1

unqn
i

rn − (mcn
i )′ (qn

i )
, (26)

where the second summand tends to 0 since for all K > 0 we can find an
m1 ∈ N such that for all n ≥ m1 we have (mcn

i )′ (qn
i ) − rn > K for all

i ∈ {1, . . . , n} because limn→∞ (mcn
i )′ (qn

i ) = ∞; and therefore,

lim
n→∞

n∑

i=1

unqn
i

rn − (mcn
i )′ (qn

i )
≤ lim

n→∞

n∑

i=1

unqn
i

−K
=

u qc

−K
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for all K > 0. We show that the first summand in (26) tends to −r/MC ′
c (qc)

by two inequalities. First,

lim
n→∞

n∑

i=1

rn

rn − (mcn
i )′ (qn

i )
≤ − lim

n→∞

n∑

i=1

rn

(mcn
i )′ (qn

i )
= −

r

MC ′
c (qc)

by (24). Second, to any ε > 0 there exists a positive integer m2 such that for
all n ≥ m2 we have

0 ≤ (mcn
i )′ (qn

i ) − rn < (1 + ε) (mcn
i )′ (qn

i )

for all i ∈ {1, . . . , n}, which in turn implies that

rn

rn − (mcn
i )′ (qn

i )
> −

rn

(1 + ε) (mcn
i )′ (qn

i )
.

Thus, by (24)

lim
n→∞

n∑

i=1

rn

rn − (mcn
i )′ (qn

i )
≥ −

r

MC ′
c (qc)

,

and we have established (10).
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