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Abstract 

As is the case with capital-energy substitution, interfuel substitutability has been of longstanding 

interest to the energy economics and policy community. However, no quantitative meta-analysis 

has yet been carried out of this literature. This paper fills this gap by analyzing a broad sample of 

studies of interfuel substitution in the industrial sector, manufacturing industry or subindustries, 

or macro-economy of a variety of developed and developing economies. Publication bias is 

controlled for by including the primary study sample size and the influence factor of the journal 

in the meta-regression. Results for the shadow elasticity of substitution between coal, oil, gas, 

and electricity for forty-five primary studies show that there are easy substitution possibilities 

between all the fuel pairs with the exception of gas and electricity. Model and data specification 

issues very significantly affect the estimates derived by each individual study. While publication 

bias does not seem to be present there is a relationship between sample size and the value of the 

elasticities with larger sample studies finding greater values of the elasticities.  
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1. Introduction 

As is the case with capital-energy substitution (Koetse et al., 2008), interfuel substitutability has 

been of longstanding interest to the energy economics and policy community and is of critical 

importance in evaluating sustainability options and in estimating the economic cost of 

environmental policies such as a carbon tax. Apostolakis (1990) and Bacon (1992) surveyed 

some of the early studies of interfuel substitution elasticities for the OECD countries. Bacon 

found that studies that used panel data tended to find more substitutability between fuels as 

measured by the cross-price elasticities. He suggested that this was because this data represented 

long-run elasticities as opposed to short-run elasticities in time series data. Apostolakis (1990) 

came to a similar conclusion regarding substitution between aggregate energy and capital.
1
 

Apostolakis (1990) did not, however, come to as clear-cut conclusions regarding interfuel 

substitution. He found that coal and oil and coal and electricity were good substitutes with less 

substitutability between coal and gas and electricity and gas and a mixed picture for the 

remaining two combinations.  

 

Given what we now know about cointegration in time series, whether time series estimates 

represent short-run elasticities or not depends on the type of time series model estimated and 

whether the time series cointegrate or not. Time series estimates in levels could represent long-

run equilibrium elasticities if the variables cointegrate. Various other hypotheses might explain 

this difference in estimates. It could be that forcing parameters to be equal across individuals in 

panel data regressions results in greater estimated substitutability. Alternatively, substitution 

along an isoquant may only be really distinguishable from changes in the isoquants – in other 

words technical change – when the sample includes both time and cross-sectional dimensions. It 

is also possible that the larger sample size of most panel studies results in less-biased estimates 

of the elasticities. These and other hypotheses will be investigated in this paper.  

 

                              
1
 Koetse et al.’s (2008) meta-analysis finds a mean value of the Morishima elasticity of 

substitution between capital and energy for a change in the price of energy of 0.216 for their 
time-series base case with significantly greater values for panel data of 0.592 and for cross-
section data of 0.848. 



Since Bacon’s and Apostolakis’ surveys, numerous additional primary studies have been carried 

out for both developed and developing economies. However, no quantitative meta-analysis of 

this literature has yet been carried out. This paper fills this gap by analyzing a broad sample of 

studies of interfuel substitution in either the industrial sector, manufacturing industry as a whole 

or manufacturing sub-industries, or the macro-economy of a variety of developed and developing 

economies. An initial glance at this literature shows a wide range of numerical values for 

substitution elasticities. Some studies show low substitutability between fuels (the shadow 

elasticity of substitution (McFadden, 1963) is between 0 and 1) and others show a high level of 

substitutability. Signs of cross-price elasticities also vary across studies and across countries 

within multi-country studies. Some simple hypotheses can be formulated to explain these 

patterns but they tend to be contradicted by outliers. For example, I hypothesized that studies that 

incorporate post 1973 or 1979 data show less substitutability than the classic Pindyck (1979) 

paper. But Jones (1996), using a linear logit model, found a high degree of substitutability (many 

of his Morishima elasticities are greater than Pindyck’s) for most fuels apart from electricity. On 

the other hand, Considine (1989) also used a linear logit model but estimated very low 

elasticities. The value of a meta-analysis over a traditional literature review is that it can 

objectively untangle these patterns in the metadata.  

 

Meta-analysis seeks to estimate the true value of a parameter or summary statistic given in many 

different primary research studies – known as an “effect size” in the jargon of the meta-analysis 

literature – and how it varies over the relevant population as well as accounting for the errors 

introduced by inaccurate measurement, differences in methodology, publication selection biases 

etc. In the simplest case, if we believed that the underlying parameter was a constant across the 

population – called a fixed effect size (FES) in the meta-analysis jargon - and had no information 

on the sources of variations in the various primary estimates nor the precision of the primary 

estimates themselves, we could compute the unweighted mean of all the effect sizes in all the 

primary studies (each primary study often has many individual observations) (Nelson and 

Kennedy, 2008). When the precision of primary estimates is known, the sum weighted by the 

inverse of the variances (i.e. the precisions) - called the FES weighted mean - can be computed.  

 



It is more reasonable in most cases to maintain that the effect size in different studies is actually 

different and not purely the result of sampling error. This is called a random effect size – (RES). 

It is reasonable to assume that some of this second source of variance is explainable: 
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unexplainable variability across studies, and e
i
 the disturbance due to sampling error (Boys and 

Florax, 2007). If w = 0, the model can be estimated by GLS using the variances of the estimates 

from the primary studies as estimates of v
i

2. In the general case, more sophisticated estimators 

are required (see Nelson and Kennedy, 2008). Additional issues concerning meta-analysis are 

discussed in the methods section of this paper. 

 

2. Methods 

a. Choice of Dependent Variables 

Stern (2008b) reviews the theoretical literature on the elasticity of substitution. With two inputs 

and constant returns to scale the elasticity of substitution is unambiguously defined. But the 

situation is much more complex for more general cases. Elasticities of substitution can be 

classified in three dimensions: 

 

• Gross and net elasticities: Under non-constant returns to scale, some of the elasticities 

of substitution measured holding output constant (net substitution) and letting it vary optimally 

(gross substitution) differ. For non-homothetic technologies all the elasticities differ for net and 

gross substitution.  

• Primal and dual elasticities: Also known as the distinction between elasticities of 

complementarity and elasticities of substitution. The familiar Allen-Uzawa elasticity is a dual 

elasticity in that is derived from the cost function. The Antonelli elasticities by contrast are 

derived from the input distance function, a primal representation of the technology. 



• Scalar, asymmetric ratio, and symmetric ratio elasticities: The Allen-Uzawa 

elasticities measure the effect on the quantity of the factor demanded for a change in the price of 

another factor. These elasticities are symmetric. The Morishima elasticities measure the effect on 

the factor ratio of the change in a ratio of prices. But the elasticity takes a different value 

depending on which price in the ratio changes, such that these elasticities are not symmetric. By 

placing the restriction that cost is held constant on the Morishima elasticity we obtain the shadow 

elasticity of substitution. Ratio and scalar elasticities measure different concepts of substitution. 

The ratio elasticities measure the difficulty of substitution between inputs with values between 

zero and unity indicating poor substitutability and values greater than one indicating good 

substitutability. By contrast, the scalar elasticities can be positive or negative – for p-substitutes 

and p-complements respectively in the case of the Allen-Uzawa elasticities (or q-complements 

and q-substitutes respectively in the case of the Antonelli elasticities). 

 

Most interfuel substitution studies look only at equations for fuel cost shares with the quantity of 

energy implicitly held constant and do not consider changes in output. A few studies such as 

Pindyck (1979) estimate an energy submodel and a capital-labor-energy-materials model 

(“super-model”). This allows computation of the “partial elasticities” which hold the quantity of 

energy constant and “total elasticities” which allow it to vary. Both of these are net elasticities – 

the level of output is held constant. Even so, few if any studies estimate the parameters necessary 

to compute the returns to scale in the super-model. Given this, it is not possible to compute the 

gross elasticities of substitution and I do not consider them further.  

 

Most primary studies simply report the own and cross-price elasticities from which the 

Morishima elasticities can be derived as differences between cross-price and own-price 

elasticities and the shadow elasticities as share weighted averages of the Morishima elasticities 

(Chambers, 1988).
2
 For the translog function: 
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 Some papers also report Allen-Uzawa elasticities or Morishima elasticities. But regardless of 

how the data is presented I compute the shadow elasticities from the information given. Most, 

but not all studies, also present the parameters of the cost function and/or the average cost shares, 

which can be of use in computing shadow elasticities and even cross-price elasticities that are not 

reported in the primary study - some studies only report one of each pair of cross-price 

elasticities. 
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where X
i
 is the quantity of input i, pi  its price, and S

i
 its cost share. "ij  is the relevant second 

order parameter from the translog cost function. y is output and p is the vector of factor prices. 

The Morishima elasticity for a change in price i can be derived as: 
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and the shadow elasticity is: 
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The shadow elasticities should be non-negative 
3
. As averages of the Morishima elasticities, the 

shadow elasticities are good summary statistics of the overall degree of substitutability between 

inputs. For any given number of inputs they are fewer in number than the cross-price, Morishima 

elasticities, or Allen-Uzawa elasticities. In the case of four fuels there are just six shadow 

elasticities. Therefore, in this paper I carry out a meta-analysis of the shadow elasticities.
4
 

 

Equation (3) can be used to find the cost shares required to compute (5) when these are not given 

in the primary study if the study uses the translog function. The quadratic equation given by the 

own price elasticity and cost function parameter presented in the paper is solved for the cost 

                              
3
 Morishima elasticities are usually positive but are not necessarily so – one of pair for a factor 

combination can be positive and the other negative.  
4 Koetse et al. (2008) carry out separate meta-analyses for the cross-price and Morishima 
elasticities but they only look at the capital-energy elasticity for a change in the price of energy. 
Hence they have just two meta-regressions vs. six in this paper. Boys and Florax estimate a 
single meta-regression for the Allen-Uzawa elasticity of substitution between capital and labor. 



share. Alternatively, if a study presents both Allen-Uzawa elasticities and cross-price elasticities 

their ratio gives the unstated cost share.  

 

b. Choice of Explanatory Variables 

i Overview 

Explanatory variables play two roles in a meta-analysis:  

 

• Measuring differences between “effect sizes” that are real and that we want to measure. 

• Accounting for outliers and explainable variability in the estimates around the true values 

of the parameter or statistic of interest. 

 

Examples of the first category is measuring the difference between the elasticity of substitution 

in North America and Europe or between partial and total elasticities or between the industrial 

sector and the economy as a whole. An example of the second category is that the elasticity of 

substitution may differ depending on whether the primary studies modeled technical change or 

ignored it. If we argue that a best practice study includes some sort of time trends in the cost 

function we will want to use the fitted elasticities for the case where technological change was 

modeled while regarding the difference in effect size in the studies which ignored technological 

change as noise that we wish to account for.  

 

I referred to the two existing meta-analyses of elasticities of substitution (Boys and Florax, 2007; 

Koetse et al., 2008) and reviewed the literature on interfuel substitution to develop a list of 

appropriate variables to include as explanatory variables in the meta-analysis. Many of my 

explanatory variables are the same as those of Koetse et al. (2008) or Boys and Florax (2007). 

There are a number of variables regarding model specification, which I collected but dropped 

from the final analysis because they only differentiated one or two studies from the remainder. 

An example is the use of stochastic technological change trends vs. deterministic trends. Only 

Harvey and Marshall (1991) and Morana (2003) used the stochastic specification. Similarly, only 

Jones (1996) omitted fixed effects from a panel regression with more than three or four time 

observations. In yet another example, very few studies used quarterly data. Some variables were 

collected but did not have significant effects in the meta-regressions and did not have strong 



theoretical reasons for inclusion. An example is a dummy variable I created for studies that did 

not include all four of the standard fuels.  

 

ii Methodology Variables 

From the introduction, we can see that some variables of clear interest are whether the primary 

study was estimated with time series, cross-section or panel data, whether a translog, linear logit, 

or other functional form was used, and whether technological change was modeled. However, 

data type is strongly correlated with sample size, which is a required variable in the regression, 

as explained below.5 Therefore, I test the effects of the data type in an auxiliary regression. 

 

To deal with functional form, I use dummies for translog, linear logit, and other functional 

forms. As there is no a priori reason to believe that one function is more appropriate than another 

it is desirable, therefore, that the base case is for a weighted mean of the different functional 

forms. I demean the functional form dummies and then subtract the translog dummy from each 

of the other two dummies, which are then in their transformed form used in the meta-regression. 

This ensures that the sum of the effects of these dummies in the sample is zero.  

 

By contrast, I argue that models that omit technical change are misspecified and, therefore, it is 

desirable that the base case be for a model with technical change. I introduce a dummy equal to 

one if technical change variables are omitted in the energy submodel. 

 

iii Data and Definition Variables 

The variables mentioned in the previous section are questions of specification on the part of the 

researchers that do not reflect variations in the true values of the elasticities. As mentioned 

above, the region covered may be of interest. For the former, I introduce dummy variables for 

countries. A country is assigned its own individual dummy if it has at least two studies available 

for each elasticity for which that country has an estimate. Individual dummies are, therefore, 

assigned to Australia, China, India, Japan, Korea, France, Germany, Italy, Netherlands, UK, 

Canada, and USA. The remaining countries were assigned dummies for “other Europe” and 

                              
5
 The time series samples are the smallest and the cross-section samples the largest. 



“other Asia”.6 Again these dummies were demeaned and the dummy for the Netherlands was 

subtracted from the remaining dummies. The transformed dummies were used in the meta-

regression.  

 

Three dummies are used to account for data from different time periods – data from the 1940s 

through the 1960s, data from the 1970s and 80s, and data from the 1990s and beyond. Again 

demeaning is applied and the early dummy subtracted from the other two. Time dummies of this 

sort are preferable to continuous time variables for sample period as they have a lower 

correlation with the other explanatory variables. 

 

I also introduce dummies for studies of the macroeconomy, manufacturing, and subsectors of 

manufacturing (industrial sector = 0). I also note whether an elasticity is a partial elasticity 

estimated from a submodel that holds energy constant or a total elasticity that allows energy use 

to vary (see Pindyck, 1979). The default is the partial elasticity. For dynamic models I note 

whether an elasticity is a short-run or a long-run elasticity. The default is an estimate from a 

static model. 

 

It is possible that the elasticity varies with the level of economic development. Klump and de la 

Grandville (2000) argued that the income per capita will be higher in economies with more 

substitutability between capital and labor but there is no a priori theory in the case of interfuel 

substitution. I use the log of average GDP per capita in 2000 PPP Dollars for the sample period 

of the primary study (Heston et al., 2006) relative to the sample size weighted arithmetic mean 

income ($15,489) to reflect the effect of the level of economic development. The base case is for 

a country with this average income. 

 

iv Publication Quality and Publication Bias 

I collected several variables related to publication quality or publication bias –citations received 

by the paper as of January 2009 in the Web of Knowledge, the 2007 citation impact factor of the 

journal (both 2 year and 5 year factors from ISI), the citation impact factor of the journal in the 

                              
6
 I also tested dummies for more aggregated regions but the hypothesis that the intercept term 

was constant across studies could be rejected for those models for all elasticities.  



year of publication, the 2006 influence score of the journal from eigenfactor.org, the inverse of 

the square root of the sample size in the primary study, and the number of articles in the ISI 

database citing the authors other work apart from the paper in question. I discuss these factors in 

more detail in the following: 

 

Sample Size: Stanley (2001) suggests including the sample size as an explanatory variable. In 

the case of that study the dependent variable was a test statistic and, therefore, this is a test of 

whether there is a true underlying effect. The t-statistic should increase with sample size if there 

is a true non-zero effect in the data. In our case, the true elasticity might just as well be zero. But 

the estimate is also likely to be closer to the true value in larger samples (Stanley, 2005). On the 

other hand, this effect should not be monotonic – studies of small sample size should be equally 

likely to report values above or below the true parameter in the absence of publication bias – as 

exemplified by the “funnel graph”.7 Publication bias can take various forms. Journals and 

researchers might only publish results that appear to be theoretically satisfactory – for example 

rejecting studies with positive own price elasticities. Or they may only accept studies with 

statistically significant effects. If both statistically significant and theoretically correct results are 

favored, a correlation between sample size and effect size will result because studies with small 

samples have to struggle to find larger effects (in the theoretically correct direction) in order to 

get statistically significant results (Stanley, 2005). One side of the true bell shaped distribution of 

effect sizes in studies has been censored to leave a monotonic relation between sample size and 

the remaining effect sizes. If the theoretical value is positive, this correlation will be negative and 

vice versa. If statistically significant results are favored regardless of sign then there will be no 

correlation with sample size but the distribution of effect sizes will be kurtotic. 

 

In the presence of unidirectional publication bias the average effect size in the literature will be a 

biased estimate of the underlying parameter. Begg and Berlin (1988) argue that publication bias 

will be proportional to the inverse of the square root of sample size. Including this variable in a 

metaregression means that the intercept in the regression will estimate the value of the elasticity 

for a study with an infinite sample size, thus correcting for publication bias. This regression is 

                              
7 The funnel graph plots sample size or precision on the y-axis and the effect size on the x axis. 



then Stanley’s (2005) “funnel asymmetry test” (FAT) estimator using the inverse of the square 

root of the sample size in place of the precision of the primary estimate.  

 

I would expect that in the substitution literature researchers are not very concerned with 

significance because the cost function parameters themselves are not of much interest. However, 

positive own price elasticities are likely to be censored. If cross price elasticities are not affected, 

this would cause estimates of Morishima elasticities and consequently of shadow elasticities of 

substitution to be somewhat more positive than is actually the case.  

 

Impact Factor: Murtaugh (2002) and Baker and Jackson (2006) argue that there might be a 

relationship between the impact factor of the journal a paper was published in and the paper’s 

effect sizes. Baker and Jackson (2006) posit a model where authors order journals according to 

impact factor and first submit their paper to the journal with the highest impact factor that they 

think they can publish their paper in. If it is rejected they go to the next journal on their list. If 

there is a bias, the higher ranked journals are more likely to accept papers with larger or more 

significant effects and papers with smaller or less significant effects will get published by lesser 

journals. Thus a positive correlation between impact factor and effect size is expected if both 

theoretically consistent and statistically significant results are preferred by top journals. This 

would not be a problem if all papers were published in a journal of some sort. But some papers 

will be shelved after not getting accepted and some studies will not be written up or submitted 

because their authors believe they have no chance to be published. 

 

This effect of journal quality on effect size would then be an indicator of publication bias that we 

would want to remove from our meta-estimate of the effect size. In this case our base case should 

instead be an unpublished paper. Of course, papers with better methodology are also likely to be 

published in better journals and it might be expected that these papers would have effect sizes 

nearer the true value of the parameter. But poorly conducted studies – especially when we 

control for sample size - would be expected to produce both small and large effect sizes. So in 

the absence of publication bias no correlation between effect size and journal quality should be 

expected a priori. 

 



Taking out the effect of journal quality in the regression is equivalent to assuming that the true 

value of the parameter is likely to be represented by the average paper published in a zero impact 

journal. We are implicitly assuming that this is the mean effect. If the mean and median effect 

are equal we would be assuming that only half of the potential papers get published in journals 

with impact factors. This is an arbitrary assumption but better than ignoring the publication bias, 

I think.  

 

Journal quality is, however, an endogenous variable if more statistically significant or 

theoretically compatible results result in publication in “higher quality” journals. We need to find 

an instrument that is not correlated with the effect size but is correlated with journal quality. One 

potential variable is the quality of the author. Again, assuming that studies by weak authors are 

equally likely to have small or large effect sizes (controlling for sample size and other factors), 

author quality should not have an effect on the effect size. But better authors may have better 

methodology, which helps them get published in better journals or the journals might simply be 

more likely to accept papers by authors that they think are “good”. I collected the lifetime 

number of citing articles in the ISI database of the authors of each paper and subtracted the 

citations they received for the paper in question. I summed up the citation counts for multiple 

authors. The model is estimated by instrumental variables using the INST option in RATS. I 

found that the journal influence score from eigenfactor.com was far more strongly correlated 

with author citation count than the various ISI impact factors and, therefore, I adopted this as my 

indicator of journal quality. 

 

Citations: The citations an article has received are certainly endogenous. We might include 

this variable if we think that results with more citations are higher quality, but again it is likely 

that if there is an effect here (controlling for sample size) it is due to bias with researchers citing 

papers that confirm theoretical expectations (Leimu and Koricheva, 2005). Again, why would 

lower quality studies all have the same bias in effect size? But the number of citations received 

can have no effect on whether a paper is published or not and so cannot be used to correct for 

publication bias. Neither can it explain the results researchers find. Therefore, I have not 

included it in the meta-model.  

 



All the variables used are listed in Table 1. 

 

c. Choice of Studies 

I developed a database of articles by first searching the Web of Science and RePEc for all 

relevant published articles on interfuel substitution. I then checked the articles in these articles’ 

reference lists and also all the articles that cited them in the ISI Citation Index and Google 

Scholar.  

 

Only studies that looked at interfuel substitution in the industrial sector as a whole, the economy 

as a whole, manufacturing, or sub-industries within manufacturing for single countries, provinces 

or states within countries, or groups of countries were considered. Studies for industries such as 

agriculture, construction, or electricity generation were not included. Neither were studies of 

consumer demand or transport fuel demand. A study must include estimates of the cross-price 

elasticities or elasticities of substitution between at least two of: coal, oil, natural gas, and 

electricity. Where possible we used estimates for aggregate energy use rather than for fuel use 

only. Some studies break down the standard fuel categories into subtypes such as heavy and light 

oil (Taheri and Stevenson, 2002) or domestic and foreign coal (Perkins, 1994). In these cases I 

created additional observations. For example, for the Taheri and Stevenson results one 

observation treats heavy oil as representing the oil category and the other treats light oil as 

representing the oil category. The cross-price elasticity between the two types of oil is dropped. 

 

I dropped Hall (1986) because only significant elasticities were reported. Harper and Field 

(1983) was dropped because only charts and no actual figures are reported. The selected studies 

are listed in Table 2. The table notes where some data were interpolated or extracted from other 

statistics. Because each primary study has a different number of estimates of the elasticity the 

data are an unbalanced panel. 

 

d. Other Econometric Issues 

This is the first meta-analysis of the elasticity of substitution to attempt to analyze the elasticities 

for multiple factor pairs. Koetse et al. (2008) investigate the capital-energy elasticity and Boys 

and Florax (2007) the capital-labor elasticity. The elasticities of substitution for the different fuel 



combinations are interrelated as they are all functions of jointly estimated regression parameters 

(which are subject to summation and symmetry conditions for the homothetic translog cost 

function) and the cost shares which sum to unity. Though there are no simple linear relationships 

between the elasticities, the residuals of meta-regression equations explaining each of them 

should be correlated. However, as the explanatory variables are the same in each equation 

seemingly unrelated regression estimates are identical to equation by equation estimates. And, 

though the standard errors of the coefficients are different in the two cases, as is well known 

there is no efficiency gain to joint estimation (Greene, 1993).  

 

Nelson and Kennedy (2008) review the use of meta-analysis in environmental and natural 

resource economics and make a number of recommendations for best practice. Best practice is to 

weight the regression variables by the inverse of the standard errors of the estimates in the 

primary studies. This practice is followed by Koetse et al. (2008) and Boys and Florax (2007). 

As I transform the elasticities provided in the primary studies and do not have standard errors for 

the cost shares in almost all cases, I instead used the square root of sample size as my weights, 

which is the second best approach according to Nelson and Kennedy. The weights are 

implemented using the SPREAD option in RATS. I also estimate a robust covariance matrix for 

the coefficients using the ROBUSTERRORS option in RATS. Additionally, I test for residual 

heteroskedasticity using the Breusch-Pagan test. 

 

Koetse et al. (2008) and Boys and Florax (2007) use mixed effects regression. According to 

Nelson and Kennedy there should not be much practical difference between such more 

sophisticated procedures and the standard random effects estimator. A problem arises in using 

the standard algorithm for random effects as it estimates the variances of the individual and 

random effects using a fixed effects regression. But in a meta-analysis dataset of this type many 

variables take exactly the same value for all observations of a given individual study. Therefore, 

there is a perfect correlation between the fixed individual effects and these variables and a fixed 

effects regression cannot be estimated. Instead, following Greene (1993, 475), we could estimate 

a weighted least squares regression as described above and carrying out an analysis of variance 

of its residuals using the PSTATS command in RATS. The analysis of variance produces 

estimates of the required individual and random effects variances. In the RATS package the 



procedure PREGRESS must be used for estimating the random effects model in unbalanced 

panels. This procedure does not allow the use of instrumental variables nor estimation of robust 

coefficient covariance matrices. I, therefore, used the WIV, robust covariance matrix procedure 

described in the previous paragraph and tested the residuals for equality of means across studies. 

As will be seen, in five out of six cases the null hypothesis of equal means could not be rejected. 

I also estimated simple random effects models using PREGRESS. The coefficients were not 

substantially different to OLS estimates of my model. 

 

3. Results 

a.  Exploratory Meta-Analysis 

There are 353 observations from 45 primary studies. Table 1 presents some summary statistics 

for the variables. The means and standard deviations are unweighted. The results weighted by 

sample size would look very different due to two papers (Bousquet and Ladoux, 2007; Fisher-

Vanden et al., 2004) with much larger sample sizes than the other papers. Some key points that 

emerge include: 

• The minimum value for all the elasticities is a theoretically inconsistent negative value 

and there is a wide range of estimates in the studies.  

• The average sample size is 379 with samples as large as 25490 (Bousquet and Ladoux, 

2007) and as small as 20 (Agostini et al., 1992). 

• The average journal that the papers were published in is fairly high quality but of course 

there is a wide variance with several articles in influential journals and most articles in journals 

with influence scores below 0.7. The top journal is Review of Economics and Statistics (Pindyck, 

1979). The Energy Journal is nearest the mean with an influence score of 0.96. 

• The authors of the average paper have been fairly highly cited for their other work. 

Though on average papers have 1.95 authors, 400 citing articles in the ISI database is still a 

respectable score. However, the median author has only 39 citing articles. A few star authors 

such as Robert Pindyck (4010 citing articles), Andrew Harvey (2838), and Cheng Hsiao (2647) 

significantly affect the mean. 

• 96% of observations were estimated with data from the 1970s and 1980s (these dataset 

can also include data from the other two periods). 66% of datasets include data from before 

1970, but only 30% include data from after 1990.  



• 35% of the observations are from Canada. The U.S. is next most represented country 

(18%) and then other Europe (14%), which mostly consists of observations for Greece. 

• 15% of the observations are for total elasticities. 

• 15% of the observations are for explicitly long-run elasticities and 6% for explicitly 

short-run elasticities. 

• 64% of the observations are for the translog function. Only 8% use the linear logit 

functional form and the remainder use other functions such as the Fourier, Cobb Douglas etc. 

• Only 57% of the observations model technical change. 

 

Weighted means of the cost shares are (with standard errors in parentheses): 

Coal  0.151 (0.086) 

Oil  0.183 (0.018) 

Gas  0.102 (0.020) 

Electricity 0.568 (0.048) 

 

Table 3 presents estimates of the mean elasticity computed using different methods. Because not 

all studies use the four standard fuels none of the elasticities has been estimated using the full 

353 observations. The oil-electricity elasticity can, however, be estimated from the vast majority 

of the papers with 344 observations. Coal-gas is based on the smallest sample, especially 

considering that neither the Bousquet and Ladoux (2007) (no coal) nor the Fisher-Vanden et al. 

(2004) (no gas) studies provide estimates for the coal-gas combination.  

 

The simple unweighted means show moderate substitutability for coal and oil and coal and gas, 

and oil, which have elasticities just above unity, though not significantly for coal-gas. The 

remaining elasticities are all below unity though the oil-gas elasticity is not significantly so. All 

the combinations with electricity show an elasticity of substitution of close to 0.8. The sample 

size weighted means alter this picture to some degree and provide a first illustration of the effect 

of sample size on the value of the elasticities. All but one of the elasticities increases with the oil-

gas elasticity increasing the most and all but one of the elasticities are now greater than unity 

though not all are significantly so. This shows that, in general, studies with larger sample sizes 



tend to find higher values of the elasticities, which is the reverse of the sample size – effect size 

relationship in the presence of publication bias proposed by Stanley (2005).  

 

Figures 1 to 6 present funnel graphs for the six elasticities. On the whole they only show limited 

funnel-like form. Figure 1 shows a broad scatter with the point from the largest sample (Fisher-

Vanden et al., 2004) near the centre of the distribution, but the estimates from the next largest 

sample (Ma et al., 2008) are much smaller. The left side of the distribution shows more funnel-

like form (if any). Figure 2 also shows more of a funnel profile on the left-hand side. Figure 3 is 

more funnel-like than the first two graphs, but in the core of the data there appears to be a 

tendency towards large sample sizes having larger effect sizes, but the data point from the largest 

sample (Fisher-Vanden et al., 2004) is only 0.33. Figure 4 shows a pronounced positive 

correlation between sample and effect size once some extreme outliers from small sample studies 

are ignored. Figure 5 is quite funnel-like though the estimates from the large sample studies 

(Bousquet and Ladoux, 2007; Fisher-Vanden et al., 2004) cover quite a range of values. Figure 6 

is somewhat similar to Figure 4. 

 

To further investigate this relationship, I estimated weighted least squares regressions of the 

elasticities on the inverse of the square root of sample size – Stanley’s (2005) “Funnel 

Asymmetry Test” or FAT. The results are reported in Table 4 and the intercepts are also included 

in Table 3. Looking first at the intercepts, the trend seen in moving from OLS to WLS continues 

with coal-electricity elasticity declining and the other elasticities increasing. Elasticities 

involving gas seem large and those involving electricity relatively small. Four of the equations 

show significant negative coefficients for SAMPLE-0.5 indicating that larger samples have greater 

elasticities. The coal-oil equation has no sample size effect and the coal-electricity equation has a 

positive effect in line with the publication bias hypothesis.  

 

To investigate these results further I decompose sample size into the time series dimension (T), 

the cross-section dimension (N), and the number of independent equations (E). The results of 

regressions using these three variables are reported in Table 5 with the intercepts included in 

Table 3. The intercepts change in varying directions. The two equations where the time series 

dimension has a positive sign have negative intercepts. Only the coal-gas and coal-electricity 



equations have negative signs for all three variables. This is surprising, as the sign of SAMPLE-

0.5 was positive in the FAT regression for coal-electricity. But only the time dimension is 

statistically significant. For coal-gas all three dimensions have significant and negative signs. In 

all but these two equations, E-0.5 has a positive coefficient. This might be due to the models that 

report total elasticities requiring more equations 
8
 and that models with more fuels also have 

more equations. 

 

These results are not as clear-cut as one might like but it is clear that the effect of sample size on 

the estimated elasticity is not primarily due either to the cross-sectional or time-series dimension. 

This casts doubt on the ideas mentioned in the introduction that either cross-sectional regressions 

have larger elasticities because they represent long-run elasticities or because substitution and 

technical change cannot be distinguished in a pure time series. Datasets with larger time 

dimensions also show some tendency towards larger elasticities. It seems more likely that there 

is a small-sample bias in estimating elasticities of substitution than that there is publication bias 

of the type proposed by Stanley (2005) 

 

b.  Metaregression Analysis 

The mean elasticities for each type of elasticity are reported in Table 3. With the exception of the 

oil-gas and gas-electricity elasticities, the mean elasticities from the base-model are larger than 

the FES means. Compared to the simple FAT model three are smaller and three are larger. Their 

standard errors are much larger than either those for FES or FAT.  

 

In four out of six cases, the dynamic long-run elasticity is larger than the dynamic short-run 

elasticity. But only in half the equations is it greater than the static elasticity. There is no clear 

pattern to the total elasticity,which should theoretically be smaller than the partial elasticity (the 

base case). As only 15% of the sample are observations for total elasticities capital stocks are not 

a variable entering the majority of these models. Therefore, we would not expect there to be a 

large difference in the short and long run elasticities. Only 15% of estimates are for a long-run 

elasticity and none of the large sample studies compute anything but static elasticities. It is 

                              
8
 Adding the variable TOTAL to these NTE regressions only changed the sign of E-0.5 in one 

equation. 



possible that the there is a clearer difference for the Morishima and/or cross-price elasticities but 

that these effects are averaged out in the computation of the shadow elasticity (see equation 5).  

 

There is a clearer picture for the elasticities for different levels of aggregation. With the 

exception of only one equation in each case, the macro-level elasticity is smaller than the 

industry level elasticity (base case), the manufacturing elasticity is larger and the sub-industry 

level elasticity is larger still. This relationship is similar to that which I proposed for the capital-

energy elasticity (Stern, 1997). In that case I argued that substituting capital for energy at the 

micro-level required additional energy use elsewhere in the economy to produce that capital, so 

that the net macro-level reduction in energy use was less than the micro-level reduction. It is 

possible that reduction in the use of a fuel at the micro level results in increased usage of that 

fuel elsewhere in the economy. This is obvious in the case of substituting electricity for fossil 

fuels, though most of the papers with macro-level estimates that include electricity exclude the 

fossil fuels used in the power generation sector.  

 

Table 6 presents the full set of metaregression coefficient estimates and t-statistics. 

 

Publication quality  In this more complete model, SAMPLE-0.5 has a uniformly negative effect 

though two of the coefficients are insignificantly less than zero. The influence score has mixed 

effects, some positive, some negative and some close to zero. There do not seem to be strong 

signs here of the type of publication bias proposed by Murtaugh (2002).  

 

Data Variables GDP per capita has mixed but mostly negative effects on the elasticities so 

that more developed economies have less substitutability, ceteris paribus. This is opposite to the 

prediction of Klump and de la Granville for capital and labor. The country effects have no 

apparent pattern except that the Netherlands has uniformly smaller than average elasticities and 

Korea uniformly larger than average. Similarly, no time period has uniformly greater or lesser 

substitutability. 

 

Specification Variables The linear logit elasticities are mostly much greater than average 

and greater than the translog or other function estimates. Not including technical change trends 



in the energy model has mixed results, though the largest coefficients in absolute value are 

negative. 

 

Table 5 presents some diagnostic statistics for the metaregressions. Goodness of fit is measured 

by Buse’s (1973) R-Squared. All the equations have reasonable fits and several very close fits. 

For all equations, the Breusch-Pagan test rejects homoskedasticity at the 5% level. A test of 

equality of residual variances across studies also rejects homoskedasticity in four of the 

equations. This remaining heteroskedasticity is dealt with by the use of robust coefficient 

covariance estimates. By contrast, the test of equality intercepts across studies only rejects the 

null hypothesis in one case. As mentioned above, random effects estimates were fairly close to 

OLS estimates of the full model and so given the results in Table 7, I do not believe there is a 

need to estimate a more complex model. 

 

4.  Conclusions and Suggestions for Further Research 

This first meta-analysis of interfuel substitution elasticities is able to answer several questions 

while leaving others open for future research. With the exception of the gas-electricity elasticity 

it seems that the true values of interfuel elasticities of substitution are greater than unity at the 

level of the industrial sector as a whole with coal and gas being the most substitutable pair. This 

would be good news for the prospects for sustainability involving replacing the direct use of 

some fossil fuels with renewable or nuclear generated electricity. However, the elasticities tend 

to be smaller at higher levels of economic aggregation with the most substitutability at the 

subindustry level and the least at the macro-economic level. At the macro level all but one of the 

elasticities (coal-gas) are not significantly greater than unity and two or three are not 

significantly different to zero. But the number of observations for the macro-economy is small 

and the standard errors large on these elasticities. There is some indication that there is less 

substitutability in high-income countries than in low-income countries. There is a strong 

tendency for elasticities estimated with the linear logit model to be significantly greater than 

those estimated using other methods. But this does not tell us whether this functional form is 

more appropriate or not.  

 



The other major result is the relationship we found between sample size and effect size. In the 

full model larger samples are associated with greater substitutability. This does not seem to be 

strongly related to either the time series or cross-section dimension of the sample alone. This 

suggests a simple bias towards low estimates in small samples. On the other hand, there is no 

sign of publication bias in the shadow elasticities of substitution.  

 

The next step in this research would be to repeat this meta-analysis for cross-price (and own-

price) and Morishima elasticities. Potential follow-on research could attempt to identify whether 

a genuine bias exists in small sample estimates. While I found an apparent small sample bias in 

estimation of the elasticity of substitution between fuels, Koetse et al. (2008) did not test for the 

effects of sample size and publication bias. Therefore, it would be worthwhile to carry out the 

tests developed in this paper on their dataset to see if similar results are found. An alternative 

approach is to carry out a Monte Carlo simulation along the lines of Stern (1994). We would use 

the elasticities estimated in a meta-analysis of cross-price elasticities to generate a large dataset 

of quantities of inputs corresponding to randomly generated prices and random disturbances. 

Samples of varying size could then be extracted from the data set and used to estimate the cross-

price elasticities. Finally, we only have two studies of interfuel substitution for large data sets of 

more than one thousand observations, one for China and one for France, neither of which include 

all four standard fuels. There is, therefore, no large sample study for the gas-coal elasticity nor 

for any other regions. Either existing firm level data sets could be exploited or created. 
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Table 1. Variables 

Name of Variable Description Maximum Minimum Mean Standard 

Deviation 

Elasticities 

SESCO Shadow elasticity of 

substitution between 

coal and oil 4.0729 -0.8860 1.1244 0.8690 

SESCG Shadow elasticity of 

substitution between 

coal and gas 5.9242 -4.7896 1.1078 1.4415 

SESCE Shadow elasticity of 

substitution between 

coal and electricity 7.2980 -4.2206 0.7896 1.2075 

SESOG Shadow elasticity of 

substitution between 

oil and gas 6.2534 -22.0155 0.9194 1.7797 

SESOE Shadow elasticity of 

substitution between 

oil and electricity 8.9219 -3.2646 0.7920 0.9125 

SESGE Shadow elasticity of 

substitution between 

gas and electricity 48.539 -10.4867 0.8375 3.1407 

Publication Quality Variables 

SAMPLE Primary study sample 

size 25490 20 379.38 2273.58 

INFLUENCE eigenfactor.com 

influence score in 

2006 3.4527 0 1.2554 1.2688 

AUTHOR Lifetime citations 

received by authors 

minus citations to this 

article 4010 0 786.76 1205.36 

Data Variables 

EARLY Dummy for inclusion 

of pre-1970 data 

1 0 

0.6629 0.4734 

MIDDLE Dummy for inclusion 

of data from 1970s 

and 1980s 

1 0 

0.9603 0.1954 

LATE Dummy for inclusion 

of post-1989 data. 

1 0 

0.3031 0.4603 

AUSTRALIA Dummy for Australia 1 0 0.0397 0.1954 

CANADA Dummy for Canada 1 0 0.3513 0.4781 

CHINA Dummy for China 1 0 0.0198 0.1396 

FRANCE Dummy for France 1 0 0.0368 0.1886 



Name of Variable Description Maximum Minimum Mean Standard 

Deviation 

      

GERMANY Dummy for Germany 1 0 0.0312 0.1740 

INDIA Dummy for India 1 0 0.0255 0.1579 

ITALY Dummy for Italy 1 0 0.0368 0.1886 

JAPAN Dummy for Japan 1 0 0.0567 0.2315 

KOREA Dummy for Korea 1 0 0.0595 0.2369 

NETHERLANDS Dummy for 

Netherlands 

1 0 

0.0368 0.1886 

UK Dummy for UK 1 0 0.0425 0.2020 

USA Dummy for USA 1 0 0.1785 0.3835 

OTHEREUR Dummy for other 

Europe 

1 0 

0.1445 0.3521 

OTHERASI Dummy for other Asia 1 0 0.0227 0.1490 

GDP GDP per Capita in 

2000 PPP Dollars 33429 821.48 14219.9 5244.6 

TOTAL Dummy for Total 

Elasticity 

1 0 

0.1501 0.3577 

DYNAMICSR Dummy for short-run 

elasticity in a dynamic 

model 

1 0 

0.0623 0.2421 

DYNAMICLR Dummy for long-run 

elasticity in a dynamic 

model 

1 0 

0.1501 0.3577 

MANUF Dummy for 

manufacturing 

1 0 

0.1870 0.3904 

MACRO Dummy for 

macroeconomy 

1 0 

0.0680 0.2521 

SUBIND Dummy for sub-

industry in the 

manufacturing sector 

1 0 

0.4844 0.5005 

Model Specification Variables 

LINLOG Dummy for linear 

logit 

1 0 

0.0765 0.2662 

TRANSLOG Dummy for translog 1 0 0.6346 0.4822 

OTHERFUNC Dummy for other 

functional form 

1 0 

0.2889 0.4539 

NOTECH-

ENERGY 

Dummy for no 

technological change 

in the energy 

submodel 

1 0 

0.4306 0.4959 

 

 



Table 2. Studies Included in the Meta-Analysis 

 

Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Agostini et al. 

(1992)  

 

OECD Europe: 4 

Sectors 

Only use 

industry 

estimates 

3 fuels – oil, 

gas, coal 

Shares based on 

average of 

European 

countries in 

Jones (1996) 

20 

Andrikopoulos et 

al. (1989) 

Ontario: 7 

industries 

Use all 

estimates 

Four standard 

fuels 

AES / CPE ratio 63 

Borges and Pereira 

(1992) 

Portugal: 

Manufacturing 

Use all 

estimates 

3 fuels -

electricity, oil, 

coal 

AES / CPE ratio 20-80 

Bousquet and 

Ladoux (2006).  

France: Industry Use estimates 

averaged over 

fuel patterns 

3 fuels - Oil, 

gas, and 

electricity 

Quadratic 

formula 

 

25490 

Buranakunaporn, 

and Oczkowski 

(2007) 

 

Thailand: 

Manufacturing 

Use all short-

run estimates 

5 fuels – three 

types of 

petroleum + 

coal and 

electricity 

Quadratic 

formula 
 

147 

 

Cho et al. (2004)  Korea: Macro Use all 

estimates 

3 fuels – does 

not include 

natural gas 

Quadratic 

formula 
 

136-

272 

Christopoulos 

(2000) 

Greece: 

Manufacturing 

Use all 

estimates 

3 fuels – 

electricity and 

two types of 

oil 

Quadratic 

formula 
 

42-84 

Considine (1989) U.S.A.: Industry Only use 

estimates for 

total industrial 

sector 

Four standard 

fuels 

Use translog 

intercepts as cost 

shares 

45 

 

Duncan and 

Binswanger (1976) 

Australia: 5 

industries 

Drop 

elasticities for 

“other fuels” 

5 fuels – 

includes 

“other” 

Given in paper 

 

72 

Eltony (2008) 

 

Kuwait: 

Manufacturing 

Use all 

estimates 

3 fuels Used quantity 

shares from the 

paper – given 

very low price of 

electricity in 

Kuwait this is 

reasonable 

50-75 



Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Fisher-Vanden et 

al. (2004) 

China: Use all 

estimates 

Three fuels – 

not including 

natural gas 

Provided by 

author 

23238 

Floros and Vlachou 

(2005) 

Greece: 18 

industries 

Use all 

estimates 

3 fuels – 

electricity and 

2 types of oil 

Quadratic 

formula 

34 

Fuss (1977) Canada: 

Manufacturing 

Used all 

estimates 

6 fuels – 

breaks oil and 

nat gas each 

into into 2 

enduser 

products 

Quadratic 

formula 

200-

400 

Hall (1983)  G7 Economies: 

Industry 
Included all 

estimates 

 

Four standard 

fuels 

Use shares from 

Jones, 1996 

399 

Halvorsen R. 

(1977) 

U.S.: 

Manufacturing 

Used all 

estimates 

Four standard 

fuels 

Derived from 

relation between 

total and partial 

elasticities for 

aggregate 

industry and 

using quadratic 

formula for 

subindustries 

462 

 

Hang and Tu 

(2007) 

China: Macro 

 

Included all 

estimates 

 

Three fuels – 

not including 

natural gas 

Used shares 

from Ma et al. 

(2008) 

60 

 

Harvey and 

Marshall (1991)  

UK: Industry Used “other 

industry” 

estimates 

Four standard 

fuels 

Use shares from 

Jones, 1996 

180 

Iqbal (1986) Pakistan: 

Manufacturing 

Included all 

interfuel 

estimates 

 

Four standard 

fuels 

AES / CPE ratio 66 

Jones (1995) U.S.A.: Industry Used 

aggregate 

energy use 

only 

Four standard 

fuels 

Use shares from 

Jones (1996) 

96 

Jones (1996)  G7 Economies: 

Industry 
Included all 

estimates 

 

Four standard 

fuels 

Given in paper 

 

651 



 

Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Kim and Labys 

(1988) 

 

Korea: 12 

subsectors/sectors 

Used estimates 

for total 

manufacturing, 

4 manufacturing 

subsectors, and 

total economy 

Coal, oil, and 

Electricity 

Quadratic 

formula 
 

42 

Lakshmanan et al. 

(1984) 

U.S.A. States: 

Manufacturing 

Used all 

estimates 

3 fuels – no 

coal 

Use shares from 

Halvorsen 

(1977) as US 

average and used 

quadratic 

formula to get 

state shares 

400-

1000 

Ma et al. (2008) China: Macro Used all 

estimates 

4 fuels – but 

uses diesel 

instead of 

natural gas 

Given in paper 

 

930-

1550 

Magnus and 

Woodland (1987) 

Netherlands: 

Manufacturing 

Used all 

estimates 

Four standard 

fuels 

Given in paper 

for total 

manufacturing, 

used AES/CPE 

ratio for 

subindustries 

54-324 

Mahmud (2006) 

 

Pakistan: 

Manufacturing 

Used all 

estimates 

3 fuels – 

electricity, gas, 

and oil 

Quadratic 

formula 

 

44 

Morana (2000) Italy: Macro Included all 

estimates 

 

Four standard 

fuels 

AES / CPE ratio 192 

Perkins (1994) Japan: Macro Included all 

estimates 

 

5 fuels 

including 2 

types of coal 

Quadratic 

formula 

 

96-432 

Mountain and 

Hsiao (1989) 

Ontario and 

Quebec: 15 

industries 

Included all 

estimates 

 

3 fuels – no 

coal 

Used shares 

from Mountain 

et al with some 

interpolation 

36 

Mountain et al. 

(1989) 

Ontario: 11 

industries 

Included all 

estimates 

 

3 fuels – no 

coal 

Given in the 

paper and 

interpolated for 

missing years 

 

46 



Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Murty (1986) India: 

Manufacturing 

Included all 

estimates 

 

3 fuels – no 

gas 

AES / CPE ratio 50-90 

Pindyck (1979)  Ten OECD 

Economies: 

Industry 

Included all 

estimates 

 

Four standard 

fuels 

Quadratic 

formula 

 

84-376  

Renou-Maissant 

(1999) 

G7 Economies: 

Industry 

Used all 

estimates 

3 fuels – does 

not include 

coal 

Quadratic 

formula with 

missing values 

from Jones 

(1996) 

72-102 

Serletis and 

Shahmoradi (2008) 

U.S.A.: Macro Used all 

estimates 

3 fuels – does 

not include 

electricity 

AES / CPE ratio 70 

Shin (1981) Korea: Macro Used all 

estimates 

3 fuels – does 

not include gas 

Given in paper 

 

28 

Taheri (1994) 

 

U.S.A.: 11 

Industries Panel 

Used all 

estimates  

5 fuels – two 

types of oil 

Quadratic 

formula 

 

308 

Taheri. and 

Stevenson (2002)  

U.S.A. 10 

Industries Panel 

Used all 

estimates 

5 fuels – two 

types of oil 
Quadratic 

formula 

440 

Truong (1985) 

 

NSW: Industry Dropped “other 

fuels” 

elasticities 

5 fuels – 4 

standard and 

“other” 

Used conditional 

marginal shares 

in the paper 

52-91 

Turnovsky et al. 

(1982) 
Australia: 

Manufacturing 

Included all 

estimates 

Four standard 

fuels 

Quadratic 

formula 

 

87-174 

Urga (1999) U.S.A.: Industry Included all 

estimates 

 

Four standard 

fuels 

AES / CPE ratio 128 

 

Urga and Walters 

(2003)  
U.S.A.: Industry Included all 

estimates 

 

Four standard 

fuels 

AES / CPE ratio 54-96 

Uri (1979) India: Industry Use mining and 

manufacturing 

and total 

estimates 

3 fuels – 

electricity, oil, 

coal 

Use translog 

intercepts as cost 

shares 

120 

Uri (1979) UK: Macro Included all 

estimates 

 

Four standard 

fuels 

Given in paper 

 

51 

 

Uri (1982) U.K.: Industry Included all 

estimates 

 

Four standard 

fuels 

Given in paper 

 

96 



Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Vlachou and 

Samouilidis (1986) 

 

Greece: Industry Use Industry 

Total Only 

3 fuels – 

electricity solid 

and liquid 

Given in paper 

 

42 

Westoby (1984)  UK: Industry 

(also domestic 

sector) 

Use industry 

estimates 

5 fuels – also 

includes coke 

Quadratic 

formula 

88 

 

 

 

Table 3. Mean Elasticities 

 

Elasticity "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Number of 

Observations 

176 125 173 257 344 257 

Unweighted 

Mean 

1.124 

(0.065) 

1.108 

(0.128) 

0.790 

(0.092) 

0.919 

(0.111) 

0.792 

(0.049) 

0.837 

(0.196) 

FES Weighted 

Mean 

1.236 

(0.096) 

1.422 

(0.136) 

0.649 

(0.121) 

2.021 

(0.205) 

1.043 

(0.132) 

1.095 

(0.169) 

FAT 1.237 

(0.157) 

2.046 

(0.274) 

0.504 

(0.150) 

2.557 

(0.145) 

1.156 

(0.188) 

1.296 

(0.187) 

NTE 1.426 

(0.674) 

4.396 

(0.961) 

1.264 

(0.427) 

1.531 

(0.384) 

-0.062 

(0.351) 

-0.396 

(0.309) 

Base Model 

Mean 

1.401 

(0.299) 

1.903 

(0.447) 

1.276 

(0.380) 

1.579 

(0.357) 

1.342 

(0.288) 

0.481 

(0.422) 

Dynamic SR 

Elasticity 

1.565 

(0.286) 

1.610 

(0.393) 

2.069 

(0.383) 

0.827 

(0.422) 

1.807 

(0.668) 

0.459 

(0.382) 

Dynamic LR 

Elasticity 

1.978 

(0.209) 

1.617 

(0.483) 

1.448 

(0.312) 

1.288 

(0.616) 

1.500 

(0.321) 

1.052 

(0.469) 

Total 

Elasticity 

1.281 

(0.293) 

1.788 

(0.426) 

1.326 

(0.400) 

1.588 

(0.393) 

1.565 

(0.273) 

0.677 

(0.406) 

Macro 

Elasticity 

1.162 

(0.442) 

2.841 

(0.627) 

0.796 

(0.584) 

0.546 

(0.761) 

1.059 

(0.352) 

0.289 

(0.730) 

Manufacturing 

Elasticity 

1.973 

(0.313) 

1.629 

(0.377) 

1.414 

(0.358) 

3.204 

(0.296) 

1.591 

(0.155) 

1.283 

(0.205) 

Sub-industry 

Elasticity 

2.161 

(0.441) 

2.651 

(0.948) 

1.478 

(0.525) 

1.606 

(1.507) 

1.775 

(0.326) 

3.481 

(2.377) 

C = Coal, O = Oil, G = Natural Gas, E = Electricity 

Standard errors (computed using ROBUSTERRORS in RATS) in parentheses 

 



 

 

Table 4. FAT Regression Results 

 

Elasticity "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Constant 1.237 

(0.157) 

2.046 

(0.274) 

0.504 

(0.150) 

2.557 

(0.145) 

1.156 

(0.188) 

1.296 

(0.187) 

SAMPLE-0.5 -0.028 

(1.958) 

-10.743 

(3.214) 

3.723 

(2.240) 

-16.06 

(1.963) 

-3.526 

(2.057) 

-5.997 

(2.925) 

Buse R- 

Squared 

0.5846 0.5118 0.3402 0.6156 0.0689 0.1493 

C = Coal, O = Oil, G = Natural Gas, E = Electricity 

Standard errors (computed using ROBUSTERRORS in RATS) in parentheses 

 

 

Table 5. NTE Regression Results 

 

Elasticity "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Constant 1.426 

(0.674) 

4.396 

(3.214) 

1.264 

(0.427) 

1.531 

(0.385) 

-0.062 

(0.351) 

-0.396 

(0.309) 

E-0.5 0.568 

(0.707) 

-3.492 

(1.392) 

-0.323 

(0.767) 

1.922 

(0.639) 

1.480 

(0.333) 

0.763 

(0.607) 

T-0.5 -1.025 

(0.881) 

-0.640 

(0.322) 

-1.040 

(0.458) 

-0.376 

(0.438) 

0.370 

(0.361) 

1.352 

(0.398) 

N-0.5 -0.352 

(0.380) 

-1.938 

(0.428) 

-0.156 

(0.245) 

-2.014 

(0.343) 

-0.122 

(0.318) 

0.457 

(0.522) 

Buse R- 

Squared 

0.6005 0.5640 0.3591 0.6323 0.2376 0.2059 

C = Coal, O = Oil, G = Natural Gas, E = Electricity 

Standard errors (computed using ROBUSTERRORS in RATS) in parentheses 

 



 

 

Table 6. Meta-Regression Results 

 

Dependent Variable 

 

"
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Constant 1.4010 1.9029 1.2761 1.5797 1.3420 0.4811 

 

(4.6871) 

 

(4.2602) 

 

(3.3559) 

 

(4.4276) 

 

(4.6574) 

 

(1.1386) 

 

SAMPLE-0.5
 -11.3975 -14.7997 -11.4880 -4.4162 -5.1919 -10.8991 

 

(-4.5935) 

 

-(3.1216) 

 

(-3.7606) 

 

(-0.6809) 

 

(-2.6815) 

 

(-0.8846) 

 

INFLUENCE 0.0882 0.5456 -0.2007 -0.1814 -0.0104 0.0714 

 

(1.3377) 

 

(4.6897) 

 

(-1.6794) 

 

(-1.5521) 

 

(-0.1867) 

 

(0.3653) 

 

TOTAL -0.1195 -0.1145 0.0503 0.0080 0.2234 0.1964 

 

(-1.3087) 

 

(-0.6690) 

 

(0.3606) 

 

(0.0668) 

 

(2.7116) 

 

(1.5672) 

 

DYNAMICSR 0.1643 -0.2931 0.7926 -0.7522 0.4646 -0.0214 

 

(0.6847) 

 

(-1.1357) 

 

(2.5864) 

 

(-2.0668) 

 

(0.9786) 

 

(-0.0410) 

 

DYNAMICLR 0.5766 -0.7354 0.1714 -0.2922 0.1589 0.5708 

 

(2.6753) 

 

(-2.9086) 

 

(0.5554) 

 

(-0.6677) 

 

(0.9331) 

 

(0.7410) 

 

MACRO -0.2385 0.9384 -0.4803 -1.0337 -0.2830 -0.1917 

 

(-1.0080) 

 

(2.6211) 

 

(-1.3956) 

 

(-1.7300) 

 

(-1.5327) 

 

(-0.2155) 

 

MANUF 0.5716 -0.2734 0.1379 1.6245 0.2489 0.8016 

 

(2.7398) 

 

(-1.7458) 

 

(0.6748) 

 

(5.7816) 

 

(1.2304) 

 

(2.8540) 

 

SUBIND 0.7603 0.7486 0.2017 0.0268 0.4333 3.0001 

 

(2.6266) 

 

(1.1785) 

 

(0.5830) 

 

(0.0189) 

 

(2.0575) 

 

(1.1018) 

 

TRANSLOG -0.4886 -0.4204 0.1701 -0.8043 -0.2357 0.4615 

       

LINLOG 0.7019 0.2759 0.8654 0.6467 0.5672 -0.0572 

 

(5.0817) 

 

(1.0139) 

 

(3.4723) 

 

(3.4271) 

 

(4.4533) 

 

(-0.2883) 

 

OTHERFUNC -0.2133 0.1445 -1.0355 0.1576 -0.3315 -0.4043 

 

(-1.4963) 

 

(0.4375) 

 

(-4.6302) 

 

(0.4347) 

 

(-2.6811) 

 

(-0.6590) 

 

NOTECHENERGY 0.2514 0.1873 -0.0970 0.1549 -0.5615 -0.5173 

 

(1.8556) 

 

(1.0976) 

 

(-0.4391) 

 

(0.9111) 

 

(-3.0917) 

 

(-3.4474) 

 



Dependent Variable 

 

"
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

       

LGDP -0.2793 1.9146 -0.5588 -0.3937 0.1134 -0.3459 

 

(-1.5575) 

 

(1.7614) 

 

(-2.5552) 

 

(-1.5378) 

 

(0.9189) 

 

(-1.2792) 

 

AUSTRALIA 0.8338 -0.5293 -0.5691 -1.9062 -0.6058 3.3390 

 

(3.3077) 

 

(-0.9086) 

 

(-1.3709) 

 

(-1.2218) 

 

(-2.8649) 

 

(1.0961) 

 

CHINA 0.2058 -3.5208 1.6118 4.3071 -0.1944 -3.1177 

 

(0.5469) 

 

(-1.1367) 

 

(2.9874) 

 

(0.9565) 

 

(-0.6848) 

 

(-0.7288) 

 

INDIA 0.0380  -0.0736  2.1501  

 

(0.0969) 

  

(-0.1740) 

 

 

 

(5.8109) 

 

 

 

JAPAN -0.2639 0.3701 -0.3731 -0.1507 -0.2017 0.0628 

 

(-2.0773) 

 

(1.3436) 

 

(-1.9152) 

 

(-0.9249) 

 

(-1.5841) 

 

(0.3366) 

 

KOREA 0.5897  1.1145  0.2608  

 

(2.7446) 

 

 

 

(3.7326) 

 

 

 

(1.3547) 

 

 

 

OTHERASI -0.4946 3.3340 -1.2976 -2.1891 -1.1603 -0.3593 

 

(-0.9600) 

 

(1.8622) 

 

(-3.0363) 

 

(-2.3773) 

 

(-2.4091) 

 

(-0.2811) 

 

FRANCE 0.0325 0.1070 -0.0180 0.6594 0.2138 -0.1042 

 

(0.1886) 

 

(0.6163) 

 

(-0.1222) 

 

(2.3818) 

 

(1.8004) 

 

(-0.2600) 

 

GERMANY -0.1142 0.6458 0.0220 -0.3541 -0.1801 -0.4822 

 

(-0.7331) 

 

(1.2649) 

 

(0.1367) 

 

(-2.1553) 

 

(-1.5665) 

 

(-1.5766) 

 

ITALY -0.2798 0.0600 -0.1300 -0.1509 -0.1679 -0.1577 

 

(-3.1842) 

 

(0.2995) 

 

(-0.9890) 

 

(-0.8054) 

 

(-1.2585) 

 

(-0.9232) 

 

NETHERLANDS 

 

-0.9122 

 

-0.0138 

 

-0.4781 

 

-0.8705 

 

-0.3414 

 

-0.0836 

 

UK -0.0260 -0.0039 -0.1770 0.1179 -0.0136 0.3162 

 

(-0.1895) 

 

(-0.0200) 

 

(-1.0632) 

 

(0.7204) 

 

(-0.1280) 

 

(1.5755) 

 

OTHEREUR -0.2378 0.8357 0.0696 0.7175 -0.1266  

 

(-2.5243) 

 

(0.6655) 

 

(0.5685) 

 

(0.3041) 

 

(-1.1195) 

 

 

 



 

Dependent Variable 

 

"
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

       

CANADA 0.0823 -0.2859 -0.1411 0.0119 0.2536 -0.3391 

 

(0.5419) 

 

(-1.6700) 

 

(-0.8496) 

 

(0.0544) 

 

(2.0640) 

 

(-1.3816) 

 

       

USA 0.5463 -0.9989 0.4397 -0.1924 0.1134 0.9258 

 

(3.7773) 

 

(-3.2074) 

 

(1.9865) 

 

(-0.4900) 

 

(1.0144) 

 

(1.5367) 

 

EARLY -0.0371 1.0960 -0.0792 -0.1462 -0.4257 0.2621 

       

MIDDLE 0.6216 -0.0017 1.3858 -0.4240 0.3859 -0.8597 

 

(3.0057) 

 

(-0.0044) 

 

(4.1753) 

 

(-0.8378) 

 

(1.3850) 

 

(-0.9785) 

 

LATE -0.5845 -1.0943 -1.3066 0.5702 0.0398 0.5976 

 

(-3.6358) 

 

(-3.1265) 

 

(-4.5835) 

 

(2.9229) 

 

(0.2806) 

 

(2.8202) 

 

 

t-statistics are in parentheses below the coefficient values. 

 

 



 

 

Table 7. Metaregression Diagnostics 

 

 "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Buse R Squared 0.8932 0.8575 0.6050 0.7584 0.5574 0.3272 

       

Breusch-Pagan 

Test for 

Remaining 

Heteroskedasticity 44.526 57.901 57.976 43.200 43.553 45.259 

 (0.018) (0.000) (0.000) (0.025) (0.023) (0.015) 

Chi-Squared Test 

for equal 

variances across 

studies 47.508 41.329 76.696 66.612 100.979 72.310 

 (0.332) (0.587) (0.002) (0.015) (0.000) (0.005) 

F-Test for equal 

means across 

studies 1.364 0.520 0.933 1.083 2.901 0.601 

 (0.092) 

 

(0.990) 

 

(0.594) 

 

(0.347) 

 

(0.000) 

 

(0.977) 

 

 

p-values in parentheses 

 

 



Figure 1: Coal-Oil Funnel Chart
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Figure 2: Coal-Gas Funnel Chart
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Figure 3: Coal-Elec Funnel Chart
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Figure 4: Oil-Gas Funnel Chart
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Figure 5: Oil-Elec Funnel Chart
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Figure 6: Gas-Elec Funnel Chart
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