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Abstract:  

The efforts of the European Commission to reduce regional inequalities over its territory 

continues to attract the attention of researchers.  The purpose of this paper is to perform an 

exploratory investigation of the relationship between  the spatial distribution of regional 

income and of regional development funds among 145 European regions over 1989-1999.  

Using a set of tools of spatial statistics, we first detect the presence of global and local spatial 

autocorrelation in the distribution of regional per capita incomes, traducing that rich (poor) 

regions tend to be clustered close to other rich (poor) regions, and in the distribution of 

regional growth rate and regional funds.  Second, the results of LISA statistics conclude to 

the presence of spatial heterogeneity in the form of two spatial clusters of rich and poor 

regions over the decade, highlighting the persistence of a significant core-periphery pattern 

among European regions.  Finally, an exploratory analysis reveals  a negative correlation 

between growth and initial income, that tends to indicate  β -convergence.  A positive 

relationship between regional growth and structural funds is identified among the significant 

results as well.  Only Andalucia, Galicia and Sterea Ellada show atypical linkages.  These 

results suggest that further research should include spatial effects and the distribution of 

regional funds in the spatial econometric estimation of regional convergence in Europe. 

                                                 
1  This paper has been written while I was a Fulbright Visiting-Researcher at the Regional Economics 

Applications Laboratory, University of Illinois at Urbana-Champaign (USA).  I have benefited from useful 

comments of the participants of the 49th Annual North American Meeting of the RSAI and the participants of 

the 42nd Annual Meeting of the WRSA.  I would like to thank most especially Julie Le Gallo,  Phil Rees and two 

anonymous referees for their valuable suggestions.  Financial support from the Région Aquitaine (France) is 

gratefully acknowledged. 
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1 Introduction 

The phenomenon of persistent income disparities among European regions has been widely 

studied in the literature, using β -convergence
2
 models, most of the time based on neo-

classical specifications (Esteban, 1994; Neven and Gouyette, 1995).  Together with σ -

convergence,
3
 these concepts have been criticized for several econometric problems they 

bring about, like Galton’s fallacy problem, and their inadequacy to explain economic 

polarization, persistent poverty and clustering (Quah, 1993).  In contrast, the concepts of 

convergence clubs (Durlauf and Johnson, 1995; Chatterji, 1992; Quah, 1996) and core-

periphery (Krugman, 1991a, 1991b; Fujita et al., 1999) are compatible with the existence of 

multiple, locally stable steady state equilibria that are more relevant in the European regional 

case. 

Another often-raised criticism comes from the fact that  the majority of these empirical tests 

of regional income convergence are based on the same hypotheses as the ones underlying 

international income convergence: regions are considered as isolated entities, as if their 

geographical location and potential interregional linkages did not matter.  Only recently, with 

the development of the appropriate tools of spatial statistics and spatial econometrics 

(Anselin, 1988, 2001; Anselin and Berra, 1998), has the role of spatial effects  been 

considered in empirical works.  These tools have been applied to regional convergence in the 

United-States (Rey and Montouri, 1999; Rey, 2001), in Europe (Fingleton, 1999 and 2001; 

Baumont et al., 2002; Bivand and Brunstad, 2002), in China (Ying, 2000), in Brazil 

(Magalhães et al., 2000), in Chile (Aroca et al., 2000) and Turkey (Gezici and Hewings, 

2002).  The underlying idea, based on economic geographic theories and growth theories, is 

that forces that are driving the relocation/agglomeration process and hence generating an 

even/uneven regional development may be attributed to such factors as productivity 

                                                 
2    β -convergence occurs when the poor regions tend to grow faster than the rich ones. 
3    σ -convergence occurs when there is a reduction in the standard deviation of regional incomes. 
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(Hirschman, 1958), transportation infrastructures (Krugman and Venables, 1995, 1996), 

technology and knowledge spillovers (Martin and Ottaviano, 1999), factor mobility 

(Krugman, 1991a, b; Puga, 1999), each of which has an explicit geographic component.  

Since geographic spillover effects influence the patterns of regional development, it is highly 

probable that these influences exhibit a non-random distinctive geographic pattern.  Applied 

to the spatial distribution of income, evidence reveals that the rich (poor) regions have a 

propensity to be clustered close to other rich (poor) regions.   

However, the European Commission considers regional imbalances unacceptable on 

distributional (spatial equity) and political grounds.  The successive enlargements of the 

European Community to less developed countries have made regional disparities so 

prominent that 68% of structural funds are now devoted to the least developed regions 

(objective 1).  Structural funds are the most important instruments of the European regional 

development policy with Ecu 154.5 billion (at 1994 prices) allocated over 1994-1999.  

However, their impact on regional development is not yet clear: most of the structural funds 

finance public infrastructures that are supposed to enhance cohesion among European regions 

(Aschauer, 1989).  Many of these investments finance transportation infrastructures that 

result in a decrease in transportation costs, thereby potentially altering the locational 

attractiveness of regions.  As a result, the benefits from these investments do not necessarily 

remain to benefit only the region in which they are implemented (Martin, 2000; Vickerman, 

1996).   

The purpose of this paper is to apply some newly developed techniques of spatial analysis to 

investigate the ability of the European Commission to favor cohesion through its regional 

policy.  To this end, we perform an exploratory analysis of the relationship between the 

spatial distribution of per capita GDP and regional funds among 145 European regions over 

the period 1989-1999, a decade that corresponds to the first two programming periods in 
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which European regional development policy was developed..  The paper proceeds as 

follows: section 2 describes the linkages between regional funds and even/uneven regional 

development.  Section 3 presents the data.  In section 4, we perform the exploratory spatial 

data analysis of the distribution of regional per capita GDP, of structural funds and of 

additional funds.  The paper concludes with a summary and some closing remarks.  

 

2. Impact of structural funds on the spatial distribution of income  

European regional assistance over the 1989-1999 period dealt with six different objectives, 

the most important of which, with 68% of total structural funds devoted to this objective, was 

the objective 1, designed to address the economic development of the least prosperous 

regions.  NUTS II level regions
1
 were eligible under this objective when their per capita GDP 

(in PPP, Purchasing Power Parity) was below 75% of the Community average.  The other 

objectives were respectively devoted to the regions affected by industrial crisis (objective 2), 

by long-term unemployment (objective 3), the adaptation of the labor force (objective 4), 

agricultural structures (objectives 5a and 5b) and low density regions (objective 6).  Objective 

1 affected about 50 NUTS II level regions, and included the Mezzogiorno in Italy, all regions 

of Greece, Ireland and Portugal, and about two third of the Spanish regions.  With regards to 

the type of projects financed, one third of structural funds (Ecu 77 billion at 1999 prices) 

were devoted to transportation infrastructures, while the rest supported human-capital 

enhancement and the productive sector directly.  Transportation infrastructures have also 

been strongly supported through one half of the cohesion funds (Ecu 8 billion at 1999 prices), 

the second main instrument of regional policies, allocated since 1994 to Spain, Portugal, 

Greece and Ireland.  They will not be formally included in the rest of the analysis since they 

                                                 
1   NUTS: Nomenclature of Territorial Units for Statistics. The Commission uses as regional statistical concept 

the spatial classification established by Eurostat on the basis of national administrative units. Europe can 

therefore be shared either in 77 NUTS I level regions, or 211 NUTS II, 1031 NUTS III, 1074 NUTS IV or 

98433 NUTS V. Regional objectives are however mostly designated at either NUTS II or NUTS III level 

regions. 
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are allocated at the national but not regional level, and since there are no data to reveal their 

regional distribution.  For the European Commission, that has the goal of achieving the 

European Single Market, transportation infrastructures play a key role in the efforts to reduce 

the lack of cohesion among members.   

However, from a theoretical as well as empirical point of view, their impact on regional 

development is not clear.  On the one hand the endogenous growth models à la Aschauer 

(1989) and Barro (1990) predict that if public infrastructures are an input in the production 

function, then policies financing new public infrastructures increase the marginal product of 

private capital, fostering both capital accumulation and growth.  On the other hand, the 

economic geography theoretical perspectives developed by Martin and Rogers (1995) and 

Martin  (2000) demonstrate that when transportation infrastructures are financed, they affect 

the process of industry location and lead to involuntary effects.  Financing intra-regional 

transport infrastructures in the poorest regions increases the probability of firms locating 

there, but reduces the country’s aggregate growth rate and increases regional income 

inequalities. On the other hand, interregional transport infrastructures foster  aggregate 

growth, but lead to greater concentration in the core.  Moreover, an increasing part of the new 

transport infrastructures planed for the development of the trans-European network tend to be 

built within and between core regions, where transport demand is the highest (Vickerman, 

1991, 1996).  Only the regions that belong to the main network will gain in accessibility, 

whereas the regions that do not belong to it or are located at the edge of it will not.   

The relationship between gain in accessibility and economic development in peripheral 

regions is not clear and requires further research, since it depends on the specific dependence 

on transport cost in each sector.  There is no doubt that gains in accessibility due to 

interregional transport infrastructures will always be relatively higher in the core region than 

in the peripheral one (Vickerman et al., 1999; Venables and Gasiorek, 1999).  Peripheral 
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regions have generally lower unit costs than core regions and this advantage may attract 

activities to locate there.  However, this attraction also depends on the level of transport 

infrastructure, the lack of which impedes the development of growth potential in the 

periphery, but the improvement of which does not necessarily promote its growth. 

Three other points confirm that the allocation of regional funds does not necessarily promote 

regional development.  First, a firm located in the targeted region does not necessarily 

undertake the construction of new infrastructures.  As a result, a part of the value added of a 

project in one region may first benefit another location.  Secondly, beyond this apparent 

desire to reduce interregional income inequalities, the EU aid is not necessarily correlated 

with the development gap or development potential.  As pointed out by Fayolle and Lecuyer 

(2000), only objective 1 was devoted to the poorest regions.  Objectives 2 and 3, even if they 

handle lower amounts, concern aid for industry restructuring that affect mostly regions that 

were formerly prosperous.  Finally, a particular project is never implemented without 

additional regional or national financing.  This is the principle of additionality that would 

preclude regions presenting dubious projects
4
.  There is a bias introduced through this 

principle which comes from the fact that poor regions often have problems to match the 

European aid, whereas the aid can be tripled or quadrupled in regions with medium or high 

income levels, as they have more fiscal capacity to complement structural funds (Martin, 

1998).   

 

3 Data  

The regional per capita GDP series in Ecu current prices come from the database New 

Cronos Regio by Eurostat.  This is the official database used by the European Commission 

                                                 
4   Community funds support up to 75% of total public expenditure in NUTS regions, the rest depends on 

national or regional additionality in order to avoid regions present unviable projects.  The ceilings vary 

according to the objective concerned: objective 1 finances a maximum 75% of the total cost, but 80% in 

cohesion countries (Spain, Portugal, Greece and Ireland) and 85% in the most remote regions and the outlying 

Greek islands. The other objectives financed a maximum 50% of the total cost.  
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for its evaluation of regional convergence.  We use the logarithms of the per capita GDP of 

each region over the 1989-1999 period in constant prices.  Our sample is composed of 145 

regions at NUTS II level (Nomenclature of Territorial Units for Statistics) over 12 EU 

countries:  

- Belgium: 11 regions 

- Denmark: 1 region 

- Germany: 30 regions.  Berlin and the nine former East German regions are excluded 

due to historical reasons 

- Greece: 13 regions 

- Spain: 16 regions, as we exclude the remote islands: Las Palmas, Santa Cruz de 

Tenerife Canary Islands and Ceuta y Mellila.  

- France: 22 regions 

- Ireland: 2 regions  

- Italy: 20 regions  

- Netherlands: 12 regions 

- Portugal: 5 regions.  The Azores and Madeira are excluded because of their 

geographical distance 

- United Kingdom: 12 regions.  In the case of the UK, we use regions at the NUTS I 

level, because NUTS II regions are not used as governmental units, they are merely 

statistical inventions of the EU Commission and the UK government. 

- Luxembourg: 1 region 

 

We do not include Austria, Finland and Sweden since they joined the EU only in 1995.  The 

choice of studying European regions at the NUTS II level is purely based on regional 

development policies consideration.  The data on structural funds come from the publications 
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of the Commission.  The period under study covers the two first programming periods: the 

data over 1989-1993 are from “Community structural interventions”, Statistical report n°3 

and 4,(July and Dec., 1992)
5
 and for 1994-1999, from The 11

th
 annual report on the 

structural funds.  The data represent the total payments plus the total engagements of the 

European Commission at the date of publishing the 11
th

 report.  Some of the funds were 

allocated to 6 German NUTS I regions and 2 Belgian NUTS I regions.  We therefore 

disaggregate these funds at the NUTS II level with respect to their objective and their 

redistribution pattern
6
.  With regard to the total cost of Community projects, we apply the 

same methodology and take also into account the fact that the richer NUTS 2 regions within 

the NUTS 1 region have more facility to accompany Community funds.  This modification 

enables the bias introduced by additional funds to be considered in the formal analysis.  Since 

these data are not annually available and we want to consider funds relatively to the local 

population, data are divided by the number of inhabitant (average over 1989-1999) for each 

region and expressed in constant prices.  As we have seen in the previous section, structural 

funds are just a part of the financing of public infrastructures in lagging regions.  Since 

national and regional co-financings also support Community investments, we will also 

consider the total cost of Community projects over the same period.  

We are aware that our empirical results could be affected by missing regions and by the use 

of different levels of spatial aggregation.  The choice of the spatial aggregation influences the 

magnitude of various measures of association.  In the literature, this problem is referred to the 

modifiable areal unit problem (MAUP) (see Openshaw and Taylor, 1979), and also 

considered as an example of ecological fallacy (Anselin and Cho, 2000).  Messner and 

Anselin (2001) add that scale is important as well.  If the scale and spatial extent of units of 

observations for the data do not match up the scale and spatial extent of the studied process, 

                                                 
5   The author would like to thank Jacky Fayolle and Anne Lecuyer for providing this dataset. 
6   The disaggregating methodology is available upon request. 
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then it may result in a statistical problem wherein spatially correlated and/or heteroskedastic 

error structures occur.  For instance, the area of Castilla-y-Leon (in Spain) is 585 times 

greater than the one of Brussels (Belgium), but both are official NUTS II regions (Casellas 

and Galley, 1999).  Moreover, per capita growth in open formal NUTS 2 regions may reflect 

characteristics of neighboring regions.  Boldrin and Canova (2001) discuss the problems 

linked to measuring a variable on a territorial unit that is artificially defined and in which 

people are free to move.  They give the example of the city of Hamburg, a NUTS II level 

region with high per capita income, in which half the population of the whole Hamburg 

metropolitan area lives in the nearby NUTS II level regions of Schleswig-Holstein and Lower 

Saxony, commuting to Hamburg for work.  As a result, the value added in Hamburg is 

overstated by 20% relative to its effective population, while those of Schleswig-Holstein 

(value added equals 102% of EU average) and Lower Saxony (104%) are understated.  This 

is similar for Ile de France (160%) and Bassin Parisien (92.7%), Communidad de Madrid 

(101%) and its two neighboring Castillas (66 and 76%).   

 

4 Exploratory spatial data analysis (ESDA) 

ESDA is a set of techniques used to describe and visualize spatial distributions, identify 

atypical locations or spatial outliers, discover patterns of spatial association, clusters or hot 

spots, and suggest spatial regimes or other forms of spatial heterogeneity (Anselin, 1988, 

1999; Messner and Anselin, 2001; Haining, 1990) 

 

4.1- Mapping the distributions  

We start the analysis with the figure 1
7
.  It is a choropleth map displaying the distribution of 

regional per capita GDP level in 1989 relative to the European average.  A clear core-

                                                 
7   All figures have been realized using ArcView GIS 3.2 (Esri). 
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periphery pattern appears in this map, with the core (the darker color) composed of the richest 

regions, whereas the peripheral regions are also the poorest ones.  Four different categories 

are presented.  The first one includes the regions of Ireland, Portugal, Greece, the majority of 

the Spanish regions and six southern Italian ones with per capita GDP below 75% of the 

European average in 1989 (objective 1).  The other categories show the distribution of 

regional income below the average but superior to 75% (75%-100%), higher than the average 

(100%-150%) and strongly greater than the average (>150%).  Three regions had an 

exceptionally greater level of income than the overall distribution (greater than 1.5 

interquartile ranges), thus are considered as outliers.  These are the regions of Hamburg and 

Darmstadt in Germany, and Ile-de-France in France.  These results are partly due to 

significant commuting from their neighboring regions, as was noted earlier for the case of 

Hamburg.   

<<insert figure 1 here>> 

The core-periphery pattern in 1999 is still apparent and since there have been few changes, a 

separate figure is not included.  Only the situation of the two Irish regions has clearly 

improved in comparison with the initial year.  Actually the Irish per capita GDP has been 

greater than the EU average since 1997.   

Figure 2 displays the distribution (in quartile) of the sum of structural funds on the average 

regional GDP over 1989-1999.  As expected, the poor and peripheral regions are the ones that 

benefited the most from Community support.  Note that two core regions (Hainaut in 

Belgium and Flevoland in Netherlands) belong to the most assisted regions as well.  They 

even received more structural assistance than Attiki (Greece) or some Portuguese or Spanish 

regions.  The explanation lies in the facts that the two regions received significant structural 

funds, but under objective 2 (for regions in industrial decline), whereas the poor Portuguese 

and Spanish regions received assistance only under objective 1.  As explained in section 2, 
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structural assistance is not only based on the objective of reducing income gaps.  We do not 

perform an analysis of detecting outliers since the map makes clear that the poor and 

peripheral regions received exceptionally high levels of structural funds compared to the 

sample mean.   

<<insert figure 2 here>> 

Figure 3 presents the ratio total project cost on structural funds (in quartile).  The greater is 

this ratio, the greater is the regional or national co-financing in the total investment.  In the 

poorest regions (first quartile), the total cost is until 2.2 times higher than the level of 

structural funds.  It means that the region itself has to pay an amount equal to 1.2 times the 

level of structural funds.  While peripheral regions are just able to double the Community 

support (first quartile), the wealthiest northern Spanish regions and numerous core regions 

succeed in providing from 2.5 to 6.4 times the amount committed by structural funds (upper 

quartile).   

<< insert figure 3 here>> 

The range of each category defined in the previous maps is rather large, and these maps do 

not allow reveal whether the spatial distribution of this variable is significantly persistent 

over the period.  Moreover, they are also limited in the ability to identify any of the 

significant spatial effects that were introduced in the introduction.   

 

4.2 Determination of the spatial weight matrix 

Before going further in the spatial analysis of regional income distribution, some comments 

need to be made about the spatial weight matrix that will be employed in the analysis.  In the 

European context, the presence of islands such as the United-Kingdom, Ireland or Corsica 

impedes adoption of simple contiguity matrices, since the weight matrix would include rows 

and columns with only zeros for these regions.  Since unconnected observations are 
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eliminated from the results of the global statistics, this would change the sample size and the 

interpretation of the statistical inference.  Following the recommendations of Anselin (1996) 

and Anselin and Bera (1998), we choose to base them on pure geographical distance, as the 

exogeneity of geographical distance is unambiguous
8
.  More precisely, we use the great circle 

distance between regional centroids.  By using the great circle distance, dependence can be 

considered in any direction.  Following Le Gallo and Ertur (2003), we base our weight 

matrices on the k = 10, 15, 20 nearest neighbors.  The form of the spatial weight matrix is the 

following: 

 

ij

ijij ij i ij ij

j

ij ij i

w (k)= 0  if  i = j

w (k)= 1  if  d D (k) and w (k)= w (k) w (k)            for k = 10,15,20

w (k)= 0  if  d > D (k)

∗



 ≤




∑                 (1) 

 

where ijd  is the great circle distance between centroids of region i and j. )k(Di  is the critical 

cut-off distance defined for each region i, above which interactions are assumed to be 

negligible.  In other words, )k(Di  is the thk  order smallest distance between regions i and j 

such that each region i has exactly k neighbors.  Each matrix is row standardized so that it is 

relative and not absolute distance that matters, yielding the matrix w
∗

.  It is worth mentioning 

that in the European context, the minimum number of nearest neighbors that guarantees 

international connections between all regions is k=7, otherwise the Greek regions would not 

be linked to Italy at all.  With k=10, Ireland is connected to the UK, which in turn is 

connected to the whole continent; and the islands of Sicilia, Sardegna, Corsica are connected 

                                                 
8   In the case of European regions, it could be attractive to base these weights on the channels of 

communication between regions, such as roads and railways (see Bodson and Peeters, 1975).  However, as 

pointed out by Anselin and Bera (1998), “indicators for the socioeconomic weights should be chosen with great 

care to ensure their exogeneity, unless their endogeneity is considered explicitly in the model specification”.   
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to the continental French regions.  When the number of k-nearest neighbors increases, the 

share of international interconnections increases as well.   

 

4.3- Moran’ I 

We begin the analysis of the spatial distribution of regional income and regional funds by 

examining Moran’s I statistics to capture the global spatial autocorrelation of the variables of 

interest.  For each variable, the degree of linear association between its value at one location 

and the spatially weighted average of neighboring values is provided.  We use a permutation 

approach with 10000 permutations (Anselin, 1995)
9
.  Formally, for each variable of interest, 

the Moran’s I is given by: 

 

1 1

1 1

( )
n n

ij it jt

i j

t n n

it jt

i j

w k x x

I

x x

∗

= =

= =

=
∑∑

∑∑
                                                                                                          (2) 

 

where ijw
∗

 is the (row-standardized) degree of connection between the spatial units i and j and 

itx  is the variable of interest in region i at year t (measured as a deviation from the mean 

value for that year).  Values of I larger (smaller) than the expected value )1n/(1)I(E −−=  

indicate positive (negative) spatial autocorrelation.  In our case, )I(E = -0.00694.   

<<insert table 1 here>> 

The results in table 1 report the value of Moran’s I and of the standard deviation for all the 

variables.
10

  Moran’s I statistics are positive and significant (p-value = 0.0001) for all 

variables.  For the regional per capita income, it means that the rich (poor) regions have a 

                                                 
9   We use the SpaceStat 1.91 software to realize all the computations (Anselin, 1999). 
10  The results are similar to those found with the Geary’s c statistics.  Complete results are available upon 

request. 
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propensity to be clustered close to other rich (poor) regions.  We note that the values of the 

statistics seem stable over the period, but they are higher over the 1993-1995 period, one that 

corresponds to greater integration after the 1992 Maastricht Treaty.  The distribution of the 

regional per capita GDP in Europe is therefore certainly not random.  With the same idea, 

objective (non-objective) regions, i.e. regions with high (low) structural funds, have a 

propensity to be close to other objective (non-objective) regions.  The extent of Moran’s I 

statistics reveals a higher clustering of regions with similar structural funds than with similar 

Community projects, for all weight matrices.  Differences among values of Community 

projects seem smaller than among structural funds according to the standard deviation as 

well.  One explanation is that the last ones have structural purposes, therefore their amount 

and location are targeted.  On the contrary, the first ones depend more on national/regional 

contributions that easily complement Community support in the rich regions.  Results also 

display a clustering of regions with high (slow) growth rates.  The Moran’s I can detect 

global spatial autocorrelation, but it is not able to identify local patterns of spatial association, 

such as local spatial clusters or local spatial outliers of high (low) values that are statistically 

significant.  Identifying the groups of regions belonging to clustering of high (low) values of 

per capita income is based on the results of a Moran scatterplot.   

 

4.4 Moran’s scatterplot 

The idea of the Moran scatterplot, suggested by Anselin (1996), is to display the per capita 

income for each region (on the horizontal axis) against the standardized spatial weighted 

average (average of the neighbors’ per capita income, also called spatial lag) on the vertical 

axis.  As pointed out by Anselin (1999), expressing the variables in standardized form (i.e. 

with mean zero and standard deviation equal to one) allows assessment of both the global 

spatial association, since the slope of the line is the Moran’s I coefficient, and local spatial 
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association (the quadrant in the scatterplot).  The Moran scatterplot is therefore divided into 

four different quadrants corresponding to the four types of local spatial association between a 

region and its neighbors: 

- quadrant I (on the top right corner) displays the regions with a high per capita income 

(above the average) surrounded by regions with high per capita income (above the 

average).  This quadrant is usually noted HH. 

- quadrant II (on the top left corner) shows the regions with low value surrounded by 

regions with high values.  This quadrant is usually noted LH. 

- quadrant III (on the bottom left) displays the regions with low value surrounded by 

regions with low values, and is noted LL. 

- quadrant IV (on the bottom right) shows the regions with high value surrounded by 

regions with low values.  It is noted HL. 

Regions located in quadrants I and III refer to positive spatial autocorrelation,  the spatial 

clustering of similar values, whereas quadrants II and IV represent negative spatial 

autocorrelation, the spatial clustering of dissimilar values.   

<<insert figure 4 >> 

Figure 4 displays the Moran scatterplots of regional per capita GDP for 1989, with k= 10 

nearest neighbors.  Positive spatial autocorrelation, detected by the value of Moran’s I, is 

reflected by the fact that most of the regions are located in quadrant I and III.  Compared to 

the situation in the final period
11

, most of the regions that belong to quadrant I (III) in 1989 

also belong to quadrant I (III) in 1999.  However, there are some exceptions such as the two 

Irish regions that were LL at the initial year and are HH (Dublin) or LH (Border) at the final 

year.  This reflects the rapid development of Ireland over the decade.  Other signs of 

                                                 
11   Complete results available upon request. 
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development concern three Belgian regions (Luxembourg, Brabant-Wallon, Antwerpen) and 

Yorkshire and the Humber (UK) which go from LH-type to HH-type.  

On the contrary, signs of decline may be seen in one Italian region (Abruzzo) that moves 

from HH-type to LL-type, Picardie (France), Trier and Lüneburg (Germany) and Drenthe 

(Netherlands) that move from HH- to LH-type.  The Moran scatterplot also enables 

identification of regions with higher spatial instability for both years (HL-type and LH–type): 

Aquitaine in France (HL), whereas Corse, Languedoc-Roussillon, Limousin (France), Wales, 

North-East (UK), Namur, Hainaut (Belgium), Flevoland and Friesland (Netherlands) are LH-

type.  This implies that the spatial distribution of regional income is more complicated that 

the simple core-periphery framework previously noticed in the choropleth maps.  Le Gallo 

and Ertur (2003) reached the same conclusions for 138 European regions over 1980-1995. 

The same method is applied to structural funds and Community projects total costs as well.  

The results for structural funds are presented in figure 5.  Here again, most of the regions are 

located in quadrants I and III.  Regions in I (III) are basically the regions that were in III (I) in 

figure 4, reflecting the efforts at promoting cohesion by the Commission.  However, the 

regions Madrid (Spain), Norte and Lisboa and Vale do Tejo (Portugal) were LL-type for their 

income in 1989 and 1999, but are LH for both structural funds and Community funds because 

they are among the richest of the Iberian Peninsula.  The region of Dublin in Ireland is by far 

the first beneficiary of the allocation of structural funds and Community projects (it is not 

displayed in the figure).  To a lesser extent, this is also true for the Greek region Voreio 

Aigaio and the Spanish Extremadura.   

<<insert figure 5>> 

The last three columns of table 2 present the scatterplot quadrants for total structural funds 

over the average income 89-99, Community projects total costs over the average income 89-

99 and additional funds.  The results for additional funds confirm that the rich regions are 
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more able to complement structural funds whereas the poor ones cannot.  In Spain for 

instance, the regions of Navarra, La Rioja and Cataluña have signifiant additions to the 

Community funds, which may be a reason for increasing disparities among Spanish regions 

(Fayolle and Lecuyer, 2000).  

<<insert table 2>> 

 

4.5 LISA (Local Indicator of Spatial Association) 

The previous scatterplots display a slight modification of the overall structure of spatial 

autocorrelation between the initial and the final year.  For instance, some regions that were 

HH in the initial year belong to another quadrant in the final year.  We therefore calculate 

LISA statistics for each observation to obtain an indication of the extent to which there has 

been significant spatial clustering of similar values around that observation.  Moreover, the 

sum of LISAs for all observations is proportional to a global indicator of spatial association 

(Anselin, 1995).  Since we use a row-standardized matrix, the average of local Moran 

statistics is equal to the global Moran’s I statistics.  LISA statistics are used for the detection 

of significant local spatial clusters (also called “hot spots”) as well as for the diagnostics of 

local instability, significant outliers and spatial regimes.  Anselin (1995) formalized the local 

Moran’s statistics for each region i and year t in the following way: 

0

it
ijit jt

j

x
I w x

m

∗ 
=  
 

∑   with 2

0 /it

i

m x n=∑                                                                           (3) 

with itx  ( jtx ) is the observation in region i (j) at year t (measured as a deviation from the 

mean value for that year).  The results from the application of LISA with k= 10 nearest 

neighbors are summarized in columns three to seven of table 2.  The robustness of these 

results is revealed in tables 3 and 4 with k=15 and 20 neighbors respectively.  The 

significance level is based on a conditional permutation approach with 10000 random 
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permutations of the neighboring regions for each observation (Anselin, 1995).  The pseudo-

significance level is 5%.  However, due to a problem of multiple statistical comparisons, 

since the neighborhood sets of two regions may contain common regions (Ord and Getis 

1995; Anselin, 1995), we follow the methodology of Le Gallo and Ertur (2003) and present 

also in column 8 the number of years for which the results are significant at a 5% Bonferroni 

pseudo-significance level (= 5% over 10 since we use the 10 nearest-neighbors).   

In columns three to seven of table 2, each cell displays the number of years the significant 

local Moran statistics is located in a particular Moran scatterplot quadrant.  The regions 

revealing significant and greater spatial association of per capita GDP (HH or LL) are 

basically those previously detected as core (HH cluster) and peripheral (LL cluster) regions.  

Over the period, 97% of the local statistics that are significant are either HH- or LL-type, 

reflecting the global trend of positive spatial association.  However, not all core/peripheral 

regions cluster significantly over the period.  Local Moran statistics are not significant over 

the period for various regions in different countries (column 3 in table 2).  Denmark, Greece 

and Portugal are the only countries without any non-significant statistics throughout the 

period (in Germany, Düsseldorf is the only region displaying non-significant statistics).  

Regions displaying positive local spatial association throughout the 11 years can be identified 

as follows: 

- two different HH-type clusters can be identified because they are distant from each other: 

- all the German regions (but Düsseldorf), Denmark, four northern French 

regions (Nord-Pas-de-Calais, Lorraine, Alsace, Franche-Comté), four southern Belgian 

regions (Antwerpen, Luxembourg, Limburg and Vlaams-Brabant), and four southern Dutch 

regions (Zuid-Holland, Zeeland, Noord-Brabant and Limburg). 

- six Italian regions (Piemonte, Valle d’Aosta, Lombardia, Trentino-Alto 

Adige, Veneto and Friuli-Venezia Giulia).  
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- two different LL-type clusters can also be identified for the same reason : 

- all the Portuguese regions and eleven Spanish regions (Galicia, Asturias, 

Cantabria, Madrid, Castilla-y-Léon, Castilla-la-Mancha, Extremadura, Communidad 

Valenciana, Baléares, Andalucia and Murcia) 

- all the Greek regions and four southern Italian regions (Puglia, Basilicata, 

Calabria, Sicilia).  

All of them show positive spatial autocorrelation with a significance level p <0.05 for more 

than 5 years.  The persistence of different clusters of high and low income is a sign of spatial 

heterogeneity among European regions confirming the persistence of income disparities.  

These results are robust when we use k=15 or 20 neighbors, confirmed by the robustness 

analysis for LISA (suggested by Le Gallo and Ertur, 2003) displayed in tables 3 and 4.  

Significant negative spatial autocorrelation occurs over 10 years for the French region of 

Corsica (LH-type), but no more than three years elsewhere.  Two interpretations can be noted 

from these tables.  First, when we increase the number of neighbors, a region with a 

significant LISA remains in the same quadrant.  Secondly, respectively 21.9% and 31.6% of 

the regions with non significant LISA for k=10 become HH-type when k= 15 and k=20.  

These regions are mostly French, North-Italian, Belgian, Dutch and British, whereas the 

regions becoming LL-type (4.6% when k= 15 and 4.5% when k=20) are mostly Spanish and 

Southern Italian. 

<<insert tables 3 and 4 here>> 

If we focus now on the column giving the significant Moran scatterplot quadrants for growth 

over 1989-1999, the significant HH-type correlation applies to all the Portuguese and Irish 

regions, the Greek regions (except Ipeiros and Sterea Ellada), only Extremadura in Spain and 

five British regions.  Only three regions have a significant Moran statistic in Spain, which can 

be explained by the fact that Spain is the country where regional inequities have increased the 
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most over this period.  The LL-growth-type regions are Italian (except Calabria and Puglia), 

ten French regions, mostly in the South, six German regions (Tübingen, Freiburg, Karlsruhe, 

Rheinhessen-Pflaz, Darmstadt and Arnsberg) and Baleares in Spain.  Six regions show 

significant negative spatial autocorrelation: Andalucia and Galicia in Spain, Sterea Ellada in 

Greece are LH-type, which indicates that they failed to develop in spite of the dynamism of 

their neighboring regions.  On the other hand, three HL-type regions (Corse in France, 

Gießen and Kassel in Germany) show a significantly higher dynamism than their neighbors.   

<<insert table 5 here>> 

Table 5 is a correlation table between the initial per capita income and the growth rate over 

the period.  Only 27% of the results are significant for both initial per capita income and 

growth rate.  However, it is interesting to note that 82% of these results show an inverse 

relationship between initial conditions and growth rates.  The five Portuguese regions, nine 

out of thirteen Greek regions (the others do not have significant results) and Extremadura in 

Spain were LL-type for their initial income, but were HH-type for their growth rate over 

1989-1999.  Among the significant results, the conditions of β -convergence seem respected 

since the poor regions also have the highest growth rates.  The Irish and Spanish regions do 

not appear here since the results for initial income are not significant in Ireland, and most of 

the results for growth are not significant in Spain.  On the contrary, the regions displaying 

significant HH-type for the initial income and significant LL-type for growth are six German 

regions (Karlsruhe, Freiburg, Tübingen, Darmstadt, Arnsberg, Rheinhessen-Pflaz), three 

French regions (Alsace, Franche-Comté, Provence-Alpes-Cote-d’Azur), nine northern Italian 

regions (Piemonte, Valle d’Aosta, Liguria, Lombardia, Trentino-Alto Adige, Veneto, Friuli-

Venezia Giula, Emilio-Romagna).  Three regions, Gießen and Kassel in Germany and Corse 

in France (but only in 1989) were HH-type for the initial income and HL-type for growth.  

The two German regions have therefore succeeded in growing faster than their neighbors, in 
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spite of a high initial level of income, like their neighbors.  Three regions (Galicia and 

Andalucia in Spain and Sterea Ellada in Greece) are significantly LL-type for their initial 

income but LH-type for their growth.  It means that even if these regions started with the 

same initial conditions as their neighbors, their neighbors performed better in terms of 

development.   

Instead of describing the significant results for LISA statistics on regional funds presented in 

the last three columns of table 2, the last step of our analysis will focus directly on the 

correlation between structural funds (then additional funds) and regional growth presented in 

table 6.   

<<insert table 6 here>> 

Only 28% of the results are significant for both structural funds and growth.  However, 78% 

of these results show a positive relationship between growth and structural funds.  Fourteen 

regions characterized by significant HH-type structural funds show significant HH-type 

growth.  These regions are nine Greek regions (see table 2), Dublin in Ireland, three 

Portuguese regions (Centro, Alentejo and Algarve) and Northern Ireland (UK).  On the 

contrary, the regions with LL-type growth and LL-type structural funds are six German 

regions (Karlsruhe, Freiburg, Tübingen, Damrstadt, Arnsberg, Rheinhessen-Pflaz), five 

French regions (Alsace, Franche-Comté, Poitou-Chatentes, Limousin, Auvergne), six Italian 

regions (Piemonte, Valle d’Aosta, Lombardia, Trentino-Alo Adige, Veneto, Fruili Veneza 

Giulia) and Luxembourg (country).   

The atypical patterns of growth-structural funds relationships for regions with a different 

development behavior than their neighbors, in spite of the fact that they all are “similarly” 

assisted.
12

  For instance, Gießen and Kassel (Germany) are LL-type for structural funds, but 

HL-type for growth.  They performed better than their neighbors, in spite of a similar low 

                                                 
12   We put this word into quotation marks because the per capita levels of regional assistance may be very 

different, even if they belong to the same quadrant in the Moran scatterplot. 
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level of structural funds.  Norte and Liboa e Vale do Tejo in Portugal and Scotland (UK) are 

also insightful since they are HH-type growth but LH-type structural funds.  On the contrary, 

Galicia, Andalucia (Spain) and Sterea Ellada (Greece) do not grow as fast as their neighbors, 

even if they received “similar” structural assistance (LH growth, HH funds). 

Clearly, structural funds are not the main variable driving even/uneven regional development.  

A closer look at the economic structure, the accessibility, the institutional aspects of each 

region as well as the type of projects that structural funds finance in these regions and their 

neighboring regions could help explain why these regions display greater/smaller 

development progress than their neighbors even if they receive similar amount of structural 

funds.   

Further, the perpetuation of disparities may be attributed in part to a region’s ability to 

provide additional, matching funds.  Again, the correlation displays that regions with low 

additional funds (the poor ones since they cannot afford additional investment) have a HH-

type growth and inversely
13

.  An interesting case is for the three regions that display 

significant LH-type for growth and LL-type for additional funds: Sterea Ellada in Greece, 

Andalucia and Galicia in Spain.  Remember that these regions are HH-type for structural 

funds.  Therefore, if they do not perform as well as at their neighbors in terms of 

development, the reason does not come from higher additional funds in neighboring regions.  

Once again, a closer look at the specific economic structure of these regions as well as the use 

of regional funds could help to clarify the presence of “atypical” linkages between growth 

and structural funds detected in table 6. 

 

                                                 
13   Complete results upon request. 
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5 Conclusion 

The aim of this paper has been to perform an exploratory analysis of the ability of the 

European Commission to reduce regional disparities through its regional policy.  We have 

investigated relationships between the spatial distribution of per capita GDP and of regional 

funds of 145 European regions over 1989-1999, using an exploratory spatial data analysis.  

This period corresponds to the two first program periods wherein regional assistance to the 

poorest regions was made available.  We first used Moran’s I to detect the presence of 

positive global spatial autocorrelation in the distribution of per capita GDP to explore 

whether the rich (poor) regions have a propensity to be clustered close to other rich (poor) 

regions.  Global spatial autocorrelation also characterizes the regional growth rate, structural 

funds and Community projects total costs.  Further analysis using Moran’s scatterplot reveals 

also the presence of positive local spatial autocorrelation for each of the previous variables.   

When LISA is performed, the results confirm the significant presence and persistence over 

time of local spatial autocorrelation in the form of two distinct spatial clusters of high and 

low values of per capita income.  This form of spatial heterogeneity reflects a core-periphery 

pattern since per capita GDP inequalities are persistent among European regions.  LISA is 

also performed on the spatial distribution of the regional growth rate.  When an exploratory 

investigation of the correlation between the spatial patterns of the variables is performed, a 

negative relationship between regional growth and initial income level is detected among the 

significant results, a finding that seems consistent with the hypothesis of β -convergence.  A 

positive relationship between regional growth and structural funds is also identified among 

the significant results.  It may reflect the distributional efforts of the European Commission 

that has devoted the most important part of its funds to help the least developed regions and 

therefore provides little assistance to the rich regions.  However, the results also indicate that 

structural funds are clearly not the only variable to control for the various growth rates among 
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European regions.  This is confirmed by the presence of “atypical” linkages between both 

variables in  Andalucia, Galicia and Sterea Ellada.  These results show that studies of 

European regional development should take into account the level of structural funds devoted 

to the objective region itself, but also to its neighboring regions.  However, given the 

exploratory nature of our analysis, this paper calls for a thorough mutli-regional estimation of 

the workings of the system involved.  In the absence of interregional input-output tables in 

Europe, this could be done, for example, using  a spatial econometric estimation where 

spatial effects, initial conditions and the spatial distribution of both structural funds and 

Community projects total costs would be included in the estimation of the European regional 

convergence process.  While this need is important for a better understanding of the impact of 

regional funds on cohesion, this is beyond the scope of this paper. 
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Figure 1: Spatial distribution of regional per capita GDP relative to the European average in 1989 
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Figure 2: Structural funds divided by the mean regional GDP 1989-1999 
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Figure 3: Additional funds: total costs/structural funds over 1989-1999 
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Figure 4: Moran scatterplot of regional per capita GDP in 1989 
  Note: See table 2 for the region’s name corresponding to each code 
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Figure 5: Moran scatterplot of total structural funds relative to region’s average GDP 
Note 1: Out of the figure is the Irish region Border (HL-type) of which coordinates are (8.252, -0.016) 

Note 2: The codes of the regions located in the LL-quadrant are not displayed for facilitating the reading 

(complete results are available in table 2) 

 

 

Table 1: Moran’s I statistics and standard deviation 

 10 neighbors 15 neighbors 20 neighbors 

GDP 1989 0.7453 (0.0337) 0.6787 (0.0265) 0.5921 (0.0223) 

GDP 1990 0.7502 (0.0337) 0.6828 (0.0265) 0.5920 (0.0223) 

GDP 1991 0.7378 (0.0337) 0.6706 (0.0265) 0.5795 (0.0223) 

GDP 1992 0.7562 (0.0336) 0.6932 (0.0265) 0.6043 (0.0223) 

GDP 1993 0.7776 (0.0336) 0.7308 (0.0265) 0.6600 (0.0223) 

GDP 1994 0.7855 (0.0336) 0.7429 (0.0265) 0.6762 (0.0224) 

GDP 1995 0.7864 (0.0336) 0.7502 (0.0266) 0.6904 (0.0224) 

GDP 1996 0.7577 (0.0336) 0.7180 (0.0266) 0.6532 (0.0224) 

GDP 1997 0.7209 (0.0337) 0.6868 (0.0265) 0.6251 (0.0224) 

GDP 1998 0.7166 (0.0337) 0.6815 (0.0265) 0.6188 (0.0224) 

GDP 1999 0.6984 (0.0336) 0.6654 (0.0265) 0.6054 (0.0224) 

FS/M 0.2932 (0.0294) 0.2785 (0.0236) 0.2529 (0.0198) 

CT/M 0.1995 (0.0271) 0.1836 (0.0217) 0.1722 (0.0182) 

GROWTH 0.4411 (0.0335) 0.3454 (0.0267) 0.2387 (0.0225) 
Note: Standard deviations are into brackets.  All statistics are significant at p= 0.0001.  Computations are based 

on 10000 random permutations.  FS/M is total structural funds 89-99 over region’s GDP average in 1989-1999; 

CT/M is Community projects total costs 89-99 over region’s GDP average in 1989-1999. 
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Table 2: Local spatial autocorrelation 

Code Region 
Not 

sign 
HH LL HL LH 

Bonf. 

5% 

growth 

89-99 
Regions fs/m ct/m ct/fs

 Belgium        Belgium    

BE1 Brussels 11 0 0 0 0 0 ns Brussels LL LL LH*

BE21 Antwerpen 4 7 0 0 0 0 ns Antwerpen LL LL HH*

BE22 Limburg 5 6 0 0 0 0 ns Limburg LL LL HH*

BE23 
Oost-

Vlaanderen 
8 3 0 0 0 0 ns Oost-Vlaanderen LL LL HH*

BE24 Vlaams Brabant 5 6 0 0 0 0 ns Vlaams Brabant LL LL HH*

BE25 
West-

Vlaanderen 
8 3 0 0 0 0 ns West-Vlaanderen LL LL HH*

BE31 Brabant Wallon 5 5 0 0 1 0 ns Brabant Wallon LL LL LH*

BE32 Hainaut 8 0 0 0 3 0 ns Hainaut HL HL HH*

BE33 Liège 7 4 0 0 0 0 ns Liège LL LL HH*

BE34 Luxembourg 4 7 0 0 0 0 ns Luxembourg LL LL LH*

BE35 Namur 8 1 0 0 2 0 ns Namur LL LL* LH*

 Germany        Germany    

DE11 Stuttgart 0 11 0 0 0 11 ns Stuttgart LL LL HH 

DE12 Karlsruhe 0 11 0 0 0 11 LL Karlsruhe LL LL HH 

DE13 Freiburg 0 11 0 0 0 11 LL Freiburg LL LL HH 

DE14 Tübingen 0 11 0 0 0 11 LL Tübingen LL LL HH 

DE21 Oberbayern 0 11 0 0 0 11 ns Oberbayern LL LL HH 

DE22 Niederbayern 0 11 0 0 0 11 ns Niederbayern LL LL HH 

DE23 Oberpfalz 0 11 0 0 0 11 ns Oberpfalz LL LL HH 

DE24 Oberfranken 0 11 0 0 0 11 ns Oberfranken LL LL HH 

DE25 Mittelfranken 0 11 0 0 0 11 ns Mittelfranken LL LL HH 

DE26 Unterfranken 0 11 0 0 0 11 ns Unterfranken LL LL HH 

DE27 Schwaben 0 11 0 0 0 11 ns Schwaben LL LL HH 

DE5 Bremen 0 11 0 0 0 11 ns Bremen LL LL HH*

DE6 Hamburg 0 11 0 0 0 11 ns Hamburg LL LL LH*

DE71 Darmstadt 0 11 0 0 0 11 LL Darmstadt LL LL HH 

DE72 Gießen 0 11 0 0 0 11 HL Gießen LL LL LH 

DE73 Kassel 0 11 0 0 0 11 HL Kassel LL LL HH 

DE91 Braunschweig 0 11 0 0 0 11 ns Braunschweig LL LL HH*

DE92 Hannover 0 11 0 0 0 11 ns Hannover LL LL HL*

DE93 Lüneburg 0 8 0 0 3 11 ns Lüneburg LL LL LL* 

DE94 Weser-Ems 0 11 0 0 0 4 ns Weser-Ems LL LL HH*

DEA1 Düsseldorf 9 2 0 0 0 1 ns Düsseldorf LL LL HH*

DEA2 Köln 0 11 0 0 0 2 ns Köln LL LL HH*

DEA3 Münster 0 11 0 0 0 0 ns Münster LL LL LH*

DEA4 Detmold 0 11 0 0 0 11 ns Detmold LL LL HL*

DEA5 Arnsberg 0 11 0 0 0 11 LL Arnsberg LL LL HH*

DEB1 Koblenz 0 11 0 0 0 11 ns Koblenz LL LL HH*

DEB2 Trier 0 9 0 0 2 2 ns Trier LL LL LH*

DEB3 
Rheinhessen-

Pfalz 
0 11 0 0 0 11 LL 

Rheinhessen-  

Pfalz 
LL LL HH 

DEC Saarland 0 11 0 0 0 3 ns Saarland LL LL LH 

DEF 
Schleswig-

Holstein 
0 11 0 0 0 11 ns 

Schleswig-

Holstein 
LL LL LH*

DK Denmark 0 11 0 0 0 11 ns Denmark LL LL HH*

 Spain        Spain    

ES11 Galicia 0 0 11 0 0 11 LH Galicia HH HH* LL 

ES12 Asturias 0 0 11 0 0 11 ns Asturias HH* HH* LL 

ES13 Cantabria 2 0 9 0 0 0 ns Cantabria HH* HH* LL* 

ES21 Pais Vasco 7 0 4 0 0 0 ns Pais Vasco HH* HH* HL*

ES22 Navarra 10 0 1 0 0 0 ns Navarra LH* HH* HH*

ES23 La Rioja 11 0 0 0 0 0 ns La Rioja LH* HH* HL*
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 Region 
Not 

sign 
HH LL HL LH 

Bonf. 

5% 

growth 

89-99 
Regions fs/m ct/m ct/fs

ES24 Aragón 10 0 1 0 0 0 ns Aragón HH* HH* LH*

ES3 
Comunidad de 

Madrid 
0 0 9 2 0 6 ns 

Comunidad de 

Madrid 
LH LH LL* 

ES41 Castilla y León 0 0 11 0 0 6 ns Castilla y León HH* HH* LL* 

ES42 Castilla-la Mancha 0 0 11 0 0 5 ns Castilla-la Mancha HH* HH* LL* 

ES43 Extremadura 0 0 11 0 0 11 HH Extremadura HH* HH* LL 

ES51 Cataluña 11 0 0 0 0 0 ns Cataluña LL* HH* HH*

ES52 
Comunidad 

Valenciana 
4 0 7 0 0 0 ns 

Comunidad 

Valenciana 
HH* HH* LH*

ES53 Baleares 0 0 11 0 0 0 LL Baleares LL* LH* HH*

ES61 Andalucia 0 0 11 0 0 11 LH Andalucia HH HH* LL 

ES62 Murcia 1 0 10 0 0 5 ns Murcia HH* HH* LL* 

 France        France    

FR1 Ile de France 11 0 0 0 0 0 ns Ile de France LL* LL* HH*

FR21 
Champagne- 

Ardenne 
10 1 0 0 0 0 ns 

Champagne-  

Ardenne 
LL* LL* HH*

FR22 Picardie 3 5 0 0 3 0 ns Picardie LL LL* HH*

FR23 Haute-Normandi 8 3 0 0 0 0 ns Haute-Normandie LL LL* HH*

FR24 Centre 11 0 0 0 0 0 LL Centre LL* LL* HH*

FR25 Basse-Normandi 6 5 0 0 0 0 ns Basse-Normandie LL LL HL 

FR26 Bourgogne 11 0 0 0 0 0 ns Bourgogne LL LL HH*

FR3 
Nord - Pas- de-

Calais 
0 11 0 0 0 0 ns 

Nord – Pas - de-

Calais 
LL LL* LH*

FR41 Lorraine 1 10 0 0 0 0 ns Lorraine LL LL LH*

FR42 Alsace 0 11 0 0 0 7 LL Alsace LL LL HH 

FR43 Franche-Comté 0 11 0 0 0 3 LL Franche-Comté LL LL HH*

FR51 Pays de la Loire 6 5 0 0 0 0 ns Pays de la Loire LL LL LH*

FR52 Bretagne 11 0 0 0 0 0 ns Bretagne LL LL LL* 

FR53 
Poitou-

Charentes 
11 0 0 0 0 0 LL Poitou-Charentes LL LL* HH*

FR61 Aquitaine 11 0 0 0 0 0 ns Aquitaine LL* LH* HH 

FR62 Midi-Pyrénées 11 0 0 0 0 0 LL Midi-Pyrénées LL* LL* HH 

FR63 Limousin 11 0 0 0 0 0 LL Limousin LL HL* HH*

FR71 Rhône-Alpes 11 0 0 0 0 0 LL Rhône-Alpes LL* LL* HH*

FR72 Auvergne 11 0 0 0 0 0 LL Auvergne LL LL* HH*

FR81 
Languedoc-

Roussillon 
11 0 0 0 0 0 LL 

Languedoc-

Roussillon 
LL* LL* HH 

FR82 
Provence-Alpes-

Côte d'Azur 
10 1 0 0 0 0 LL 

Provence-Alpes-

Côte d'Azur 
LL* LL* LH*

FR83 Corse 0 1 0 0 10 0 HL Corse HL* HL* LL* 

 Greece        Greece    

GR11 
Anatoliki 

Makedonia, 

Thraki 

0 0 11 0 0 11 HH 

Anatoliki 

Makedonia, 

Thraki 

HH HH* LL 

GR12 
Kentriki 

Makedonia 
0 0 11 0 0 11 HH 

Kentriki 

Makedonia 
HH HH LL 

GR13 
Dytiki 

Makedonia 
0 0 11 0 0 11 HH 

Dytiki 

Makedonia 
HH HH LL 

GR14 Thessalia 0 0 11 0 0 11 HH Thessalia HH HH LL 

GR21 Ipeiros 0 0 11 0 0 11 ns Ipeiros HH HH* LL 

GR22 Ionia Nisia 0 0 11 0 0 11 ns Ionia Nisia HH HH* LL 

GR23 Dytiki Ellada 0 0 11 0 0 11 HH Dytiki Ellada HH HH* LL 

GR24 Sterea Ellada 0 0 11 0 0 11 LH Sterea Ellada HH HH* LL 

GR25 Peloponnisos 0 0 11 0 0 11 HH Peloponnisos HH HH* LL 

GR3 Attiki 0 0 11 0 0 11 ns Attiki LH LH LL 

GR41 Voreio Aigaio 0 0 11 0 0 11 HH Voreio Aigaio HH HH* LL 
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 Region 
Not 

sign 
HH LL HL LH 

Bonf. 

5% 

growth 

89-99 
Regions fs/m ct/m ct/fs

GR42 Notio Aigaio 0 0 11 0 0 11 HH Notio Aigaio HH HH* LL 

GR43 Kriti 0 0 11 0 0 11 HH Kriti HH HH* LL 

 Ireland        Ireland    

IE01 Border 11 0 0 0 0 0 HH Border HH* HH* LL* 

IE02 Dublin 11 0 0 0 0 0 HH Dublin HH HH LL* 

 Italy        Italy    

IT11 Piemonte 0 11 0 0 0 4 LL Piemonte LL LL HH 

IT12 Valle d'Aosta 1 10 0 0 0 0 LL Valle d'Aosta LL LL LH 

IT13 Liguria 7 4 0 0 0 0 LL Liguria LL* LH* HH*

IT2 Lombardia 1 10 0 0 0 4 LL Lombardia LL LL HH 

IT31 
Trentino-Alto 

Adige 
0 11 0 0 0 10 LL 

Trentino-Alto 

Adige 
LL LL HH 

IT32 Veneto 1 10 0 0 0 4 LL Veneto LL LL* HH 

IT33 
Friuli-Venezia 

Giulia 
0 11 0 0 0 4 LL 

Friuli-Venezia 

Giulia 
LL LL* HH 

IT4 
Emilia-

Romagna 
7 4 0 0 0 0 LL Emilia-Romagna LL* LL* LH*

IT51 Toscana 7 4 0 0 0 0 LL Toscana LL* LH* HH*

IT52 Umbria 11 0 0 0 0 0 LL Umbria HL* HL* LL* 

IT53 Marche 11 0 0 0 0 0 LL Marche LL* LH* HL*

IT6 Lazio 11 0 0 0 0 0 LL Lazio LH* LH* LL* 

IT71 Abruzzo 11 0 0 0 0 0 LL Abruzzo LH* HH* LL* 

IT72 Molise 10 0 1 0 0 0 LL Molise HH* HH* LL* 

IT8 Campania 6 0 5 0 0 0 LL Campania HH* LH* LL* 

IT91 Puglia 0 0 11 0 0 6 ns Puglia HH HH* LL 

IT92 Basilicata 4 0 7 0 0 1 LL Basilicata HH* HH* LL 

IT93 Calabria 0 0 11 0 0 10 ns Calabria HH HH* LL 

ITA Sicilia 4 0 7 0 0 1 LL Sicilia HH* HH* LL 

ITB Sardegna 10 0 0 0 1 0 LL Sardegna HL* HH* LL* 

LU Luxembourg 10 1 0 0 0 0 LL Luxembourg LL LL HL*

 Netherlands        Netherlands    

NL11 Groningen 10 1 0 0 0 0 ns Groningen LL LL* HH 

NL12 Friesland 10 1 0 0 0 0 ns Friesland LL LL* HH 

NL13 Drenthe 7 4 0 0 0 0 ns Drenthe LL LL* LH 

NL21 Overijssel 9 2 0 0 0 0 ns Overijssel LL LL* HH 

NL22 Gelderland 10 1 0 0 0 0 ns Gelderland LL LL* HH 

NL23 Flevoland 9 0 0 0 2 0 ns Flevoland HL HL HH 

NL31 Utrecht 10 1 0 0 0 0 ns Utrecht LL LL* HH 

NL32 Noord-Holland 11 0 0 0 0 0 ns Noord-Holland LL LL* HH 

NL33 Zuid-Holland 4 7 0 0 0 0 ns Zuid-Holland LL LL HH 

NL34 Zeeland 4 7 0 0 0 0 ns Zeeland LL LL HH*

NL41 Noord-Brabant 5 6 0 0 0 0 ns Noord-Brabant LL LL* HH 

NL42 Limburg 4 7 0 0 0 0 ns Limburg LL LL* HH 

 Portugal        Portugal    

PT11 Norte 0 0 11 0 0 11 HH Norte LH LH* LL 

PT12 Centro 0 0 11 0 0 11 HH Centro HH LH* LL 

PT13 
Lisboa e Vale do

Tejo 
0 0 11 0 0 11 HH 

Lisboa e Vale do

Tejo 
LH LH* LL 

PT14 Alentejo 0 0 11 0 0 11 HH Alentejo HH HH* LL 

PT15 Algarve 0 0 11 0 0 11 HH Algarve HH HH* LL 

 United-Kingdom        United-Kingdom    

UKC North East 11 0 0 0 0 0 HH North East LL HL LL* 

UKK South West 11 0 0 0 0 0 ns South West LL* LL* LL* 

UKL Wales 11 0 0 0 0 0 HH Wales LL* LH* LL 

UKM Scotland 11 0 0 0 0 0 HH Scotland LH LH LL 

UKN Northern Ireland 11 0 0 0 0 0 HH Northern Ireland HH HH LL* 
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 Region 
Not 

sign 
HH LL HL LH 

Bonf. 

5% 

growth 

89-99 
Regions fs/m ct/m ct/fs

UKD North West 11 0 0 0 0 0 HH North West LL* LL* HL 

UKE 
Yorkshire and th

Humber 
11 0 0 0 0 0 ns 

Yorkshire and the

Humber 
LL* LL LL* 

UKF East Midlands 11 0 0 0 0 0 HH East Midlands LL* LL* LL* 

UKG West Midlands 11 0 0 0 0 0 ns West Midlands LL LL LL* 

UKH Eastern 9 2 0 0 0 0 ns Eastern LL LL LL* 

UKI London 11 0 0 0 0 0 ns London LL LL LL* 

UKJ South East 11 0 0 0 0 0 ns South East LL LL LL* 

Note: Level of pseudo-significance p<0.05.  Not sign. denotes the number of years local statistics is not 

significant at 0.05.  Maximum number of years is 11.  HH, number of years local statistics of significant and in 

quadrant HH of Moran’s scatterplot; LL, number of years local statistics of significant and in quadrant LL of 

Moran’s scatterplot; HL, number of years local statistics of significant and in quadrant HL of Moran’s 

scatterplot; LH, number of years local statistics of significant and in quadrant LH of Moran’s scatterplot. Bonf. 

5% indicates the number of years the statistics is significant at 5% Bonferroni pseudo-significance level. 

Growth 89-99 indicates if local statistics of growth rate over 1989-1999 is significant or not, if yes, then the 

quadrant in Moran’s scatterplot it belongs to.  ns means no significance at p<0.05.  fs/m is total structural funds 

89-99 divided by the region’s mean per capita GDP over 1989-1999; ct/m is Community projects total costs 89-

99 divided by the region’s mean per capita GDP over 1989-1999; ct/fs is Community projects total costs 

divided by structural funds over 1989-1999, * indicates that the LISA statistics is not significant at the 5% 

pseudo-significance level. 

 

 

 

 

 

 

 

 

 

Table 3: Robustness analysis for LISA from 10 to 15 neighbors 
              K=15 

K=10 
Not Sign. HH LL HL LH 

Not Sign. 67.8% 21.9% 4.6% 0.1% 5.6% 

HH 1.8% 98.0% 0% 0% 0.2% 

LL 6.2% 0% 93.8% 0% 0% 

HL 0% 0% 0% 100% 0% 

LH 29.6% 0% 0% 0% 70.4% 
 

 

 

 

Table 4: Robustness analysis for LISA from 10 to 20 neighbors 
              K=20 

K=10 
Not Sign. HH LL HL LH 

Not Sign. 54.8% 31.6% 4.5% 0% 9.1% 

HH 1.5% 98.3% 0% 0% 0.2% 

LL 5.3% 0% 94.7% 0% 0% 

HL 0% 0% 0% 100% 0% 

LH 25.9% 0% 0% 0% 74.1% 
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Table 5: Correlation table of growth rate (1989-1999) by initial per capita GDP (1989)  
 Per capita GDP 1989 

Growth 

rate 

Not 

Sign. 
HH LL HL LH Sum 

Not Sign. 40 29 11 0 0 80 

HH 8 0 

Extremadura (ES), Anatoliki Makedonia 

(GR), Kentriki Makedonia (GR), Dytiki 

Makedonia (GR), Thessalia (GR), Dytiki 

Ellada (GR), Peloponnisos (GR), Voreio 

Aigaio (GR), Notio Aigaio (GR)  Kriti (GR) 

PORTUGAL 

15 

0 0 23 

LL 17 

Karlsruhe (DE), Freiburg (DE), Tübingen (DE), 

Darmstadt (DE), Arnsberg (DE), Rheinhessen-

Pfalz (DE), Alsace (FR), Franche-Comté (FR), 

Provence-Alpes-Côte d'Azur (FR), Piemonte (IT), 

Valle d'Aosta (IT), Liguria (IT), Lombardia (IT), 

Trentino-Alto Adige (IT), Veneto (IT), Friuli-

Venezia Giulia (IT), Emilia-Romagna (IT), 

Toscana (IT) 

18 

Baleares (ES) 

1 
0 0 36 

HL 0 

Gießen (DE)   Kassel (DE) 

Coarse (FR) 

3 

0 0 0 3 

LH 0 0 

Galicia (ES)   Andalucia (ES) 

Sterea Ellada (GR) 

3 

0 0 3 

Sum 65 50 30 0 0 145 

 

 

 

Table 6: Correlation table of growth rate by structural funds 1989-1999 
 Total structural funds 1989-1999 

Growth 

rate 

Not 

Sign. 
HH LL HL LH Sum 

Not Sign. 16 4 56 2 2 80 

HH 5 

Anatoliki Makedonia (GR), Kriti (GR), Kentriki 

Makedonia (GR), Dytiki Makedonia (GR), 

Thessalia (GR), Dytiki Ellada (GR), Peloponnisos 

(GR), Voreio Aigaio (GR), Notio Aigaio (GR), 

Dublin (IE), Centro (PT), Alentejo (PT), Algarve 

(PT), Northern Ireland (UK) 

14 

North East (UK) 

1 
0 

Norte (PT) 

Lisboa e 

Vale do 

Tejo (PT) 

Scotland 

(UK) 

(3) 

23 

LL 18 0 

Karlsruhe (DE), Freiburg (DE), 

Tübingen (DE), Darmstadt (DE), 

Arnsberg (DE), Rheinhessen-Pfalz 

(DE), Alsace (FR), Franche-Comté 

(FR), Poitou-Charentes (FR), Limousin 

(FR), Auvergne (FR), Piemonte (IT), 

Veneto (IT), Valle d'Aosta (IT), 

Lombardia (IT), Trentino-Alto Adige 

(IT), Friuli-Venezia Giulia (IT) 

LUXEMBOURG 

18 

0 0 36 

HL 1 0 
Gießen (DE)  Kassel (DE) 

2 
0 0 3 

LH 0 

Galicia (ES)  Andalucia (ES) 

Sterea Ellada (GR) 

3 

0 0 0 3 

Sum 40 21 77 2 5 145 

 

 

 


