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Abstract

We show that the empirical distribution of the roots of the vec-

tor auto-regression of order n fitted to T observations of a general

stationary or non-stationary process, converges to the uniform distri-

bution over the unit circle on the complex plane, when both T and n

tend to infinity so that (lnT ) /n → 0 and n3/T → 0. In particular,

even if the process is a white noise, the roots of the estimated vector

auto-regression will converge by absolute value to unity.
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1 Introduction

The last two decades have witnessed the rapid development of econometric

methods dealing with detecting and analyzing nonstationary or highly persis-

tent features in time series: see e.g. Műller and Watson (2008) and the refer-

ences therein for a recent leading example. Researchers are often inclined to

interpret the presence of an estimated root with a near-unit absolute value

as evidence for nonstationarity in the data. Should they? Recent studies

suggest controversial answers. Johansen (2003) established
√
T asymptotic

normality of the estimated simple auto-regressive roots, which suggests that

large estimated root should indicate persistence. Granger and Jeon (2006)

has found that the roots of auto-regressions fitted to USmacroeconomic series

when plotted on the complex plane “lie in an indistinct ‘milky-way’ band or

‘halo’, with modulus around 0.8”. They speculate that such a strange pattern

reflects the over-fitting rather than the persistence of the underlying series.

Nielsen and Nielsen (2008) point out that the usual
√
T rate of convergence

slows down to T 1/2k for the roots of k-th order. They use this fact to provide

a partial explanation of the ‘halo phenomenon’.

In this paper, we shed light on these issues. We study the roots of the char-

acteristic polynomials of VAR fitted either to stationary or to non-stationary

data. We show that the empirical distribution of the roots converges to the

uniform distribution over the unit circle when both the sample size T and

the order n of the fitted VAR tend to infinity so that (lnT ) /n → 0 and
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n3/T → 0. This convergence is independent from the covariance structure of

the process approximated by the VAR. In particular, even if the process is a

white noise, the roots of the estimated vector auto-regression will converge

by absolute value to unity.

Our analysis builds on two results in particular. First, and for the econo-

metric side, Saikkonen and Lütkepohl (1996) have analyzed the asymptotic

properties of VAR estimates, when both the sample size T and the order

n of the fitted VAR tend to infinity. Adopting their proofs allows us to

derive helpful asymptotic properties in our context. Second, and for the

algebraic side, we make use of a theorem by Erdös and Turan (1950), who

have provided a bound for the number of roots of a polynomial lying in a

segment of the complex plane. The hard work in proving the main result

then consists in “translating” the Saikkonen-Lütkepohl-inspired asymptotic

results into the conditions needed for Erdös and Turan (1950) and to derive

near-unity lower and upper bounds for the absolute value of the roots.

2 The main result

Following Saikkonen and Lütkepohl (1996), we consider a r-dimensional

process yt = (y01t, y
0
2t)

0 such that its r1-dimensional component y1t and r2-
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dimensional component y2t satisfy:

y1t = C1y2t + u1t,

∆y2t = u2t,
(1)

where r > 0, r1 ≥ 0, r2 ≥ 0, and where ut = (u01t, u02t)0 is a zero mean strictly

stationary process.

Note that the triangular error correction model form of (1) is:

∆yt = −




Ir1 −C1
0 0


 yt−1 + vt,

where vt =




Ir1 C1

0 Ir2


ut. We assume that the process vt (and hence also

ut) has a VAR(∞) representation:

X∞

j=0
Gjvt−j = εt, G0 = Ir. (2)

Here {..., ε−1, ε0, ε1, ...} is a sequence of i.i.d. random r × 1 vectors with

mean Eεt = 0, positive definite covariance matrix Σε and finite fourth mo-

ments. Recall the definition of the Frobenius norm for a matrix kAk =
qP

ij | Aij |2 =
√
trAA0. We assume that the r × r coefficient matrices

Gj are such that
P∞

j=1 j kGjk < ∞ and that G(z) ≡ Ir + G1z + G2z
2 + ...

satisfies detG (z) 6= 0 for |z| ≤ 1. Note that the above DGP spans a wide
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range of processes from stationary invertible ARMA, when r2 = 0, to general

cointegrated processes.

Let Â1, ..., Ân be the OLS estimates of the coefficient matrices of a vector

auto-regression of n-th order fitted to T observations of yt. Consider the

estimated characteristic polynomial

P̂n,T (z) = det

Ã

Irz
n −

nX

j=1

Âjz
n−j
!

(3)

Let us denote the number of the roots of P̂n,T (z) that belong to a subset Ω

of the complex plane as Nn,T (Ω) . For any 0 < δ < 1 and 0 ≤ θ < ϕ ≤ 2π,

let Cδ = {z ∈ C : 1− δ < |z| < 1 + δ} be an annulus in the complex plane

that contains the unit circle and let Dθ,ϕ = {z ∈ C : θ ≤ Arg(z) ≤ ϕ} be a

sector in the complex plane. Our result is as follows.

Theorem 1. Let {yt} satisfy (1), and assume that n is chosen as a function

of T so that n3/T → 0, (lnT ) /n → 0, and
√
T (kGnk+ kGn+1k+ ...) → 0

as T →∞. Then, for any 0 < δ < 1 and any 0 ≤ θ < ϕ ≤ 2π, as T →∞ :

i) 1
nr
Nn,T (Dθ,ϕ)

p→ ϕ−θ
2π
,

ii) 1
nr
Nn,T (Cδ)

p→ 1.

Figure 1 illustrates the result. It shows the roots of P̂n,T (z) for T =

100, n = 12 (100 MC replications) and for T = 1000, n = 48 (33 MC replica-

tions). The upper panel of the Figure corresponds to yt which is a univariate

white noise, the lower panel of the Figure corresponds to yt which is a uni-
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variate random walk. As T and n become larger, the roots stick to the unit

circle in a uniform way for both the white noise and the random walk.
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Figure 1: Characteristic roots of VAR(n) fitted to T observations of white
noise (top row) and a random walk (bottom row). Left panel: 100 MC
replications, T=100, n=12. Right panel: 33 MC replications, T=1000, n=48.

Note that P̂n,T (z) can be interpreted as a polynomial with random co-

efficients. Shparo and Schur (1962) prove an equivalent of Theorem 1 for

polynomials with i.i.d. coefficients under very general assumptions. For a

beautiful geometric discussion of the properties of the roots of random poly-

nomials which provides a piece of intuition for the Shparo and Schur’s result

see Edelman and Kostlan (1995). The contribution of this paper is to extend

Shparo and Schur (1962) to P̂n,T (z) whose coefficients are functions of OLS
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estimates of the auto-regressive parameters, and therefore not i.i.d.

3 Providing a proof.

3.1 Three Lemmas

In order to prove Theorem 1, we need some asymptotic properties of Â1, ..., Ân.

To that end, we draw on the analysis of (1), (2) in Saikkonen and Lütkepohl

(1996), which needs to be adapted somewhat for our purposes. It is easy to

see that yt has the VAR representation yt = A1yt−1+ ...+Anyt−n+ et, where

et = εt −
P∞

j=nGjvt−j,

A1 = H −G1,

Aj = Gj−1H −Gj for j = 2, 3, ..., n− 1,

An = Gn−1H,

(4)

and H ≡



0 C1

0 Ir2


 .

Lemma 1. Under the conditions of Theorem 1, we have:

i)
°°°Â−A

°°° = Op

¡p
n
T

¢
, where Â ≡ [Â1, ..., Ân] and A ≡ [A1, ..., An],

ii) Pr
³
σr
³√

T
³
Ân −An

´´
> δT

´
→ 1 for any sequence δT such that δT →

0 as T → ∞. Here σr (M) denotes the r-th singular value of a matrix M ,

that is the square root of the r-th largest eigenvalue of MM 0.

A proof of Lemma 1 is given in the Technical Appendix. It uses the same
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techniques as proofs in Saikkonen and Lütkepohl (1996). These authors have

shown that any J linear combinations of Â− A are asymptotically normal,

for arbitrary values of J . With some work, this can be shown to imply

the second statement in the Lemma. Furthermore, adapting their strategy

delivers the first statement. Note that the length of the vector vec
³
Â−A

´

is increasing with the sample size rather than being fixed at some length N .

For stationary DGP, the lemma follows from the proof of Theorem 1 and

from Theorem 4 of Lewis and Reinsel (1985).

Additionally, we need the following lemmata:

Lemma 2. (Erdös and Turan, 1950) Let ak, k = 0, 1, ..., rn, be arbitrary

complex numbers not all of which are equal to zero, and let N (θ, ϕ) denote

the number of zeros of Frn (z) =
Prn

k=0 akz
k that lie in the sector 0 ≤ θ ≤

arg z ≤ ϕ. Then, for a0arn 6= 0:

¯̄
¯̄N (θ, ϕ)− (ϕ− θ) rn

2π

¯̄
¯̄ < 16

"

rn ln

Prn
k=0 |ak|

|a0arn|
1/2

#1/2
. (5)

Lemma 3. Let U, V be two r × r matrices. Then

|detV |1/r ≥ σr (V + U)− σ1 (U) ≥ σr (V + U)− kUk . (6)

If U and V are nonsingular, then

σr (V U) ≥ σr (V )σr (U) . (7)
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Proof. According to a singular value analog of Weyl’s inequalities for eigen-

values (see Theorem 3.3.6 in Horn and Johnson, 1991), for any r×r matrices

V and U and for any integers i and j such that 1 ≤ i, j ≤ r and i+j ≤ r+1,

we have:

σi+j−1 (V + U) ≤ σi (V ) + σj (U) and (8)

σi+j−1 (V U) ≤ σi (V )σj (U) . (9)

Inequality (8) implies that σr (V + U) ≤ σr (V ) + σ1 (U) and therefore,

σr (V ) ≥ σr (V + U)−σ1 (U) .The latter inequality and the fact that |detV | =
Qr

i=1 σi (V ) ≥ [σr (V )]r implies the first inequality in (6). The second fol-

lows directly from σ1 (U) ≤ kUk. Noting that σr(U) = σ−11 (U
−1) for any

non-singular r × r matrix U and using inequality (9), we get (7) per

σr (V U) = σ−11
¡
U−1V −1

¢
≥ σ−11

¡
U−1

¢
σ−11

¡
V −1

¢
= σr (V )σr (U) (10)

Q.E.D.

3.2 The proof of Theorem 1

With these Lemmata, we are ready to state our proof for Theorem 1. It may

be useful to provide a road map first.

The key is that the determinant of Ân is the product of the roots of the

characteristic polynomial (3). The first part of Lemma 3 allows us to bound
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the determinant of Ân from below with the difference of σr
³
Ân −An

´
and

kAnk. While the second term converges to zero faster than 1/
√
T , the first

term converges slower than δT/
√
T for any sequence δT → 0 per the first

statement of Lemma 1.

We thereby obtain a lower bound for the denominator of the right hand

side of (5). Furthermore, the first statement of Lemma 1 provides us with

an upper bound of the numerator. Taken together, they turn out to imply

the right upper bound in (5) to establish the first part of Theorem 1.

For the second part, we first provide an upper bound and then a lower

bound on the roots. The upper bound, i.e. that the roots of the estimated

VAR are not too explosive, is plausible intuitively, but requires some work,

since the number of VAR lags increases to infinity. Lemma 3 together with

detG (z) 6= 0 for |z| ≤ 1 allows us to bound (3), i.e. the determinant of a

lag polynomial, above zero for any complex number exceeding 1 + δ, where

δ > 0. The first statement of Lemma 1 establishes convergence of the bound

for the estimate to the true upper bound.

The more surprising result surely is the lower bound. Suppose, though,

that a positive fraction of the roots violates that lower bound. Since the

other roots are bounded above by the previous argument, the product of all

roots and therefore the determinant of Ân can be shown to shrink faster than

is allowed by the second statement of Lemma 1, a contradiction.

The sketch above necessarily leaves away some crucial calculations which

are needed to show that the bounds work out exactly as desired for Theorem
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1 to hold. It is time to provide the details.

Proof.

for i) Taking Frn (z) ≡
Prn

k=0 akz
k = det

³
znIr −

Pn
j=1 Âjz

n−j
´
, we have:

a0arn = det
³
−Ân

´
. Taking V =

√
TÂn and U = −

√
TAn in (6) and

noting that σ1 (U) = σ1 (−U) ≤ k−Uk , we get:
¯̄
¯det

³√
TÂn

´¯̄
¯
1/r

≥

σr
³√

T
³
Ân −An

´´
−
√
T kAnk . The second term in the latter differ-

ence converges to zero by the assumption that
√
T (kGnk+ kGn+1k+ ...)→

0. The first term satisfies Lemma 1ii) with, say, δT = n−1/2+
√
T kAnk.

Therefore,

Pr
³
|a0arn| > (nT )

−r/2
´
→ 1. (11)

By definition of the determinant, Frn (z) =
P

τ

(−1)|τ | P1τ(1) (z) ...Prτ(r) (z) ,

where the summation is over all permutations of 1, 2, ..., r and Pij (z) ≡

zn − Â1,ijz
n−1 − ...− Ân,ij. Such a representation implies that

nrX

k=0

|ak| ≤
X

τ

rY

i=1

Ã

1 +
nX

j=1

¯̄
¯Âj,iτ(i)

¯̄
¯

!

≤
X

τ

rY

i=1

Ã

1 +
√
n
°°°Â−A

°°°+
nX

j=1

kAjk

!

where the latter inequality uses the fact that for any vector v = (v1, ..., vn) ,
Pn

j=1 |vj| ≤
√
n kvk .But formulas (4) and the assumption that

P∞
j=1 j kGjk <

∞ imply that
Pn

j=1 kAjk is uniformly bounded and by Lemma 1i)

√
n
°°°Â−A

°°° = n−1/2Op

³p
n3/T

´
≤ op(1). Therefore, there exists a

constant M such that Pr

µ
nrP

k=0

|ak| ≤M

¶
→ 1. Combining the latter

convergence with (11), we obtain: Pr
³

rn
k=0|ak|

|a0arn|
1/2 < M (nT )r/4

´
→ 1.
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This fact and Lemma 2 imply that

Pr

Ã¯̄
¯̄N (θ, ϕ)

rn
− (ϕ− θ)

2π

¯̄
¯̄ < 16

r
lnM

rn
+
lnT + lnn

4n

!

→ 1

which proves statement i) of Theorem 1 because lnT/n → 0 by as-

sumption.

for ii) Define Z = [z−1Ir, z−2Ir, ..., z−nIr]
0
.Then P̂n,T (z) = zrn det

³
Ir − ÂZ

´

and therefore, using (6) with V = zn
³
Ir − ÂZ

´
and U = zn(Â−A)Z,

we have:
¯̄
¯P̂n,T (z)

¯̄
¯
1/r

≥ |z|n
³
σr (Ir −AZ)− σ1

³
(Â−A)Z

´´
. Using

(4), we get:

Ir −AZ =

Ã
n−1X

j=0

Gjz
−j
!

(Ir −Hz−1). (12)

Let us prove that there exists a constant c > 0 such that

inf
|z|>1+δ

σr (Ir −AZ) > c for large enough n. (13)

Inequality (7) implies that

σr (Ir −AZ) = σr
³³Xn−1

j=0
Gjz

−j
´
(Ir −Hz−1)

´

≥ σr
¡
Ir −Hz−1

¢
σr
³Xn−1

j=0
Gjz

−j
´

(14)

We see that to establish (13), it is enough to show that there exists c > 0

such that inf |z|>1+δ σr (Ir −Hz−1) >
√
c and inf |z|>1+δ σr

³Pn−1
j=0 Gjz

−j
´
>

√
c for large enough n.
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For σr (Ir −Hz−1) , consider a decomposition H = RQ, where

R ≡




Ir1 C1

0 Ir2


 and Q ≡



0 0

0 Ir2


 .

Note that Ir −Hz−1 = R (Ir −Qz−1)R−1 because QR−1 = Q. Using

inequality (7) twice, we get:

σr
¡
Ir −Hz−1

¢
≥ σr (R)σr

£¡
Ir −Qz−1

¢
R−1

¤
(15)

≥ σr (R)σr
¡
Ir −Qz−1

¢
σr
¡
R−1

¢
.

But by definition of Q, σr (Ir −Qz−1) = min {1, |1− z−1|} ≥ 1− |z|−1

and thus, inf |z|>1+δ σr (Ir −Qz−1) > 1 − (1 + δ)−1. Since R is a fixed

non-singular matrix, the latter inequality and (15) imply that there

exists c1 > 0 such that inf |z|>1+δ σr (Ir −Hz−1) > c1.

As to σr
³Pn−1

j=0 Gjz
−j
´
, note that, since

Pn−1
j=0 Gjz

−j converges to

G(z−1) in Frobenius norm uniformly on |z| ≥ 1, we have:

inf
|z|≥1+δ

σr
³Xn−1

j=0
Gjz

−j
´
≥ c1 inf

|z|≥1+δ
σr
¡
G(z−1)

¢
(16)

for some c1 > 0 and large enough n.On the other hand, since detG(z
−1) =

Qr
i=1 σi (G(z

−1)) and since σi (G(z−1)) ≤ kG(z−1)k , we have:

σr
¡
G(z−1)

¢
=

detG(z−1)
Qr−1

i=1 σi (G(z
−1))

≥ detG(z−1)

kG(z−1)kr−1
. (17)
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But by assumption,
P∞

j=1 kGjk <∞.Therefore, sup|z|≥1 kG(z
−1)k

r−1
<

∞. Finally, since detG (z−1) 6= 0 is a continuous function of z for

|z| ≥ 1, we have: inf |z|≥1 detG(z−1) > 0. Hence, by (17), there ex-

ists c2 > 0 such that inf |z|≥1 σr (G(z−1)) > c2. This fact together with

(16) implies that inf |z|>1+δ σr
³Pn−1

j=0 Gjz
−j
´
≥ c1c2 for large enough n,

which completes the proof of (13).

Now, using (9) and the fact that for any matrix U, σ1 (U) ≤ kUk ,

we obtain: σ1
³
(Â−A)Z

´
≤
°°°Â−A

°°°σ1 (Z) =
°°°Â−A

°°°
q

1−|z|−2n
|z|2−1 ≤°°°Â−A

°°°
q

1
2δ
= op (1) uniformly over |z| > 1 + δ. Summing up,

min|z|>1+δ

¯̄
¯P̂n,T (z)

¯̄
¯
1/r

≥ min|z|>1+δ |z|n (c− op(1)) > 0 with probabil-

ity arbitrarily close to one for large enough T and n. Hence, for any

δ > 0 :

Pr (Nn,T (B1+δ) = rn)→ 1, (18)

where B1+δ is the ball of radius 1 + δ in the complex plane.

It remains to be shown that 1
nr
Nn,T (B1−δ)

p→ 0, or, in other words,

that for any ε > 0, Pr
¡
1
nr
Nn,T (B1−δ) < ε

¢
→ 1 as T → ∞. Let us fix

an ε > 0 and let τ > 0 be such that

− ln (1 + τ) / ln(1− δ) = ε/2. (19)

Let z1, ..., zrn be the roots of P̂n,T (z) so that P̂n,T (z) =
Qrn

i=1 (z − zi) .

Note that det
³
−Ân

´
equals (−1)rnQrn

i=1 zi, and therefore,
¯̄
¯det

³
Ân

´¯̄
¯ =

Qrn
i=1 |zi| . Replacing δ by τ in (18), we see that all of |zi| are no larger
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than 1+ τ with probability arbitrarily close to one for large enough T.

Furthermore, by definition, there are Nn,T (B1−δ) of |zi| which are less

than or equal 1− δ. Thus,

Pr
³¯̄
¯det

³√
TÂn

´¯̄
¯ < T r/2 (1− δ)Nn,T (B1−δ) (1 + τ)rn

´
→ 1 (20)

Using this convergence and (11), we have:

Pr
³
n−r/2 < T r/2 (1− δ)Nn,T (B1−δ) (1 + τ)rn

´
→ 1. Taking logarithms of

the both sides of the latter inequality, rearranging and recalling (19),

we get: Pr
³
1
nr
Nn,T (B1−δ) <

ε
2
+ 1

2n
lnT+lnn
− ln(1−δ)

´
→ 1 which implies that

Pr
¡
1
nr
Nn,T (B1−δ) < ε

¢
→ 1.

Q.E.D.

4 Conclusions

We have shown that the empirical distribution of the roots converges to the

uniform distribution over the unit circle when both the sample size T and the

order n of a fitted VAR tends to infinity so that (lnT ) /n→ 0 and n3/T → 0.

In particular, even if the process is a white noise, the roots of the estimated

vector auto-regression will converge by absolute value to unity. Therefore,

caution is recommended when finding a number of roots with absolute values

near unity and drawing the conclusion that the data is highly persistent.

We would like to point out that the striking ubiquity of unit roots estab-
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lished by Theorem 1 does not have negative implications for the econometric

procedures not directly based on the estimated roots. For example, univariate

stationary processes that satisfy the conditions of Theorem 1 would satisfy

Berk’s (1974) conditions for the consistency and asymptotic normality of the

auto-regressive spectral estimates. For another example, the critical coef-

ficient in the “long” augmented Dickey-Fuller regression would not behave

peculiarly because it is related to the characteristic roots of the regression

only through their sum. What Theorem 1 does imply, is that inference re-

garding the presence of unit roots and nonstationarity by looking at the

largest roots in an autoregression can be highly misleading: with enough

lags, one is bound to detect many roots near unity, even if the data is white

noise.
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Technical Appendix

5 Proof of Lemma 1

In the proof, we will use both notations of our paper and those of Saikkonen

and Lütkepohl (1996), SU in what follows. Note that n here corresponds to

h+ 1 there and T − n here corresponds to N there. Our assumptions imply

T/N = T/(T − n)→ 1.

First, let us prove that

°°°Ξ̃− Ξ
°°° = Op

µr
n

T

¶
, (21)

where Ξ and Ξ̃ are defined on p.830 of SU. Equation (A.4) in SU implies

r
T

n

°°°Ξ̃− Ξ
°°° ≤

r
1

n

Ã
T

T − n
T−1/2

°°°
XT

t=n+1
εtU

0
tΓ
−1
u

°°°+
r

T

T − n

X3

j=1
kFjk

!

Since SU show in the proof of LemmaA.3, that kF2k and kF3k areOp

³p
n3/T

´
=

op (1), it remains to show that kF1k and T−1/2
°°°
PT

t=n+1 εtU
0
tΓ
−1
u

°°° are both

Op (
√
n) . As in the proof of Lemma A.3 except for dropping Mh, we have
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that

E kF1k ≤
³
E
°°Γ−1u Ut ⊗ Σ1/2ε

°°2
´1/2 ³

(T − n)E
°°Σ−1/2ε e1t

°°2
´1/2

and the latter square root is o(1). For the former, we have: E
°°°Γ−1u Ut ⊗Σ

1/2
ε

°°°
2

=

trΓ−1u trΣε ≤ nrλ−1min (Γu) trΣε. Since, as we show below, λmin (Γu) > c for

some constant c > 0, we have: E kF1k = O (
√
n) and kF1k = Op (

√
n) .

The lower bound on λmin (Γu) can be established as follows. By definition,

Γu = EUtU
0
t , where U

0
t =

£
u0t−1, ..., u

0
t−n+1, u

0
1,t−n

¤
. Let x0 =

£
x01, ..., x

0
n−1, x

0
n,1

¤

be any unit-length vector with r-dimensional subvectors x0j =
£
x0j,1, x

0
j,2

¤
,

where xj,1 is r1 × 1, xj,2 is r2 × 1 and xn,2 ≡ 0. We have:

x0Γux = Var
h³Xn

j=1
x0jL

j
´
ut
i
=

Z 2π

0

³Xn

j=1
x0je

ijλ
´
fuu (λ)

³Xn

j=1
xje

−ijλ
´
dλ

≥ inf
λ∈[0,2π]

σr (fuu (λ))

Z 2π

0

°°°
Xn

j=1
x0je

ijλ
°°°
2

dλ = 2π inf
λ∈[0,2π]

σr (fuu (λ)) ,

where fuu (λ) is the spectral density matrix for ut. Therefore, λmin (Γu) >

2π infλ∈[0,2π] σr (fuu (λ)) . But fuu (λ) =
1
2π
R−1G(eiλ)Σε

¡
R−1G(eiλ)

¢∗
, where,

by assumption, Σε is positive definite, R is non-singular, det
¡
G(eiλ)

¢
6= 0

for λ ∈ [0, 2π] and
°°G(eiλ)

°° < ∞ for λ ∈ [0, 2π]. Since det
¡
G(eiλ)

¢
is

continuous function of λ ∈ [0, 2π] , we have: infλ∈[0,2π] σr (fuu (λ)) > 0, and

therefore, λmin (Γu) > c for some constant c > 0.

To establish (21), it remains to show that T−1/2
°°°
PT

t=n+1 εtU
0
tΓ
−1
u

°°° is

Op (
√
n) . We have: E

°°°
PT

t=n+1 εtU
0
tΓ
−1
u

°°° ≤ c−1E
°°°
PT

t=n+1 εtU
0
t

°°° and
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E
°°°
PT

t=n+1 εtU
0
t

°°°
2

=
PT

t=n+1Eε
0
tεtEU

0
tUt ≤ n (T − n) trΣε trEutu

0
t. There-

fore, E
°°°
PT

t=n+1 εtU
0
tΓ
−1
u

°°° isO
³√

nT
´
which implies that T−1/2

°°°
PT

t=n+1 εtU
0
tΓ
−1
u

°°°

is Op (
√
n) .

Now, using definitions of Ξj, Ξ̃j and Âj, we obtain:

A1 = Ξ1R
−1 + Ir and Â1 = Ξ̃1R

−1 + Ir +
h
0r×r1 : Ψ̃2 + Ψ̃1C1

i
;

Aj = ΞjR
−1 − Ξj−1Q and Âj = Ξ̃jR

−1 − Ξ̃j−1Q, for j = 2, 3, ..., n− 1;

An = [Ξn,1 : −Ξn,1C1]− Ξn−1Q and Ân =
h
Ξ̃n,1 : −Ξ̃n,1C1

i
− Ξ̃n−1Q

and therefore, Â−A =
³
Ξ̃− Ξ

´
Sh + [Z1 : 0r×hr], where

Sh =




Ih ⊗R−1 0hr×r

0r1×hr [Ir1 ,−C1]


+



0hr×r −Ih ⊗Q

0r1×r 0r1×hr


 and (22)

Z1 =
h
0r×r1 : Ψ̃2 + Ψ̃1C1

i
.

Decomposition (22) implies that σ1 (Sh) ≤ σ1 (R
−1)+σ1 ([Ir1 ,−C1])+σ1 (Q) ,

and therefore, σ1 (Sh) is bounded. Further, as stated on page 832 of SU,

kZ1k = Op (T
−1) .The latter two facts together with (21) imply that

°°°Â−A
°°° =

Op

¡p
n
T

¢
and thus, the first statement of Lemma 1 holds.

Turning to the proof of the second statement, note from (22) that

Ân − An =
³
Ξ̃− Ξ

´
Ψ, where Ψ is an (hr + r1) × r matrix with the upper

(hr − r2)× r block zero and the lower r × r block equal to




0 −Ir2
Ir1 −C1


.
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Lemma A.3 of SU implies that for any sequence of r2-dimensional vector

ln,
√
Tσ−1n l0n vec

³
Ân −An

´
d→ N (0, 1) , where σ2n = l0n (Ψ

0Γ−1u Ψ⊗ Σε) ln.

By Theorem 4.2.12 of Horn and Johnson (1991), which describes the eigen-

values of a Kronecker product as products of the eigenvalues of the com-

ponents of the product, λmin (Ψ
0Γ−1u Ψ⊗Σε) ≥ λmin (Ψ

0Γ−1u Ψ)λmin (Σε) and

λmax (Ψ
0Γ−1u Ψ⊗ Σε) ≤ λmax (Ψ

0Γ−1u Ψ)λmax (Σε) .On the other hand, λmin (Ψ
0Γ−1u Ψ) ≥

σ2r (Ψ)λmin (Γ
−1
u ) = σ2r (R

−1)λmin (Γ−1u ) > b1 for some b1 > 0, where the mid-

dle equality follows from the fact that




0 −Ir2
Ir1 −C1


 equals an orthogonal

matrix times R−1. Similarly, λmax (Ψ0Γ−1u Ψ)λmax (Σε) ≤ σ21 (Ψ)λmax (Γ
−1
u ) =

σ21 (R
−1)λmax (Γ−1u ) < b2 for some b2 > 0. Summing up, c1 < σ2n < c2 for

some c1, c2 > 0. But such inequalities imply that for any measurable subset

Ω of r2-dimensional Euclidean space such that Pr (N (0, Ir2) ∈ Ω) 6= 0, there

exist d1, d2 > 0 such that d1 <
Pr(

√
T vec(Ân−An)∈Ω)
Pr(N(0,Ir2)∈Ω)

< d2 for large enough n.

Had the statement ii) of Lemma 1 been false, there would have existed

a sequence δT → 0 and ε > 0 such that for any T0 there exists T > T0

such that Pr
³
σr
³√

T
³
Ân −An

´´
< δT

´
> ε. Given some δ > 0, let Ω (δ)

be the subset of r2-dimensional Euclidean space such that for any vector

w ∈ Ω (δ) , the r × r matrix W defined by vecW ≡ w satisfies σr (W ) < δ.

Choose δ small enough so that Pr (N (0, Ir2) ∈ Ω (δ)) < ε
2d2

. Then, for large

enough T, we have δT < δ and therefore Pr
³√

Tσr
³
Ân −An

´
< δT

´
≤

Pr
³√

Tσr
³
Ân −An

´
< δ
´
= Pr

³√
T vec

³
Ân −An

´
∈ Ω(δ)

´
<

d2 Pr (N (0, Ir2) ∈ Ω (δ)) < ε
2
. We have got a contradiction, and therefore
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statement ii) of Lemma 1 is true. Q.E.D.
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