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Abstract

This paper incorporates Rational Inattention as defined by Sims (2003a)
to a traditional RBC model with multiple sources of uncertainty. Our
model distinguishes between transitory and permanent labor and relative
investment productivity shocks. The introduction of information frictions
works as an endogenous adjustment cost: given the model parameters, the
degree of sluggishness of endogenous variables in response to shocks is op-
timally determined. In practical terms, Rational Inattention increases the
volatility and the contemporaneous correlations with output of consump-
tion and decreases those of investment and hours. Moreover, it generates
a trade-off between short-run and long-run shock variances. We believe
these effects might have important welfare implications and can provide an
analytical understanding on the links between business cycle fluctuations
and the long-run performance of an economy.

1 Introduction

In recent years, a growing literature has stressed the importance of information
frictions as an explanation for the characteristics displayed by macroeconomic
time-series. In spite of different microeconomic foundations, those works as-
sume in common that agents are unable to absorb all information available and,
therefore, cannot promptly incorporate it into their decisions. Costs associated
with processing information generate optimal levels of inattention, which takes
shape either as infrequent or incomplete information updating.

Notably, Sims (2003a) proposed that Rational Inattention is a plausible
mechanism for introducing sluggishness and delayed responses in economic mod-
els. In this framework, economic agents have limited capacity for processing
information and, therefore, have to allocate their attention optimally to map
different state variables. However, the mapping between economic conditions
and decisions regarding, for instance, consumption levels or relative prices is
imperfect: decisions take not into account the true state of the economy, but
instead the perceived state.



Differently, however, from most examples in the literature of signal extrac-
tion or imperfect information the noise properties are endogenously determined.
Information constrained decision-makers set the joint distribution of the per-
ceived states in order to reduce as best as possible the uncertainty about the
true states of the economy, subject to limited ability to process new information.
Uncertainty is measured by the concept of entropy, as suggested by Shannon
(1948). This formulation allows the possibility of allocating attention accord-
ing to the relative importance attributed each variable in the decision-making
process. Marckowiak and Wiederholt (2008), for instance, use a general formu-
lation for pricing decisions and show that firms tend to allocate a high degree of
attention to map idiosyncratic variables and a small degree to aggregate ones.

In our formulation, the multiple sources of uncertainty come from aggregate
productivity shocks. These shocks differ in the nature of their influence over
production factors (whether neutral or factor specific) and on the extent in which
effects take place (whether transitory or permanent shocks). Neutral technology
shocks are given by simplistic labor productivity shocks, whose effects over the
business cycle are well established in the literature. Factor specific shocks are
innovations to relative investment productivity, whose relevance in short and
long horizons has been extensively discussed by Greenwood et al (1998, 2000),
Fisher (2006), Justiniano et al (2008), among others.

We allow both types of technology innovations to display a transitory and
a permanent component. The first takes shape of a mean reverting AR(1) ex-
ogenous process and the second of a random walk with drift. decision-makers
allocate their attention in order to identify what is the current state of the
technology. But because the extent in which they can do it is limited by the
information processing constraint, responses to long-term innovations are influ-
enced by the structural parameters of short-term shocks. Higher variances for
sort-term technology shocks make it harder to solve the information problem
as a whole once it increases the uncertainty about all true states of the econ-
omy. In practical terms, we observe delayed responses in coping with long-term
technological changes.

In the next Section, we present the complete model. Our benchmark econ-
omy consists of a typical RBC model with two different capital stocks: struc-
tures and equipment. We use Benigno and Woodfords’s (2008) framework to
reshape the central planner’s problem into a purely linear-quadratic (LQ) one
that correctly approximates the equilibrium conditions up to first order. The
LQ formulation proves particularly convenient for the inclusion of information
frictions because it reduces the dimensionality of the problem of allocating at-
tention. If uncertainty is relatively small, linear approximations can deliver
reasonable accurate results even under information frictions.

In Section 3, we present the theoretical results. In our benchmark calibra-
tion, the introduction of information frictions increases the volatility of con-
sumption and its correlation with contemporary output. It also decreases the
volatility and the contemporary correlation with output of hours and invest-
ment. Both features seem a desirable improvement over the benchmark model,
resembling the effects obtained with the use of ad hoc adjustment costs. In



this sense, we believe Rational Inattention and the inclusion of information fric-
tions in a broader perspective can provide a justification for the use of convex
adjustment costs to improve the performance of RBC models.

In the long-run, Rational Inattention imposes a trade-off between short-term
and long-term volatilities. We suggest this result can impose relevant welfare
losses due to short-term fluctuations, which stands as a counter-argument to
Lucas (1987). It can also provide an analytical framework to study technology
diffusion.

In Section 4, we conclude by pointing out further possibilities to extend our
analysis.

2 Model

2.1 Agents

The model is a modified version of Greenwood et al (1998, 2000), that has been
extensively used by many authors in recent contributions to business cycles re-
search. The economy is populated by a representative household that maximizes
the expected value of its infinite lifetime utility and a representative firm which
establishes the production level using a technology based on labor hours and
two different types of capital stock. The representative household chooses its
consumption level (C) and the number of hours to supply the labor market (H)
in order to maximize

Uto = Eto Z 5t7t0u(ctv Ht)? (1)

t=to

where (3 is the discount factor. We assume that u(.,.) is a log-utility function,
such that:
U(Ct,Ht) :lnCt—l—Gln(l _Ht) (2)

The production of the final good Y%, in addition to labor hours, requires two
types of capital: K.: and K., respectively, equipment and structures, which
are taken as given in the beginning of any date. Production obeys the following
constant-returns to scale technology

Yy = KSi KOG [AH ) 00, 3)

where ae,as > 0 and a. + a5 < 1. A; stands for a labor productivity factor,
neutral in terms of the particular kind of capital stock. Aggregate demand and
market clearing impose:

Yi=Ci+Ies + Iy, (4)

where I.; and I, ; denote, respectively, the total amount invested in equipment
and structures, measured in units of aggregate consumption.



Capital accumulation is specific to each type of investment. That is: firms
decide how much they intend to invest in each type of capital on the basis of
their relative productivities. Hence, the law of motion for capital holdings is
given by

Kopr1=(1—-0%)Kss+ It (5)

for investment in structures and

Kepp1=(1—-0%Kes + 11 Qy (6)

for investment in equipment, where ) denotes the productivity of investment
in equipment relative to investment in structures. One possible interpretation
is that @ denotes the current state of technology in equipment, an investment-
specific technological factor affecting the incorporation of new equipment to pro-
duction. Greenwood et al (1997) suggest that this kind of technological change
accounts for 60% of the postwar growth of output per man-hour. Greenwood et
al (2000), Fisher (2006) and Justiniano et al (2008) stress investment-specific
shocks might have as well as important short-run implications, accounting for an
equally high percentage of fluctuations in output and hours at business-cycle fre-
quencies. Depreciation rates for capital holdings are such that 0 < §° < §° < 1.

2.2 Balanced Growth

Consider the exogenous productivity variables, which are the sources of fluctua-
tions in the model. For simplicity, we start by assuming that both variables have
their initial levels normalized to unity. Both productivity factors are composed
of a transitory (X{) and a permanent (X{) component , or X; = X/ . X[, for
X = A, Q. The transitory component is an AR(1) mean-reverting stochastic
process such that:

Al = (AP eXP(EaT,t)a Qf = Q) exp(s?t),

whereas the permanent component is a random walk with drift (respectively, -,
and 7, ):

AL = A v, exp(é‘it); Qf = Qiﬂ/q exp(s(it)-

Forcing terms 55’? are assumed to be independently and normaly distributed.

This generic formulation allows us to distinguish between short and long-
term effects of productivity shocks. In addition, the inclusion of stochastic
trends in the technological processes, as advocated by many authors, such as
King and Rebelo (1999) and Gali (1999).

The permanent components of productivity shocks given above set the growth
(stochastic) trend for model variables. We propose a transformation to make
the problem stationary with regard to these stochastic trends. Because there
is no labor force growth, the total amount of hours spent in production is sta-
tionary while other variables, such as output, consumption and investment, will



grow at the same rate. Define G, as the growth rate of variable X; under a
stochastic growth path. From (4), for the balanced growth path to be consis-
tent with common growth rates (and constant proportions of investment and
consumption over GDP), it is clear that output, consumption, investment in
structures and investment in equipment must grow at the same rate, G;. From
(5) and (6), respectively, Gy, = Gy and Gy, ; = QFG;. Using (3), it is pos-
sible to determine the value for G; in terms of the growth trend for exogenous
variables:

G = AL (QF) /1 maemes. (7)

Consider the following transformation: Xt = X;/G;, for the set of vari-
ables Xy =Y;, Cy, Loy, L5+, Ks+, and Ke,t = K../(G:QF). Finally, redefine
the notation for transitory components of both shocks as A; and Q,. Capital
hat-variables denote, therefore, deviations from their stochastic trends. The
transformed (detrended) policy problem is given by maximizing:

Uy = By, Y B InCy + 0In(1 — Hy), (8)
t=to
subject to:
KOG KO [AH, ) e (9)
. K. . K, R o
= Ci+ ge,t+117t+1 - (1-0°)— Lt Gsp1Ks 141 — (1 —6°) Ky,
Q1 Q1

given K. ., and K ,.

and where we have defined:

d— v «
e = a7/ exp {Eit * 1aea€5’t] |
(& S

Geit = Vavg /00T exp |:€¢113,t +(1+ 1%)53;] :
— Qe — Qg

Given the formulation above, Appendix A show that there is a determinis-
tic steady state for the detrended problem characterized by constant values for
all endogenous transformed variables and absence of shocks. The deterministic
steady state for the detrended problem can be use to generate second order log-
approximations for objective function and restrictions. By following the method
proposed Benigno and Woodford (2008), it is then possible to redefine the prob-
lem described above as a purely quadratic objective function and purely linear
restrictions. The new problem characterizes the policy function for endogenous
variables that is equivalent to the solution to the original (detrended) problem



obtained through a first order approximation of the set of equilibrium condi-
tions. The LQ formulation proves convenient for the addition of information
frictions.

Appendix B details the set of procedures involved in recasting policy objec-
tive (8) and restrictions expressed in (9) into a quadratic problem with linear
restrictions of the form:

Uy = By, | B " (S{AS, +28{Dey + ¢;Bay) | (10)
t=0
St+1 = G1S; + Gact + G36t+1. (11)

where matrices A, B, D, G1, G and (3 are all defined in terms of the structural
coefficients from the original model in the Appendix B. The vector ¢; includes
the set of control variables for the policy problem given in log-deviations: ag-
gregate consumption, labor hours and investment in equipment. S; includes the
state variables also given in log-deviations, such as labor productivity, relative
productivity of equipment, and capital stocks of equipment and structures. &
amounts for the forcing terms of exogenous processes or innovations in produc-
tivities, including innovations to both transitory as well as permanent shocks.
As noted above, when defining the evolution of the state variables in (11) we are
explicitly making the assumption that transitory shocks follow a mean reverting
AR(1) process.

2.3 Approximated Problem with Information Frictions

The standard RBC model as the one characterized in the previous Section as-
sumes that decision-makers have unlimited information-processing capacity and,
therefore, are able to timely characterize the state variables of the economy
while making decisions. In a more realistic way, agents face limitations either to
gather, select or evaluate the relevance of new information. As a consequence,
they may fail to fully respond by adjusting their optimal plans to changes in
state variables.

By following Sims (2003a), we use the concept of entropy from information
theory to characterize the degree of uncertainty over a random variable. The
idea initially proposed by Shannon (1948) consists of defining the information
flow as the rate of uncertainty reduction (or entropy reduction!). Under limited
information the social planner cannot observe the true state of the economy
without error. Hence, the decision consists of choosing an information structure
that reduces the uncertainty of the true state variables subject to the extent that
entropy can be reduced. For an upper bound for information capacity given by
Kk, the decision-maker chooses an optimal signal that reduces the uncertainty of

IFor any random variable X with pdf p(X), entropy is given by —E[log(p(X))]. If log is
considered in its natural base, then the information capacity is given in “nats”. If it is in base
2, then the information capacity is given in “bits”.



the true state as much as possible. Higher s imply a higher degree of attention.
The formal expression is given by

H(St|It_1) — H(St|It) S R, (12)

where H(S¢|Z;—1) denotes the entropy of the state vector prior to observing
the signal at ¢ and H(S;|Z;) after observing it (posterior), where Z, denotes
the information set available at that date. In the rational inattention theory,
proposed by Sims (2003a, 2005), memory can be accessed without any cost so
the entire history of past signals is assumed to be known.

The use of a representative agent in our model imply that uncertainty may
be regarded as “aggregate uncertainty”. As suggested by Sims (2005), a care-
ful application of rational inattention at microestructure level would involve
incorporating information constrained decisions to details such as bargainning,
inventories, retailers, demand deposits, cash, and others elements, which could
make the problem substantially more complex. One important consequence of
this choice is the exclusion from the model of strategic complementarity or sub-
stitutibility of actions among private agents. As argued by Woodford (2001),
Hellwig and Veldkamp (2009) or as stressed in the literature of global games, in
a situation where decisions are not only subject to a private degree of informa-
tion imprecision but also highly dependent of decisions made by other agents,
higher order expectations would play a crucial role in determining the degree of
sluggishness observed in the dynamics of aggregate economic variables.

Under information constraint the problem faced by the decision-maker can
be stated as choosing a sequence of values for control variables and posteriors
distributions for the true state variables given the observable signals in order
to maximize the quadratic objective function in (10) subject to (11) and (12),
where the expectation is now considered conditional on the information set
Z;. The problem, stated as it is, is infinite dimensional. However, we can use
the properties of the LQ approach in order to make it more tractable: in this
circunstances, the Rational Inattention approach becomes a tradicional problem
of signal extraction.

Let us define S; as the vector for the perceived state variables, which is
composed by the sum of a vector of true state variables, Sy, and a vector of
endogenous information-processing-induced measurement errors, (,, which is
also independent of the fundamental productivity shocks of the economy. By
applying certainty equivalence, we first notice that the policy function that
emerges from the full information problem is the same as the one from the
information constrained problem. The only difference is that in the second case
the policy function is linear in the perceived state variables S. Effectively, it is
then possible to break the problem into a deterministic part, which can be solved
using conventional techniques, and into an information constrained part, which
can be used to determine the posterior distributions for true state variables.

We assume the distribution of exogenous forcing terms is Gaussian, as well
as the distribution of state variables in a distant past. In these circumstances,
as shown in the Appendix C, the posterior distribution for state variables given



the observed signals is also Gaussian, with mean S, and variance ¢, where
we hereby restrict our attention to the situation in which ¥ is constant. The
infinite dimension problem reduces to one in which it is just needed to char-
acterize the second moments of the posterior distribution. Let us define the
time-invariant variance for exogenous processes ¢; as {) and the variance for
prior state variables as ¥?. The information constraint in (12) can then be
expressed as®

—log, |X| + log, || < 2k. (13)

The multiple sources of uncertainty present in the model impose an addi-
tional restriction: the difference between the prior and the posterior variance
matrix be positive definite, or formally:

U= 3. (14)

This additional restriction rules out the possibility that information capacity
can be trade-off by forgetting some existing information in order to increase
the precision of more relevant dimensions of the state vector. As described in
the Appendix C, the problem can then be restated as one that minimizes the
expected loss from information constrained decisions by choosing ¥, subject to
(13) and (14). This is a direct result that follows from the literature of rational
inattention by using a quadratic objective function obtained from a second order
approximation of the original objective function around a full information steady
state.

The evolution of the economy as driven by the exogenous shocks ¢; and noise
signals (, is given by the following set of equations:

St = GlStfl + GQthl + GSEt (15)
Sy = (I —SAY)Gy 4 GoH )81 + SATH(S, +¢,) (16)
Ct = ngt (17)

which characterize altogether the paths for state variables, perceived state vari-
ables and control variables as linear functions of perceived states. Equation (15)
is the law of motion for state variables, (16) is a Kalman-filter-type equation that
maps state variables into perceived states and (17) is a linear policy function
that maps control variables as a function of perceived states. We have defined
A as the covariance matrix of the vector of measurement errors induced by the
information constraint. For a stationary posterior distribution, A is determined
such that

?Defined from (11) as ¥ = G12G + ), where O = G3QGY .
3 Using the fact that entropy of a Gaussian distribution is half log of its variance plus some
constant term.



At=x"1 ot (18)

Matrix A can be decomposed such that A = IVAT', where I is a matrix of
eigenvectors and Aa diagonal matrix of eigenvalues. Given a certain structure
for the original variance of shocks €2, an eigenvalue of proportionally smaller
value implies a higher allocation of attention to the corresponding exogenous
forcing term. In addition, because A is generally a non-diagonal covariance ma-
trix, each element of the perceived state S, is a combination of the true state
plus a linear combination of endogenous noises, whose weights are given by the
columns of I'. In other words, the representative household chooses an optimal
combination of measurement errors to reduce the uncertainty about each indi-
vidual true state. Reducing the variance of the original shock expressed in €2
has the same effect of increasing the information processing capacity. This is
because a smaller variance of, for example, labor productivity, implies a greater
precision about that state and allows an addition allocation of capacity to in-
crease the precision of other perceived states.

3 Theoretical Results

We start by noticing that the benchmark calibration assigns an uniform set
of values for standard deviations of shocks. Trend stationary AR(1) shocks
for labor and relative investment productivities, also refereed to, respectively,
neutral technology and relative productivity of equipment shocks, have also the
same autocorrelation coefficient. This approach allows us compare more directly
the impulse response functions under rational inattention for different structural
shocks. In particular, convergence towards full information paths occur under
more or less the same range of given capacities. As usual, we assume there is
no correlation between innovations of productivity shocks.

Appendix D displays the employed values for the benchmark calibration.
Some of the parameter choices made depart from Greenwood et al (1998, 2000).
Intertemporal discount rate takes into account a 4% year steady state interest
rate. We set the parameters for capital share of income somewhat higher (35%)
and the yearly depreciation rate of capital stock lower (5.5%) in order to obtain
a more realistic proportion of steady state capital stock over quarterly GDP
(approximately twelve times) without the use of distortive taxation. Preference
parameter @ is set in order to obtain an amount of supplied labor hours in steady
state of 24% of the total endowment. The share of consumption over GDP is
set at 80%, while the remaining share is due to investment. Growth rate for
new equipment productivity is set to an yearly increase of 2,5%.

3.1 Business Cycle Dynamics

Figure 1 allows a qualitative assessment on the effect of information constraints
over the short-term dynamics of model variables. We explicitly consider sev-
eral levels of information processing capability, along with the impulse-responses
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Figure 1: Response of Selected Variables to a one s.d. stationary Labor Pro-
ductivity Shock.

generated by a one standard deviation shock in labor productivity under perfect
information (in green). These effects are well established in the literature: a
temporary increase in productivity leads to an increase in consumption and in-
vestment in line with the higher level in output. The introduction of information
constraint alters the magnitude of such initial responses, while increasing the
propagation of these shocks. For significantly small levels of information process-
ing capacity, such as .02 bits, variables are general irresponsive to shocks. An
increase in k leads to convergence towards perfect information responses. For
levels of x higher than 1.4 bits, changes in capacity lead to almost imperceptible
improvements.

Appendix E displays the entire set of impulse response functions to shocks
considered in the model. It is noteworthy that only neutral technology shocks
(labor productivity shocks) can affect output directly. Investment shocks affect
output only by increasing the returns of investment and, as a consequence,
the capital stock itself. Strategic complementarity between labor and capital
compels labor supply to increase, driving the increase in output.

Both short-term shocks in labor and relative investment productivities present
relatively similar dynamics: a higher productivity in equipment triggers an ex-
pansion in labor hours, investment in equipment and, as a consequence, higher
fraction of equipment as a proportion of capital stock is observed. Consump-
tion, however, responds differently: investment shocks are followed by an initial

10



contraction, partially motivated by a higher level of investment in new equip-
ment. In the subsequent periods, consumption increases due to a higher level of
capital and hours employed in production. The abnormally higher productivity
imposes a reallocation from investment in structures to equipment, which makes
both types of capital stocks to move in opposite directions. In the following peri-
ods, however, higher equipment stock increases productivity in structures, which
leads to a counterflow of investment in structures. Hence, the initial substitu-
tion of structures by equipment is followed by a shifts of resources towards the
second.

Such features of the full information model may lead to undesirable charac-
teristics. In particular, the initial decrease in consumption during an economic
expansion can hardly describe the comovements between aggregate variables
and output observed in the data. In addition, the opposite directions in which
capital stocks move seems at odds with observed comovement in the level of
activity among sectors. In order to cope with these apparent inconsistencies,
some authors have explicitly modified the benchmark model with the inclusion
of adjustment frictions. Greenwood et al (2000) include convex investment costs
and obtain a significant improvement of business cycle statistics. Boldrin et al
(2001) use habit preferences and a technology with limited intersectoral factor
mobility to get similar improvements.

We believe the inclusion of information frictions can help mitigate these
adverse features. One important effect of limited information is the reduction
of initial responses of investment to a shock. In the full information model, this
excess volatility of investment induces to swing-shaped responses of consumption
to shocks as well as to the initial decrease in the stock of structures. As seen in
Figure 1, by reducing the capacity of information processing it is then possible
to reduce the excess volatility of investment and obtain smaller initial decreases
in consumption, followed by hump-shaped increases. In the case of permanent
shocks to investment productivity, the initial drop in consumption is completely
reverted.

One important feature of RBC models is the way characteristics of under-
lying processes are reflected in the behavior of endogenous economic variables.
Table 1 presents a set of statistics commonly reported by the RBC literature
for model simulations under different degrees of inattentiveness. These results
are compared with those derived from the full information model and with their
empirical counterparts for US economy, reported by King and Rebelo (1999).
Statistics are obtained using a 500 randomly simulated sequences of permanent
and transitory shocks over 250 periods. The benchmark calibration of structural
parameters are applied to all cases alike.

From the start, it is clear the current choice of parameters falls short in
trying to replicate the volatility of empirical macroeconomic time-series. In
addition, the full information model performs poorly in trying to replicate both
relative volatilities and autocorrelations. In particular, the model displays a
negative contemporaneous cross-correlation of consumption with output. When
the economy is hit by a relative investment productivity shock, optimal policy
precludes a contraction in consumption and a sharp increase in investment and
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labor hours. This feature is reverted as the information capacity constraint
tightens: as uncertainty regarding the nature of the productivity shock becomes
more relevant, less pronounced becomes the initial responses of investment and
hours and, therefore, less significant becomes the initial drop in consumption.

Table 1: RBC Basic Statistics®
K.R? Fulllnf k=43 k=14 k=.80 k=.24

Relative S.D.

oy 1.81 0.96 1.05 0.89 0.79 0.63
oc/oy 0.74 0.18 0.52 0.80 0.81 1.02
On/oy 0.99 0.78 0.70 0.64 0.55 0.28
0i/oy 2.93 4.63 4.26 4.31 3.98 3.52
Cross-Correlation
p(c,y) 0.88 —.04 0.36 0.40 0.50 0.65
p(h,y) 0.88 0.98 0.92 0.85 0.82 0.67
p(i,y) 0.80 0.99 0.91 0.79 0.78 0.62
Autocorrelation
p(Ay) 0.84 0.63 0.66 0.70 0.71 0.68
p(Ac) 0.80 0.67 0.61 0.72 0.68 0.69
p(AhR) 0.88 0.67 0.69 0.77 0.81 0.87
p(Ad) 0.87 0.66 0.68 0.73 0.72 0.66

?Point estimates for model simulations using the benchmark calibration for structural shocks.
Results are based on 500 replications of sample size 250.

bKing and Rebelo (1999). Point estimates for per capita variables, using a HP filter over Stock
and Watson (1999)’s data set.

¢In percentage.

In essence, the addition of rational inattention to the standard model works
in a similar way as introducing a generic adjustment cost. The difference be-
ing, of course, that it is endogenous: given a certain amount of information
processing capacity, values for structural shocks and parameters of the econ-
omy, the degree the model dynamics depart from full information is determined
as a result of a maximization routine.

In broad strokes, information frictions amplify the volatility of consumption
and reduce the volatility of hours and investment. They also amplify contem-
poraneous correlation of consumption with output and reduces of hours and
investment. These effects can be verified in Appendix F, where we present the
standard errors for the statistics in Table 1. There is, however, no clear pattern
emerging from the autocorrelation of model variables, except, perhaps in the
case of labor hours. This is a well known caveat of RBC models, reflected is
their apparent lack of internal propagation. We believe a more realistic calibra-
tion for structural shocks could deliver results closer to the ones displayed in the
data. In the next Subsection, we turn our attention to the model’s implication
for the long-run dynamics of the economy.
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3.2 Long-run Implications
3.2.1 Adjustment to Permanent Shocks

Our model provides a framework to study the adjustment dynamic of the econ-
omy in response to permanent non-stationary shocks. More interestingly, it
enables us to see how short-term volatility, understood as the variances of tran-
sitory stationary shocks, may effect these adjustments. We believe these effects
might have important welfare implications and can also provide an analytical
understanding of links between business cycle fluctuations and the long-run per-
formance of an economy.

In the current formulation, an increase in variances of transitory shocks
implies that the economy takes longer to adjust to permanent shocks. The
intuition is straightforward. The limited capacity to process information gen-
erates adjustment costs. These costs are endogenous, in the sense that they
depend on other structural parameters. An increase in the variance of any type
of shock makes the problem of processing information and allocating attention
harder once any inference on the true state variables given the perceived states
becomes more imprecise. Hence, the cost to adjust investment, hours and con-
sumption to changes in technology is higher.

Figure 2 illustrates these ideas. The graph shows the transition path of the
main variables in the model in response to a one standard deviation permanent
increase in labor productivity. The solid green line stands for the full information
case, while the others represent the same transition path under rational inatten-
tion for different volatility ratios between transitory and permanent shocks. At
all cases, the information processing capacity is kept at constant level (k = 0.7).

In the baseline calibration the standard deviations of transitory and per-
manent shocks are equal. Compared to the full information case, investment
responds slowly to a technology shock and consumption is initially higher. As
agents incorporate new information about technology into their decisions, they
reduce consumption and increase investment. Hence, aggregate capital con-
verges at a slower pace to its after-shock level.

The adjustment speed is even slower when we increase the volatility of the
temporary shocks to a ratio of two, five and ten times the standard deviation
of permanent shocks. Two factors contribute to the higher sluggishness. As
short-term shock volatility increases, the overall information problem becomes
harder to solve because of the higher degree of uncertainty about the true state
variables. In addition, more attention is allocated to the transitory shocks
relative to permanent shocks, increasing the relative uncertain of the second
type when compared with the full information case.

Table 2 provides some measures of the importance of these effects. The
first column shows that the welfare loss increases with higher variances, what
highlights the overall increase in uncertainty mentioned above. The remaining
columns demonstrate how different is the adjustment. The higher the variance of
the transitory shocks, the longer the economy takes to adjust to the permanent
change in productivity, as measured by the half-life and the convergence of

13
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Figure 2: Response of Selected Variables to a one s.d. permanent Labor Pro-
ductivity Shock.

capital stock to the after-shock capital level. Welfare loss along the transition
path also tends to be higher.

We want to highlight the fact that the difference in this long-run adjustment
comes from changes in the properties of transitory shocks. Clearly, similar effects
would occur if we changed the properties of the permanent shocks. However,
the former case is more interesting because it shows how the short-run behavior
of the economy can affect its long-run dynamics.

Moreover, this property is not shared by other models that include ad hoc
adjustment costs. This distinction is important: ignoring how adjustment costs
may change as a function of other aspects of the economy may jeopardize the
understanding on the importance of stabilization policies and the welfare cost of
business cycles. Adam (2008) shows that in a model with rational inattention an
increased focus by the central bank on stabilizing inflation can reduce variation
of real output along the business cycle. Our model would further extend the
benefit of price stabilization because the lower variance of these transitory shocks
would also effect how the economy responds to permanent shocks. If instead of
using rational inattention we included an ad hoc adjustment cost to investment,
this second effect would not be present.
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3.2.2 Technology Diffusion

Our model can also be used to understand the process of technology diffusion,
in particular, from developed to emerging economies, which tend to have a more
volatile macroeconomic and institutional environment. Consider the case of an
economy where the government imposes legal barriers to import equipment,
such as high import tariffs or other trade regulations. In addition, assume the
investment specific technology within the country is not as well developed as the
technology available abroad. Now assume there is a change in policy equivalent
to a permanent increase in the investment specific technology. An interesting
question is how long the economy takes to incorporate this jump in technology.
In particular, what are the welfare implications of such a policy change.

Figure 3 shows the transition paths of consumption, investment in equip-
ment, capital stock in equipment and output in the baseline calibration, for
different values of information processing capacity. We choose the size of the
shock to be two standard deviations to allow for a large shock while keeping it
within a plausible range. Table 2 provides some related statistics.

Once again the economy takes longer to adjust the more strict are the in-
formation restrictions. In particular, we can interpret the results as showing
that, although lowering trade barriers provides access to a higher technologi-
cal standard, the diffusion of the new technology is not as fast because other
factors demand attention from the agents. Therefore, investment in equipment
increases less and capital adjusts at a slower pace.

Figure 3: Response of Selected Variables to a one s.d. permanent Relative
Investment Productivity Shock.
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Why would households and firms not pay attention to technology productiv-
ity? Or why would the level of information process capacity devoted to techno-
logical aspects considered in our model vary? One possible explanation would
be given by incorporating nominal aspects into the model. In this case, agents
would allocate a certain amount of their attention to nominal state variables
(consider the losses a firms may incur if they do not get their relative prices
right, or wages in the case of consumers). In our example, if the country faces
a high degree of volatility in nominal variables at the moment trade barriers
are removed, such as inflation or nominal exchange rate, agents would allocate
a greater amount of their attention to nominal aspects and respond at a slower
pace to technological changes.

Although our model abstracts from nominal factors, we can simulate this
effect by decreasing the amount of available information processing capacity
agents have to allocate to technological processes. As can be seen in Table 2,
impacts are significant. The more restrict agents are in their limit to process
information, the longer the economy takes to converge to its after-shock level
and the higher is the welfare loss in the adjustment path.

4 Final Remarks

This paper presented some preliminary results of a proposal that aims at combin-
ing two distinct research agendas: the RBC and the inattentiveness literatures.
Our approach consider multiple sources of uncertainty regarding the current
technological state of the economy and the effects of transitory and permanent
shocks. We believed this set of assumptions delivered elements to consider the
work ahead promising.

Our results could be extended in several possible dimensions. The most
relevant would be the inclusion of nominal variables and pricing decisions. This
approach could provide an assessment of long-term implications of monetary
stabilization, an important discussion in macroeconomic research. In particular,
it could provide a theoretical linkage between policy and incorporation of new
technologies, underlining the effects upon welfare of short-term fluctuations.

An additional possibility is the inclusion of strategic complementarity be-
tween agent’s decisions. This feature could substantially change our results,
in particular, towards obtaining a higher degree in the propagation of shocks.
As seen in Section 3, the incorporation of information frictions in the standard
model seemed to produce no relevant effects in the autocorrelations of endoge-
nous variables. Hence, exploring the inclusion of this additional characteristic
seems desirable, in spite of the fact that it would prevent us from using the
tractable representative-agent framework.

Finally, althought the inclusion of Rational Inattention improves some of
the usual statistics of business cycle compared with the basic full infomation
model considered here, better RBC resulting statistics could be obtained by
using a benchmark model with more reasonable parameter values for exogenous
shocks. The incorporation of other characteristics such as varying capital uti-
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Table 2: Long Run Adjustment Dynamics
Welfare  Welfare Loss  Half-life® Convergence
Loss®  in Transition®

d

Perm. Shock

to Labor®

O'T/O'P =1 .0044 .00012 38 85
O'T/O‘P =2 .0170 .00019 53 115
O'T/UP =5 .1051 .00023 68 158
ol /oP =10 4137 .00018 74 194
Full Information . . 18 58
Perm. Shock

to Investment/

k= 0.02 .0109 .0089 33 101
k=0.29 .0080 .0079 28 7
k =0.70 .0044 .0075 26 72
k = 1.40 .0023 .0066 22 67
Kk = 4.30 .0003 .0053 16 62
Full Information . 3 35

“Unconditional expected loss, given the model parameters and values for variances of
exogenous shocks.

bExpected loss relative to full information, conditional on the shock type.

“Number of quarters the capital stock take to cover half of the distance between the pre-shock
and after-shock levels. For a permanent increase in labor productivity, we consider total
capital stock. For a permanent increase in relative investment productivity, we consider
capital stock in equipment.

dNumber of quarters the capital stock take to cover 90% of the distance between the
pre-shock and after-shock levels. For a permanent increase in labor productivity, we consider
total capital stock. For a permanent increase in relative investment productivity, we consider
capital stock in equipment.

°The presents statistics are for 1 (one) standard deviation permanent shock to labor
productivity.

fThe presents statistics are for 2 (two) standard deviation permanent shock to relative

investment productivity.

17



lization, as in King and Rebelo (1999), or explicit modeling of labor market,
as in Burnside et al (1993), could deliver more realistic values for volatilities
or cross-correlations with output. In either case, information frictions seem an
indispensable component for improving the models’s performance.
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5 Appendix A - Definition of Steady State

From the main text, we take the suggested transformation to make the prob-
lem stationary. The representative consumer maximizes the transformed utility
function:

Ui, = Ey, Z B Cy + 0In(1 — Hy)),

t=to

subject to the following restriction set:

KO KOG [AgH,) e

A Ke e Ke 2 S\ K
= Ci+ 9e,t+117t+1 - (1-0°)— i + gspp1 K141 — (1 —0°) Koy,
Q1 Q1

given K., and K ;.

The objective is to show that there is a deterministic steady state for the
detrended system above, where all endogenous variables assume constant values.
FOCs are given by:

e with respect to Cy:

1/ét = 5\t; (19)
e with respect to Hy:
Ht _ 3 e s [ A l—ae—as.
9 f)\t(lfaefas)Ketht[Ath] € é, (20)
1-— Ht ’ ’
e with respect to IA(e)tH:
5\ 1 e —1 fra A —Ge—« 1-¢°
LB (ge1) = Bidp1 Bloe K Ky [Avpr Hy ) %% + (Ai)h (21)
Q1 Qi1

e with respect to [A{s,t_i'_l:

ME(gsi41) = Bidep1 B{on K KT [Av Hyp ]V 7% 7% 4+ (1-6°)}. (22)

These equations, along with restrictions (3), (5), (6), (4) in the main text, can
be use to determine the steady state values for endogenous variables. In order
to do that, we need to show that FOCs are satisfied for time-invariant Lagrange
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multipliers. We start by notecing that, once stochastic terms are dropped out,
there are no deviations from productivity factors from their (constant) growth
trends. Also, given no population growth, H = H. Other endogenous variables
assume constant values. Therefore, we can drop the subscripts and expectation
operators. From (19), A is constant:

1/C = X\

We can use this fact over expressions (21) (22), yielding, respectively:

IA(G _ —1 e\1—1
> = elgef — (1 =07, (23)
KS o —1 ey1—1
> = aslgs ST — (1 =0, (24)

where g, = yaﬁﬂ/“‘%‘“s) and g. = ’ya’yé+ae/(1_ae_as).These establish the

steady state level of captial stocks over GDP in terms of exogenous parameters,
where we have used the relation in (3). Investment over GDP can be established
from (5) and (6):

je_ e Ke
?_[ge_(l_a)]}}v (25)
j—si s ks
?*[937(176)]}7' (26)

Using the previous results, we can use the demand equation (4) in order to
determine consumption over GDP in terms of exogenous parameters:

c I I
Y Y Y
From (20), it is then possible to establish the steady state level of labor hours
using the previous result:

1 (27)

H C

I1-Hy

Finally, it is possible to recover the level of output in steady state using (3)
and the previous results:

Yl—“e—%=<ffe> <K> [H]! e, (29)
Y Y

(1—ae— ay). (28)
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6 Appendix B - The Quadratic Policy Problem

6.1 Second Order Approximation to Objective Function
and Retrictions

From the previous section, we use the deterministic steady state for the de-
trended problem in order to establish an approximation point, hereby charac-
terized by hat-variables without the subscript t. We follow Benigno and Wood-
ford (2006, 2008) by applying a second order Taylor expansion for the objective
function and restrictions. The objective is to define a purely quadratic approx-
imation to the objective function and a set o linear restrictions that result on
policy functions for the policy problem, equivalent to the ones produced by a
second order approximation for both objective function and restrictions.
Second order approximation on objective function yields:

A ~ = 1y 0 45~
U(Ct,Ht) = Ct — QQDHt — 502 + §¢2Ht2 + thS + OS,

where “tips” stands for “terms independent of policy” and ¢ is defined by ¢ =
H/(1 — H). Also, for any original variable X;, denote:

(G- X
5 - K=X)
X

)

where X (without ¢-subscript) denotes the steady state level for the detrended
problem described in the previous section and X; the detrended variable itself.
The following relation applies up to second order:

~ R 1 .
Xt = Tt —+ 7zf,
2
where

&y = In(X;/X).

Substitution on the original expression results:

R 0

which give variables in terms of log-deviations from their steady state levels.
We proceed by log-linearizing the restrictions to the policy problem.

e Technology:

1

gt + 5@? = ae]%e,t + as]%s,t + (1 — Qe — as)(dt + ilt) + (31)
1 N - A )
+3 [aeke,t + ok + (1= e — o) (@ + he) | + O3
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e Law of motion for stocks on equipment and structures:

I, 1. N Qe P
I (35,6 + izg,t] = gs(ks,t41 + 65,t+1 + Jhsit+1) —(1=0"kss  (32)
1 i P de P 2
—1-5[93( sit+1 T Eq g1 T OTth,tH) +
—(1—08%)k2,] + O3
and
je R 1A2 A R P Qe p
f(e [Ze,t + ize,t] = ge[ke,tﬂ — gt +Eq 441 T 1+ ?h)gq,t+1] + (33)

—(1 = 6%Ykes
1. .- ; P Qe p 12
+§{ge[k‘e,t+1 — Gt + g1+ (14 OTh)Eq,Hl] +

—(1 = 6%)(ke,t = 4)°} + O},

where we have defined for notational convenience:
ap =1—a, — as,.

e Finally, second-order approximation on demand equation yields:

. 1, . . R 1. . R
Yyt + *%2 = S¢Ct + Si st + Sisles + = [sccf + siszit + siezg,t] + Og. (34)

2 2
where:

e}

Sec = =,

Y
sie = Te?

Y

I
Sis = = -

Y

We can combine expressions in (31) and (34) with (32), and use (33) in order
to obtain a set of two restrictions, respectively:
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0= *Oée]%eﬂg — OLSIAC&t — Oéh(dt + ilt) + Scét + Sieie,t + (35)

~ o ~
+5k,9s (ks 41 + €0 g + Q—Zeﬁﬁm) — 8k, (1= 0%)ks 1

1 - - . 2812, Sean Sie -
-5 [aeke,t + asks,t + Oéh(CLt + ht)i| + ECC% + %Zg,t

2
Skg ~ Qe ~
Jr7'[9s(]‘75,t+1 + 55t+1 + a55t+1)2 —-(1- 5S)k§,t} + 02,
and
P A S‘e o A e\ 7.
0 = —si (ler+qt) — é(le,t +G)* — sk, (1 — 0 ke s + (36)
. «
+5k, Ge (Ke,t+1 + 55t+1 +(1+ £)55t+1) +
Ske i P 1 Qe p 2 1 — 69)k2
+ 9 [9e( e, t+1 T € 141 +( +;h)5q,t+1) —(1-109 e,t]
+0;.
where:
K,
Sks = —,
Y
K.
Sp. = ——.
ke T

By adding and subtracting the proper terms and using the definition for
steady state variables, (35) can be written recursively, such that:

‘/S,t = F(étv iltv ie,tv ]%e,t,]%s,tv st) + ﬂ‘/s,t+17 (37)

where F'(.) is a linear-quadratic function of log-deviation of endogenous variables
and the vector of exogenous shocks &, at ¢, defined as:

_ . . 1 1
F() = f{—ackes— anhs +sc]é + 5@3] + 8i.[tet + 5ijt] +

~ 1 ~ ~ ~
kit - §[aeke,t + asks,t + ah(dt + ht)]Q} +

Qg
2
+tips + O

+

where:

f=los+ s, (1 =097,

and the pre-determined term V; ; is defined as

25



. 1.
Vit = kst + §k§,t-

One could notice that interactions between current capital stock and i.i.d
innovations of permanent shocks have been included at “tips”.
Proceeding in an analogous way for (36), we have

Vet = G(&, iLtaie,tv ];e,t,];'s,tvgt) + BVe,i41- (38)
where:
_ . 1. 2
G() = g{=sillics +a) + Fics + )T+

. 1. .
+aelkes + ith]} + tips + Og,
g = [ae + 51, (1 -0,

. 1.
‘/;’i,t = ke,t + ikg’t.

6.2 Elimination of Linear terms

By follow Benigno and Woodford (2008) we can use matrix notation in order to
rewrite expressions (30), (37) and (38). We start by notecing the correspond-
ing log-approximation of the (detrended) policy problem can be stated in the
following way:

max Ei, Z B ou(cy) (39)
c t=to
subject to intertemporal restrictions
Fyy = Ey, > B F(ci ke, &) (40)
t=to
and
G, = By, Z BtitoG(Ct, khgt)v (41)
t=to

where F;, and Gy, are predetermined terms at ¢y and therefore independent of
policy from that date on. Notice that (40) and (41) are obtained by iterating
forward expressions (37) and (38). Vector definitions are:
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Ct

k g

Ct = he |5 ke = ot ; & = Ff
2 ¢ ks,t 81]1315

e, c
q,t

Equation (39) can be expressed in matrix notation as:

o0
_ 1 ) :
Uy, = Ex, § :Bt W U,.cr + icgUCC.ct] + tips + Og.
t=to

The following definitions for the underlined terms apply:

U=[1 —bp 0];

0 0 0
Ucc = 0 —9(,0[1 - 410] 0
0 0 0

In the same fashion, restriction (40) is expressed as:

oo B B 1.
0 = Z ﬂt to{)\(Fc.Ct + Fkkt) + 5)\[C;FCC.C,§ +

t=to

—I—ZC;ch.gt + 2k{§Fk£-£t + k‘ngk.kt + QC;FCk.kt]}

—\Fy, + tips + Og

(42)

where A is the associated Lagrange multiplier to be determined. Recall the

definition of f as

F=law+s -6

Matrices can then be expressed as:

I EE 0 0
Fee = f 0 70‘}% 01;
0 0 Sie
2
—aZ — Qg
Fir = f- — O as(as —1)|’
0 0 0 O
Fe=f —oz% 0 0 0f;
0 0 0 O



_ —aeap, 0 0 Of
Fre = f. —agsap, 0 0 0|’

T o 0
Fck = f —CQep  —OsQp
0 0

Proceeding in the same way, restriction (41) can be expressed:

oo B 1.
0 = Z Btfto{ﬁ(Gc.ct + Gr.kt) + 519[02Gcc.ct + (44)
t=to

—|—202G05.£t =+ QkéGk.fft + k‘éGkk.k‘t + QC;GCk.k‘t]}
—9Gy, + tips + O,

where notatinal choices are analogous as above and 9 is the associate Lagrange
multiplier to be determined. Notecing that we have defined:

g = loe +sp, (1= 07"

Matrices can then be defined:

G.=3g. [0 0 —Sie] ;

Gr,=g [Ote 0],
0 0 0
Gee=g-10 0 0 |;
0 0 Sie
_|lae 0O
Gkk_g'|:0 0l
0 0 0 0
Gee=g. |0 0 0 0];
0 —s;, 0 0
Gkgzo,
Ger = 0.

Constants X and 1 are then defined in such a way that the following holds:

AF. + Fy) +9(G. + Gy) = —U..

The solution is, therefore:
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s (45)
and
- 1
v = o (46)

By using the definitions for A and 9, it is possible to show that the following
relation holds up to second order:

o0 3 1 (o] _
By Yy BUee] = 5 > B¢ Heecr + ki Hge oy +

t=to t=to
+2¢ Rkt + 20, Zog &, + 2K, Zie £, + T + tips,

while we have defined the new terms as:

He. = AFo + UG,
Hyg = AFypi + 9Grp,
R = \Fy, + VG,
Zee = MFpe + UG,

Zpe = S\Fkg + 1_9Gk§,
and
To = _(S\Fto + BGtO)-
Plugging this last expression into (42), yields:

1

UtU:§

oo
By, > B0l Q.cot Ky Hin ko +2¢, Rk +2¢, Zog &, + 2K, Zre &), (47)

t=to
where:

Q = Ucc + ch

and Z,, and R are defined elsewhere.
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6.3 Additional Simplifications

Consider now the following definition for the vector of state variables S; and
control variables:

ke,t

St = g’t ; Ct = ht
+ ~
(j Ze,t
t

Expression (47) can finally be expresses as a quadratic objective function in
terms of control and state variables as

Ut(] = Eto Z Bt7t0 {C;BCt + 2C;DSt + SéASt} ) (48)
t=to
where:
B=qQ
_ | Hir  Zie
4= [ Zye  tips
and

DE[R ch].

In addition to the objective function given in (48), the decisionmaker is
subject to the following set of linear constraints,

N 1—-1069%- Si. .
kett1 = ( )ke,t + “—let +
Je Sk.Ge
(1—-109),. Qe
+H[1 = —]G — 55,t+1 —(1+ ;)Eiwh
e h
- 1—-6°%)- 1 - - R N
kst+1 = ( )ks,t + [eket + askst + an(dr + he) +
9s 9sSk,

p A P Qe _p
—S8cCt — Sieze,t] - 6a7t+1 - ;heq7t+1.

and the following AR(1) processes for stationary component of exogenous shocks:

N ST
at41 = Paat + €q1415

5o _ oo T
Gi+1 = Pgdt + €q 141
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Restrictions can then be writen in matrix notation according to the following;:

St+1 = G1S; + Gacy + G38t+1. (49)

where ¢; stands for a vector of i.i.d. innovations to shocks, or g; = [¢7 5qT_t, el

55 .). Expression above represents the law of motion for state variables in terms

of its past values, present control variables and exogenous shocks. Matrices are
defined by:

Gt Gt
o = | bn 12};
! [0(%2) Gy
G2 = |: G%l G%2 :| .
O222) Oq1a2) |’

022 G3
GS = |: I(2 2) 0 12 :| :
(222) (222)

where [ is an identity matrix. In particular, we have:

G = oot anftsnan 0 -5a |
e I |
Gl = [ T /?q } ;

Gi = [ _sc/((?gksgs) ah/(gksgs) } ;

= | il ]

-1 —ae/ap

G, — [ -1 —(1+ae/ap) }

The final problem reduces to maximize(48) subject to (49).

7 Appendix C - Derivation of Optimal Signal
7.1 Value Function

The problem with full information is given by:

max Fy, Z B (S} AS; 4 28, De; + ¢, Bey)
° =0
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s.t.:

St+1 = G115t + Gact + Gaeryn

where ¢; is the vector of control variables and S; the full vector of state vari-
ables. We assume further that £; has a multidymensional Normal distribution,
such that E(e;) = 0 and E(egje;) = Q, all t. The LQ problem has some de-
sired features: policy function is linear on state variables and, hence, certainty
equivalence applies. Information frictions does not change the problem (Sims,
2003a). In addition, the value function is quadratic. This property is desireable
to show that the optimal signal has a Gaussian distribution.

In order to do that, the first stage is to solve the deterministic problem.
Writing the objective equation recursively and replacing the restriction in the
objective function, we have:

V(St) = HIC?X{SQASt + 2S£Dct + C;Bct + ﬁEtV(Glst + Gocy + G3€t+1)}.

Conjecture 1 The value function in quadratic in the state vector, or V(S;) =
S} Py S+ Py Si+d, Py following the properties described by Benigno and Woodford
(2008) and d an unknown constant.

Then, we can write the expression above as:

SiP1S; + PS; +d = max{S;AS; + 2S;Dc; + ¢, Bc; + Bd +
Ct

+8S,G1P1G1 Sy + B[S;G1 PiGacy + ;G PyG1Si] +
+5CQG/2P1G2015 + ﬁtT‘(PngQGg) +
+BPG1S; + BPaGact},

after evaluating conditional expectations and exploring the fact that e; is i.i.d.

and E(e;) = 0. We next take FOC with respect to the control variable vector
¢t It is clear that the resulting policy function is indeed linear:

Ct = H() + HISta
where
Hy = —2[B+ BGyPiGs) ' [BG,Py),
Hy = —[B+BGyPiGo] [BGLPGy + D),

a function both of P; and P,. Replacing the policy function back to value
function, it is possible to determine the values for Py, P, and d. Define:

Q = G30GS. (50)
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For, d:

(1-pB)d = H)BH,+ Btr(P,Q) +
—|—ﬁH6G/2P1G2H0 + 6P2G2H0,
For Ps:
P,=0
For P;:
Py = A+ 2DH, + H,BH, + G, P,G1+ (51)

+2BH|GY PGy + BH|GLP,Go Hy .

Equation (51) describes P; recursively, a matrix Riccati equation:

Pi(s+1) = A+pBG Pi(s)Gy+ (52)
—(D' + BGyPi(5)Gh) (B + BGyPi(s)Ga) "1 (D' + BGy Py (5)Gh)

It can be solved by iterating the matrix difference equation starting from
some initial value and converging to a fixed point or using a method based
on eigenvalue-eigenvector decomposition (such as Blanchard-Quah). Finally,
d = Btr(P1?)/(1— B). Equations defining the value function are independent of

St, which means that the value function given by the problem with information
friction is analogous: V(S;) = S;P1S; + d.

7.2 Gaussianity of Optimal Signal

Define the welfare loss in ¢ due to imperfect information as AV, = V(S,) =V (S;).
The expected welfare loss is given by*:

Ey[AV:) = B[V (S) = V(S))].
Substituting for V(S;) and V(S;), and notecing that E;(S;) = E;(S;), yields:
E[AV)] = —Ey[(Se — St)' PL(Sy — 8p)] + 2E4[S; P1(Se — )],

Considering that

E[(S: — )] =0,
by hypothesis, then it is clear that

Et[S,ZPl(St - gt)} = Plc’O’U[St, (St — St)] =0.

4For simplicity, we use E¢[.] as short for E¢[.|Z¢].
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Then:

E[AV)] = —Ey[(Se — S)'PL(S, — Sy))-

The problem then becomes to choose a joint distribution of state variables
and signals that minimize the loss function

mll’} —Et[(St — St)/Pl(St - St)}v
q(St,St)

subject to:

—H(S4, Sp) + H(S:) + H(S;) < 2~

plus the conditions on ¢(S, S’t) being a pdf. H corresponds to the definition of
entropy and k is the channel capacity on the mutual information between S;
and S;. More explicitly, we can apply the definition of entropy to the problem
above, yielding:

min — / /(St — S’t)/Pl(St — S't)q(St, S’t)dStdSt,

Q(Stygt)
subject to:
[ [ 1oslatsi.Sas:. Sasids. ~ [togla(snla(soas: +
7/ |:10g {/q(S, St)dst:| /q(S, SA't)dSt} dSt
< 2%,
/Q(St; gt)dgt = Q(St),
and

q(St, St) Z 0.

We disregard this last restriction, assuming that it always holds. Following
Sims (2003b) and Luo (2006), the maximization can be carried out pointwise
by taking derivatives with respect to q(St, St). FOC yields:

—(S; = 51)' Pr(S; — 5¢) — M1 +log[a(Ss, 8;)] — 1 —log [/ q(S, S’t)dSt} }—p=0.
Define:

q(Stagt)
fQ(ShSt)dSt’

a(S:15)
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then:

q(S|Sh) = Bt (Se=50) Pr(Se=50)

where 6y and can 6; be conveniently chosen so as the right-hand side is a mul-
tivariate normal distribution. The result implies that it is optimal to choose the
joint distribution of S; and S, in such a way that the conditional distribution
of the state variable given the signal is a multivariate normal distribution:

q(St|§t) ~ N(gt, E)

The infinite dymensional problem simplifies to one in which it is only neces-
sary to establish the variance-covariance matrix of the posterior distribution of
state variables given the signal, X.

7.3 Determination of X

Following Sims(2003a), the loss function can be written as:

EV(S) —V(5)] = —tr([A+DH, + H,BH,|%) +
+BEV(Si1) = V(Se41) + (Seq1) — V(Ses1)]

where S} | = (G1 + G2H1)S; + G3ey is the value of state variables that would
emerge in the case where control variables are chosen optimally and without
uncertainty upon the true state at ¢: S;. Note that Siy;1 is the true value of
the state vector at ¢ + 1 when control variables are chosen under information
capacity constraint, that is, the state at t is merely perceived: S,. Define

Sii1 — Sey1 = G2Hy(Sy — Sy)).

Because of the LQ structure, the left-hand side is constant. Expression
simplifies to:

(1-B8)M = —tr([A+ DH,+ HBH\]%) +
—BE[(Sf1 — Sev1) Pr(Siy — Sew1) +2(Sf 11 — Seq1) PrSeqa]

By replacing the definition above, one gets:

(1-B)M = —tr(WE),
where W is given by:

W = A+ DH, + H,BH, + B(H,G,P\GoHy + H,GLPiG, + G, P,GoHy).

The optimization problem takes the following form:
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mzin{tr(WE)}
subject to the information capacity constraint:
—log, [X] + log, ’GlzG/l + Q‘ <2k

and an additional condition to ensure that G1XG) + O—Yisa positive definite
matrix:

¥ < G12G) + Q.

As shown by Sims (2003a), the problem is the one of maximizing a linear
objective function subject ot a convex restriction set. In order to establish X
numerically, we reparameterize the problem in terms of the upper triangular
matrix ¢*, such that ¢*¢* = A* and A* = ¥ — X. For an initial value of ¢*
it is then possible to establish ¥ by solving the Lyanpunov equation A* + ¥ =
Q +G1XGY. For a given value of the Lagrangean multiplier, it is then possible to
compute the value for the objective function subject to the information capacity
constraint. Once the optimal ¢* has been found, it is possible to recover ¥ by
solving the same equation and then recovering the covariance matrix of the noise
variables A = var((,) using the following expression:

At=x"t oyt

which derives from the usual formula for the variance of a stationary Gaussian
distribution updated based on a linear observation, according to Sims (2003a).

8 Appendix D - Parameter Choices

The following table presents the parameter values for the benchmark calibration,
along with its definitions.
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Table 3: Benchmark Calibration (Quarterly Data)

Symbol Parameter Definition Assigned Value

B8 Intertemporal discount factor 96174

0 Preference parameter on labor supply 2.74

Qe Equipment share of income .19

o Structures share of income .16

H Steady state labor hours .24

%) Steady state labor-leisure hours ratio 31
1—6° Gross depreciation rate of equipment (1—.035)1/4
1—0% Gross depreciation rate of structures (1—.075)1/4

Pa AR(1) coeff. of neutral tech. shock 75

P AR(1) coeff. of investment tech. shock .75

O'Z. Sd. of transitory neutral tech. shock .0050

ol Sd. of transitory relative investment shock .0050

O’% Sd. of permanent neutral tech. shock .0050

of Sd. of permanent relative investment shock .0050
Ua;f Correlations among innovations zero

Ya Gross growth trend on investment prod. (14 .004)1/4

Yy Gross growth trend on neutral prod. (14 .025)1/4

Se Steady state consumption over GDP 81%

Sie Steady state investment in equipment over GDP 12%

Sis Steady state investment in structures over GDP 7%

Ske Steady state capital stock in equipment over GDP 480%

Sks Steady state capital stock in structures over GDP 770%

9 Appendix E - Model Dynamics
In this section, we present the model general dynamics in response to shocks.

The perfect information case is contrasted with responses of endogenous vari-
ables under limited information. Capacity constraint is calibrated to 0.7 bits.
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Impulse Response Functions to a one s.d. permanent shock on Labor
Productivity (neutral technology shock).
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Impulse Response Functions to a one s.d. permanent shock on Investment
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10 Appendix F - S.D.s for RBC Statistics

The following table presents the standard errors for simulations of RBC statis-
tics, presented at Section 3.

Table 4: RBC Basic Statistics - Standard Errors

FullInf. k=43 k=14 k=80 kK=.24
Relative S.D.

oy 0.08 0.09 0.08 0.07 0.06
oc/oy 0.01 0.06 0.10 0.09 0.10
on/oy 0.01 0.03 0.04 0.04 0.03
oi/oy 0.05 0.20 0.32 0.32 0.35

Cross-Correlation
plc,y) 0.08 0.10 0.11 0.10 0.07
p(h,y) 0.00 0.02 0.03 0.04 0.08
p(i,y) 0.00 0.02 0.05 0.05 0.08
Autocorrelation
p(Ay) 0.05 0.05 0.04 0.05 0.05
p(Ac) 0.05 0.06 0.05 0.05 0.05
p(AR) 0.04 0.04 0.03 0.03 0.03
p(Ad) 0.04 0.04 0.04 0.04 0.05

“In percentage.
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