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Abstract

This paper considers the robustness of equilibria to a small amount
of incomplete information, where players are allowed to have heteroge-
nous priors. An equilibrium of a complete information game is ro-
bust to incomplete information under non-common priors if for every
incomplete information game where each player’s prior assigns high
probability on the event that the players know at arbitrarily high or-
der that the payoffs are given by the complete information game, there
exists a Bayesian Nash equilibrium that generates behavior close to
the equilibrium in consideration. It is shown that for generic games,
an equilibrium is robust under non-common priors if and only if it is
the unique rationalizable action profile. Set-valued concepts are also
introduced, and for generic games, a smallest robust set is shown to
exist and coincide with the set of a posteriori equilibria. Journal of
Economic Literature Classification Numbers: C72, D82.

Keywords: incomplete information; robustness; common prior
assumption; higher order belief.
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1 Introduction

One important research program in game theory has been to examine the
robustness of Nash equilibria of a given complete information game to incom-
plete information, i.e., whether the predictions generated by Nash equilibria
are still valid in “nearby” incomplete information games obtained by per-
turbing the complete information game (see, e.g., Fudenberg, Kreps, and
Levine (1988) and Kajii and Morris (1997)). There, most existing ap-
proaches (Kajii and Morris (1997), Ui (2001), and Morris and Ui (2005),
among others) assume that players share a common prior belief in perturbed
incomplete information games, as do most work in other fields in game the-
ory and information economics. In this paper, we characterize equilibria
that remain valid in perturbed incomplete information games dropping the
common prior assumption (CPA, henceforth), i.e., allowing players to have
heterogeneous subjective prior beliefs. This enables us to assess the role of
the CPA in examining the robustness of equilibria to incomplete informa-
tion.

To explain our framework, consider an analyst who plans to model some
strategic situation by a particular complete information game g. While he
believes that the environment is well described by this game, he is also
aware that each player faces a small amount of payoff uncertainty, so that
players may play some incomplete information game in which their ex ante
subjective payoffs are close to their payoffs in g, where he does not assume
that the players share a common prior. We want to ask whether the analyst’s
prediction based on the complete information game is not different from
the ex-ante average equilibrium behavior of the real incomplete information
game.1

Our key assumption to formalize closeness between incomplete infor-
mation games and the complete information game g is that the analyst is
restricted to incomplete information games where with high ex ante (sub-
jective) probability, players know that the game is g up to arbitrary but
finite orders of knowledge. The ideal situation with complete information
assumes that it is common knowledge among players that the game played
is g. Intuitively speaking, this says that everyone knows that the game is g

(the game is mutual knowledge), everyone knows that everyone knows that
the game is g (the game is mutual knowledge at order two), and so on. In
our setting, in contrast, the analyst does not know the entire hierarchy of
knowledge. Indeed, he is confident in his model up to a certain extent so
that he believes that with a high probability players mutually know that
the real game is g up to a finite level (possibly very large). To be specific,
an incomplete information game is an (ε, N)-perturbation of g if the action

1This “ex ante” perspective is the one adopted in the purification literature
(Harsanyi (1973)). A standard interpretation of correlated equilibrium also follows this
perspective (see, e.g., Aumann (1987)).
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sets are same as those of g and each player’s prior assigns probability at
least 1 − ε on the event that the players know at order N that the payoffs
are given by g. In (ε, N)-perturbations of g with small ε, ex ante payoffs
(computed according to each player’s prior) are close to payoffs in g. An
equilibrium of g is robust to incomplete information under non-common pri-
ors in g if there exist ε > 0 and N ≥ 0 such that every (ε, N)-perturbation
of g has a Bayesian Nash equilibrium2 under which the ex-ante probability
that each player assigns to any action profile is approximately given by the
equilibrium of g. This guarantees that under this Bayesian Nash equilib-
rium, the ex-ante (subjective) payoff of each player is approximately given
by the equilibrium payoff in g.3

Our first main result shows that for generic games, an action distribution
is robust under non-common priors in g if and only if the game is dominance
solvable and the distribution assigns probability one on the unique rational-
izable action profile of g. Its sufficiency follows from the assumption that in
incomplete information perturbations close to g, the real game is mutually
known to be g up to high enough order (at least the number of the dom-
inance iteration rounds needed to reach the single action profile in g). To
show the necessity, which is the main part of this paper, we obtain a conta-
gion result for a posteriori equilibria:4 for any a posteriori equilibrium of a
generic game and for any ε > 0 and N ≥ 0, we construct a dominance solv-
able (ε, N)-perturbation whose unique rationalizable strategy profile gener-
ates an action distribution that can be arbitrarily close to this a posteriori
equilibrium. From the result by Brandenburger and Dekel (1987), we know
that if more than one action profile is rationalizable, then there are several
a posteriori equilibria. Hence, if more than one actions survive iterative
elimination of actions that are never best responses, then our result shows
that no action profile is robust.

Brandenburger and Dekel (1987) show that for any a posteriori equilib-
rium of a given complete information game, one can add payoff-irrelevant
types to have an incomplete information game with non-common priors
whose Bayesian Nash equilibrium generates the distribution of the a pos-
teriori equilibrium. In contrast, our contagion result used for our neces-
sity result shows that (in generic games) when we allow for payoff-relevant
(“crazy”) types that have vanishingly small prior probability, the Bayesian
Nash equilibrium that generates this distribution can indeed be the unique
rationalizable strategy profile of a dominance solvable incomplete informa-

2Our results would remain unchanged when the solution concept considered is given
by any non-empty refinement of interim correlated rationalizability.

3We choose a formulation of our robustness test in terms of (subjective) equilibrium
action distributions rather than in terms of equilibrium payoffs for comparison with the
previous literature (in particular with Kajii and Morris (1997)).

4An a posteriori equilibrium is a refinement of subjective correlated equilibrium intro-
duced and studied in Aumann (1974) and Brandenburger and Dekel (1987).
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tion game. We note that it is crucial for our result as well as for the result
of Brandenburger and Dekel (1987) to drop the CPA.

Our second main result concerns set-valued robustness. Since many
games have more than one rationalizable outcomes and hence have no ro-
bust equilibrium under non-common priors, it is natural to ask if a set of
action distributions is robust. Indeed, Kohlberg and Mertens (1986) propose
making set of equilibria the object of a theory of equilibrium refinements.
Following their program as well as Morris and Ui’s (2005), we also inves-
tigate the robustness of set of equilibria. A set of equilibria of a complete
information game is robust to incomplete information under non-common
priors if there exist ε > 0 and N ≥ 0 such that any (ε, N)-perturbation has
a Bayesian Nash equilibrium whose behavior can be approximated by some
action distribution in this set.5 If a robust set is a singleton, then its element
is a robust equilibrium in the previous sense. A set of action distributions is
called a smallest robust set if it is robust and is contained in any robust set.
We show that for generic games, a smallest robust set exists and coincides
with the set of a posteriori equilibria. When the smallest robust set is a sin-
gleton, the condition reduces to the uniqueness of a posteriori equilibrium,
so that the result on set-valued robustness covers our result on point-valued
robustness.

Kajii and Morris (1997) introduce the notion of robustness of equilibria
to incomplete information under common prior. They consider incomplete
information perturbations of a given complete information where the players
share a common prior. They show in particular that a p-dominant equilib-
rium6 with p sufficiently small is robust to incomplete information under
common prior. Following Kajii and Morris (1997), papers by Ui (2001),
Morris and Ui (2005), and Oyama and Tercieux (2004) provide sufficient
conditions for a Nash equilibrium to be robust to incomplete information
under common prior. Our result shows that when we relax the CPA, none
of the existing sufficient conditions implies robustness under non-common
priors.

Weinstein and Yildiz (2007) consider a notion of interim robustness.7 A
Nash equilibrium a∗ is interim robust in g if for some N ≥ 0 and for any
incomplete information game with (or without) common prior where the
action sets are same as those of g, there exists a Bayesian Nash equilibrium,
say σ, such that in any state of the world at which it is mutually known up
to order N that g is the true game, a∗ is played under σ. They show that for
generic games, a Nash equilibrium is interim robust in g if and only if it is the
unique rationalizable action profile of g. Contrary to that for our robustness
concept, this characterization remains unchanged even if we restrict our

5As noted previously for the point-valued test, this robustness test can be written in
terms of sets of equilibrium payoffs rather than sets of equilibrium action distributions.

6See Morris, Rob, and Shin (1995) and Kajii and Morris (1997).
7See also their working paper version, Weinstein and Yildiz (2004).
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attention to incomplete information games with common prior. This result
follows from a result of Lipman (2003, 2005), which says that given any
partition model with non-common priors (under certain conditions) and
any state of the world in the model, for any finite N one can construct a
partition model with a common prior such that there is a state in that model
at which all the same facts about the world as well as all the same statements
about beliefs and knowledge of order less than N are true. Thus, in an
interim context where the analyst has to make a prediction given interim
beliefs of the players, imposing the CPA does not alter the set of robust
predictions. On the other hand, we conclude that in an ex ante context
in which the analyst has no information about the players’ interim beliefs
and is interested in the ex ante behavior so that he may need to know the
average behavior over the state space, the CPA has a real bite and allowing
for models with heterogeneous priors has important strategic consequences.

To prove their main result, Weinstein and Yildiz (2007) show that for
any complete information type in the universal type space (see Mertens and
Zamir (1985) and Brandenburger and Dekel (1993))8 and any rationalizable
action profile a∗ of this game, there exist a dominance solvable incomplete
information game and a sequence of types drawn from this game such that
(1) these types are arbitrarily close to the complete information type (i.e.,
this sequence converges to it with respect to the product topology in the
universal type space) and (2) each type of the sequence plays a∗.9 Roughly
speaking, the former condition requires that changes of interim beliefs be
small. To establish our results, on the contrary, we construct a dominance
solvable incomplete information game such that (1′) changes of ex ante be-
liefs are arbitrarily small and (2′) the profile of ex ante subjective payoffs
of the unique rationalizable strategy profile is arbitrarily close to the profile
of expected payoffs. Hence, we may say that the same type of statement as
that by Weinstein and Yildiz (2007) is obtained by our ex ante approach,
provided that the CPA is dropped.

The point behind our contagion argument used in the proofs is that,
under non-common priors, a small (ex ante) probability event can have a
larger impact on higher order (interim) beliefs than under common prior.
The “critical path result” of Kajii and Morris (1997, Proposition 4.2) shows
that, under common prior, small changes in prior beliefs impose some restric-
tions on interim beliefs. This implies that the impact of a small probability
event is not large enough in the sense that, in some games and for some strict

8A complete information type is a (degenerate) type in the universal type space where
it is common knowledge that payoffs are given by the complete information game. Note
that Weinstein and Yildiz (2007) do not necessarily restrict their attention to complete
information types.

9One can construct such a dominant solvable incomplete information so that it satisfies
the CPA. As shown in Oyama and Tercieux (2005), however, in this case it need not be
an (ε, N)-perturbation for ε small and N large.
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Nash equilibrium, a small amount of payoff uncertainty cannot induce this
equilibrium to be played everywhere on the state space (i.e., it is not conta-
gious). For instance, in 2 × 2 coordination games, the risk-dominated equi-
librium cannot be contagious, and indeed the risk-dominant one is robust
under common prior. In a companion paper (Oyama and Tercieux (2005)),
we demonstrate, in contrast, that with non-common priors, any strict Nash
equilibrium can be contagious. In that paper, for two-player incomplete in-
formation games with non-common priors, we study the strategic impact of
an event using the notion of belief potential (Morris, Rob, and Shin (1995)).
We find a measure of discrepancy from the CPA such that the belief potential
of a small probability event has an upper bound that is an increasing func-
tion of this measure. Indeed, in order for any strict Nash equilibrium to be
contagious, this measure of discrepancy has to be large. In the present paper,
we extend this observation and show that for any a posteriori equilibrium
of any complete information game to be induced by a unique rationalizable
strategy of some nearby dominance solvable incomplete information pertur-
bations, this measure of discrepancy from the CPA in these perturbations
need to be arbitrarily large, due to the fact that a bound on the measure
would impose restrictions on interim beliefs.10

The remainder of the paper is organized as follows. Section 2 presents
our notions of nearby incomplete information games and robustness. Sec-
tion 3 states and proves our characterization of robust equilibria, while ro-
bust sets are studied in Section 4. Section 5 discusses alternative notions of
robustness, in particular as those studied by Kajii and Morris (1997) and
Weinstein and Yildiz (2007).

2 Framework

2.1 Complete Information Games

A complete information game consists of the set of players, I = {1, 2, . . . , I},
the finite set of actions, Ai, for each player i ∈ I, and the payoff function,
gi : A → R, for each player i ∈ I. Throughout our analysis, we fix a complete
information game, simply denoted by g = (gi)i∈I .

For any at most countable set S, we denote by ∆(S) the set of all prob-
ability measures on S. We call elements in ∆(A) action distributions. For
a ∈ A, we write [a] for the element in ∆(A) that assigns weight one to a.
For ξ ∈ ∆(A) and ai ∈ Ai, we denote ξ(ai) =

∑

a−i∈Ai
ξ(ai, a−i), and if

ξ(ai) > 0, we define ξ(·|ai) ∈ ∆(A−i) by ξ(a−i|ai) = ξ(ai, a−i)/ξ(ai). We
measure the distance between any two elements ξ, ξ′ ∈ ∆(A) by |ξ − ξ′| =

10If we first fix a given a posteriori equilibrium of a complete information game, then we
can find a finite upper bound of the measure for the incomplete information perturbations
to generate the a posteriori equilibrium. Note that the same comment applies to the result
of Brandenburger and Dekel (1987).
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maxa∈A |ξ(a)−ξ′(a)|. For δ > 0, we denote Vδ(ξ) = {ξ′ ∈ ∆(A) | |ξ′−ξ| < δ}
for ξ ∈ ∆(A) and Vδ(Ξ) = {ξ′ ∈ ∆(A) | |ξ′ − ξ| < δ for some ξ ∈ Ξ} for
Ξ ⊂ ∆(A). With abuse of notation, we also write |µ−µ′| = maxi∈I |µi −µ′

i|
for µ = (µi)i∈I , µ′ = (µ′

i)i∈I ∈ (∆(A))I and |πi−π′
i| = maxa−i∈A−i

|πi(a−i)−
π′

i(a−i)| for πi, π
′
i ∈ ∆(A−i).

Given g, let br i : ∆(A−i) → Ai be the best response correspondence in
pure actions for player i ∈ I:

br i(πi) = arg max
ai∈Ai

gi(ai, πi)

for πi ∈ ∆(A−i), where gi(ai, ·) is extended to ∆(A−i) in the usual way. We
define correlated rationalizability (e.g., Brandenburger and Dekel (1987)).
For each i ∈ I, set S0

i [g] = Ai. Then, for k = 1, 2, . . ., define Sk
i [g] recur-

sively by

Sk
i [g] =

{

ai ∈ Ai

∣

∣ ai ∈ br i(πi) for some πi ∈ ∆
(

Sk−1
−i [g]

)}

,

where we denote Sk−1
−i [g] =

∏

j 6=i S
k−1
i [g]. The set of all rationalizable

actions for player i ∈ I is S∞
i [g] =

⋂∞
k=0 Sk

i [g]. We denote S∞[g] =
∏

i∈I S∞
i [g] as well as Sk[g] =

∏

i∈I Sk
i [g] for k ≥ 1. We say that g is

dominance solvable if S∞[g] is a singleton set. We also define the set of ac-
tions that survive iterative elimination of actions that are never strict best
response.11 For each i ∈ I, set W 0

i [g] = Ai. Then, for k = 1, 2, . . ., define
W k

i [g] recursively by

W k
i [g] =

{

ai ∈ Ai

∣

∣ {ai} = br i(πi) for some πi ∈ ∆
(

W k−1
−i [g]

)}

,

where we denote W k−1
−i [g] =

∏

j 6=i W
k−1
i [g]. Finally, let W∞

i [g] =
⋂∞

k=0 W k
i [g]. We denote W∞[g] =

∏

i∈I W∞
i [g] as well as W k[g] =

∏

i∈I W k
i [g] for k ≥ 1. Note that S∞[g] is always nonempty, while W∞[g]

may be empty (consider, e.g., games where the payoff functions are con-
stant). But the set of normal form games g for which these sets coincide,
S∞[g] = W∞[g], is generic in the set of finite games. Our main result will
be proved for this generic class of games.

We also use the following notions due to Aumann (1974) and
Brandenburger and Dekel (1987). First, let us review the definition of sub-
jective correlated equilibrium.

Definition 2.1. A profile of action distributions (µi)i∈I ∈ (∆(A))I is a
subjective correlated equilibrium of g if for all i ∈ I and all ai ∈ Ai,

µi(ai) > 0 ⇒ ai ∈ br i(µi(·|ai)).

11To the best of our knowledge, this notion has been first defined by Weinstein and
Yildiz (2004).

6



As in Brandenburger and Dekel (1987), our analysis employs the refine-
ment of subjective correlated equilibrium called a posteriori equilibrium.

Definition 2.2. For non-negative integer N , a profile of action distributions
(µi)i∈I ∈ (∆(A))I is an N -subjective correlated equilibrium of g if it is a
subjective correlated equilibrium of g and µi(S

N [g]) = 1 for all i ∈ I.
A profile of action distributions (µi)i∈I ∈ (∆(A))I is an a posteriori equi-

librium of g if it is a subjective correlated equilibrium of g and µi(S
∞[g]) = 1

for all i ∈ I.

Denote by EN [g] the set of N -subjective correlated equilibria of g and
by E [g] the set of a posteriori equilibria of g. Observe that EN [g] and E [g]
are product sets (EN [g] =

∏

i∈I E
N
i [g] with each EN

i [g] ⊂ ∆(A)) and closed
sets in (∆(A))I .

We introduce further refinements of a posteriori equilibrium.

Definition 2.3. (a) For non-negative integer N , a profile of action dis-
tributions (µi)i∈I ∈ (∆(A))I is an undominated N -subjective correlated
equilibrium of g if it is an N -subjective correlated equilibrium such that
µi(W

N [g]) = 1 for all i ∈ I.
(b) (µi)i∈I ∈ (∆(A))I is an undominated a posteriori equilibrium of g if

it is an a posteriori equilibrium such that µi(W
∞[g]) = 1 for all i ∈ I.

(c) (µi)i∈I is a strict a posteriori equilibrium if it is an undominated
a posteriori equilibrium such that for all i ∈ I and all ai ∈ Ai,

µi(ai) > 0 ⇒ {ai} = br i(µi(·|ai)).

We denote by Eu[g] the set of undominated a posteriori equilibrium of
g, which is again a product set. If W∞[g] 6= ∅, then Eu[g] 6= ∅. For generic
games where S∞[g] = W∞[g], we have E [g] = Eu[g].

2.2 Incomplete Information Perturbations

We would like to consider incomplete information games that are close to
complete information game g.

An incomplete information game U consists of the set of players, I;
their action sets, A1, . . . , AI ; a countable state space, Ω;12 a prior prob-
ability measure on the state space, Pi, for each player i ∈ I; a parti-
tion of the state space, Qi, for each i ∈ I; and a bounded payoff func-
tion, ui : A × Ω → R, for each i ∈ I. The incomplete information game
U = (Ω, (Pi)i∈I , (Qi)i∈I , (ui)i∈I) is said to be an incomplete information
perturbation of g (recall that U shares the player set and the action sets with
the complete information game (I, (Ai)i∈I ,g)). In order to incorporate an

12Assuming countability allows us to avoid measurability issues, in particular regarding
existence of Bayesian Nash equilibria (cf. Simon (2003)).
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outsider analyst’s viewpoint, we also explicitly consider his prior belief. A
pair (U , P0) of an incomplete information game as described above, U , and
a probability measure on the state space for the analyst, P0, is called an
incomplete information elaboration of g.

Subsets of Ω are called events. For each i ∈ I, we write Fi for the sigma
algebra generated by Qi, i.e., the set of unions of events in Qi together with
the empty set. We say that an event E ⊂ Ω is simple if E =

⋂

i∈I Ei where
each Ei ∈ Fi. We write Qi(ω) for the element of Qi containing ω. We assume
that Pi(Qi(ω)) > 0 for all i ∈ I and ω ∈ Ω. Under this assumption, the
conditional probability of any ω′ given Qi(ω), Pi(ω

′|Qi(ω)), is well defined
by Pi(ω

′|Qi(ω)) = Pi(ω
′)/Pi(Qi(ω)) whenever ω′ ∈ Qi(ω).

We sometimes impose restrictions of possible priors as in Lipman (2003,
2005).

Definition 2.4. {Pi}i∈I is said to have common support if supp(Pi) =
supp(Pj) for all i, j ∈ I.

Definition 2.5. For L ≥ 1, {Pi}i∈I is said to satisfy L-tail consistency if

1

L
≤

Pi(ω)

Pj(ω)
≤ L

for all i, j ∈ I and all ω ∈ Ω with Pj(ω) > 0.

By a slight abuse of language, we say that an incomplete information
game U satisfies common support or L-tail consistency.

Definition 2.6. U is said to satisfy the CPA if Pi = Pj for all i, j ∈ I.

We now define the solution concepts we use for incomplete information
games. Given an incomplete information game U , a (behavioral) strategy
for player i is a Qi-measurable function σi : Ω → ∆(Ai). Denote by Σi the
set of player i’s strategies, and let Σ =

∏

i∈I Σi and Σ−i =
∏

j 6=i Σj . We
write σi(ai|ω) for the probability that action ai ∈ Ai is chosen at ω ∈ Ω
under σi ∈ Σi, and denote σ−i(a−i|ω) =

∏

j 6=i σj(aj |ω) for σ−i ∈ Σ−i and
a−i ∈ A−i as well as σ(a|ω) =

∏

i∈I σi(ai|ω) for σ ∈ Σ and a ∈ A. For σ ∈ Σ
and Pi ∈ ∆(Ω), we write σPi

∈ ∆(A) for the induced action distribution with
respect to Pi, i.e., σPi

(a) =
∑

ω∈Ω Pi(ω)σ(a|ω) for a ∈ A.
For player i ∈ I and action ai ∈ Ai, we write the expected payoff against

a conjecture νi ∈ ∆(Ω × A−i) as

Ui(ai, νi) =
∑

ω∈Ω

∑

a−i∈A−i

νi(ω, a−i) ui(ai, a−i, ω).

The set of i’s (pure) best responses against νi ∈ ∆(Ω × A−i) is denoted by

BRi(νi) = arg max
ai∈Ai

Ui(ai, νi).
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For i ∈ I and σ−i ∈ Σ−i, we denote by σQi

−i ∈ ∆(Ω × A−i) the induced
conjecture at Qi ∈ Qi:

σQi

−i(ω, a−i) = Pi(ω|Qi)σ−i(a−i|ω).

Note that margΩ σQi

−i = Pi(·|Qi).

Definition 2.7. A strategy profile σ is a Bayesian Nash equilibrium of U if
for all i ∈ I,

σi(ai|ω) > 0 ⇒ ai ∈ BRi

(

σ
Qi(ω)
−i

)

for all ai ∈ Ai and ω ∈ Ω.

We also define interim correlated rationalizability. For each i ∈ I, let
R0

i [Qi] = Ai for all Qi ∈ Qi. Then, for each i ∈ I, and for Qi ∈ Qi and for
k = 1, 2, . . ., define Rk

i [Qi] recursively by

Rk
i [Qi] =















ai ∈ Ai

∣

∣

∣

∣

∣

∣

∣

∣

∃ νi ∈ ∆(Ω × A−i) :

νi

({

(ω, a−i)
∣

∣ a−i ∈ Rk−1
−i [ω]

})

= 1;
margΩ νi = Pi(·|Qi);
ai ∈ BRi(νi)















,

where we denote Rk−1
−i [ω] =

∏

j 6=i R
k−1
j [Qj(ω)]. Let R∞

i [Qi] =
⋂∞

k=0 Rk
i [Qi].

Definition 2.8. A strategy σi ∈ Σi is a rationalizable strategy of player i
in U if

σi(ai|ω) > 0 ⇒ ai ∈ R∞
i [Qi(ω)]

for all ai ∈ Ai and ω ∈ Ω.

This definition states that player i’s strategy is rationalizable if it is in the
convex hull of R∞

i [Qi] for all Qi ∈ Qi. While this is weaker than the stan-
dard definitions (Battigalli and Siniscalchi (2003), Dekel, Fudenberg, and
Morris (2007)), our results would remain valid under any stronger notion.

Note that a Bayesian Nash equilibrium is a rationalizable strategy profile.
We say that incomplete information game U is dominance solvable if R∞

i [Qi]
is a singleton set for all i ∈ I and Qi ∈ Qi.

We then restate the standard definition of knowledge operator which
is used in defining our main concept of robustness. Fix the information
system part of an incomplete information game, (Ω, (Pi)i∈I , (Qi)i∈I). The
knowledge operator for player i, Ki : 2Ω → 2Ω, is defined by

Ki(E) = {ω ∈ Ω | Qi(ω) ⊂ E}.

That is, Ki(E) is the set of states where player i knows that event E is
true. Let K∗(E) =

⋂

i∈I Ki(E) be the set of states where it is mutual
knowledge that event E is true, i.e., where every player knows that event E
is true. At a state ω, an event E is said to be mutual knowledge at order N
if ω ∈

⋂N
n=1[K∗]

n(E), where [K∗]
n(·) is defined recursively by [K∗]

n(E) =
K∗([K∗]

n−1(E)). Finally, at state ω, an event E is said to be common
knowledge if ω ∈

⋂∞
n=1[K∗]

n(E).

9



2.3 Robustness

In this subsection, we introduce our concept of robustness of equilibria to
incomplete information under non-common priors. Given an incomplete
information perturbation U of g, let Ωi

g
be the set of states where the payoffs

of player i ∈ I are given by gi and he knows his payoff:

Ωi
g

= {ω ∈ Ω | ui(·, ω
′) = gi(·) for all ω′ ∈ Qi(ω)}.

Denote Ωg =
⋂

i∈I Ωi
g
.

Definition 2.9. An incomplete information game U is an (ε, N)-
perturbation of g if Pi(

⋂N
n=1[K∗]

n(Ωg)
)

≥ 1 − ε for all i ∈ I.

Observe that since K∗(E) ⊂ E for any event E, we have that [K∗]
N (Ωg)

is decreasing in N and thus
⋂N

n=1[K∗]
n(Ωg) = [K∗]

N (Ωg) ⊂ Ωg. Note also
that if ε′ ≤ ε and N ′ ≥ N , then an (ε′, N ′)-perturbation is an (ε, N)-
perturbation.

We define our robustness concept for action distribution profiles, where
each action distribution in a profile is generated by the corresponding
player’s prior.

Definition 2.10. A profile of action distributions µ = (µi)i∈I ∈ (∆(A))I

is N -robust to incomplete information under non-common priors, or simply,
N -robust, if for all δ > 0, there exists ε > 0 such that any (ε, N)-perturbation
of g, U , has a Bayesian Nash equilibrium σ such that |µi − σPi

| ≤ δ for all
i ∈ I.

A profile of action distributions µ ∈ (∆(A))I is robust to incomplete
information under non-common priors, or simply, robust, if there exists N ≥
0 such that µ is N -robust.

Observe that if µ is N -robust, then it is N ′-robust for all N ′ ≥ N .
This concept is most relevant in the following situation. Imagine an

analyst who considers an equilibrium of a particular complete information
game. He is interested in the profile of equilibrium payoffs of this game
(e.g., because of some welfare criterion he cares about). This analyst has
a lack of confidence in his model. Hence, he would like to check whether
the equilibrium payoff profile he considers is not sensitive to the assumption
of common knowledge of payoffs. If the profile is robust in this sense, then
ex ante (subjective) expected payoffs of each player in nearby incomplete
information games will not change significantly from the complete informa-
tion game situation. We do not define directly robustness for (subjective)
ex ante expected payoff profiles since the ex ante payoff of each player i is
immediately obtained from the action distribution µi by

∑

a∈A µi(a)gi(a)
(whenever ε is vanishingly small.).

We also propose another robustness concept, which incorporates the an-
alyst’s possible priors.

10



Definition 2.11. A pair (U , P0) of an incomplete information game U and
a prior distribution P0 on Ω is an (ε, N)-elaboration of g if U is an (ε, N)-
perturbation of g and P0(

⋂N
n=1[K∗]

n(Ωg)
)

≥ 1 − ε.

Definition 2.12. An action distribution ξ ∈ ∆(A) is N -robust to incomplete
information under non-common priors, or simply, N -robust, if for all δ > 0,
there exists ε > 0 such that for any (ε, N)-elaboration of g, (U , P0), U has
a Bayesian Nash equilibrium σ such that |ξ − σP0

| ≤ δ.
An action distribution ξ ∈ ∆(A) is robust to incomplete information

under non-common priors, or simply, robust, if there exists N ≥ 0 such that
ξ is N -robust.

This concept is relevant in a situation where the analyst is interested in
ex ante expected behavior of the players, but the expectation is taken with
respect to his own prior distribution, which is not necessarily equal to the
priors the players may have.13

We will show that in generic games, a profile of action distributions
(µi)i∈I (an action distribution ξ, resp.) of g is robust to incomplete infor-
mation under non-common priors if and only if (µi)i∈I (ξ, resp.) consists of
the unique rationalizable action profile of g.14 We want to underline that
our main result will stay unchanged if we modify these robustness notions
in various directions. In particular, since the nontrivial result is the “only
if” part, we want to show that we can weaken this concept in many respects
keeping our characterization.

Remark 2.1. In the definition of robustness, we use the notion of Bayesian
Nash equilibrium to be consistent with that by Kajii and Morris (1997) ex-
cept for dropping the CPA. One might find it questionable to use Bayesian
Nash equilibrium when players do not share a common prior (Dekel,
Fudenberg, and Levine (2004)). However, our results would be unchanged if
we changed the solution concept to the weaker concept of interim correlated
rationalizability.15 Indeed, all the lemmata that are used to prove our main
result are stated with rationalizable strategies.

Remark 2.2. In Definition 2.9, we could have defined an (ε, N)-
perturbation to be an incomplete information perturbation such that
Pi(

⋂N
n=1[B

1−ε
∗ ]n(Ωg)

)

≥ 1 − ε for all i ∈ I, where the mutual knowledge
operator K∗ is replaced with the mutual (1 − ε)-belief operator B1−ε

∗ (see

13Kajii and Morris (1997) offer a motivating story of this type for their robustness
concept under common prior, where the analyst shares a common prior with the players.

14The two robustness concepts a priori have no logical link and indeed are distinct if
we consider their set-valued extensions, as we will see in Section 4. In games that have
a unique rationalizable action profile, both versions of robust sets collapse to a singleton,
and therefore the two point-valued concepts share the same characterization, showing their
equivalence.

15Our results would be actually unchanged if we use any non-empty refinement of interim
correlated rationalizability.
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Subsection 5.2 for its formal definition). The formulation of Kajii and
Morris (1997) would then become equivalent to ours with common priors
(due to Lemma B of Kajii and Morris (1997)), while this equivalence breaks
down under non-common priors. Our results would remain unchanged with
this formulation.

If, in addition, we dropped the measurability of the set Ωg with respect
to the information partitions and defined it by Ωg = {ω ∈ Ω | ui(·, ω) =
gi(·) for all i ∈ I}, then our characterizations of robustness, which apply
to a generic class of games, could extend to the set of all finite games
(with the assumption that payoffs are uniformly bounded over all incomplete
information perturbations).

Remark 2.3. Another way to weaken our test would be to restrict our at-
tention to specific (ε, N)-elaborations of g. Natural restrictions would be to
require that each (ε, N)-elaboration U satisfies common support and LU -tail
consistency for some LU > 0. Here again, our results would stay unchanged.

2.4 Preliminary Results

We conclude this section with two preliminary observations.

Lemma 2.1. For any N ≥ 1, any rationalizable strategy profile σ of any
incomplete information perturbation of g satisfies

∑

ai∈SN
i [g]

σi(ai|ω) = 1 for all i ∈ I and ω ∈ [K∗]
N−1(Ωg).

Proof. We prove by induction that for all n = 1, . . . , N ,

Rn
i [Qi(ω)] ⊂ Sn

i [g] for all i ∈ I and all ω ∈ [K∗]
n−1(Ωg), (∗n)

where [K∗]
0(Ωg) = Ωg. First, since for all i ∈ I, ui(·, ω) = gi(·) for all

ω ∈ Ωg, (∗1) is true.
Assume (∗n). Consider any i ∈ I and any ω ∈ [K∗]

n(Ωg), and take any
conjecture of i, νi ∈ ∆(Ω×A−i), such that νi({(ω

′, a−i) | a−i ∈ Rn
−i[ω

′]}) = 1
and margΩ νi = Pi(·|Qi(ω)). Note that [K∗]

n−1(Ωg) ⊂ Ωg since Ωg is a
simple event. By the assumption of (∗n), for all ω′ ∈ [K∗]

n−1(Ωg), Rn
−i[ω

′] ⊂
Sn
−i[g]. Since ω ∈ Ki([K∗]

n−1(Ωg)), we have (margA−i
νi)(S

n
−i[g]) = 1. Since

Ui(ai, νi) = gi(ai,margA−i
νi), it follows that BRi(νi) = br i(margA−i

νi) ⊂

Sn+1
i [g], implying (∗n+1).

This lemma has the following implication.

Lemma 2.2. Fix N ≥ 0. Suppose that εk → 0 as k → ∞, that each Uk is
an (εk, N)-perturbation of g, and that each (σk

Pi
)i∈I ∈ (∆(A))I is a profile of

equilibrium action distributions of Uk. Then, a subsequence of {(σk
Pi

)i∈I}k

converges to some (N + 1)-subjective correlated equilibrium of g.

12



Proof. It is simple to show that a subsequence of {(σk
Pi

)i∈I}k converges to
some subjective correlated equilibrium of g (see, e.g., Kajii and Morris (1997,
Lemma 3.4 and Corollary 3.5)). Lemma 2.1 completes the proof.

3 Point-Valued Robustness

In this section, we present and prove our first main result. For a ∈ A, we
denote by ([a])I the profile of action distributions (µi)i∈I ∈ (∆(A))I such
that µi = [a] for all i ∈ I.

Theorem 3.1. Suppose that S∞[g] = W∞[g]. Then, g has a robust equi-
librium if and only if g is dominance solvable.

When g is dominance solvable and a∗ is the unique rationalizable ac-
tion profile (i.e., S∞[g] = {a∗}), ([a∗])I ([a∗], resp.) is the robust action
distribution profile (robust action distribution, resp.) in g.

Dominance solvability is obviously a very strong condition. For instance,
the theorem does not guarantee that a unique Nash equilibrium is robust.
Indeed, as proved by Kajii and Morris (1997), there exists an open set
of games with a unique Nash equilibrium that is not robust.16 On the
other hand, it is well known that in supermodular games, a unique Nash
equilibrium is necessarily a unique rationalizable action profile, and hence a
robust equilibrium under non-common priors.

In the first subsection that follows, we discuss a simple two-player two-
action example to illustrate our results. We then prove the sufficiency and
the necessity parts of Theorem 3.1 respectively in Subsections 3.2 and 3.3.
While the former follows from Lemma 2.1 in a straightforward way, in prov-
ing the latter we will utilize our key lemma on contagion of a posteriori
equilibria (Lemma 3.4). This lemma will also be crucial in proving the
result on set-valued robustness (Theorem 4.2).

3.1 Example

In this subsection, we illustrate the necessity result in Theorem 3.1 by using a
simple example of complete information matching pennies game. In particu-
lar, we sketch our key construction of dominant solvable (ε, N)-perturbation
provided in the proof of Lemma 3.4.

The game g is given by

16While the robustness concept introduced by Kajii and Morris (1997) is different from
ours, one can easily show that their example goes through if we use our formulation of
robustness.
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H2 T2

H1 1,−1 −1, 1

T1 −1, 1 1,−1

where each player i ∈ I = {1, 2} plays Hi or Ti so that A = {H1, T1} ×
{H2, T2}. This game has a unique Nash equilibrium which is the unique (ob-
jective) correlated equilibrium. By Kajii and Morris (1997), we know that
this equilibrium is robust under the assumption that players share a com-
mon prior in nearby incomplete information perturbations. However, this
game is clearly not dominance solvable, and hence, according to our Theo-
rem 3.1 we claim that no equilibrium is robust once the CPA is dropped. To
see this, it will be sufficient to show that any strict a posteriori equilibrium
(recall Definition 2.3) can be played as a unique rationalizable strategy in
some nearby incomplete information perturbations.

Let us fix any strict a posteriori equilibrium (µ1, µ2) ∈ ∆(A) × ∆(A)
with full support. Verify that, being strict and having full support, it must
satisfy

0 < µ1(H1, T2) < µ1(H1,H2) < 1, 0 < µ1(T1,H2) < µ1(T1, T1) < 1,

0 < µ2(H1,H2) < µ2(T1,H2) < 1, 0 < µ2(T1, T2) < µ2(H1, T2) < 1,
(3.1)

and thus µ1 6= µ2. Pick any ε > 0 and N ≥ 0. We construct a dominance
solvable (ε, N)-perturbation such that the strict a posteriori equilibrium
(µ1, µ2) becomes “contagious”: that is, under the unique rationalizable strat-
egy profile, say σ, the ex ante probability that each player i ∈ I assigns to
any action profile a ∈ A is given by µi(a), i.e., Pi({ω | σ(a|ω) = 1}) = µi(a).

The construction is as follows.17 Let Ω = I × Z+ × A = {1, 2} ×
{0, 1, 2, . . .} × {H1, T1} × {H2, T2}. Denote ε̃ = 1 − (1 − ε)1/(N+1). For
each player i ∈ I, define Pi ∈ ∆(Ω) by

Pi(i, k, a) = ε̃(1 − ε̃)kµi(a)

and
Pi(−i, k, a) = 0

where a ∈ {H1, T1} × {H2, T2}.
18 Let each Qi consist of the events

E0
iHi

= {(−i, 0,Hi,H−i), (−i, 0,Hi, T−i)},

17Contagion of strict (a fortiori, pure strategy) Nash equilibria can be obtained with a
simpler construction. See the companion paper Oyama and Tercieux (2005) for such a
construction in an example of 2 × 2 coordination games.

18For simplicity, we here assume extreme heterogeneity in the prior distributions P1 and
P2: to each state, one player assigns strictly positive probability, while the other assigns
probability 0. This is not necessary for the result to hold, and one may in fact perturb
the priors so that they have common support. See the proof of Lemma 3.4.
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E0
iTi

= {(−i, 0, Ti,H−i), (−i, 0, Ti, T−i)},

and all the events of the form

Ek
iHi

= {(i, k − 1,Hi,H−i), (i, k − 1,Hi, T−i), (−i, k,Hi,H−i), (−i, k,Hi, T−i)},

Ek
iTi

= {(i, k − 1, Ti,H−i), (i, k − 1, Ti, T−i), (−i, k, Ti,H−i), (−i, k, Ti, T−i)},

for each k ≥ 1. Finally, at any state ω ∈ E0
iHi

(ω ∈ E0
iTi

, resp.), player
i’s (ex post) payoffs are given by a game where playing Hi (Ti resp.) is a
strictly dominant action, while at any other state, (ex post) payoffs are given
by the complete information game g, and thus Ωg = {(i, k, a) ∈ Ω | k ≥

1, i ∈ I, a ∈ A}. One can check that
⋂N

n=1[K∗]
n(Ωg) = {(i, k, a) ∈ Ω | k ≥

N +1, i ∈ I, a ∈ A} and Pi(
⋂N

n=1[K∗]
n(Ωg)) = (1− ε̃)N+1 = 1− ε for each

i ∈ I, so that this incomplete information game is an (ε, N)-perturbation of
g.

Now let σ be any rationalizable strategy profile of this incomplete in-
formation game. We want to show that for all i ∈ I and each action
ai, σi(ai|ω) = 1 for all ω ∈ Ek

iai
and all k ≥ 0. Note that this implies

that for all a ∈ A, σ(a|(i, k, a)) = 1 for all i ∈ I and all k ≥ 0. Hence,
Pi({ω | σ(a|ω) = 1}) = Pi(

⋃

j∈I

⋃∞
k=0{(j, k, a)}) =

∑∞
k=0 Pi(i, k, a) = µi(a)

as claimed.
First, by construction, σi(ai|ω) = 1 for all ω ∈ E0

iai
and all i ∈ I. Let us

then check the claim for k = 1. Consider any ω ∈ E1
iai

. By construction of
the state space and by definition of Pi, we have

Pi((i, 0, ai, a−i)|Qi(ω)) =
Pi((i, 0, ai, a−i))

Pi((i, 0, ai,H−i)) + Pi((i, 0, ai, T−i))

=
ε̃ × µi(ai, a−i)

ε̃ × µi(ai,H−i) + ε̃ × µi(ai, T−i)

= µi(a−i|ai)

Thus, at state ω ∈ E1
iai

, for any rationalizable strategy, player i assigns prob-
ability µi(H−i|ai) to his opponent playing H−i and µi(T−i|ai) to his oppo-
nent playing T−i. Therefore, by definition of strict a posteriori equilibrium,
we must have σi(ai|ω) = 1. In this way, one can indeed show by induction
that for all k ≥ 1, Pi((i, k, ai, a−i)|Qi(ω)) = µi(a−i|ai) for ω ∈ Ek+1

iai
.

Hence, in the (ε, N)-perturbation above, the unique rationalizable strat-
egy profile σ is such that Pi({ω | σ(a|ω) = 1}) = µi(a) for all i ∈ I and
all a ∈ A.19 Since ε and N have been fixed arbitrarily, this shows that
any action distribution profile other than (µ1, µ2) is not a robust equilib-
rium. Clearly, this game has multiple strict a posteriori equilibria (in fact,
there are a continuum of distributions satisfying (3.1)), so that the above

19This may be seen as “iterative dominance purification” of the a posteriori equilibrium
(µ1, µ2). See Corollary 3.5.

15



construction can be done for (µ′
1, µ

′
2) 6= (µ1, µ2), which shows in particular

that (µ1, µ2) too is not robust. Hence, we conclude that this game g has no
robust equilibrium.

For general games, we know by Brandenburger and Dekel (1987) that
whenever a game has several rationalizable outcomes, there are several a
posteriori equilibria. In the generic class of games g such that S∞[g] =
W∞[g], one can show that multiplicity of rationalizable outcomes implies
multiplicity of strict a posteriori equilibria. Lemma 3.4 performs a similar
construction as the one above to show that a generic game with multiple a
posteriori equilibria has no robust equilibrium, which concludes the proof of
the necessity part in Theorem 3.1.

3.2 Sufficiency

In this subsection, we show the sufficiency part of Theorem 3.1: that if
an equilibrium is a unique rationalizable action profile, then it is robust to
incomplete information under non-common priors. By the finiteness of A,
there exists N∗ ≥ 0 such that Sn[g] = SN∗

[g] for all n ≥ N∗. Recall that if
action distribution profile µ (or action distribution ξ) is (N−1)-robust, then
it is N ′-robust for all N ′ ≥ N − 1. Hence, it suffices to show the following.

Proposition 3.2. Let N∗ ≥ 1 be such that Sn[g] = SN∗

[g] for all n ≥ N∗.
If SN∗

[g] = {a∗}, then ([a∗])I ([a∗], resp.) is (N∗ − 1)-robust in g.

Thus, in order for a unique rationalizable outcome a∗ to be robust, mu-
tual knowledge of order N∗ about the event “the payoffs are given by g” is
needed, where N∗ is the number of necessary elimination iteration rounds
to reach the singleton {a∗}.

Proof of Proposition 3.2. Suppose that SN∗

[g] = {a∗}. Fix any δ ∈ (0, 1).
Now take ε > 0 such that ε ≤ δ. Consider any (ε, N∗ − 1)-perturbation U
and any Bayesian Nash equilibrium of U , σ. Then, we have for all i ∈ I,

σPi
(a∗) ≥ Pi

(

[K∗]
N∗−1(Ωg)

)

= Pi

(

⋂N∗−1
n=1 [K∗]

n(Ωg)
)

≥ 1 − ε ≥ 1 − δ,

where the first inequality follows from Lemma 2.1 and the second last in-
equality from the definition of (ε, N∗−1)-perturbation. A similar reasoning
holds when considering (ε, N∗ − 1)-elaboration.

3.3 Necessity

In this subsection, we show the necessity part of Theorem 3.1: the dominance
solvability is a necessary condition for a complete information game to have
a robust equilibrium under non-common priors.
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This shows that replacing common knowledge by mutual knowledge at
an arbitrary high (but finite) level has far reaching consequences in partic-
ular when we drop the CPA. Indeed, under the CPA, several wider classes
of games have been known in which a robust equilibrium exists (see the
references cited in the Introduction). The result below shows that all these
results heavily depend on the CPA.

Proposition 3.3. Suppose that W∞[g] 6= ∅. If µ∗ ∈ (∆(A))I (ξ∗ ∈ ∆(A),
resp.) is robust in g, then µ∗ = ([a∗])I (ξ∗ = [a∗], resp.) for some a∗ ∈ A
such that W∞[g] = {a∗}.

The following lemma is sufficient to prove the proposition. The proof of
the lemma relies on a contagion argument for rationalizable action profiles
or, to be more specific, for a set having the (strict) best response property
(rather than for a single strict Nash equilibrium as often performed in the
literature). Using this technique, in Corollary 3.5 we prove a result on
what we call iterative dominance purification of (undominated) a posteriori
equilibria, which allows us to prove the necessity part. It will also play a
central role in the proofs for the set-valued robustness results in Section 4.

Recall from Definition 2.3 that a profile of action distributions (µi)i∈I ∈
(∆(A))I is a strict a posteriori equilibrium if for all i ∈ I, µi(W

∞[g]) = 1,
and all ai ∈ Ai,

µi(ai) > 0 ⇒ {ai} = br i(µi(·|ai)).

Lemma 3.4. Let (µi)i∈I ∈ (∆(A))I be a strict a posteriori equilibrium
such that supp(µi) = supp(µj) for all i, j ∈ I. Then, for any ε > 0 and
N ≥ 0 there exists an (ε, N)-perturbation of g such that there is a unique
rationalizable strategy profile σ and it satisfies σPi

= µi for all i ∈ I.

Proof. Let (µi)i∈I ∈ (∆(A))I be as above. Denote S = supp(µi) (⊂ W∞[g])
and Si = {ai | µi(ai) > 0}.

Given ε ∈ (0, 1) and N ≥ 0, let ε̃ = 1 − (1 − ε)1/(N+1). For each i ∈ I
and ai ∈ Si , there exists ηi(ai) > 0 such that for all πi ∈ ∆(A−i), if
|πi − µi(·|ai)| ≤ ηi(ai), then {ai} = br i(πi), which is well defined by the
continuity of gi. Let η = mini∈I minai∈Si

ηi(ai). Then, take any r ≥ 1 large
enough so that r/{r + (I − 1)(1 − ε̃)} ≥ 1 − η.

We now construct an (ε, N)-perturbation Uε,N as follows. Let Ω =
I × Z+ × S and define Pi ∈ ∆(Ω) for each i ∈ I by

Pi(i, k, a) =
r

r + I − 1
ε̃(1 − ε̃)kµi(a)

and

Pi(j, k, a) =
1

r + I − 1
ε̃(1 − ε̃)kµi(a)

for j 6= i. Let each Qi consist of (i) the events

E0
iai

= {(j, 0, ai, a−i) | j 6= i, (ai, a−i) ∈ S},
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and (ii) all the events of the form

Ek
iai

= {(i, k − 1, ai, a−i), (j, k, ai, a−i) | j 6= i, (ai, a−i) ∈ S}

for each k ≥ 1. Finally, define each ui : A × Ω → R by

ui((ai, a−i), ω) =















gi(ai, a−i) if ω /∈
⋃

a′
i
E0

ia′
i
,

1 if ω ∈ E0
iai

,

0 if ω ∈ E0
ia′

i
for a′i 6= ai.

Verify that Ωg = {(i, k, a) | k ≥ 1, i ∈ I and a ∈ S} and
⋂N

n=1[K∗]
n(Ωg) =

{(i, k, a) | k ≥ N + 1, i ∈ I and a ∈ S}, so that Pi(
⋂N

n=1[K∗]
n(Ωg)) =

(1 − ε̃)N+1 = 1 − ε for all i ∈ I.
We first show that Uε,N constructed above has a unique rationalizable

strategy (recall Definition 2.8). For this, we prove by induction that for all
k = 1, 2, . . .,

Rk
i

[

Ek−1
iai

]

= {ai} for all i ∈ I and all ai ∈ Si. (∗k)

First, (∗1) holds true by construction.
Assume (∗k). Fix any i ∈ I and ai ∈ Si, and take any conjecture of

i, νi ∈ ∆(Ω × A−i), such that νi({(ω
′, a−i) | a−i ∈ Rk

−i[ω
′]}) = 1 and

margΩ νi = Pi(·|E
k
iai

), where Rk
−i[ω

′] =
∏

j 6=i R
k
j [Qj(ω

′)]. We show that
|margA−i

νi − µi(·|ai)| ≤ η.

Consider the states in Ek
iai

of the form (i, k − 1, ai, (aj)j 6=i). By con-

struction, such a state belongs to Ek−1
jaj

for all j 6= i. Since Rk
j

[

Ek−1
jaj

]

=

{aj} by the induction hypothesis, the conjecture νi must satisfy νi((i, k −
1, ai, a−i), a

′
−i) = 0 for all a′−i 6= a−i. Hence, we have

(margA−i
νi)(a−i)

= νi((i, k − 1, ai, a−i), a−i) +
∑

a′
−i

∑

j 6=i

νi((j, k, ai, a
′
−i), a−i), (3.2)

and

νi((i, k − 1, ai, a−i), a−i) = (margΩ νi)(i, k − 1, ai, a−i)

= Pi

(

(i, k − 1, ai, a−i)
∣

∣Ek
iai

)

. (3.3)

Now, by the construction of the state space,

Pi

(

(i, k − 1, ai, a−i)
∣

∣Ek
iai

)

=
Pi((i, k − 1, ai, a−i))

∑

a′
−i

Pi((i, k − 1, ai, a′−i)) +
∑

a′
−i

∑

j 6=i Pi((j, k, ai, a′−i))

=
rµi(ai, a−i)

{r + (I − 1)(1 − ε̃)}
∑

a′
−i

µi(ai, a′−i)
= c µi(a−i|ai), (3.4)
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and hence νi((i, k − 1, ai, a−i), a−i) = c µi(a−i|ai) by (3.3), where we denote
c = r/{r + (I − 1)(1 − ε̃)}. Since

∑

a′
−i

νi((i, k − 1, ai, a
′
−i), a

′
−i) = c, it

therefore follows from (3.2) that, for all a−i,

(margA−i
νi)(a−i) ≤ c µi(a−i|ai) + (1 − c),

so that

|(margA−i
νi)(a−i) − µi(a−i|ai)| ≤ (1 − c)(1 − µi(a−i|ai))

≤ 1 − c ≤ η,

where the last inequality follows from the choice of r. We thus have
|margA−i

νi − µi(·|ai)| ≤ η.
Thus by the definition of µi and the choice of η, we have BRi(νi) =

br i(margA−i
νi) = {ai}. Since νi has been taken arbitrarily, it follows that

Rk+1
i

[

Ek
iai

]

= {ai}, hence (∗k+1).

Finally, if σ is the unique rationalizable strategy of Uε,N , we have
σPi

(a) = µi(a) for all a ∈ A by construction.

Note that the (ε, N)-perturbation constructed above satisfies common
support and L-tail consistency for some L ≥ 1 (where L depends on ε and
N).

As a corollary of Lemma 3.4, we obtain the iterative dominance purifi-
cation result, that we can purify any undominated a posteriori equilibrium
by a unique rationalizable strategy profile of a dominance solvable (ε, N)-
perturbation.

Corollary 3.5. Let (µi)i∈I be any undominated a posteriori equilibrium.
For any δ > 0, ε > 0, and N ≥ 0, there exists an (ε, N)-perturbation of g

such that there is a unique rationalizable strategy profile σ and it satisfies
|σPi

− µi| ≤ δ for all i ∈ I.

Proof. Let (µi)i∈I be an undominated a posteriori equilibrium. Fix δ > 0.
By the continuity of gi’s, we can take a strict a posteriori equilibrium (µ′

i)i∈I

with supp(µ′
i) = W∞[g] for all i ∈ I such that |µ′

i − µi| ≤ δ. Hence by
Lemma 3.4, for any ε > 0, and N ≥ 0 there exists an (ε, N)-perturbation of
g such that a unique rationalizable strategy profile σ satisfies σPi

= µ′
i and

hence |σPi
− µi| ≤ δ for all i ∈ I, which completes the proof.

Note that this corollary in fact proves that in the generic class of games
where W∞[g] = S∞[g], any a posteriori equilibrium can be purified in the
previous sense.

We now prove the necessity part for our robustness result.

Proof of Proposition 3.3. Suppose that W∞[g] 6= ∅ and that (µ∗
i )i∈I (ξ∗,

resp.) is robust. Observe that the set of strict a posteriori equilibria (µi)i∈I
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such that supp(µi) = W∞[g] for all i ∈ I is nonempty. Take any such strict
a posteriori equilibrium (µi)i∈I of g. Then, by Lemma 3.4, for any ε > 0 and
N ≥ 0 there exists an (ε, N)-perturbation where the unique rationalizable
strategy profile σ satisfies σPi

= µi for all i ∈ I. Hence, it must be true that
µi = µ∗

i for all i ∈ I (µi = ξ∗ for all i ∈ I, resp.). This implies that (µ∗
i )i∈I

((ξ∗)I , resp.) is the unique strict a posteriori equilibrium, so that W∞[g]
is a singleton set, say, {a∗}, and thus µ∗

i = [a∗] for all i ∈ I (ξ∗ = [a∗],
resp.).

Let us relate our results to previous studies. Weinstein and Yildiz (2007)
show that for any complete information type in the universal type space20

and any rationalizable action profile a∗ of this game, there exist a dominance-
solvable incomplete information game and a sequence of types drawn from
this game such that (1) this sequence converges to the complete information
type (with respect to the product topology in the universal type space) and
(2) each type of the sequence plays a∗. Our construction in Lemma 3.4
shows that such a dominance solvable incomplete information game can be
an (ε, N)-perturbation (where ε can be arbitrarily small and N arbitrarily
large). In addition, Corollary 3.5 shows that the unique equilibrium of
this (ε, N)-perturbation can be fully characterized by using the notion of
a posteriori equilibrium. Whenever a∗ is a strict Nash equilibrium, the
unique equilibrium of this dominance-solvable game will play a∗ everywhere.
However, when a∗ is not a strict Nash equilibrium, this is not possible: a∗

cannot be played everywhere (as the proof of Lemma 3.4 demonstrates,
action profiles different from a∗ have also to be contagious). In proving
our complete characterization result, the use of our iterative dominance
purification argument that relies on a posteriori equilibrium becomes crucial.

If, as in Kajii and Morris (1997), one considers (ε, N)-perturbations of
g that satisfy the CPA, then any equilibrium action distribution of such an
(ε, N)-perturbation must be close to some objective correlated equilibrium
of g when ε is small (Corollary 3.5 in Kajii and Morris (1997)). In contrast,
with non-common priors, equilibrium action distributions are close to sub-
jective correlated equilibria (Lemma 2.2 in Subsection 2.4). The former fact
allows Kajii and Morris (1997) to establish that if g has a unique objective
correlated equilibrium, then it is a robust equilibrium under common priors,
while, as our result shows, it is not robust under non-common priors unless
g itself is dominance solvable (or equivalently, g has a unique a posteriori
equilibrium).

Lipman (2003, 2005) shows that given any partition model with non-
common priors (and tail consistency) and any state ω in the model, for any
finite N one can construct a partition model with a common prior such that

20Recall that a complete information type is a (degenerate) type in the universal type
space where it is common knowledge that payoffs are given by the complete information
game.
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there is a state in that model that has the same higher order beliefs up
to order N as those at ω. Lipman’s (2005) construction can be applied as
well to our (ε, N)-perturbation in the proof of Lemma 3.4 to have a further
incomplete information perturbation with a common prior. One might then
ask whether we could use the further perturbation with a common prior
so obtained for the purpose of Lemma 3.4. It is, however, not true; for,
when the given a posteriori equilibrium is not a robust equilibrium under
common prior (as in the example in Subsection 3.1), it is not possible, for
vanishingly small ε, to have an (ε, N)-perturbation such that (1) it has a
common prior, (2) it is dominance solvable, and (3) the unique rationalizable
strategy profile generates an action distribution arbitrarily close to that
a posteriori equilibrium. The additional constraints that the CPA imposes
on perturbations are discussed further in Section 5.

4 Set-Valued Robustness

Given that many games possess no robust equilibrium, it is natural to con-
sider a set-valued robustness concept. Such an idea can be found for instance
in Morris and Ui (2005) where the common prior is assumed. In the fol-
lowing, we define robustness for sets of action distribution profiles as well
as those of action distributions. We give a separate treatment to these
two notions since, contrary to their point-valued versions, they lead to dis-
tinct characterizations. We then show our second main result. that for any
generic game g in which S∞[g] = W∞[g], a smallest robust set of action
distribution profiles (action distributions, resp.) exists and coincides with
the set of a posteriori equilibria of g (the convex hull of S∞[g], resp.).

4.1 Robust Sets of Action Distribution Profiles

Let us first define the robustness of sets of action distribution profiles.

Definition 4.1. A product set of action distribution profiles M =
∏

i∈I Mi ⊂ (∆(A))I is N -robust to incomplete information under non-
common priors, or simply, N -robust, if it is closed, and for all δ > 0, there
exists ε > 0 such that any (ε, N)-perturbation of g has a Bayesian Nash
equilibrium σ such that for all i ∈ I, there exists µi ∈ Mi with |µi−σPi

| ≤ δ.
M is robust to incomplete information under non-common priors, or

simply, robust, if there exists N ≥ 0 such that M is N -robust.

Observe that if M is (N -)robust, then any M ′ ⊃ M is (N -)robust. In
particular, (∆(A))I is N -robust for all N ≥ 0 and thus robust. We say
that M is a minimal (N -)robust set if it is an (N -)robust set and no proper
subset of it is an (N -)robust set; and that M is a smallest (N -)robust set if
it is an (N -)robust set and is contained in any (N -)robust set.
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The following proposition establishes that minimal robust set is well
defined for all finite games, while we will show that a smallest robust set
actually exists for generic games.

Proposition 4.1. Any game has a minimal N -robust set for each N ≥ 0
and a minimal robust set.

Proof. We show the existence of a minimal N -robust set; the existence of a
minimal robust set can be proved analogously.

Let (M,⊂) be the (nonempty) collection of N -robust sets partially or-
dered by set inclusion. We show that (M,⊂) has a minimal element. Take
any totally ordered subset of M and denote it by M′. Let M∗ =

⋂

M∈M′ M .
Since each M ∈ M′ is nonempty and closed in a compact set (∆(A))I , so is
M∗. We want to show that M∗ is N -robust and therefore is a lower bound
of M′ in M. Then, it follows from Zorn’s lemma that M has a minimal
element.

Fix any δ > 0. By the compactness of (∆(A))I , we can take an M ′ ∈ M′

such that M ′ ⊂ Vδ/2(M
∗). By definition, there exists ε > 0 such that any

(ε, N)-elaboration has a Bayesian Nash equilibrium σ such that for some
(µ′

i)i∈I ∈ M ′, |µ′
i − σPi

| ≤ δ/2 for all i ∈ I. But we can take (µi)i∈I ∈ M∗

such that |µi − µ′
i| ≤ δ/2 for all i ∈ I, and hence |µi − σPi

| ≤ δ for all i ∈ I.
This implies that M∗ is N -robust, completing the proof.

In characterizing robust sets of action distribution profiles, the concept
of a posteriori equilibrium is the key notion. Recall that a profile of action
distributions (µi)i∈I ∈ (∆(A))I is an a posteriori equilibrium (N -subjective
correlated equilibrium, resp.) of g if it is a subjective correlated equilibrium
of g and µi(S

∞[g]) = 1 (µi(S
N [g]) = 1, resp.) for all i ∈ I, and that

E [g] (EN [g], resp.) denotes the set of a posteriori equilibria (N -subjective
correlated equilibria, resp.) of g. We show that for generic games, a smallest
robust set of action distribution profiles exists and coincides with E [g].

Theorem 4.2. Suppose that S∞[g] = W∞[g]. Then, E [g] is the smallest
robust set of g.

The proof proceeds in two steps. We first show that EN [g] is (N − 1)-
robust, which implies that E [g] is robust. Then we show that any robust set
contains the set of undominated a posteriori equilibria, Eu[g].

From Lemma 2.2 in Subsection 2.4, we immediately have the following.21

Proposition 4.3. EN [g] is (N − 1)-robust.

21Lemma 2.2 in fact implies a stronger result that for all δ > 0, there exists ε > 0
such that for any Bayesian Nash equilibrium σ of any (ε, N)-elaboration, there exists
(µi)i∈I ∈ EN [g] such that |µi − σPi

| ≤ δ for all i ∈ I (recall that our robustness test only
requires that there exist such a Bayesian Nash equilibrium).
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Since Eu[g] coincides with E [g] whenever S∞[g] = W∞[g], the next
proposition is sufficient to complete the proof of Theorem 4.2.

Proposition 4.4. If M is robust in g, then Eu[g] ⊂ M .

Proof. Let M =
∏

i∈I Mi be robust in g. Take any (µi)i∈I ∈ Eu[g]. By
Corollary 3.5, for each i ∈ I, Vδ(µi) ∩ Mi 6= ∅ for any δ > 0. By the
closedness of M , it follows that µi ∈ Mi for each i ∈ I.

4.2 Robust Sets of Action Distributions

As for the point-valued robustness concept, we consider the following alter-
native concept.

Definition 4.2. A set of action distributions Ξ ⊂ ∆(A) is N -robust to
incomplete information under non-common priors, or simply, N -robust, if
it is closed, and for all δ > 0, there exists ε > 0 such that for any (ε, N)-
elaboration of g, (U , P0), U has a Bayesian Nash equilibrium σ such that
there exists ξ ∈ Ξ with |ξ − σP0

| ≤ δ.
A set of action distributions Ξ ⊂ ∆(A) is robust to incomplete informa-

tion under non-common priors, or simply, robust, if there exists N ≥ 0 such
that Ξ is N -robust.

Observe that if Ξ is (N -)robust, then any Ξ′ ⊃ Ξ is (N -)robust. In
particular, ∆(A)) is N -robust for all N ≥ 0 and thus robust. We say that Ξ
is a minimal (N -)robust set if it is an (N -)robust set and no proper subset
of it is an (N -)robust set; and that Ξ is a smallest (N -)robust set if it is
an (N -)robust set and is contained in any (N -)robust set. The existence of
minimal robust set can be verified in the same way as in Proposition 4.1.

We show that for generic games, a smallest robust set of action distri-
butions exists and coincides with the convex hull of the set of rationalizable
action profiles of g.

Theorem 4.5. Suppose that S∞[g] = W∞[g]. Then, ∆(S∞[g]) is the small-
est robust set of g.

Note that the elements of the convex hull ∆(S∞[g]) represent the mod-
eler’s predictions over A generated via his own subjective prior P0 in (ε, N)-
elaborations, and thus some elements may not be part of any a posteriori
equilibrium, since P0 may be unrelated to the players’ priors (provided that
it assigns probability at least 1 − ε to the event that Ωg is mutually known
up to order N).

The proof proceeds in two propositions. The first proposition implies
that ∆(S∞[g]) is (N∗ − 1)-robust, where N∗ is such that ∆(S∞[g]) =
∆(SN∗

[g]), which is well defined by the finiteness of A. The second proves
that any robust set contains ∆(W∞[g]).
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Proposition 4.6. For any N ≥ 1, ∆(SN [g]) is (N − 1)-robust.

Proof. Fix any N ≥ 1 and any δ > 0. Now take ε > 0 such that ε ≤ δ.
Consider any (ε, N − 1)-elaboration (U , P0) and any rationalizable strategy
profile of U , σ. Then, we have

σP0
(SN [g]) ≥ P0

(

[K∗]
N−1(Ωg)

)

= P0

(

⋂N−1
n=1 [K∗]

n(Ωg)
)

≥ 1 − ε ≥ 1 − δ,

where the first inequality follows from Lemma 2.1 and the second last in-
equality from the definition of (ε, N − 1)-elaboration. Hence, we have that
|σP0

− ξ| ≤ δ for some ξ ∈ ∆(SN (g)), which shows that ∆(SN [g]) is N -
robust.

Proposition 4.7. If Ξ is robust in g, then ∆(W∞[g]) ⊂ Ξ.

Proof. Suppose that Ξ is a robust set, which is closed by definition, and
let N ≥ 0 be such that Ξ is N ′-robust for all N ′ ≥ N . Assume that
W∞[g] 6= ∅ and take any ξ ∈ ∆(W∞[g]) with supp(ξ) = W∞[g]. We show
that for all ε > 0, there exists an (ε, N)-elaboration (Uε,N , P0) such that any
rationalizable strategy profile σ of U satisfies σP0

= ξ. Then, this implies
that Vδ(ξ) ∩ Ξ 6= ∅ for all δ > 0, so that ξ ∈ Ξ due to the closedness of Ξ.

Take any ε > 0, and any strict a posteriori equilibrium (µi)i∈I such that
supp(µi) = W∞[g] for all i ∈ I. Then, let Uε,N be the (ε, N)-perturbation
as in the proof of Lemma 3.4, and let P0 be defined by

P0(1, k, a) =
r

r + I − 1
ε̃(1 − ε̃)kξ(a)

and

P0(j, k, a) =
1

r + I − 1
ε̃(1 − ε̃)kξ(a)

for j 6= 1. By Lemma 3.4, we know that the unique rationalizable strat-
egy profile σ of Uε,N satisfies σ(a|(j, k, a)) = 1 for all (j, k, a) ∈ Ω. By

construction, P0

(

⋂N
n=1[K∗]

n(Ωg)
)

≥ 1 − ε and σP0
= ξ.

Now we have that the set of distributions with support equal to W∞[g]
is contained in Ξ. But the closure of this set is actually ∆(W∞[g]). Hence,
since Ξ is closed, we must have ∆(W∞[g]) ⊂ Ξ.

5 Discussion

In this section, we examine the critical assumptions for our results to hold.
We also discuss the relationship with other robustness notions as defined in
Weinstein and Yildiz (2004, 2007).
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5.1 N -Robustness

In Subsection 3.2, we showed that if a∗ is a unique rationalizable action
profile in g and if an incomplete information game U is an (ε, N∗ − 1)-
elaboration of g, where N∗ is such that SN∗

[g] = {a∗}, then in any Bayesian
Nash equilibrium of U , a∗ is played with high probability with respect to
any player’s prior (whenever ε is small with respect to these priors). In
this subsection, we show that mutual knowledge of Ωg at high order is
also necessary for such an action profile a∗ to be played in Bayesian Nash
equilibria. To see this, we examine the concept of N -robustness.

Proposition 5.1. Suppose that SN [g] = WN [g]. Then, EN [g] is the small-
est (N − 1)-robust set of g.

In the sequel, we say that a profile of action distributions (µi)i∈I ∈
(∆(A))I is a strict N -subjective correlated equilibrium if it is an undominated
N -subjective correlated equilibrium and for all i ∈ I and all ai ∈ Ai,

µi(ai) > 0 ⇒ {ai} = br i(µi(·|ai)).

Lemma 5.2. Fix any N ≥ 1. Let (µN
i )i∈I ∈ (∆(A))I be a strict N -

subjective correlated equilibrium. Then, for any δ > 0 and ε > 0, there
exists an (ε, N − 1)-perturbation of g such that any rationalizable strategy
profile σ satisfies |σPi

− µi| < δ for all i ∈ I.

Proof. See Appendix.

As in Subsection 3.3, we can derive the following corollary, which is
analogous to Corollary 3.5.

Corollary 5.3. Fix any N ≥ 1. Let (µi)i∈I be an undominated N -subjective
correlated equilibrium. For any δ > 0 and ε > 0, there exists an (ε, N −
1)-perturbation of g such that any rationalizable strategy profile σ satisfies
|σPi

− µi| ≤ δ for all i ∈ I.

Using the same argument as in Section 4, we can complete the proof of
Proposition 5.1.

Remark that if we consider 0-robustness as an extension to heterogeneous
priors of the robustness test defined in Kajii and Morris (1997), we obtain
that for a generic class of games, a profile of action distribution (µi)i∈I is
robust à la Kajii and Morris (1997) without a common prior if and only
if µi = [a∗] for all i ∈ I where a∗i is a strictly dominant action for each
player i ∈ I.22 This result generalizes Proposition 12 in Weinstein and

22A same result would hold if we considered robustness of action distributions instead of
profiles of action distributions. In the case of sets of action distributions, the proposition
analogous to Proposition 5.1 would state that for generic games, the smallest (N − 1)-
robust set coincides with ∆(SN [g]).
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Yildiz (2004). Indeed, as Weinstein and Yildiz (2007, Section 8) point out,
without common prior, the restriction only on the prior probabilities of Ωg

has no implication for conditional beliefs beyond second order.

5.2 Uniform Bound on Posteriors

In Subsection 3.3, we showed that if g has more than one rationalizable
action profiles, then for each such profile, we can construct an (ε, N)-
perturbation whose Bayesian Nash equilibrium plays this profile with prob-
ability zero. The crucial point for this result is that relevant posterior prob-
abilities can be arbitrarily close to one simultaneously for the players (see
(3.4) in the proof of Lemma 3.4) by choosing heterogenous priors sufficiently
different from each other.

In this subsection, we examine how the results change if we require that
the elaborations uniformly satisfy L-tail consistency (uniformly over elabo-
rations of a complete information game). Indeed, when such an assumption
is made, given L there are generic games with multiple rationalizable action
profiles that have a robust equilibrium. To extract the effect of this re-
striction, we consider ε-perturbation (i.e., (ε, 0)-perturbation), whereas the
result below would hold if we considered (ε, N)-perturbations. Given an
ε-perturbation, let

ρ
(

(Pi)i∈I

)

= max
i6=j

sup
ω∈Ω

Pi(ω)

Pj(ω)

with a convention that q/0 = ∞ for q > 0, and 0/0 = 1. Note that
ρ
(

(Pi)i∈I

)

< ∞ only if (Pi)i∈I has common support.

Definition 5.1. An action distribution (µi)i∈I ∈ (∆(A))I is r-robust if for
all δ > 0, there exists ε > 0 such that any ε-perturbation of g such that
ρ
(

(Pi)i∈I

)

≤ r has a Bayesian Nash equilibrium σ such that |µi − σPi
| ≤ δ

for all i ∈ I.

We use p-belief operators as defined in Monderer and Samet (1989). For
any number p ∈ (0, 1], the p-belief operator for player i, Bp

i : 2Ω → 2Ω, is
defined by

Bp
i (E) = {ω ∈ Ω | Pi(E|Qi(ω)) ≥ p}.

That is, Bp
i (E) is the set of states where player i believes E with probability

at least p (with respect to his own prior Pi). Let Bp
∗(E) =

⋂

i∈I Bp
i (E)

be the set of states where E is mutually p-believed, i.e., where every player
believes E with probability at least p. Finally, an event E is common p-belief
at state ω if ω ∈ Cp(E) =

⋂∞
n=1[B

p
∗ ]

n(E).
Observe that for any event E, we have by definition of knowledge oper-

ators that K∗(E) ⊂ E. On the other hand, this inclusion is not necessarily
true when replacing knowledge operators by p-belief operators. The follow-
ing lemma shows that this inclusion remains true for simple events.
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Lemma 5.4. For any simple event E and any p ∈ (0, 1], Bp
∗(E) ⊂ E.

Proof. Let E be a simple event, and E =
⋂

i∈I Ei where Ei ∈ Fi for each i ∈
I. Observe that Bp

i (Ei) = Ei for any p > 0. By the monotonicity of Bp
i (·),

we have Bp
i (E) ⊂ Bp

i (Ei) = Ei. It follows that
⋂

i∈I Bp
i (E) ⊂

⋂

i∈I Ei, as
claimed.

The following result, which corresponds to the critical path result of Kajii
and Morris (1997, Proposition 4.2) in our context with non-common priors,
shows that with a uniform bound on posteriors, the ex ante probability
(with respect to any player’s prior) of the event Cp(E) is bounded from
below uniformly in all information systems.

Proposition 5.5. For any r > 0, if p < 1/{1 + r(I − 1)}, then in any in-
formation system IS = [Ω, (Pi)i∈I , (Qi)i∈I ] with ρ

(

(Pi)i∈I

)

≤ r, any simple
event E satisfies

Pj(C
p(E)) ≥ 1 −

1 − p

(1 − {1 + r(I − 1)}p)
max
i∈I

(1 − Pi(E)) (5.1)

for all j ∈ I.

Proof. See Appendix.

Conversely, if p ≥ 1/{1 + r(I − 1)}, then one can find an information
system with ρ

(

(Pi)i∈I

)

≤ r and a simple event E such that (5.1) does not
hold. Indeed, one can show that the information system given in the proof
of Lemma 3.4 is such an example.

To give a sufficient condition for r-robustness, we use the notion of p-
dominant equilibrium as introduced by Morris, Rob, and Shin (1995) and
Kajii and Morris (1997).

Definition 5.2. Let p ∈ [0, 1]. Action profile a∗ ∈ A is a p-dominant
equilibrium in g if for all i ∈ I,

a∗i ∈ bri(πi)

holds for all πi ∈ ∆(A−i) with πi(a
∗
−i) ≥ p.

We also use the following lemma, a straightforward corollary of Kajii
and Morris (1997, Lemma 5.2), which relates the notion of common p-belief
to that of p-dominance.

Lemma 5.6. Suppose that action profile a∗ is a p-dominant equilibrium of
g. Consider any incomplete information perturbation U of g. Then, U has a
Bayesian Nash equilibrium where σi(a

∗
i |ω) = 1 for all i ∈ I and ω ∈ Cp(Ωg).

Proposition 5.7. Suppose that action profile a∗ is a p-dominant equilibrium
of g where p < 1/(1 + r(I − 1)). Then, [a∗]I is r-robust.
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Proof. Let a∗ be a p-dominant equilibrium with p < 1/(1+r(I−1)). Fix any
δ > 0. By Proposition 5.5, we can choose ε > 0 such that for any information
system and any simple event E, Pi(E) ≥ 1 − ε implies Pi(C

p(E)) ≥ 1 − δ.
Thus, by the choice of ε, for any ε-perturbation U of g with ρ

(

(Pi)i∈I

)

≤ r,
we have Pi(C

p(Ωg)) ≥ 1 − δ. By Lemma 5.6, it follows that there exists
a Bayesian Nash equilibrium σ of U with σPi

(a∗) ≥ Pi(C
p(Ωg)) ≥ 1 − δ,

meaning that [a∗] is r-robust.

5.3 Interim Robustness

We discuss the robustness concept due to Weinstein and Yildiz (2004, Defi-
nition 10).23

Definition 5.3. (U , ω) is an N -perturbation of g if ω ∈
⋂N

n=1(K∗)
n(Ωg).

Definition 5.4. a∗ ∈ A is interim robust to incomplete information in g

if there exist N ≥ 0 such that for any N -perturbation of g, (U , ω) such
that U satisfies the CPA, U has a Bayesian Nash equilibrium σ∗ such that
σ∗(ω) = [a∗].

Note that it is not required that P (Ωg) be large in U , where P is the
common prior.

Weinstein and Yildiz (2004, Proposition 11) showed the following.24

Proposition 5.8. Suppose that S∞[g] = W∞[g]. Then, a∗ is interim
robust in g if and only if S∞[g] = {a∗}.

Let us prove that we can derive this result from our previous results.

Lemma 5.9. For any ε > 0 and N ≥ 0, there exists an (ε, N)-perturbation
of g with a common prior such that for all a ∈ W∞[g], there exists ω ∈
⋂N

n=1(K∗)
n(Ωg) such that σ(ω) = [a] for any rationalizable strategy profile

σ.

Proof. Let (µi)i∈I ∈ (∆(A))I be a strict a posteriori equilibrium such that
supp(µi) = W∞[g] for all i ∈ I. Consider the (ε, N)-perturbation Uε,N as
built in Lemma 3.4 but where r ≥ 1 is chosen large enough so that for all
i ∈ I,

µi(ai, a−i)

µi(ai) +
1 − ε̃

r

∑

j 6=i µj(ai)
≥ (1 − η)µi(a−i|ai)

for all ai ∈ W∞
i and a−i ∈ W∞

−i (where η is chosen as in Lemma 3.4). In
addition, the common prior over Ω = I × Z+ × W∞[g], P , is defined as

23Note that the exact definition in Weinstein and Yildiz (2004, Definition 10) uses B1−ε
∗

instead of K∗. One can show that our proofs would work with their formulation.
24One can also show this result using Lemma 3.4 and Lipman (2005, Theorem 1).
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follows. For each i ∈ I and a ∈ W∞[g], let

P (i, k, a) =
1

I
ε̃

(

1 − ε̃

r

)k

µi(a)

for all k ≤ N +2. Observe that
∑

i∈I

∑N+2
k=0

∑

a∈W∞[g] P (i, k, a) < 1. Then,
for all k ≥ N + 3, define P (i, k, a) so that P (Ω) = 1.

Now let σ be any rationalizable strategy profile of Uε,N . We show that
for all i ∈ I and all ai ∈ W∞

i [g], σi(ai|ω) = 1 for all ω ∈
⋃N+2

k=0 Ek
iai

. By
construction, σi(ai|ω) = 1 for all ω ∈ E0

iai
and all i ∈ I. Then suppose that

fo k ≤ N + 1, σi(ai|ω) = 1 for all ω ∈ Ek
iai

and all i ∈ I. Consider any

ω ∈ Ek+1
iai

. By the construction of the state space, we have

P ((i, k, ai, a−i)|Qi(ω))

=
P ((i, k, ai, a−i))

∑

a′
−i

P ((i, k, ai, a′−i)) +
∑

a′
−i

∑

j 6=i P ((j, k + 1, ai, a′−i))

=
µi(ai, a−i)

µi(ai) +
1 − ε̃

r

∑

j 6=i µj(ai)
,

so that
∣

∣P ((i, k, ai, a−i)|Qi(ω)) − µi(a−i|ai)
∣

∣ ≤ ηµi(a−i|ai) ≤ η,

where the last inequality follows from the choice of r. Thus, by the def-
inition of µi and the choice of η as well as the induction hypothesis, we
have σi(ai|ω) = 1. The proof is completed observing that (i,N + 1, a) ∈
EN+2

iai
∩

⋂

j 6=i E
N+1
jaj

, so that a is played at (i,N + 1, a) at any rationalizable

strategy profile and that (i,N + 1, a) ∈
⋂N

n=1(K∗)
n(Ωg).

Proof of Proposition 5.8. The sufficiency part follows from Lemma 2.1. To
show the necessity, assume that a∗ is interim robust to incomplete informa-
tion. Take any a ∈ W∞[g]. Note that the set of strict a posteriori equilibria
(µi)i∈I such that supp(µi) = W∞[g] is nonempty. Consider any such (µi)i∈I .
Then, by Lemma 5.9, we have that for all ε > 0 and N ≥ 0, there exists
an (ε, N)-perturbation of g, Uε,N such that (1) it satisfies the CPA; and (2)
there is some ω ∈

⋂N
n=1[K∗]

n(Ωg) where σ(ω) = [a] for any rationalizable
strategy profile σ. Since (Uε,N , ω) is an N -perturbation of g satisfying the
CPA, we must have that |W∞[g]| = 1 and hence W∞[g] = {a∗}.

In the constructed perturbation with a common prior P , when P (Ωg)
becomes close to one,25 then σP (a∗) must in some cases (e.g., when a∗ is
the risk-dominated equilibrium of a 2×2 coordination game) be vanishingly
small. We explore this point in detail (in two-player games) in Oyama and
Tercieux (2005).

25Observe that this is the case in the perturbation in the proof of Lemma 5.9.

29



6 Conclusion

Following Kajii and Morris (1997), the present paper has investigated the
question of ex ante robustness of action distributions of complete infor-
mation games to a small amount of incomplete information. Contrary to
previous work in this literature, we postulated that in our incomplete in-
formation perturbations, players may have heterogeneous prior beliefs. We
demonstrated that dropping the common prior assumption (CPA) has far
reaching consequences. Our first result shows that an action distribution of
a generic complete information game is robust under non-common priors if
and only if the game is dominance solvable and the action distribution as-
signs weight one on the unique action profile surviving iterative deletion of
strictly dominated actions. This implies that the robustness test that allows
for incomplete information perturbations without common prior is substan-
tially stronger than the one with common prior as considered by Kajii and
Morris (1997).

Our approach in this paper is an ex ante one, where the outside analyst
has no information about interim beliefs of the players and thus is concerned
with the ex ante average behavior of the players. On the contrary, Weinstein
and Yildiz (2007) consider a similar robustness question with an interim
approach where the analyst is given a hierarchy of interim beliefs and is
concerned with the behavior the players may have at this specific hierarchy.
They show that an equilibrium is interim robust if and only if it is the unique
action profile surviving iterative deletion of strictly dominated strategies.
Importantly, by the result of Lipman (2003), this characterization remains
valid even when players are assumed to share a common prior in incomplete
information perturbations. Our characterization, in contrast, does not hold
under the CPA. This is due to the fact that, as the critical path result of
Kajii and Morris (1997) establishes, under the CPA the restrictions on prior
beliefs also impose restrictions on interim (higher order) beliefs.

We also investigated the question of robustness of sets of action distribu-
tions. Our second result, which generalizes our result on point-valued robust-
ness, shows that in generic games, a smallest robust set exists and coincides
with the set of a posteriori equilibria. Given the result by Brandenburger
and Dekel (1987), this means that even if the analyst uses any refinement of
rationalizability such as Nash equilibrium, in order to obtain robust predic-
tions he cannot reject any outcome from the set of rationalizable outcomes
when he takes into account the possibility that the players may not share a
common prior in nearby incomplete information perturbations. For the set
of robust predictions to be sharpened further, the analyst has to have more
information about the actual situation, to impose some more restrictions on
prior beliefs than the present paper assumes. As an example, we provided a
measure of disagreement among the players’ prior beliefs such that a bound
on this measure may lead to a shaper robust prediction (Proposition 5.7).
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Appendix

A.1 Proof of Lemma 5.2

Proof. The proof mimics the proof of Lemma 3.4. Fix δ > 0 and ε > 0. For
each k = 0, · · · , N − 1, let (µk

i )i∈I ∈ (∆(A))I be a strict k-subjective corre-
lated equilibrium such that supp(µk

i ) = W k+1
i [g] × W k

−i[g].26 By continuity
of gi’s, we can take for each k = 0, · · · , N , (µ̃k

i )i∈I ∈ (∆(A))I such that for
each i ∈ I, (1) |µ̃k

i − µk
i | < δ/2; (2) supp(µ̃k

i ) = A; and (3) for some ηi > 0,
and all ai ∈ Ai with µk

i (ai) > 0, {ai} = br i(πi) for all πi ∈ ∆(A−i) satisfying
|πi(a−i) − µ̃k

i (a−i|ai)| < ηi for all a−i ∈ W k
−i[g].

Set η = mini∈I ηi > 0, and take an r > 0 such that 1/(1 + r) ≤ η.
Let ε̃ ∈ (0, 1), which will be taken to be small depending on ε and r. We
now construct an (ε, N − 1)-perturbation Uε,N−1 as follows. Let Ω = I ×
{0, · · · , N +1}×A and define Pi ∈ ∆(Ω) for each i ∈ I and k = 0, · · · , N −
1, N + 1 by

Pi(i, k, a) = rε̃(I − 1)µ̃k
i (a)

and
Pi(i,N, a) =

(

1 − ε̃(I − 1)(r(N + 1) + N + 2)
)

µ̃N
i (a).

In addition, for each i ∈ I and k = 0, · · · , N + 1

Pi(j, k, a) = ε̃µ̃k−1
i (a)

for j 6= i where by convention, µ̃−1
i = µ̃0

i .
Let each Qi consist of (i) the events

E0
iai

= {(j, 0, ai, a−i) | j 6= i, a−i ∈ A−i},

(ii) all the events of the form

Ek
iai

= {(i, k − 1, ai, a−i), (j, k, ai, a−i) | j 6= i, a−i ∈ A−i}

for each k = 1, · · · , N + 1, and (iii) the events

EN+2
iai

= {(i,N + 1, ai, a−i) | a−i ∈ A−i}.

Finally, define each ui : A × Ω → R by

ui((ai, a−i), ω) =















gi(ai, a−i) if ω /∈
⋃

a′
i
E0

ia′
i
,

1 if ω ∈ E0
iai

,

0 if ω ∈ E0
ia′

i
for a′i 6= ai.

26Any strict k-subjective correlated equilibrium (µk
i )i∈I must satisfy supp(µk

i ) ⊂
W k+1

i [g] × W k
−i[g] for all i ∈ I.
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Verify that Ωg = {(i, k, a) | k ≥ 1, i ∈ I and
⋂N−1

n=0 [K∗]
n(Ωg) = {(i, k, a) |

k ≥ N, i ∈ I and a ∈ A}. Simple algebra shows that for ε̃ small enough,
Pi(

⋂N−1
n=0 [K∗]

n(Ωg)) ≥ 1 − ε for all i ∈ I.27

Now let σ be any rationalizable strategy profile of Uε,N−1. We show
that for all k = 0, . . . , N , all i ∈ I and all ai ∈ W k

i [g], σi(ai|ω) = 1 for all
ω ∈ Ek

iai
. By construction, for all i ∈ I, and ai ∈ W 0

i [g], σi(ai|ω) = 1 for all

ω ∈ E0
iai

. Then suppose that for all i ∈ I, and all ai ∈ W k
i [g], σi(ai|ω) = 1

for all ω ∈ Ek
iai

. Consider any i ∈ I, ai ∈ W k+1
i [g] (i.e., ai ∈ Ai such that

µk
i (ai) > 0) and ω ∈ Ek+1

iai
. By construction of the state space, we have for

k = 1, . . . , N − 1

Pi((i, k, ai, a−i)|Qi(ω))

=
Pi((i, k, ai, a−i))

∑

a′
−i

Pi((i, k, ai, a′−i)) +
∑

a′
−i

∑

j 6=i Pi((j, k + 1, ai, a′−i))

=
rµ̃k

i (ai, a−i)

(r + 1)
∑

a′
−i

µ̃k
i (ai, a′−i)

=
r

r + 1
µ̃k

i (a−i|ai),

so that

∣

∣

∣Pi((i, k, ai, a−i)|Qi(ω)) − µ̃k
i (a−i|ai)

∣

∣

∣ ≤
1

r + 1
µ̃k

i (a−i|ai)

≤
1

r + 1
≤ η,

where the last inequality follows from the choice of an appropriate (large
enough) r. For k = N , again, by the choice of an appropriate (small enough)
ε̃, a same reasoning applies and we obtain

∣

∣Pi((i,N, ai, a−i)|Qi(ω)) − µ̃N
i (a−i|ai)

∣

∣ ≤ η.

Thus, by the induction hypothesis, the choice of η, as well as the condi-
tion (3) in the definition of µ̃k

i , we have σi(ai|ω) = 1.
Finally, for ε̃ > 0 small enough, we have by construction |σPi

(a) −
µ̃N

i (a)| < δ/2 for all a ∈ A and so |σPi
(a) − µN

i (a)| < δ for all a ∈ A
by construction.

Remark A.1.1. Three remarks on the above proof are in order. First,
the (ε, N − 1)-perturbation constructed in the proof is not an (ε, N)-
perturbation. Second, contrary to the construction in Lemma 3.4, this
(ε, N − 1)-perturbation need not have a unique rationalizable strategy pro-
file. Finally, the proof is rather tricky compared to the proof of Lemma 3.4,
in that the prior probability of each player will put almost all its mass only
on a small number of states.

27By convention [K∗]
0(Ωg) = Ωg.
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A.2 Proof of Proposition 5.5

Fix an information system [Ω, (Pi)i∈I , (Qi)i∈I ] and a simple event E =
⋂

i∈I Ei, each Ei ∈ Fi. We use the same labeling as in Kajii
and Morris (1997, Lemma C). Fix K ≥ 0, and define inductively
{Ek

1 , . . . , Ek
I , Ek}K+1

k=1 as follows: E1
i = Ei, and Ek =

⋂

i∈I and Ek+1
i =

Bpi

i (Ek). By convention, let E0
i = Ω. Then let Dk

i = Ek
i \ Ek+1

i for
k = 0, 1, . . . ,K, and DK+1

i = EK+1
i . Observe that {Dk

i }
K+1
k=0 is a parti-

tion coarser than Qi. Writing n = (n1, . . . , nI) for a typical element of
{0, 1, . . . ,K+1}I , we denote by min(n) the smallest number in {n1, . . . , nI}.
Define L(n) =

⋂

i∈I Dni

i and πi(n) = Pi(L(n)) for n ∈ {0, 1, . . . ,K + 1}I .
Note that for all k = 0, 1, . . . ,K + 1 and i ∈ I, Dn

i =
⋂

n: ni=n L(n) and
En =

⋂

n: ni≥n L(n).
Let xj(i, 0) = 0 and

xj(i, k) =
∑

n: ni=min(n), 0<min(n)≤k

πj(n)

for k = 1, . . . ,K, and

yj =
∑

n: nj>0, min(n)=0

πj(n).

Lemma A.2.1. For all i ∈ I and k ≥ 1,

xi(i, k) ≤
pi

1 − pi

∑

h 6=i

xi(h, k − 1) +
pi

1 − pi
yi. (A.1)

Proof. For all i ∈ I and k ≥ 1,

xi(i, k) =

k
∑

ℓ=1

∑

n: ni=ℓ, min(n)=ℓ

πi(n)

≤
k

∑

ℓ=1

pi

1 − pi

∑

n: ni=ℓ, min(n)<ℓ

πi(n)

≤
pi

1 − pi

k−1
∑

m=0

∑

n: ni>m, min(n)=m

πi(n)

=
pi

1 − pi

k−1
∑

m=1

∑

n: ni>m, min(n)=m

πi(n)

+
pi

1 − pi

∑

n: ni>0, min(n)=0

πi(n)

33



≤
pi

1 − pi

∑

h 6=i

k−1
∑

m=1

∑

n: ni>m, nh=m, min(n)=m

πi(n)

+
pi

1 − pi

∑

n: ni>0, min(n)=0

πi(n)

≤
pi

1 − pi

∑

h 6=i

xi(h, k − 1) +
pi

1 − pi
yi,

as claimed.

Lemma A.2.2. For all j ∈ I and m ≥ 0,

∑

n: nj>m, min(n)=m

πj(n) + r
∑

i6=j

∑

n: ni>m, min(n)=m

πi(n)

≤ r
∑

i6=j

∑

n:min(n)=m

πi(n). (A.2)

Proof. Let J be a typical element of 2I \ {∅}. For all j ∈ I and m ≥ 0,
∑

n: nj>m, min(n)=m

πj(n) + r
∑

i6=j

∑

n: ni>m, min(n)=m

πi(n)

=
∑

J 6=∅: j /∈J

∑

n:min(n)=m, arg min(n)=J

πj(n)

+ r
∑

i6=j

∑

J 6=∅: i/∈J

∑

n:min(n)=m, arg min(n)=J

πi(n)

≤
∑

i6=j

∑

J 6=∅: j /∈J, i∈J

∑

n:min(n)=m, arg min(n)=J

πj(n)

+ r
∑

i6=j

∑

J 6=∅: i/∈J

∑

n:min(n)=m, arg min(n)=J

πi(n)

≤ r
∑

i6=j

∑

J 6=∅: j /∈J, i∈J

∑

n:min(n)=m, arg min(n)=J

πi(n)

+ r
∑

i6=j

∑

J 6=∅: i/∈J

∑

n:min(n)=m, arg min(n)=J

πi(n)

= r
∑

i6=j





∑

J 6=∅: j /∈J, i∈J

∑

n:min(n)=m, arg min(n)=J

πi(n)

+
∑

J 6=∅: i/∈J

∑

n:min(n)=m, arg min(n)=J

πi(n)





≤ r
∑

i6=j

∑

n:min(n)=m

πi(n),
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as claimed.

In the following, we consider the case where pi = p for all i ∈ I.
Let xj(k) =

∑

i∈I xj(i, k) and

x(k) = (x1(k), x2(k), . . . , xI(k))′.

Lemma A.2.3. If pi = p for all i ∈ I, then

x(k) ≤ (rR)x(k − 1) + ε(rR)1′.

Proof. By Lemma A.2.1,

xj(k) = xj(j, k) +
∑

i6=j

xj(i, k)

≤ xj(j, k) +
∑

i6=j

rxi(i, k)

≤
pj

1 − pj

∑

h 6=j

xj(h, k − 1) +
pj

1 − pj
yj

+
∑

i6=j





rpi

1 − pi

∑

h 6=i

xi(h, k − 1) +
rpi

1 − pi
yi





≤
rpj

1 − pj

∑

h 6=j

xh(h, k − 1) +
pj

1 − pj
yj

+
∑

i6=j





rpi

1 − pi

∑

h 6=i

xi(h, k − 1) +
rpi

1 − pi
yi





=
rp

1 − p

∑

i6=j

∑

h∈I

xi(h, k − 1) +
p

1 − p



yj + r
∑

i6=j

yi





=
rp

1 − p

∑

i6=j

xi(k − 1) +
p

1 − p



yj + r
∑

i6=j

yi



 ,

where by Lemma A.2.2,

yj + r
∑

i6=j

yi =
∑

n: nj>0, min(n)=0

πj(n) + r
∑

i6=j

∑

n: ni>0, min(n)=0

πi(n)

≤ r
∑

i6=j

∑

n:min(n)=0

πi(n)

≤ (I − 1)rε.

Hence, we have

xj(k) ≤
rp

1 − p

∑

i6=j

xi(k − 1) + (I − 1)
rp

1 − p
ε
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for all j ∈ I, or
x(k) ≤ (rR)x(k − 1) + ε(rR)1′,

as claimed.

Proposition A.2.4. Let Pi(E
c) ≤ ε. If pi = p for all i ∈ I, then

1 − Pj([B
p
∗ ]

K(E)) ≤ ε
[(

I + rR + · · · + (rR)K
)

1′
]

j

for all j ∈ I.

Proof. By Lemma A.2.3,

x(K) ≤ (rR)x(K − 1) + ε(rR)1′

≤ (rR)
(

(rR)x(K − 2) + ε(rR)1′
)

+ ε(rR)1′

= (rR)2x(K − 2) + ε
(

rR + (rR)2
)

1′

...

≤ (rR)Kx(0) + ε
(

rR + (rR)2 + · · · + (rR)K
)

1′

= ε
(

rR + (rR)2 + · · · + (rR)K
)

1′.

Hence, we have

1 − Pj([B
p
∗ ]

K(E)) =
∑

n:min(n)=0

πj(n) +
∑

n: 0<min(n)≤K

πj(n)

≤ ε + xj(K)

≤ ε + ε
[(

rR + (rR)2 + · · · + (rR)K
)

1′
]

j

= ε
[(

I + rR + · · · + (rR)K
)

1′
]

j
,

as claimed.

Theorem A.2.5. Let Pi(E
c) ≤ ε. If {1 + r(I − 1)}p < 1, then

1 − Pj([B
p
∗ ]

∞(E)) ≤
1 − p

1 − {1 + r(I − 1)}p
ε

for all j ∈ I.

Proof. Observe first that

(rR)k1′ =

{

(I − 1)
rp

1 − p

}k

1′.

If {1 + r(I − 1)}p < 1, then

[(

I + rR + · · · + (rR)K
)

1′
]

j
=

K
∑

k=0

{

(I − 1)
rp

1 − p

}k
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converges as K → ∞ to

1

1 − (I − 1)
rp

1 − p

=
1 − p

1 − {1 + r(I − 1)}p
.

Hence, by Proposition A.2.4 we have the desired inequality.
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