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Abstract. Spatial models of political competition are typically based on two assump-

tions. One is that all the voters identically perceive the platforms of the candidates

and agree about their score on a “valence” dimension. The second is that each voter’s

preferences over policies are decreasing in the distance from that voter’s ideal point,

and that valence scores enter the utility function in an additively separable way.

The goal of this paper is to examine the restrictions that these two assumptions im-

pose, starting from a more primitive (and observable) data. Specifically, we consider the

case where only the ideal point in the policy space and the ranking over candidates are

known for each voter. We provide necessary and sufficient conditions for this collection

of preference relations to be consistent with utility maximization as in the standard

models described above. That is, we characterize the case where there are policies

x1, . . . , xm for the m candidates and numbers v1, . . . , vm representing valence scores,

such that a voter with an ideal policy y ranks the candidates according to vi−||xi−y||2.
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1. Introduction

Since the seminal works of Hotelling [15] and Downs [10], spatial models of elections

are widely used in the political economy literature. Typically, these models identify the

policy space with a finite dimensional Euclidean space. Each voter in the electorate

is assumed to have an ideal point in the policy space. Candidates then choose their

platforms and each voter votes for the candidate with the closest platform to her ideal

policy. Usually, the emphasis is on equilibrium analysis of the resulting game between

candidates. This literature is too enormous to mention specific works.

More recently, authors incorporated a “valence” dimension to the standard model.

This additional dimension influence voters’ preferences and was shown to have a dramatic

effect on the outcome of the political game, both in theory and in empirical studies. This

additional dimension may represent any non–policy issue on which candidates differ in

the “score” they get from the electorate. Examples include charisma, experience, past

success, communication skills, etc. The reader can find references to many works that

discuss this point in the related literature section below.

When valence issues are present, the utility of a voter with an ideal point (in the policy

space) y if candidate i wins the elections is usually taken to be of the form vi−||xi−y||2,

where vi and xi are the valence score and platform of candidate i respectively. This

particular form of utility function implies that each voter’s utility is decreasing in the

Euclidean distance between his own ideal point and the winning candidate platform, and

that valence scores enter the utility function in an additively separable way. Although

very natural, it is not clear why this particular functional form is more appropriate

than others to represent preferences. Possibly, using a different type of utility function

can make a difference for the predictions of a theoretical model and for the statistical

significance of an empirical model. Furthermore, an implicit assumption made here is

that all voters perceive in the same way each of the candidates’ platforms, and give the

same valence score to every candidate. That is, xi and vi are common to all the voters

for each i. This is certainly a crucial assumption since allowing voters to disagree on

candidates platforms and valence scores can lead to an intractable model.

Obviously, it is very hard (not to say impossible) to extract the entire preferences

of each voter over the policy space and the valence score he gives to each candidate.

Therefore, it is not easy to check whether the aforementioned assumptions make sense
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in any particular political campaign. Thus, an important matter is to identify condi-

tions on more easily observable data that guarantee consistency with the spatial model

assumptions. Introducing such necessary and sufficient conditions is the main result of

this paper.

Specifically, we assume that, for each voter in the electorate, only the ideal policy and

the ranking of candidates can be observed. While this may also seem quite demanding,

it is much more reasonable than observing the entire utility function of the voter. We

characterize the case where this data is consistent with voters having utility functions

as above. That is, we characterize the case where there are policies x1, . . . , xm for the m

candidates and numbers v1, . . . , vm representing valence scores, such that a voter with

an ideal policy y ranks the candidates according to vi − ||xi − y||2.

We use four conditions for the characterization. The first three are quite standard,

while the last one is more technical and is required for the proof. We think of our result

as “good news” since it shows that if the data satisfies rather weak assumptions then it

is consistent with the standard spatial model with a valence dimension1. However, our

model suffers from several weaknesses which make its applicability limited2. We therefore

think that the main contribution of this paper is to introduce the theoretical “revealed

preferences” approach to the literature on spatial models of elections. To the best of our

knowledge, this is the first attempt in this direction, and we hope it will lead to further

investigation.

1.1. Related literature. Papers using spatial models of elections with valence issues

similar to the one studied here are numerous in recent years. Examples include An-

solabehere and Snyder [1], Aragones and Palfrey [2], Degan [8], Dix and Santore [9],

Enelow and Hinich [11], Gersbach [12], Groseclose [14], Kim [16] and Schofield [19]

among others. These papers study different aspects of the political game and provide

various interpretations for the additive constant in the utility functions of the voters.

From a mathematical perspective, our main result is closely related to the result

in Azrieli and Lehrer [6], who characterize categorization systems that are generated

by proximity to a set of prototypical cases. Furthermore, there is a surprisingly close

connection between the result of this paper and the axiomatic derivation of Gilboa and

1Our conditions are not sufficient if one doesn’t allow for a valence dimension, and we do not know

how to characterize data consistent with spatial models without this additive term. See subsection 3.4.
2See Section 3.
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Schmeidler [13] in their Case-Based Decision Theory3. The literature on scoring rules

(Myerson [18], Smith [20], Young [21]) is also closely related from a technical point of

view.

Finally, the mathematical object we deal with here is known in the geometry literature

as Voronoi diagram or Dirichlet tessellation. The most relevant papers in this literature

are Ash and Bolker [3], [4] and Aurenhammer [5]. The book by Boots et al. [7] surveys

applications of Voronoi diagrams in many different fields.

1.2. Organization. The next section contains the model and the main result of the

paper. In Section 3 we discuss in more detail several issues related to our model. In

particular, this section contains some additional results concerning the uniqueness of the

representation, the failure of our result if the set of voters is finite, and the special cases

of three candidates and one–dimensional policy space. We also point to some possible

directions of related future research. All the proofs are in Section 4.

2. Model and Result

Let C = {1, 2, . . . , m} be the set of candidates where m ≥ 2. The policy space is taken

to be Rd with4 d ≥ 2. Each potential voter is identified with her ideal point in the policy

space and we assume that, for every y ∈ Rd, there is a voter with y as her ideal policy.

Thus, the set of voters is also Rd. We will use the letters i, j, k, l to denote candidates

(elements of C) and x, y, z to denote voters or policies (points in Rd).

Our primitive is a collection of binary relations {ºy}y∈Rd over C, one for every voter

y ∈ Rd. The interpretation of i ºy j is that a voter with an ideal point y (weakly)

prefers candidate i to candidate j. As usual, for any i, j ∈ C, we let i ≻y j if and only if

both i ºy j and j �y i, and i ∼y j if and only if both i ºy j and j ºy i. The following

properties will be used for the characterization.

(A1) Weak order: For every y ∈ Rd, ºy is complete and transitive.

(A2) Continuity: For every i, j ∈ C, the set {y ∈ Rd : i ≻y j} is open.

(A3) Convexity: For every i, j ∈ C and y, z ∈ Rd, if i ºy j (i ≻y j) and i ºz j then

i ºαy+(1−α)z j (i ≻αy+(1−α)z j) for every α ∈ (0, 1).

3We thank Itzhak Gilboa for pointing out this connection.
4Our result does not hold in the case d = 1. We elaborate on this case in subsection 3.7.
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(A4) Heterogeneity: For every three distinct candidates {i, j, k} ⊆ C there is y ∈ Rd

such that i ≻y j ≻y k, and for every four distinct candidates {i, j, k, l} ⊆ C the sets

{y ∈ Rd : i ∼y j ∼y k} and {y ∈ Rd : i ∼y j ∼y l} are not equal.

The first property is standard. The second implies that if a voter with ideal point y

strictly prefers candidate i over j then any voter with ideal point sufficiently close to y

also prefers i over j. (A3) states that the set of voters preferring candidate i over j is

convex. Finally, (A4) requires the population of voters to be sufficiently diverse in its

preferences. Namely, for any (strict) ranking of every three candidates there should be

a voter who ranks these candidates according to that given order; And for every three

candidates there should be a voter that is indifferent between them but strictly prefers

some given fourth candidate over the three. We note that if m = 2 then (A4) is trivially

satisfied, and if m = 3 then the second part of (A4) is trivially satisfied.

Before stating our result we need one more definition.

Definition 1. Let {x1, x2, . . . , xm} ⊆ Rd and {v1, v2, . . . , vm} ⊆ R. We say that the

set {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ Rd+1 is in a general position if the following two

conditions hold:

(i) For every distinct 1 ≤ i, j, k ≤ m, the vectors xi, xj, xk are affinely independent in Rd

(equivalently, xj − xi and xk − xi are linearly independent in Rd).

(ii) For every distinct 1 ≤ i, j, k, l ≤ m, the set {y ∈ Rd : vi−||xi−y||2 = vj−||xj−y||2 =

vk − ||xk − y||2 = vl − ||xl − y||2} is of dimension d − 3 at most5.

Informally speaking, if a set of points is not in a general position then it has a ‘de-

generate structure’. We remark that if the points {(x1, v1), (x2, v2), . . . , (xm, vm)} are

independently drawn from some continuous distribution over Rd+1 then the resulting set

will be in a general position with probability 1. The precise meaning of the term general

position varies with the context in which it is used. The reader is referred to Matoušek

(2002, pp. 3-5), where this concept is discussed in greater detail.

Theorem 1. The following two statements are equivalent:

(i) The collection of binary relations {ºy}y∈Rd satisfies properties (A1) through (A4).

5The dimension of a set A ⊆ Rd is defined as the dimension of the affine hull of A. In our case, the

set under consideration is the intersection of hyperplanes in Rd so it is an affine subspace. See Section

4 for details.
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(ii) There are points {x1, x2, . . . , xm} ⊆ Rd and numbers {v1, v2, . . . , vm} ⊆ R such that

{(x1, v1), (x2, v2), . . . , (xm, vm)} is in a general position and, for every i, j ∈ C and every

y ∈ Rd, i ºy j if and only if vi − ||xi − y||2 ≥ vj − ||xj − y||2.

The point xi is interpreted as the platform of candidate i, and vi is the score of i on

the valence dimension (1 ≤ i ≤ m). Theorem 1 states that properties (A1) through (A4)

are equivalent to the existence of {(x1, v1), (x2, v2), . . . , (xm, vm)} in a general position

such that each voter y ranks the candidates according to their score vi −||xi − y||2. Note

that all the voters agree on the location of the candidates in the policy space and on the

their score in the valence dimension.

3. Discussion

3.1. Uniqueness. Examining the proof of Theorem 1, one can see that the platforms

and valences derived from the properties (A1)-(A4) are not unique. However, we do have

the following connection between any two representations of the voters’ preferences.

Proposition 1. Assume {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ Rd+1 represent the prefer-

ences {ºy}y∈Rd as in Theorem 1. Then {(x′

1, v
′

1), (x
′

2, v
′

2), . . . , (x
′

m, v′

m)} ⊆ Rd+1 also

represent {ºy}y∈Rd if and only if there is a positive number α > 0 and a vector β ∈ Rd

such that x′

i = αxi + β for every 1 ≤ i ≤ m, and such that the equation6

1

α
(v′

i − v′

j) = vi − vj + (1 − α)(||xj||
2 − ||xi||

2) + 2β · (xi − xj)(1)

holds for every i, j ∈ C. In particular, if xi = x′

i for 1 ≤ i ≤ m (i.e., α = 1 and β = 0)

then there is some γ ∈ R such that v′

i = vi + γ for 1 ≤ i ≤ m.

This result can be interpreted as follows. We may rescale and change the origin of

the policy space to get different sets of platforms that induce the same preferences.

But once the unit of measurement and the origin are fixed the platforms are uniquely

determined by the preferences. Moreover, once platforms are fixed, the relative valences

of the various candidates (the differences vi − vj) are also unique.

3.2. Finite set of voters. A shortcoming of our model is that we assume that the

preferences of a voter with ideal point y are observable for every y ∈ Rd. It is much

more reasonable that the preferences of only a finite number of voters are observable. It

is tempting to try to get a similar result to that of Theorem 1 with a finite set of voters.

6For two vectors z, w ∈ Rd we denote by z · w =
∑

d

i=1
ziwi the standard inner product in Rd.
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A natural modification of property (A3) in this case is that, for any i, j ∈ C, the convex

hull of the set of voters preferring candidate i over j and the convex hull of the set of

voters preferring candidate j over i are disjoint7.

However, we cannot get an analogue of Theorem 1 in this case. We demonstrate the

problem with the following example. Let d = 2, C = {1, 2, 3} and fix some ǫ > 0. The

set of voters, denoted Y , consists of six voters with the ideal points

Y = {y1 = (ǫ, ǫ), y2 = (−ǫ,−ǫ), y3 = (−ǫ,−4), y4 = (ǫ,−4), y5 = (4, ǫ), y6 = (4,−ǫ)}.

The preferences of these six voters are as follows. Voters {y2, y3} prefer candidate 1

over candidate 2 (the rest of the voters prefer candidate 2 over candidate 1). Voters

{y1, y2, y3, y5} prefer candidate 1 over candidate 3, and voters {y1, y5} prefer candidate

2 over candidate 3. Figure 1 illustrates the location of the voters’ ideal points in the

policy space and their rankings.

It is easy to check that the above condition of disjointness of the convex hulls is

satisfied. However, we claim that it cannot be the case that the voters agree on the

platforms and valences of the three candidates. Indeed, assume to the contrary that

there are {(x1, v1), (x2, v2), (x3, v3)} that represent these preferences as in Theorem 1.

The locations of the points y1, y2, y3, y4 and the preferences of these voters imply that

the line {y ∈ R2 : v1 −||y−x1||
2 = v2 −||y−x2||

2} should be close to both points (0, 0)

and (0,−4). Similarly, the line {y ∈ R2 : v1−||y−x1||
2 = v3−||y−x3||

2} should be close

to both points (4, 0) and (0,−4), and the line {y ∈ R2 : v2−||y−x2||
2 = v3−||y−x3||

2}

should be close to both points (0, 0) and (4, 0). For sufficiently small ǫ, it must be the

case that the point ȳ = (1,−1) is in the triangle generated by these three lines. It means

that at this point we must have

v1 − ||ȳ − x1||
2 < v2 − ||ȳ − x2||

2 < v3 − ||ȳ − x3||
2 < v1 − ||ȳ − x1||

2,

which is impossible. If there was a voter with ideal point ȳ and transitive preferences

over candidates this could not have been happening. The characterization in the case of

a finite voter’s set remains unresolved.

3.3. Euclidean preferences. Our model does not presume any specific kind of prefer-

ences of the voters over the policy space8. The primitive only consists of rankings of the

candidates by voters. So properties (A1)-(A4) imply that voters agree on the platforms

7Assume for simplicity that only strict preferences are allowed.
8We thank Jim Peck for this remark.
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and valences of the candidates and that the preferences of voter y over candidates can be

represented by uy(i) = vi − ||xi − y||2. It is possible to assume from the start that voters

have Euclidean preferences. However, since utility is an ordinal notion, such modification

does not affect our results whatsoever.

The Euclidean norm is intimately related to convexity. Other norms typically induce

non-convex sets. It would be interesting to study preferences induced by other norms

than the Euclidean.

3.4. The valence dimension. Theorem 1 fails if we require all candidates to have the

same score (zero, w.l.o.g.) on the valence dimension9. Thus, more restrictions must be

imposed on voters’ preferences in order to allow a representation in the form ||xi − y||2.

Finding natural additional properties that distinguish this case from the more general

one studied in this paper is an important direction for future research.

3.5. The cases m = 2 and m = 3. In contrast to the claim of subsection 3.4, if there

are only two or three candidates then it is possible to represent the voters’ preferences

without resorting to valences. The case m = 2 is trivial since one only needs to choose

the platforms x1 and x2 in equal distance from the hyperplane separating the voters that

prefer candidate 1 from those preferring candidate 2. In the case m = 3 we state this

fact as a proposition.

Proposition 2. Assume m = 3. The preferences {ºy}y∈Rd satisfy properties (A1)

through (A4) if and only if there are x1, x2, x3 ∈ Rd in a general position10 such that

i ºy j if and only if ||xi − y||2 ≤ ||xj − y||2.

3.6. Observing just the first best. Theorem 1 crucially depends on property (A1).

In particular this means that we must observe the entire ranking of each voter over C.

In reality it is usually hard to extract this information from voters. A more plausible

assumption is that only the most preferred candidate(s) is (are) observed for each voter.

A possible way to formalize this is to assume that the primitive is a function f : Rd →

2C with the interpretation that f(y) ⊆ C is the set of candidates which voter y prefers

the most. We do not know how to get a similar result to that of Theorem 1 in this case

when the dimension of the policy space is d ≥ 2. However, it turns out that when d = 1

a simple characterization is possible (see the next subsection).

9The reader is referred to Ash and Bolker (1985, Corollary 10) for a counter example.
10Here we simply mean that these three vectors are affinely independent.
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3.7. The case d = 1. If the policy space is one dimensional (as is the case in many

papers) then Theorem 1 is no longer true, even if appropriately modified. The reason for

this failure is that the set of voters who are indifferent between some three candidates is

typically empty. This set plays a major role in the proof of the main result. Nevertheless,

we can get a representation similar to that of Theorem 1 if we assume that only the most

preferred candidates are observed for each voter (as in the previous subsection). We will

use the following properties for the characterization.

(B1) For every i ∈ C, the set {y ∈ R : f(y) = {i}} is not empty and open.

(B2) For every i ∈ C and y, z ∈ R, if i ∈ f(y) ({i} = f(y)) and i ∈ f(z) then

i ∈ f(αy + (1 − α)z) ({i} = f(αy + (1 − α)z)) for every α ∈ (0, 1).

Before stating the result, we need a definition analogue to Definition 1.

Definition 2. The set {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ R2 is well-ordered if there is a

permutation π : C → C such that the following two conditions hold:

(i) xπ(1) < xπ(2) < . . . < xπ(m).

(ii) aπ(1)π(2) < aπ(2)π(3) < . . . < aπ(m−1)π(m) where aπ(i)π(i+1) =
x2

π(i)
−x2

π(i+1)
+vπ(i+1)−vπ(i)

2(xπ(i)−xπ(i+1))
for

i = 1, 2, . . . , m − 1.

Proposition 3. The correspondence f : R → 2C satisfies properties (B1) and (B2) if

and only if there is a well-ordered set {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ R2 such that

f(y) = argmax{vi − (xi − y)2 : i ∈ C}.

4. Proofs

4.1. Proof of Theorem 1. The proof of Theorem 1 is similar to the proof of the main

result in Azrieli and Lehrer (2007). We therefore provide an outline of the proof and

only detail those steps that did not appear in that paper.

A simple but important observation is that, for any xi 6= xj ∈ Rd and vi, vj ∈ R, the

set {y ∈ Rd : vi−||xi−y||2 = vj −||xj −y||2} is an affine subspace of dimension d−1 (a

hyperplane), perpendicular to the direction xi−xj. Indeed, a simple computation shows

that this set can be rewritten as {y ∈ Rd : y · (xi − xj) = 1
2
(vj − vi + ||xi||

2 − ||xj||
2)}.

Similarly, the set {y ∈ Rd : vi − ||xi − y||2 > vj − ||xj − y||2} is an open half space in

Rd (given that xi 6= xj).

(ii) implies (i):
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Fix the sets {x1, x2, . . . , xm} ⊆ Rd and {v1, v2, . . . , vm} ⊆ R. Property (A1) is ob-

viously satisfied. Denote Aij = {y ∈ Rd : vi − ||xi − y||2 = vj − ||xj − y||2} and

Bij = {y ∈ Rd : vi − ||xi − y||2 > vj − ||xj − y||2}. By property (i) of Definition 1,

xi 6= xj for every i 6= j ∈ C. Thus, each Bij is open and convex and each Aij is the

boundary of the closed half space Bij ∪ Aij. This shows that properties (A2) and (A3)

are satisfied.

Property (A4) is satisfied because the set {(x1, v1), (x2, v2), . . . , (xm, vm)} is in a general

position. Indeed, take any distinct i, j, k ∈ C. We need to show that there is some y

with i ≻y j ≻y k. If this was not true then it must be that Bij and Bjk do not intersect.

But this can only happen if xi−xj and xj −xk are linearly dependent, a contradiction to

the assumption of general position (property (i)). Finally, take any distinct i, j, k, l ∈ C.

We need to show that Bij ∩ Bjk and Bij ∩ Bjl are not equal. The set Bij ∩ Bjk is the

intersection of two (non-parallel) hyperplanes in Rd and so it is of dimension d − 2. If

Bij ∩ Bjk = Bij ∩ Bjl then Bij ∩ Bjk ∩ Bjl = Bij ∩ Bjk is also of dimension d − 2,

contradicting the assumption of general position (property (ii)). ¤

(i) implies (ii):

The proof is constructive. We first find the platforms x1, x2, . . . , xm of the candi-

dates, and then construct the valences v1, v2, . . . , vm. We need however to state some

preliminary claims. The proofs of all these claims can be found in Azrieli and Lehrer

(2007).

Claim 1. For every ordered pair (i, j) of distinct candidates there is a non-zero vector

sij ∈ Rd and a number cij ∈ R such that {y ∈ Rd : i ºy j} = {y ∈ Rd : sij · y ≤ cij}.

Moreover, these vectors and numbers can be chosen such that sji = −sij and cji = −cij

for every (i, j).

Fix a collection {sij, cij}i,j∈C as in Claim 1 until the end of the proof.

Claim 2. (A4) implies that, for every i, j, k ∈ C, the vectors sij and sik are linearly

independent.

Claim 3. For every i, j, k ∈ C, the vectors sij, sik and sjk are not linearly independent.

For t, s ∈ Rd, denote by R(t, s) the ray that starts at t and continues in the direction of

s. That is R(t, s) = {t + αs : α ≥ 0}.

Claim 4. If x1, x2 ∈ Rd satisfy x2−x1 = αs12 for some α > 0 then, for every 3 ≤ i ≤ m,

the rays R(x1, s1i) and R(x2, s2i) intersect .
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We are now in the position to construct the sets {x1, x2, . . . , xm} and {v1, v2, . . . , vm}.

The point x1 is chosen arbitrarily. Next, define x2 = x1 + α12s12, where α12 > 0 is

arbitrary. For every 3 ≤ i ≤ m, define xi to be the unique point of intersection (by

Claim 4) of the rays R(x1, s1i) and R(x2, s2i). A key point in the proof is that, when

{x1, x2, . . . , xm} are defined in this way, then, for every 1 ≤ i, j ≤ m, xj − xi = αijsij

for some αij > 0. This fact follows from Proposition 1 (page 26) in Azrieli and Lehrer

(2007). Finally, choose v1 arbitrarily and define vi = v1 − ||x1||
2 + ||xi||

2 − 2α1ic1i for

every 2 ≤ i ≤ m.

It is useful to note that αijsij = α1js1j − α1is1i for every 3 ≤ i, j ≤ m. Indeed, the

left–hand side of the equality is xj −xi while the right–hand side is (xj −x1)− (xi −x1).

This implies also that αijcij = α1jc1j − α1ic1i. To see this, take y ∈ Rd such that 1 ∼y i

and 1 ∼y j (the existence of such y is guaranteed by Claim 2). Transitivity implies that

i ∼y j. So y · s1i = c1i, y · s1j = c1j and y · sij = cij. Multiplying these equalities by

α1i, α1j and αij correspondingly, and subtracting the first from the second we get the

above equality.

To complete the proof we need to check that the set {(x1, v1), (x2, v2), . . . , (xm, vm)}

is in a general position and that, for every i, j ∈ C and y ∈ Rd, i ºy j if and only if

vi − ||xi − y||2 ≥ vj − ||xj − y||2. For the latter we have

i ºy j ⇐⇒ sij · y ≤ cij ⇐⇒ (xj − xi) · y ≤ αijcij ⇐⇒ (xj − xi) · y ≤ α1jc1j − α1ic1i

⇐⇒ (xj − xi) · y ≤
1

2

(

v1 − vj + ||xj||
2 − ||x1||

2
)

−
1

2

(

v1 − vi + ||xi||
2 − ||x1||

2
)

⇐⇒ (xj − xi) · y ≤
1

2

(

vi − vj + ||xj||
2 − ||xi||

2
)

⇐⇒ vi − ||xi − y||2 ≥ vj − ||xj − y||2.

For the former, the vectors xi, xj, xk are affinely independent since xj − xi = αijsij and

xk − xi = αiksik, and these are linearly independent vectors by Claim 2. Finally, each of

the sets {y ∈ Rd : i ∼y j ∼y k} and {y ∈ Rd : i ∼y j ∼y l} is an affine subspace of

dimension d − 2. By (A4) they are not equal so their intersection is of dimension d − 3

at most. This proves that {(x1, v1), (x2, v2), . . . , (xm, vm)} is in a general position. ¤

4.2. Proof of Proposition 1. First, it is easy to check that if there are α > 0 and

β ∈ Rd such that x′

i = αxi + β for 1 ≤ i ≤ m, and in addition equation (1) is satisfied

then {(x1, v1), (x2, v2), . . . , (xm, vm)} and {(x′

1, v
′

1), (x
′

2, v
′

2), . . . , (x
′

m, v′

m)} represent the

same preferences.

Now, assume that {(x1, v1), (x2, v2), . . . , (xm, vm)} and {(x′

1, v
′

1), (x
′

2, v
′

2), . . . , (x
′

m, v′

m)}

represent the same preferences {ºy}y∈Rd . It follows from the proof of Theorem 1 that for
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every i, j ∈ C there is a positive number, say tij > 0, such that xj−xi = tij(x
′

j−x′

i) (with

the convention tij = −tji). Fix some three candidates i, j, k ∈ C. Sum up the equalities

xj − xi = tij(x
′

j − x′

i), xi − xk = tki(x
′

i − x′

k), xk − xj = tjk(x
′

k − x′

j) and rearrange the

terms to obtain (x′

i −x′

j)(tki − tij)+(x′

k −x′

j)(tjk − tki) = 0. But the vectors x′

i, x
′

j, x
′

k are

affinely independent so tki− tij = tjk− tki = 0. It follows that tij = tki = tjk, so there is a

number α > 0 such that xj−xi = α(x′

j−x′

i) for every i, j ∈ C. Now, define β = x1−αx′

1.

For every 2 ≤ i ≤ m we have x1 − xi = α(x′

1 − x′

i) or xi − αx′

i = x1 − αx′

1 = β. That is,

x′

i = αxi + β for every 1 ≤ i ≤ m.

Finally, we must have 1
2
(vi − vj + ||xj||

2 − ||xi||
2) = 1

2

(

v′

i − v′

j + ||x′

j||
2 − ||x′

i||
2
)

for

every i, j ∈ C. Substituting αxi + β for x′

i and αxj + β for x′

j and rearranging we obtain

equation (1). In particular, if x′

i = xi and x′

j = xj then v′

i − vi = v′

j − vj. Define

γ = v′

1 − v1. It follows that v′

i = vi + γ for every 1 ≤ i ≤ m. ¤

4.3. Proof of Proposition 2. The if part follows from Theorem 1, so we only need

to prove the only if part. By Theorem 1, there are (x1, v1), (x2, v2), (x3, v3) in a general

position that represent the preferences. It follows that the vectors x1 − x2 and x1 − x3

are linearly independent. Therefore, there is β ∈ Rd that solves the two equations

β · (x1−x2) = v2−v1

2
and β · (x1−x3) = v3−v1

2
. Notice that the same vector β must satisfy

also β · (x2 − x3) = v3−v2

2
. Define x′

i = xi + β for i = 1, 2, 3.

By Proposition 1, the set {(x′

1, v
′

1), (x
′

2, v
′

2), (x
′

3, v
′

3)} represent the same preferences as

{(x1, v1), (x2, v2), (x3, v3)} if the equation v′

i − v′

j = vi − vj + 2β · (xi − xj) is satisfied for

every i, j ∈ C. By construction, the vector β satisfies β ·(xi−xj) =
vj−vi

2
for every i, j. It

follows that v′

1 = v′

2 = v′

3 = 0 solve the above equations. That is, {(x′

1, 0), (x′

2, 0), (x′

3, 0)}

represent the preferences {ºy}y∈Rd . ¤

4.4. Proof of Proposition 3. Assume first that the correspondence f can be repre-

sented as in the proposition. We can assume w.l.o.g. that π is the identity, so x1 < x2 <

. . . < xm and a12 < a23 < . . . < a(m−1)m. It is also convenient to denote a01 = −∞

and am(m+1) = +∞. Now, for every 1 ≤ i ≤ m − 1, a simple computation shows that

vi − (xi − y)2 ≥ vi+1 − (xi+1 − y)2 if and only if y ≤ ai(i+1) (the same equivalence

holds when the weak inequalities are replaced by strict ones). It follows that candidate

i (1 ≤ i ≤ m) is the unique maximizer of {vj − (xj − y)2 : j ∈ C} if and only if

y ∈ (a(i−1)i, ai(i+1)) and that i is a maximizer (not necessarily unique) of this expression

if and only if y ∈ [a(i−1)i, ai(i+1)]. This shows that f satisfies properties (B1) and (B2).
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Conversely, assume that f satisfies (B1) and (B2). These properties imply that there

is a permutation of the candidates, w.l.o.g. the identity, and a sequence of numbers

a12 < a23 < . . . < a(m−1)m such that f(y) = {i} if and only if y ∈ (a(i−1)i, ai(i+1)) and

f(y) = {i, i + 1} if and only if y = ai(i+1) for 1 ≤ i ≤ m.

Take any set of points x1 < x2 < . . . < xm. Define v1 = 0 and, for every 1 ≤ i ≤ m−1,

let vi+1 = 2ai(i+1)(xi−xi+1)−x2
i +x2

i+1+vi. Rearranging, this gives ai(i+1) =
x2

i−x2
i+1+vi+1−vi

2(xi−xi+1)

for i = 1, 2, . . . , m−1. Thus, the set {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ R2 is well-ordered.

Finally, we need to check that f(y) = argmax{vi− (xi−y)2 : i ∈ C}. This is true since

i ∈ f(y) ⇐⇒ y ∈ [a(i−1)i, ai(i+1)] ⇐⇒
x2

i−1 − x2
i + vi − vi−1

2(xi − xi+1)
≤ y ≤

x2
i − x2

i+1 + vi+1 − vi

2(xi−1 − xi)

⇐⇒ vi − (y − xi)
2 ≥ vi−1 − (y − xi−1)

2
and vi − (y − xi)

2 ≥ vi+1 − (y − xi+1)
2

⇐⇒ vi − (y − xi)
2 ≥ vj − (y − xj)

2
for all j 6= i.

¤
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