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The last financial and economic crisis demonstrated the dysfunctional long-term effects of aggres-
sive behaviour in financial markets. Yet, evolutionary game theory predicts that under the condition
of strategic dependence a certain degree of aggressive behaviour remains within a given population
of agents. However, as the consequences of the financial crisis exhibit, it would be desirable to
change the ”rules of the game” in a way that prevents the occurrence of any aggressive behaviour
and thereby also the danger of market crashes. The paper picks up this aspect. Through the ex-
tension of the in literature well-known Hawk-Dove game by a quantum approach, we can show that
dependent on entanglement, also evolutionary stable strategies can emerge, which are not predicted
by classical evolutionary game theory and where the total economic population uses a non aggressive
quantum strategy.

PACS numbers: 02.50.Le, 03.67.-a, 89.65.-s, 89.65.Gh, 89.70.+c

I. INTRODUCTION

Economic developments often have been compared to
biological evolutionary processes, as they converge to
equilibria in an evolutionary manner (e.g. Hodgson,
1993; Dosi & Nelson, 1994; Dopfer, 2001 [3, 4, 10]).
Actually, the conceptual ideas behind evolutionary the-
ory were borrowed from early economic works, especially
Malthus (1798) [13] (see e.g. Friedmann, 1998 [6]). Due
to inter alia the application of evolutionary game theory,
whose origin lies in biology (Maynard Smith, 1972, 1982
[24, 25]), evolutionary concepts came back into economics
and organisational theory. One major topic in this evolu-
tionary research field is the optimality of aggressive ver-
sus non aggressive or cooperative behaviour (see e.g. for
the tension of cooperative and non-cooperative behaviour
Axelrod, 1997 [1]). In an economic context the notion of
aggressive behaviour can be translated to the short-term
oriented maximisation of individual utility without look-
ing after others, while cooperative behaviour comprises a
more interactive and long-term oriented behaviour con-
sidering long-term, individual and/or group utility max-
imisation. Possible positive effects of the mentioned ag-
gressive behaviour on economic welfare have been dis-
cussed since the earliest days of economics (Smith, 1776
[23]): The idea was that if each economic individual tries
to maximise his/her utility without caring about other
individuals, the whole welfare will also be maximal.

One instrument to analyse the long-term effects of this
assumption is evolutionary game theory. Analogous to
classical game theory it introduces the concept of strate-
gic dependence among agents in an economic context. In
such a situation the expected utility of one agent depends
on the decisions of other agents. Evolutionary game the-
ory provides an equilibrium in which the ratio of aggres-
sive to non aggressive agents is stable and that depends
on the expected losses and gains of utility induced by the
agents decisions. For example, if the expected losses are

high for two meeting aggressive agents, most members of
the economic population – but not all of them – will be-
have in a none-aggressive, cooperative way (Osborne &
Rubenstein, 1994 [18]). Hence, also in situations where
severe losses are expected, if two aggressive agents meet,
an economic population always will contain a certain de-
gree of aggressive agents.

In economic reality, exactly this aspect can be ob-
served, for example in the recent financial crisis: Each
participant of financial transactions knew that highly
risky financial products would increase the risk of the
whole market portfolio and thereby augment the proba-
bility of a market crash resulting in huge losses. Never-
theless, several participants continued selling and buying
these products in order to maximise their own, short-
term utility resulting from high selling premiums and in-
vestment returns. Hence, these individuals followed an
aggressive strategy. However, as the occurrence of the
financial crisis exhibited, this behaviour can result in se-
vere problems for the whole economic population. So,
the question rises, whether there is a possibility to change
the rules of the game in a way that protects populations
from these severe problems by inhibiting the occurrence
of aggressive behaviour.

To answer this question the classical concept of evo-
lutionary game theory shall be extended by another
game theoretical development that is currently discussed:
quantum games. The discussion of quantum games
started with the work of Meyer (1999) [15] and Eisert et
al. (1999) [5]. Meyer analysed the ”penny flip” game and
showed, that a player who selects a quantum strategy al-
ways wins this game. Eisert et al. (1999) concentrated on
the prisoner dilemma and demonstrated that the players
of this game could escape this dilemma if the entangle-
ment of the prisoners wave function is above a certain
value. Since these leadoff articles several further applica-
tions of quantum games have been published. Marinatto
& Weber (2000) [14] applied quantum games to the ”bat-
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tle of sexes” showing that entangled strategies will lead
to a unique solution of this game. Benjamin & Hayden
(2001) [2] amplified the quantum game approach to a
situation of multiple players. Piotrowski & Sladkowsky
(2002) [19] used quantum games to examine market be-
haviour. Hanauske et al. (2007) [9] based the analysis of
the open access publishing behaviour in different scien-
tific communities on a quantum game approach.

The combination of this quantum game approach and
evolutionary game theory has been applied by [7, 11, 17].
We add to this existing research a practical application
of this type of game theory. Our results show that depen-
dent on entanglement, also evolutionary stable strategies
can emerge, which are not predicted by classical evolu-
tionary game theory: The analysis exhibits the existence
of a new, payoff dominant evolutionary stable strategy
(ESS), where the whole economic population uses the
non aggressive quantum dove strategy. We interpret en-
tanglement in this context as the objective influence of
socio-economic context factors, while the application of
quantum strategies exhibits the degree to which deci-
sion makers incorporate these factors into their decisions.
This interpretation allows the derivation of consequences
and shows the linkage of our study to other game theo-
retical analyses that also highlight the importance of the
socio-economic context to the outcomes of games. For
example, Sally [20] discusses the notion of sympathy, a
feeling that occurs when players get to know each other
and that can lead to increasing cooperation in prisoners’
dilemma games.

The paper is structured as follows: We pick up the
recent financial crisis as an example for the fruitful ap-
plication of evolutionary quantum game theory. In or-
der to do so, we have to select a group of participants
in the financial transactions that finally lead to the cri-
sis. We have chosen the group of inventors and sellers of
the highly risky financial products. Their behaviour can
be interpreted as the in theory well known Hawk-Dove
game (Maynard Smith 1982, 1986 [25, 26]). Hence, in
section II we develop a model that is based on this game
type and comprises the relevant parts of the behaviour of
these constructors and sellers to mirror the starting con-
ditions of the financial crisis. In section III we transfer
this model into a classical evolutionary game. Section IV
is dedicated to the quantum version of this game, while
section V comprises the evolutionary quantum version.
In section VI we draw some conclusions from our find-
ings. The paper closes with a summary in section VII.

II. THE FINANCIAL CRISIS AS HAWK-DOVE

GAME

Financial crises in general and the last one especially,
have their origin in highly speculative behaviour of mar-
ket participants. In our analysis we focus on a specific
population of market participants, who had a great part
in the last crisis: Constructors and sellers of investment

papers with different degrees of risk. They played an im-
portant role in the last crisis as follows:
This crisis grounded especially on the housing market in
the United States. Based on the idea of continuously
increasing prices for real estates, loans were also pro-
vided to borrowers, who actually could not afford buying
a house. But under the premise of increasing house val-
ues, providing loans to these people seemed to be rational
as they were backed by increasingly valuable real estates.
Yet, these loans did not remain with the lending credit
institutes but they were bundled to portfolios together
with loans of higher solvency. These portfolios then were
sold to other banks as investment products. The idea be-
hind these products is to spread risk among banks. More-
over, papers of higher risk also promise a higher return,
which makes them attractive for speculative purposes.
The buying banks often unbundled the loans and bun-
dled them together with other loans to sell again parts
of these newly created portfolios. These processes were
repeated several times. So finally, the loans were scat-
tered around the world. However, after the house prices
started falling, the bad loans became obvious in these
portfolios and caused losses. But, as the loans were scat-
tered around the world, nobody really knew where which
risk still remained and which bank would suffer next from
a financial disorder. As a result of this, banks stopped
providing credit to each other in order to prevent credit
defaults. This trust crisis actually lead to the severe eco-
nomic problems, as not only banks but also other firms
got problems to receive credits for the continuation of
their business.

Hence, one major driver of the crisis was the mentioned
speculative investment products. The described portfo-
lios had a considerable degree of complexity. In combina-
tion with the continuously spreading of risks among the
same investors it was only a matter of time that the cri-
sis had to start. However, although this was foreseeable
dealing with this investment products continued. This
scenario can be transferred to a model usable for evolu-
tionary game theory as follows:
In line with the classical Hawk-Dove model two types of
agents shall be considered: Doves follow a non aggres-
sive strategy. Transferred to the financial situation they
are investment bankers who construct investment prod-
ucts of rather low risk and moderate expected return.
These products lead to a moderate premium to the seller
but have no negative long-term impact on the total mar-
ket risk. Additionally, when selling their products to in-
vestors, doves remain with their contract conditions and
do not try to make a deal by all means, e.g. promising
unrealistic returns or omitting to point out severe risk
factors of the investment product. In contrast, hawks
follow an aggressive strategy. They represent those in-
vestment bankers, who are specialised on highly risky
products with high expected returns. They also act ag-
gressive to sell their products, which might end up in
investment constructs that contain a destabilising poten-
tial to the financial market. Both types of agents ”fight”
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for a pool of risk-neutral investors. For simplification
reasons, we assume that always only two agents fight for
one investor, where both agents can be doves, or hawks,
or one is a dove and one is a hawk.

If a dove and a hawk fight for one investor, the hawk
will win, as he/she can offer a product with a higher
expected return. If two doves meet, the investor will
spread the investment equally, as it is assumed that both
offer him/her the same conditions. If two hawks meet,
the investor will also spread the investment equally, as
again it is assumed that both hawks provide the same
investment product. However, the payoffs of the players
are quite different in all three cases and contain two parts.

The first part is the selling premium. This premium
depends on the expected return of the sold investment
product. In the first case, the dove gets nothing, as it
cannot sell any product, while the hawk receives a high
premium ph. In the second case, both doves get half of
the moderate premium pm, as the investment sum is split
up between both. In the last case, both hawks receive
half of the high premium, as again the investment is split
up.

The second part comprises a discount resulting from
the fight of two players for one investor. In the first case,
an aggressive and a non aggressive investment banker
meet. Here, no fight will take place, as the non aggres-
sive banker remains with his/her conditions and the in-
vestor prefers the product with the higher expected re-
turn. Hence, the aggressive banker has no reason to start
any fight, since he/she can sell his/her product. Regard-
ing the second case, again no fighting will be observed, as
both bankers stay with their conditions and the investor
just splits up the investment sum. Consequently, in the
first and the second cases, no discount has to be consid-
ered. However, if two aggressive bankers meet, they will
try to get the whole investment sum and start fighting
for it. On the one hand, this can result in a lowering of
selling prices. On the other hand, this ends in the con-
struction of products which offer an even higher expected
return but bear very high, partly hidden risks. These ef-
fects are totalled in a discount parameter d. Hence, both
aggressive bankers receive half of the high premium mi-
nus this discount. The discount factor is an indicator
for the degree of aggressiveness of the hawks and at the
same time for the danger of the products resulting from
the meeting of two hawks to cause a future crash due to
hidden risk. Table I summarises the payoff matrix.

A\B Hawk Dove

Hawk ( ph−d

2
, ph−d

2
) (ph,0)

Dove (0,ph) ( pm

2
, pm

2
)

TABLE I: Payoff matrix for investment bankers A and B
within the Hawk-Dove game. The parameters are defined as
follows: ph: high selling premium, d: disutility resulting from
fighting and pm: moderate selling premium.

To assure the payoff matrix to have the formal struc-

ture of a Hawk-Dove game the parameters of Table I
should fulfil the inequation ph > pm > 0 > ph−d

2 , which
means that the disutility d should be higher than the
high selling premium ph.

III. THE CLASSICAL EVOLUTIONARY GAME

OF DOVES AND HAWKS

This section is dedicated to the introduction of the
necessary definitions and fundamental basics of an evo-
lutionary game. In the following the presentation is con-
strained to describe the mixed enlargement of a symmet-
ric two person, n–strategy game Γ (for details see [21]):

Γ :=
(
{A,B} ,S × S, $̂

)
: 2-person game

s = (s1, s2, ..., sn) ∈ S : Mixed strategy

$̂ =




$11 $12 ... $1n

$21 $22 ... $2n

... ... ... ...

$n1 $n2 ... $nn


 : Payoff matrix (1)

To describe the time evolution of the repeated ver-
sion of the game Γ, replicator dynamics were developed.
Replicator dynamics, formulated within a system of dif-
ferential equations, defines in which way the population
vector ~x := (x1, x2, ..., xn) evolves in time. Each compo-
nent xi = xi(t) (i = 1, 2, ..., n) describes the time evolu-
tion of the fraction of different player types i in the whole
population, where a type-i player is understood as an ac-
tor playing strategy si. The population vector ~x has to
fulfil the normalising conditions of a unity vector

xi(t) ≥ 0 ∀ i = 1, 2, ..., n , t ∈ R and

n∑

i=1

xi(t) = 1. (2)

The following first order system of differen-
tial equations of the population vector ~x(t) =
(x1(t), x2(t), ..., xn(t)) is known as replicator dynamics
(see [16, 21])

dxi(t)

dt
= xi(t)




n∑

l=1

$il xl(t)

︸ ︷︷ ︸
:=fi(t)

−
n∑

l=1

n∑

k=1

$kl xk(t)xl(t)

︸ ︷︷ ︸
:=f̄(t)




(3)
where fi(t) is the fitness of type i and f̄(t) =

∑n
i=1 fi(t)

is the avarage fitness of the whole population.
In the following the formal description is restricted to

only two strategies (i = 1, 2 =̂H,D). Because of con-
dition 2, the population vector ~x(t) = (x1(t), x2(t)) can
be reduced to only one independent component (x(t) :=
x1(t), and x2(t) = 1 − x(t)) and equation 3 simplifies as
follows:
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dx

dt
= x

[
($11 − $21)(x− x2) + ($22 − $12)(1 − 2x+ x2)

]

Inserting the parameters of the Hawk-Dove payoff ma-
trix (see Table I) gives the following differential equation:

dx

dt
=

1

2
(ph − pm + d) x3 +

(
pm − 3

2
ph − 1

2
d

)
x2 +

+

(
ph − 1

2
pm

)
x (4)

To show the consequences of equation 4 and to dis-
cuss and illustrate the main properties of the underlying
Hawk-Dove game the payoff parameters of Table I have
been set to the following three different parameter sets.

Parameter Risk of

setting destabilisation d ph pm

P1 LOW 6 5 3

P2 MEDIUM 10 5 3

P3 HIGH 20 5 3

TABLE II: Parameters of the three different sets of the un-
derlying payoff matrix used to model the investment market
of the Hawk-Dove game.

Within the parameter sets the high and low selling pre-
miums are fixed (ph = 5 and pm = 3), whereas the desta-
bilising factor d is varied. In parameter set P1 the risk
of destabilisation is only a little bit higher (d = 6) than
the high selling premium, in parameter set P2 a medium
value of the destabilising factor d that results from fight-
ing was used (d = 10), and in set P3 the parameter d
was chosen to a quite high value (d = 20).

The evolution of the fraction of hawks x(t) within the
hawk-dove population is displayed in Figures 1, 2 and 3.

x(t)

t

FIG. 1: Fraction of hawks x as a function of time t for different
starting values x(t = 0). Results were calculated using the
parameter set P1 (low risk investment market).

Figure 1 shows x(t) as a function of time for the parame-
ter set P1, in which the different curves where calculated
using various different starting values of the fraction of
hawks at time zero (x(0) = 1

20 ,
2
20 , ...,

19
20 ). The Figure

shows clearly that all population curves converge to one
limit value xL := x(t → ∞). Within parameter set P1
the fraction of hawks ends after some time always at
xL = 0.86, which means that the population of hawks
and doves will be stable if it consists of 86% hawks and
14% doves. Parameter set P1 corresponds to a situation
where the risk of a future crash of the whole investment
market is expected to be quite low. Within such a sit-
uation the theory predicts that the relative number of
investment bankers selling highly risky products (hawk
strategy) is quite high (86%) and as a result the fraction
of sellers offering products with moderate returns and a
rather low risk is quite low (14%).

x(t)

t

FIG. 2: Description like in Figure 1. Results were calculated
using the parameter set P2 (medium risk investment market).

Within parameter set P2 the underlying investment
market has a medium crashing risk. Figure 2 shows that
for such a market the stable fraction of hawks (invest-
ment bankers selling highly risky products) has decreased
(xL = 0.56).

Figure 3 shows the situation where aggressive be-
haviour will lead to an unstable market, in which it is
very like that a future crash will occur. The players
within such a highly risky market choose mainly a non
risky dove strategy (xL = 0.34), but still 34% of the in-
vestment bankers sell highly risky products.

To understand the simulated results more formally,
the concept of evolutionary stable strategies is briefly
explained in the following.

Taking a general symmetric 2-player game Γ

with a payoff matrix $̂. A strategy s∗ ∈ S
is defined as an evolutionary stable strategy
(ESS) if [21]
a) (s∗, s∗) is a Nash equilibrium of the game
b) $(s, s) ≤ $(s∗, s) ∀ s ∈ r(s∗) , s 6= s∗
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x(t)

t

FIG. 3: Description like in Figure 1. Results were calculated
using the parameter set P3 (high risk investment market).

r(s∗) is the best response function to the strategy s∗

and $(s, s) describes the extended, mixed strategy payoff
function. An evolutionary stable strategy s∗ therefore
needs to be a symmetric Nash equilibrium of the game
and additionally the inequation b) should be fulfilled for
any strategy s belonging to the set of best responses to s∗

(s ∈ r(s∗)). To illustrate this definition we restrict the
number of pure strategies to n = 2 and use the payoff
matrix of Table I. x := sA

1 denotes the probability of
player A playing the aggressive strategy hawk, while y :=
sB
1 defines the probability of player B playing strategy

hawk. The mixed strategy payoff function has therefore
the following structure:

$(x, y) = $11 x y + $12 x (1 − y) +

+$21 (1 − x) y + $22 (1 − x) (1 − y) (5)

=
ph − d

2
x y + ph x (1 − y) +

pm

2
(1 − x) (1 − y)

Because of the symmetry of the game, the payoff of player
A ($A(x, y) = $(x, y)) and the payoff of player B are equal
after variable transformation (x→ y, y → x).

$A(x, y) = $(x, y) and $B(x, y) = $(y, x)

The two necessary conditions to prove the existence of
a Nash equilibrium (x∗, y∗) in a 2-person 2-strategy game
reduce therefore to one single condition [21]

$A(x∗, y∗) ≥ $A(x, y∗) ∀ x ∈ [0, 1]

$B(x∗, y∗) ≥ $B(x∗, y) ∀ y ∈ [0, 1]

⇒ $(x∗, y∗) ≥ $(x, y∗) ∀ x ∈ [0, 1] (6)

The game has three Nash equilibria. Two are non sym-
metric pure Nash equilibria ((x = 1, y = 0)=̂(H,D) and
(x = 0, y = 1)=̂(D,H)) and one is a symmetric, mixed
strategy Nash equilibrium (x = pm−2ph

pm−ph−d
, y = pm−2ph

pm−ph−d
).

Definition 6 requires that in every Nash equilibrium the
function N := $(x∗, y∗)−$(x, y∗) needs to be positive for
all x ∈ [0, 1]. Figure 4 shows N for the three Nash equi-
libria within a middle risk szenario (parameter set P2)
and proves their existence, as all values are non negative.

N (x∗
, y

∗
, x)

x

FIG. 4: N (x∗, y∗, x) for the three Nash equilibria as a func-
tion of x within the middle risk parameter setting P2. The
dark grey line corresponds to the Nash equilibrium (x∗, y∗) =
(1, 0), the light grey line to (x∗, y∗) = (0, 1) and the black line
(N ≡ 0) to the mixed strategy Nash equilibrium (x∗, y∗) =
( pm−2ph

pm−ph−d
, pm−2ph

pm−ph−d
)

To prove the existence of an evolutionary stable strat-
egy, condition b) has to be fulfilled additionally for the
mixed strategy Nash equilibrium. The best response of
player A to the strategy y∗ = pm−2ph

pm−ph−d
is the set of all

strategies x ∈ [0, 1], because $(x, y∗) = − (ph−d)pm

2(ph+d−pm)

is independent of x. Condition b) therefore has to be
checked for all x ∈ [0, 1]\ { pm−2ph

pm−ph−d
}. x∗ is an ESS if the

function G(x∗, x) fulfils the following condition:

G := $(x∗, x) − $(x, x) ≥ 0 (7)

∀x ∈ [0, 1] \ {x∗ = pm−2ph

pm−ph−d
}

Figure 5 shows G for the symmetric Nash equilibria
x∗ = 7

2+d
(ph = 5, pm = 3) of the three different payoff

parameter settings (d = 6, 10, 20). The null of the three
curves corresponds to the evolutionary stable fraction of
hawk strategies within the low (d = 6), middle (d = 10)
and high (d = 20) risk settings. As the destabilisation
risk d increases, the ESS x∗ = 7

2+d
(the fraction of hawks)

decreases.
In sum, the results of the previous analysis based

on evolutionary game theory suggest that dependent on
the destabilisation factor the degree of aggressive agents
varies, but even in case of highly risky markets aggres-
sive behaviour will not vanish completely. This is ex-
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G(x∗
, x)

x

FIG. 5: G(x∗, x) for the three different parameter settings P1
(x∗ = 7

8
, light grey curve), P2 (x∗ = 7

12
, dark grey curve) and

P3 (x∗ = 7

22
, black curve).

actly, what could be observed previously to the finan-
cial crisis: Although the risk of destabilisation in the
investment market was obviously increasing for the last
few years, the behaviour of some aggressive investment
bankers did not change. However, instead of ending in
a stable state, finally the market crashed and almost all
aggressive agents disappeared from the population. This
could have been prevented, if any aggressive behaviour
were inhibited completely.

It will be shown in this article that a quantum game
theoretical formulation of the Hawk-Dove game is able to
induce exactly this result: within the subset of quantum
dove strategies, it will be shown that if the strategy of
all investment bankers is entangled above a certain value,
a new evolutionary stable quantum strategy is possible,
leading to an observed banker population offering solely
non aggressive investment products. Compared to the
classical mixed strategy Nash equilibrium of the game,
the new evolutionary stable quantum strategy is payoff
dominant, if the strength of entanglement is above a cer-
tain value. To describe these phenomena in a more de-
tailed way, the quantum game theory of doves and hawks
is addressed within the following two sections.

IV. THE QUANTUM GAME OF DOVES AND

HAWKS

In quantum game theory, the measurable pure classical
strategies (H and D) correspond to the orthonormal unit
basis vectors |H〉 and |D〉 of the two dimensional com-
plex space C

2, the so called Hilbert space Hi of player i
(i = A,B). A quantum strategy of a player i is repre-

sented as a general unit vector |ψ〉i in his strategic Hilbert
space Hi. The whole quantum strategy space H is con-
structed with the use of the direct tensor product of the
individual Hilbert spaces: H := HA ⊗ HB. The main
difference between classical and quantum game theory
is that in the Hilbert space H correlations between the
players’ individual quantum strategies are allowed, if the
two quantum strategies |ψ〉A ∈ HA and |ψ〉B ∈ HB are
entangled. The overall state of the system we are look-
ing at is described as a 2-player quantum state |Ψ〉 ∈ H.
We define the four basis vectors of the Hilbert space
H as the classical game outcomes (|DD〉 := (1, 0, 0, 0),
|DH〉 := (0,−1, 0, 0), |HD〉 := (0, 0,−1, 0) and |HH〉 :=
(0, 0, 0, 1)).

The setup of the quantum game begins with the choice
of the initial state |Ψ0〉. We assume that both players are
in the state |D〉. The initial state of the two players is
given by

|Ψ0〉 = Ĵ |DD〉 =




cos
(

γ
2

)

0

0

i sin
(

γ
2

)




, (8)

where the unitary operator Ĵ (see equation 13) is re-
sponsible for the possible entanglement of the 2-player
system. The players’ quantum decision (quantum strat-
egy) is formulated with the use of a two parameter set of
unitary 2 × 2 matrices:

Û(θ, ϕ) :=

(
ei ϕ cos( θ

2 ) sin( θ
2 )

−sin( θ
2 ) e−i ϕ cos( θ

2 )

)
(9)

∀ θ ∈ [0, π] ∧ ϕ ∈ [0, π
2 ] .

By arranging the parameters θ and ϕ, a player chooses
his quantum strategy. The classical strategy D (Dove) is
selected by appointing θ = 0 and ϕ = 0 :

D̂ := Û(0, 0) =

(
1 0

0 1

)
, (10)

whereas the strategy H (Hawk) is selected by choosing
θ = π and ϕ = 0 :

Ĥ := Û(π, 0) =

(
0 1

−1 0

)
. (11)

In addition, the quantum strategy Q̂ is given by

Q̂ := Û(0, π/2) =

(
i 0

0 −i

)
. (12)

After the two players have chosen their individual
quantum strategies (ÛA := Û(θA, ϕA) and ÛB :=
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Û(θB , ϕB)) the disentangling operator Ĵ † is acting to
prepare the measurement of the players’ state. The en-

tangling and disentangling operator (Ĵ , Ĵ †; with Ĵ ≡
Ĵ †) depends on one additional single parameter γ which
measures the strength of the entanglement of the system:

Ĵ := ei γ
2
( bD⊗ bD) , γ ∈ [0,

π

2
] . (13)

In the used representation, the entangling operator Ĵ has
the following explicit structure:

Ĵ :=




cos
(

γ
2

)
0 0 i sin

(
γ
2

)

0 cos
(

γ
2

)
−i sin

(
γ
2

)
0

0 −i sin
(

γ
2

)
cos
(

γ
2

)
0

i sin
(

γ
2

)
0 0 cos

(
γ
2

)




.

(14)
Finally, the state prior to detection can therefore be

formulated as follows:

|Ψf 〉 = Ĵ †
(
ÛA ⊗ ÛB

)
Ĵ |DD〉 . (15)

The expected payoff within a quantum version of a gen-
eral 2-player game depends on the payoff matrix (see Ta-
ble I) and on the joint probability to observe the four
observable outcomes PHH, PHD, PDH and PDD of the
game

$A = $11 PHH + $12 PHD + $21 PDH + $22 PDD

$B = $11 PHH + $21 PHD + $12 PDH + $22 PDD

with: Pσσ, = | 〈σσ,|Ψf〉 |2 , σ, σ, = {H,D} . (16)

It should be pointed out here, that an entangled 2-
player quantum state does not mean at all that the per-
sons themselves (or even the players’ brains) are entan-
gled. The process of quantum decoherence, with its quan-
tum to classical transition, forbid such macroscopic en-
tangled systems established from microscopic quantum
particles [12, 22]. However, peoples’ cogitations, repre-
sented as quantum strategies, could be associated within
an abstract space. Although no measurable accord is
present between the players’ strategy choices, the imag-
inary parts of their strategy wave functions might inter-
act, if their individual states are entangled. In the con-
text of the financial investment market, this quantum
phenomenon might possibly be interpreted as a conjoint,
psychological contract between the investment bankers
aligning their strategies and resulting from the impact
of socio-economic context factors. Such an alignment is
now formulated as the appearance of a strongly entan-
gled strategy effectuating the players to act more like a
collective state.

To visualise the payoffs in a three dimensional diagram
it is necessary to reduce the set of parameters in the fi-
nal state: |Ψf〉 = |Ψf(θA, ϕA, θB, ϕB)〉 → |Ψf (τA, τB)〉.

Within the following diagrams we have used the same
specific parameterisation as Eisert et al. [5], where the
two strategy angles θ and ϕ depend only on a single
parameter τ ∈ [−1, 1].[27] Positive τ -values represent
pure and mixed classical strategies, whereas negative τ -
values correspond to quantum strategies, where θ = 0
and ϕ > 0. The whole strategy space is separated into
four regions, namely the absolute classical region (CC:
τA, τB ≥ 0), the absolute quantum region (QQ: τA, τB <
0) and the two partially classical-quantum regions (CQ:
τA ≥ 0 ∧ τB < 0 and QC: τA < 0 ∧ τB ≥ 0). It should
be mentioned that within the (τA, τB) representation the
set of possible strategies {(θ, ϕ) | θ ∈ [0, π] , ϕ ∈ [0, π

2 ]}
is reduced to the following specific subset:

{(τ π, 0) | τ ∈ [0, 1]}︸ ︷︷ ︸
classical region C

∧ {(0, τ π
2

) | τ ∈ [−1, 0[}
︸ ︷︷ ︸

quantum region Q

.

(17)

A. Quantum Dove Strategies

As the θ-value of the quantum region Q is fixed to
zero, the possible quantum strategies can be understood
as ”Quantum Dove” strategies. In the following we will
show results within this quantum dove strategy sub-
set, where τA, τB = 1 corresponds to strategy H , and
τA, τB = 0 corresponds to strategy D. All the results
presented within this subsection where calculated using
this quantum dove strategy subset.

$A, $B

τA

τB

FIG. 6: Payoff surface of player A (solid) and player B (wired)
as a function of their reduced strategies τA and τB within a
non-entangled quantum game (γ = 0) using the quantum dove
strategy subset and the high risk parameter setting P3.
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$A, $B

τB

Classical ESS:
Mixed Strategy

Nash Equilibrium

(τ ∗c
A , τ ∗c

B )

❄

FIG. 7: Projection of the payoff surface of Figure 6 in direc-
tion of the τA axis.

Diagram 6 illustrates the outcomes of the high
risk game setting by visualising the payoff surfaces of
investment banker A (solid surface) and investment
banker B (wired surface) as a function of their strategies
τA and τB. In all of the presented three dimensional
Figures (within this subsection) the absolute quantum
region QQ is projected in the back, whereas the absolute
classical region CC is projected to the front. Figure
6 shows the result where no strategic entanglement is
present (γ = 0). The diagram clearly exhibits that
the non-entangled quantum game simply describes the
classical version of the high risk Hawk-Dove game. For
the case, that both players decide to play a quantum
strategy (τA < 0 ∧ τB < 0) their payoff is equal to
the case where both players choose the classical dove
strategy D ($A(D,D) = $A(τA = 0, τB = 0) = pm

2 ).
The two classical non symmetric pure Nash equi-
libria ((x = 1, y = 0)=̂(H,D) and (x = 0, y =
1)=̂(D,H)) correspond to the following τ -values:
(H,D)=̂(τA = 1, τB = 0) and (D,H)=̂(τA = 0, τB = 1).
The ESS of the classical game (the mixed strategy
Nash equilibrium (x∗ = pm−2ph

pm−ph−d
, y∗ = pm−2ph

pm−ph−d
)

is equal to the strategy point (τ∗c
A , τ∗c

B ) =

( 2
π
arccos

(√
1 − pm−2ph

pm−ph−d

)
, 2

π
arccos

(
1 −

√
pm−2ph

pm−ph−d

)
).

At (τ∗c
A , τ∗c

B ) the partial derivatives ∂$A

∂τA
(τA, τ

∗c
B ) and

∂$B

∂τB
(τ∗c

A , τB) vanish for all possible strategy choices.

∂$A

∂τA
(τA, τB)

∣∣∣∣
τB=τ∗c

B

= 0 ∀ τA ∈ [−1, 1] (18)

∂$B

∂τB
(τA, τB)

∣∣∣∣
τA=τ∗c

A

= 0 ∀ τB ∈ [−1, 1]

This property of the classical ESS can be visualised
by changing the projected viewpoint of the three dimen-
sional surface. Figure 7 shows again the payoffs of the
investment bankers within the non-entangled quantum
game, whereas the projection of the picture is now along
the τA-axis. As the partial derivative ∂$A

∂τA
(τA, τ

∗c
B ) van-

ishes for all τA-values, no gradient is observed at τB = τ∗c
B

and as a result the whole projected surface shrinks to one
point (see Figure 7).

While the Figures 6 and 7 visualise the non-entangled
quantum game, Figure 8 shows the payoff structure of a
low (upper picture, γ = π

4 ) and medium (lower picture,
γ = π

4 ) entangled high risk quantum game. The total
classical region CC is equal to the non-entangled game
(see Figure 6), whereas in all other regions the shape of
the payoff surfaces $A and $B has changed. The classi-
cal ESS and one of the asymmetric, pure strategy Nash
equilibria ((H,D)=̂(τA = 1, τB = 0)) still remain present

$A, $B

τA

τB

$A, $B

τA

τB

FIG. 8: Same description as Figure 6, whereas the upper Fig-
ure is calculated within a sparsely entangled quantum game
(γ = π

8
) and the lower picture represents results within a

medium entangled quantum game (γ = π
4
).
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$A, $B

τA

τB

Classical ESS:
Mixed Strategy

Nash Equilibrium

(τ ∗c
A , τ ∗c

B )
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

Quantum ESS:
Observed Pure

Strategy (Dove,Dove)

(τ ∗q
A , τ

∗q
B )

�
�

�
�

�
�✠

FIG. 9: Same description as Figure 6, whereas the results where calculated within a maximally entangled quantum game
(γ = π

2
) using parameter set P3.

in both diagrams, whereas the other pure strategy Nash
equilibrium (D,H)=̂(τA = 0, τB = 1) disappears even
for a tiny strength of entanglement. A further increase
of entanglement will even change the structure of the ex-
isting ESS as a new, payoff dominant quantum ESS at
(τA = −1, τB = −1) appears for γ > 0.99.

Figure 9 shows the payoff structure of the maximally
entangled (γ = π

2 ) high risk quantum game within the
quantum dove strategy subset. The classical ESS and
one of the asymmetric, pure strategy Nash equilibria
((H,D)=̂(τA = 1, τB = 0)) still remain present, while the
pure classical Nash equilibrium (D,H)=̂(τA = 0, τB =
1) has vanished. Beside the remaining classical ESS
(τ∗c

A , τ∗c
B ) a new quantum ESS ((τ∗q

A , τ∗q
B ) = (−1,−1))

has been found for γ > 0.99. The point on the payoff
surface, where both players choose the quantum ESS τ∗q

is marked in Figure 9. Which of these equilibria will be
chosen by the whole population, is going to be addressed
in section V when the time evolution of quantum games is
going to be discussed. As the payoff of this new quantum
ESS ($A(τ∗q

A , τ∗q
B ) = pm

2 ) is higher than the payoff of the
classical ESS ($A(τ∗c

A , τ∗c
B ) ≈ 1.02), the fully entangled

quantum players will likely asymptotically end within
the new, payoff dominant quantum ESS. As the observ-
able measurement of the strategy choice (τ∗q

A , τ∗q
B ) is the

strategy set where both players play the dove strategy D
((τ∗q

A , τ∗q
B )=̂(D,D)), fully entangled quantum players will

likely end in a totaly dove strategy population (x = 0).
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$A, $B

τB

Classical ESS:
Mixed Strategy

Nash Equilibrium

(τ ∗c
A , τ ∗c

B )
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡✢

Quantum ESS:
Observed Pure
Strategy (Dove,Dove)

(τ ∗q
A , τ

∗q
B )

❄

FIG. 10: Projection of the payoff surface 9 in direction of the
τA axis.

To visualise the payoff values of the two ESSs more
explicit, Figure 10 projects the three dimensional surface
of Figure 9 in direction of the τA-axis. As the partial
derivative of the classical ESS is only zero in the CC-
region of the 3-dimensional plot, the whole surface does
not shrink to one point as in Figure 7.

B. Quantum Hawk Strategies

Within the previous subsection the set of possible
strategies belong to the subset of quantum dove strategies
whereas all the results presented within this subsection
where calculated using the quantum hawk strategy sub-
set. The corresponding quantum game restricted on a
quantum hawk strategy subset is constructed as follows:
We redefine the four basis vectors of the Hilbert space
H as the following classical game outcomes (|HH〉 :=
(1, 0, 0, 0), |HD〉 := (0,−1, 0, 0), |DH〉 := (0, 0,−1, 0)
and |DD〉 := (0, 0, 0, 1)). The setup of the quantum game
begins with the choice of the initial state |Ψ0〉, where we
assume that both players are in the state |H〉. The clas-
sical strategy H (Hawk) is now selected by appointing
θ = 0 and ϕ = 0 whereas the strategy D (Dove) is se-
lected by choosing θ = π and ϕ = 0. Finally, the state
prior to detection is formulated as follows

|Ψf 〉 = Ĵ †
(
ÛA ⊗ ÛB

)
Ĵ |HH〉 , (19)

where the entanglement operator Ĵ is formally given by

Ĵ = ei γ
2
( bH⊗ bH).

Within this quantum hawk strategy model τA, τB = 1
corresponds to strategy D, and τA, τB = 0 corresponds

to strategy H . Negative τ -values correspond again to
quantum strategies, where θ = 0 and ϕ > 0. As the
θ value of the quantum region Q is fixed to zero which
corresponds now to the classical hawk strategy, the possi-
ble quantum strategies can be understood as ”Quantum
Hawk” strategies. In the following we will show results
within this quantum-hawk strategy subset.

The two diagrams of Figure 11 illustrate the outcomes
of the low and high risk game settings by visualising the
payoff surfaces of investment banker A (solid surface)
and investment banker B (wired surface) as a function
of their strategies τA and τB. Because of visual reasons,
in all of the presented three dimensional Figures the
absolute quantum region QQ is now projected in the
front, whereas the absolute classical region is projected
to the back. Figure 11 shows the result where no
strategic entanglement is present (γ = 0), where the
upper Figure depicts the low risk parameter case P1 and
the lower Figure shows the calculated results within the

$A, $B

τA

τB

$A, $B

τA

τB

FIG. 11: Payoff surface of player A (solid) and player B
(wired) as a function of their reduced strategies τA and τB

within a non-entangled quantum game (γ = 0) using the
quantum-hawk strategy subset. The upper Figure depicts the
results of the low risk parameter set P1, whereas the lower
Figure shows the results of the high risk setting P3.
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$A, $B

τA

τB

Classical ESS:
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Nash Equilibrium

(τ ∗c
A , τ ∗c

B ) ❏
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❏
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Dove Plateau:
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✂
✂

✂
✂
✂

✂
✂
✂

✂
✂

✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂✂✌

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂
✂✌

✂
✂

✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂
✂✌

✂
✂

✂
✂

✂
✂
✂

✂
✂
✂

✂
✂

✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂
✂✌

✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂
✂
✂

✂✂✌

✂
✂
✂

✂
✂
✂
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✂
✂
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✂

✂
✂
✂
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✂
✂

✂
✂
✂

✂
✂
✂

✂✂✌

Quantum Strategy (Q̂, Q̂):
(Hawk,Hawk) → market crash

❍❍❍❍❍❍❍❍❍❍❍❥

FIG. 12: Same description as Figure 11, whereas the results where calculated within a maximally entangled quantum game
(γ = π

2
) using parameter set P3.

high risk parameter setting P3. Both diagrams clearly
show that the non-entangled quantum game simply
describes the classical versions of the low and high risk
Hawk-Dove games. For the case, that both players
decide to play a quantum strategy (τA < 0 ∧ τB < 0)
their payoff is the games lowest payoff which is equal
to the case, where both players choose the hawk strat-
egy H ($A(H,H) = $A(τA = 0, τB = 0) = ph−d

2 ).
The two classical non symmetric pure Nash equilibria
((x = 1, y = 0)=̂(H,D) and (x = 0, y = 1)=̂(D,H))
correspond now to the following τ -values:
(H,D)=̂(τA = 0, τB = 1) and (D,H)=̂(τA = 1, τB = 0).
The ESS of the classical game (the mixed strategy
Nash equilibrium) (x∗ = pm−2ph

pm−ph−d
, y∗ = pm−2ph

pm−ph−d
)

is equal to the strategy point (τ∗c
A , τ∗c

B ) =

( 2
π
arccos

(√
pm−2ph

pm−ph−d

)
, 2

π
arccos

(√
pm−2ph

pm−ph−d

)
). At

(τ∗c
A , τ∗c

B ) the partial derivatives ∂$A

∂τA
(τA, τ

∗c
B ) and

∂$B

∂τB
(τ∗c

A , τB) vanish for all possible strategy choices.

Figure 12 shows the payoff structure of the maxi-
mally entangled (γ = π

2 ) high risk quantum game. The
classical ESS and one of the asymmetric, pure strat-
egy Nash equilibria ((H,D)=̂(τA = 0, τB = 1)) still re-
main present, while the pure classical Nash equilibrium
(D,H)=̂(τA = 1, τB = 0) has vanished. Beside the
remaining classical ESS (τ∗c

A , τ∗c
B ) a new quantum dove

plateau has been found in the fully entangled quantum
game. This new, relatively high payoff plateau is called
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$A, $B

τA

τB

FIG. 13: Same description as Figure 11, whereas the results
where calculated within a medium entangled quantum game
(γ = π

4
) using parameter set P3.

the ”dove plateau” because the observed measurement
of a quantum strategy point at the top of it is the pure
(D,D)-strategy and its payoff is pm

2 . It should be men-
tioned, that if both players decrease their τ -value further
than the τ -value of the dove plateau their payoff extremly
decrease. When the players choose the quantum strategy

Q̂ (τA = −1, τB = −1) in the maximally entangled high
risk game, their payoff is equal to the lowest possible and
their observed action is the hawk strategy ((H,H)).

While the diagrams in Figure 11 visualise the non-
entangled low and high risk quantum games, Figure
13 shows the payoff structure of the medium entangled
(γ = π

4 ) high risk quantum game. The total classical
region CC is equal to the non-entangled game (see Fig-
ure 11, lower picture), whereas in all other regions the
shape of the payoff surfaces $A and $B has changed.
As the classical ESS and the asymmetric, pure strat-
egy Nash equilibria ((H,D)=̂(τA = 0, τB = 1)) and
(D,H)=̂(τA = 1, τB = 0) still remain present, the out-
come and the evolution of such a medium entangled
quantum game will not be different from the classical
situation. However, a further increase of the strength
of entanglement will change the structure of the existing
Nash equilibria. For γ ≥ 1.15 the pure classical Nash
equilibrium (D,H)=̂(τA = 1, τB = 0) disappears and for
γ ≥ 1.34 the dove plateau at the QQ-region (see Fig-
ure 12) has a higher payoff than the payoff value of the
classical ESS.

To summarise briefly the results of this section, we
have shown on the one hand that within a highly en-
tangled quantum version of the Hawk-Dove game a new,
non aggressive ESS appears, but on the other hand the

results indicate that when both players use a quantum
hawk strategy and increase the quantum degree of their
strategy (ϕ) beyond the dove-plateau, their payoff sud-
denly extremly decrease due to market destabilisation.

V. THE QUANTUM EVOLUTIONARY GAME

OF DOVES AND HAWKS

In this section, the neccessary conditions ( a) and b),
see section III) for the existence of ESSs are adopted
to prove the existence of the new quantum ESS τ∗q.
The presented proof will be restricted to the maximally
entangled game, but it can be shown, that it holds
for any γ > 0.99. To illustrate that condition a) is

N (τ ∗
A, τ ∗

B, τA)

τA

N (τ ∗
A, τ ∗

B, τA)

τA

FIG. 14: N (τ∗

A, τ∗

B , τA) as a function of τA within the quan-
tum dove strategy subset. The light grey curves visualise the
non-symmetric Nash equilibria, whereas the dark grey and
black curves depict N for the symmetric Nash equilibria. The
upper picture shows the results calculated within the quan-
tum dove strategy subset, whereas in the lower picture the
calculation within the quantum hawk strategy subset are vi-
sualised.
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G(τ ∗, τ )

τ

FIG. 15: G(τ∗q, τ ) (black curve) and G(τ∗c, τ ) (grey curve) as
a function of τ within the quantum dove strategy subset.

fulfilled the pictures in Figure 14 depict the function
N (τ∗A, τ

∗
B, τA) := $A(τ∗A, τ

∗
B) − $A(τA, τ

∗
B) versus τA for

all symmetric and non-symmetric Nash equilibria. The
upper diagram in Figure 14 shows the results within
the quantum dove strategy subset, whereas the curves
in the lower diagram of Figure 14 are calculated within
the quantum hawk strategy subset. As all curves are al-
ways above zero they represent existent Nash equilibria.
The function N (τ∗A, τ

∗
B , τA) for the two non-symmetric

Nash equilibria in the upper picture (τ∗A = −1, τ∗B = 1
and τ∗A = 1, τ∗B = 0) are visualised using light grey curves,
the classical mixed strategy, symmetric Nash equilibrium
τ∗A = τ∗B = τ∗c is illustrated with the dark grey curve,
whereas the symmetric pure quantum Nash equilibrium
τ∗A = τ∗B = τ∗q is shown by using a black curve. The Fig-
ure shows clearly, that within the quantum dove strat-
egy subset two symmetric Nash equilibria and therefore
two potential ESSs are present. Within the quantum
hawk strategy subset (see lower diagram of Figure 14)
only one symmetric Nash equilibrium, the classical ESS
is present (black curve). The other three, light grey
curves represent the pure, non-symmetric Nash equilibria
(τ∗A = 1, τ∗B = −1, τ∗A = −1, τ∗B = 0 and τ∗A = 0, τ∗B = 1).

To show that both of the symmetric Nash equilib-
ria (τ∗c and τ∗q) are ESSs, condition b) has addition-
ally to be checked. Similar as in section III a function
G(τ∗, τ) := $A(τ∗, τ) − $A(τ, τ) is defined, which has to
be greater than zero for all strategies belonging to the set
of best responses within the quantum dove strategy sub-
set. At first we will varify, if the classical mixed strategy
Nash equilibrium τ∗c remains an ESS for the maximally
entangled quantum game. If player B chooses the strat-
egy τ∗c, the best response for player A are only strate-
gies belonging to the CC-region, as the payoff of player A
decreases within the QC-region (see Figure 9 in section

IV). In the CC-region the derivative ∂$A(τA,τ∗c)
∂τA

is equal

to zero and as a result the set of best responses to the
strategy τ∗c are all strategies belonging to the classical
region (r(τ∗c) = [0, 1]). The two curves in Figure 15 de-
scribe the functions G(τ∗c, τ) (grey curve) and G(τ∗q , τ)
(black curve) as a function of the quantum strategy τ
within the quantum dove strategy subset. As G(τ∗c, τ) is
greater than zero for all strategies τ ∈ [0, 1] τ∗c, the clas-
sical mixed strategy Nash equilibrium, remains an ESS
independent of the strength of entanglement. Secondly,
we want to address the question whether the symmetric
quantum Nash equilibrium τ∗q is indeed a new, addi-
tional ESS. If player B chooses the strategy τ∗q = −1,
the best response for player A is only again the strategy
τ = −1 and as a result condition b) is fulfilled, indepen-
dently of the shape of the function G(τ∗q , τ). Which of
the ESS will be finally reached by the whole population
will most likely depend on the initial conditions and on
the underlying time dependent quantum dynamics.

Quantum replicator dynamics (QRD), recently devel-
oped and discussed by E.G. Hidalgo [7, 8] (see also Toor
et. al. [11, 17]) was formulated within the density ma-
trix approach of quantum game theory [14]. QRD em-
ploys the von Neumann equation, which describes how a
quantum density operator evolves in time. In order to
reveal that the von Neumann equation is simply a quan-
tum amplification of classical replicator dynamics (see
equation 3), Hidalgo had reformulated equation 3 to a
matrix equation. Constraining to only two possible pure
strategies equation 3 can be formulated as follows [7]:

d
dt
X̂ =

[
Λ̂, X̂

]
(20)

X̂ :=

(
x1

√
x1 x2√

x2 x1 x2

)
Λ̂ :=

(
Λ11 Λ12

Λ21 Λ22

)

Λij := 1
2

∑n=2
k=1

(
$ik xk

√
xi xj −√

xj xi $jk xk

)

, where the matrix X̂ is an amplification of the population

vector ~x = (x1, x2),
[
â, b̂
]

:= âb̂ − b̂â is the commutator

of the two matrices â and b̂ and Λ̂ is a payoff dependent
(2 × 2)-matrix. The quantum amplification of classical

replicator dynamics is realised by substituting of X̂ to

the density matrix ρ̂ and Λ̂ as the Hamilton Operator Ê
of the quantum system

Eij :=
1

2

n=2∑

k=1

($ik ρkk ρij − ρji $jk ρkk) . (21)

Quantum replicator dynamics as an extension of equation
3 and 20 is described with the von Neumann equation

d

dt
ρ̂ = σ

[
Ê, ρ̂

]
, (22)

where σ is a certain quantisation constant.[28] The nu-
merical simulation of equation 22 and therefore the time
evolution of the Hawk-Dove quantum game is under con-
struction and will be adressed in a seperate article.
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VI. INTERPRETATION AND CONSEQUENCES

With respect to the analysed strategy space the previ-
ous study provides the following results: Regarding the
combination of classical and dove quantum strategies an
additional ESS occurred in case of a high degree of en-
tanglement. With respect to the combination of classical
and hawk quantum strategies no additional ESS could be
observed. Instead we found a dove-plateau and a steep
reduction of payoffs behind this plateau.

With respect to the financial crisis especially the first
finding is of interest. Obviously, the players did not be-
have in the way that a highly entangled quantum game
would suggest, as a certain proportion of bankers con-
tinued their risk-seeking, aggressive behaviour resulting
in a market crash. Hence, in this situation no or only
relatively little entanglement of the individuals decisions
existed, which induced them to follow the classical ESS.
Consequently, in order to induce the wished for behaviour
strict selection of non aggressive strategies one has to in-
troduce a high degree of entanglement into this economic
situation.

So far, in literature entanglement has been discussed
from a more physical point of view. However, in order to
derive consequences from the obtained results we want
to propose one possibility to interpret it in an economic
context. In this paper, entanglement has been termed a
conjoint, psychological contract between the members of
an economic population aligning their strategies. How-
ever, this contract is not the result of conscious negoti-
ations but of general socio-economic factors influencing
the agents simultaneously. These factors comprise moral
standards, values, legal rules, joint experiences, a sim-
ilar educational background etc. All these factors can
drive the decision processes of different individuals into
the same direction without the necessity that the individ-
uals have to communicate to each other. The objective
existence of these background factors can vary, which is
reflected by the degree of the entanglement parameter .

As the results show, if a certain degree of entanglement
is surpassed, a new ESS appears in the space of quantum
dove strategies. Hence, then it is more rational for in-
dividuals to choose a quantum dove strategy instead of
a classical mixed strategy. At this point also the notion
of quantum strategies has to be interpreted in a more
economic sense. We propose the following point of view:
While the degree of the parameter exhibits the objective
entanglement, i.e. the objectively observable influence of
different socio-economic factors, the parameter ϕ, which
has to be chosen by the agents when selecting a strategy,
reflects the degree to which an agent actually considers
theses factors during the decision process. The higher
the degree of this parameter is, the more attention the
agent pays to these factors.

The results of the analysis point to the fact that if
the degree of objective entanglement surpasses a certain
threshold, it is rational for an agent to pay a lot of atten-
tion to the socio-economic factors and in the context of

the analysed situation to play a non aggressive strategy.
In contrast, as long as entanglement is below this thresh-
old, it is more rational for the agents to ignore these fac-
tors and play a classical evolutionary game. In sum, the
degree of objective entanglement also will determine the
degree of subjective attention paid by the agents toward
this entanglement.

This is exactly the starting point for leading the agents
decisions into the wished for direction: So far, being
greedy and aggressive was either not seen as negative
or even accepted as an adequate behavioural strategy
in the community of investment bankers. However, this
behavioural code can be modified through different mea-
sures: One important instrument is education. By teach-
ing adequate values and behavioural rules in the institu-
tions that train future investment bankers or market par-
ticipants in general the value basis of these individuals
can be changed in a way that favours less aggressive be-
haviour. Moreover, the strong disapproval of aggressive
behaviour from the general public outside this commu-
nity can introduce pressure to align ones behaviour ac-
cording to a less aggressive way. Furthermore, investment
bankers were paid through bonus systems that rewarded
aggressive and punished non aggressive actions. Hence,
under these incentive schemes a reduction of aggressive
behaviour was impossible, since they also fostered the
feeling that being aggressive was a positively valued be-
havioural strategy. In order to change this connotation
legal structures as another part of the socio-economic
context have to be modified in a way that prevents this
kind of payment systems.

VII. SUMMARY

The last financial and economical crisis demonstrated
the dysfunctional long-term effects of aggressive be-
haviour in financial markets. Starting from this observa-
tion, this paper picked up a result of evolutionary game
theory which states that under the condition of strate-
gic dependence a certain degree of aggressive behaviour
remains within a given population of agents and asked
how one could change the ”rules of the game” in a way
that prevents the occurrence of any aggressive behaviour
and thereby also the danger of market crashes. In or-
der to answer this question we extended the in literature
well-known evolutionary Hawk-Dove game by a quantum
approach and analysed three scenarios in depth.

The resulting study exhibited that dependent on
entanglement, also evolutionary stable strategies can
emerge, which are not predicted by classical evolution-
ary game theory and where the total economic popula-
tion uses a non aggressive quantum strategy. Hence, the
obtained outcomes point into a direction, how the men-
tioned ”rules of the game” could be changed to prevent
future crashes.

In order to make this mathematical result actually us-
able in an economic context, we additionally provided an
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interpretation of the outcomes of our study in the con-
text of economic situations: We transformed the more
physical notions entanglement and quantum strategies

into concepts of the analysed economic situation. We
interpret entanglement as the objective influence of socio-
economic context factors, while in this context the appli-
cation of quantum strategies exhibits the degree to which
decision makers incorporate these factors into their de-
cisions. Under this premise, our results point to the im-
portance of deliberately changing existing socio-economic
context factors and thereby influencing market partici-
pants. In this context, we explicitly mentioned the pro-
vision of a value basis that prevents aggressive behaviour
through educational measures, the strengthening of dis-
approval regarding aggressive behaviour in an economic

context through the general public and the change of the
legal basis for the provision of variable payment systems.
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