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EXECUTIVE SUMMARY 

The paper draws a general framework for asset and default dynamics, separating the influence of 

the economic cycle into a component which is embedded in the rating system and an unobservable 

risk factor  that determines the movements of defaults around the ex ante estimated PDs. 

The two components – the sensitivity of ratings to credit cycle and conditional asset correlation - 

can be quantified through a Maximum Likelihood approach, giving a measure of the cyclicality of 

the rating system, and allowing  for a number of applications:  among those the modified binomial 

test proposed here. 

 

KEYWORDS: rating philosophy, rating dynamics, cyclicality, asset correlation, migration 

matrices, ML estimation, backtesting, binomial test. 

 

 

 

 2



1. Introduction 

A rating system should be able both to distinguish risk in relative order, that is to discriminate 

among credit quality of risky borrowers, and to quantify risk in absolute terms.  

How these tasks are fulfilled depends on the rating system’s underlying philosophy, which in 

practice cannot be either pure Point in Time or pure Through the Cycle but is somewhere in 

between these two extremes. Understanding the ratings dynamics is thus crucial in order to assess 

if the system is well functioning and if it is well suited to encompass for stressed economic 

conditions. 

Aim of this paper is to draw a general framework of asset dynamics: asset value is in fact 

influenced by systemic factors and idiosyncratic risk, the last one being specific for each firm. As 

far as the systemic part, which mostly interests us, is concerned, we can ideally separate it into a 

component which is taken into account, explicitly or implicitly, by the rating model, and an 

unobservable set of risk factors. Both components contribute to explain the default dynamics, but 

the first one also determines ratings dynamics, while the second one causes, together with 

idiosyncratic risk, the movements of defaults around the ex ante estimated PDs. This framework 

allows us to describe  cyclicality in a rating system as the ratio between the sensitivity to 

macroeconomic conditions which is embedded in the rating and the total sensitivity of defaults: if 

an appropriate tool is found to quantify the ratio, a rating system underlying philosophy can thus 

be exactly identified.  

Let’s in fact think about a pure Through the Cycle rating: no systemic component will be taken 

into account by the estimated PDs, while conditional asset correlations
2
 are maximized, as they 

should account for the whole systemic risk. On the opposite, a pure Point in Time system captures 

into the rating all economic conditions, so that conditional asset correlation are zero: realized 

defaults do not match exactly the default probabilities only because of idiosyncratic factors.  

The two components of default sensitivity can both be quantified through a Maximum Likelihood 

approach: the estimation technique is in fact similar, but as far as the part of cyclicality which is 

embedded  into the rating is concerned we used a multinomial model, while for the component 

which determines the difference between forecasted and realized defaults we estimated a binomial 

one-factor model.  

In order to quantify the internal rating sensitivity to the economic cycle we used in fact a transition 

matrix  approach: migrations among internal risk buckets are observed through time and used to 

estimate  an underlying single risk factor whose volatility can be interpreted as the named 

                                                 
2 “Conditional” to rating score at time t. Conditional asset correlations represent the portion of asset volatility not 

explained by the score. 
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sensitivity. It is in fact well known that counterparts under Point in Time ratings system tend to 

migrate frequently, in response to changing economic conditions (while default rates for each 

rating bucket will remain stable over time): the estimated sensitivity is thus bigger the more PIT 

the system is. This exercise is useful to understand where the internal rating system is positioned, 

in particular if compared to other systems and to agencies’ ratings. The same quantification was in 

fact replicated on Standard and Poor’s migration matrices, revealing a lower sensitivity of ratings 

to the economic cycle, which is consistent with the common perception that agencies’ ratings 

approach is Through the Cycle. 

The second component needed to quantify defaults’ sensitivity to economic conditions is the one 

which is not embedded into the ratings, or the conditional (to rating) asset correlations. We 

estimated them through a Bernoulli mixture model, maximizing the probabilities to observe 

historical default data for each rating class. The assumption underlying this conditional 

independence technique is that a single systemic risk factor influences, with different sensitivities 

for each rating group, all counterparts: realized defaults are thus independent from each other. 

Even in this case, rating philosophy matters: as we said before, in a pure PIT model asset 

correlation tends to zero, being all economic information useful to predict defaults already 

captured by score variables; conversely, a significantly different from zero value of asset 

correlation indicates that realized defaults will be correlated, as it happens in Through the Cycle 

rating systems, and that default rates per rating bucket will thus vary over time. An important 

application of asset correlation measurement concerns PDs backtesting against realized Default 

Rates: statistical tests generally used suffer in fact from an implicit independence assumption, or 

that PDs are able to assess the current state of the economy so that default events among 

borrowers may be considered stochastically independent. In the present document we propose a 

modified binomial test built on a distributional form for default rate which accounts for asset 

correlation: the test is less strict than the standard one, which would be appropriate only for a pure 

PIT rating system.  

As the two ingredients of default response to economic cycle (the part that is already taken into 

account by the rating and the one which determines default movement around rating) can be 

consistently quantified, an omni-comprehensive measure of the rating cyclicality which 

characterize a specific rating system can be calculated as the amount of the first on the total of the 

two. This has the advantage to range between 0 (pure TTC models) and 1 (pure PIT models), so 

that the positioning of a rating system can be immediately perceived: in the present application we 

found for instance a cyclicality of the internal rating of about 60%, far much higher than the value 

of around 20% calculated for S&P’s ratings. 
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The proposed framework, which is detailed in the next paragraph, describes cyclicality in 

sufficiently general terms. Paragraph 3 then explains the methodology underlying the transition 

matrix approach, which is useful to quantify the sensitivity of a rating system to the credit cycle, 

while paragraph 4 enters into the details of the Bernoulli mixture model. The following paragraph 

presents the results of an application of the proposed methodology to an internal rating and 

Standard and Poor’s sample, quantifying and comparing the level of rating response to economic 

cycle of both systems. Paragraph 6 describes one possible empirical application of the asset 

correlation values, which is dependent on rating philosophy: we suggest in fact a modified 

binomial test which can be more realistically used for validating a non pure PIT system. Finally, 

paragraph 7 draws some conclusions and indicates some next steps. 

2. A general framework for cyclicality 

Our analysis starts from the description of  the dynamic of one-year asset value , which 

derives from Basel II IRB framework and can be defined as one factor model

i

tA 1+

3
.  

The following equations explain the main features of asset growth value, conditional on 

information set at time t: 

tY

i
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t YWS ⋅+⋅= ββ                                                       [2.1] 
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tS  is the normalized credit score of the i-th firm, which depends on obligor specific 

characteristics  and on the macroeconomic factor : this is in fact the full set of information 

available to a bank for assessing the credit quality of obligor i at date t

i

tW tY

4
. We assume here that  

and  are uncorrelated standard normal variables, and that, because of its idiosyncratic nature, 

 is also uncorrelated across obligors. 

i

tW

tY

i

tW

Equation [2.2] represents the asset process conditional on rating model information, where iα−  is 

the long run debt threshold removed in order to set the default status when 01 <+ tA
i

t .  

                                                 
3 Capitol letters indicate the risk variables and lower-case letters the realizations. 
4 Even if banks do not usually include macroeconomic variables in their rating models, we argue that they are 

reflected in balance sheet and behavioral indicators; moreover, for the sake of simplicity, the stylized model splits up 

the effect of  the obligor specific part  from the common economic factor , so that they become independent. 
i

tW tY
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1+tX  is the “state of the economy” variable, or the single systemic factor common to all firms, that 

cannot be observed by a bank at date t. Conversely,  is the idiosyncratic risk, specific for each 

firm.  and are orthogonal, time independent and both follow a standard Normal 

distribution. 

i

t 1+ε

1+tX i

t 1+ε

tA
i

t 1+  expected value is t

i

t

i

ti ywS ,+α : the information set underlying the score, that is the linear 

combination of  and , can be thought as being  independent of both  and  because 

we assume that the rating model maximizes all available information at time t to predict default 

events in t+1 (or future asset values). 

i

tW tY 1+tX i

t 1+ε

The factor loading cρ , assumed for now fixed for all firms
5
, can be interpreted either as the 

sensitivity to systematic risk or as the (square root of) conditional asset correlation: the term 

“conditional” refers here to the portion of asset volatility explained given all available information 

about the score  in t.  i
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The above formula is used to calculate conditional asset correlation between firm i and firm j. 

Finally, it’s worthwhile pointing out that all the coefficients Wβ , Yβ and cρ  involved in the 

framework are greater than zero, being each risk factor positively related to credit quality; 

furthermore, we set 21 YW ββ −=  in order to grant standard deviation equals to one. i

tS

A value of cρ  near zero implies that, conditional on information at time t, defaults at time t+1 are 

independent because all the economic information useful to predict the default event is captured 

by the score variables. This is consistent with a Point In Time philosophy, that considers the rating 

model ( ) to be the best estimate of obligors default likelihood, reflecting all cyclical and 

systematic information. 

i

tS

Conversely, a value of cρ  significantly different from zero means that defaults are correlated 

among firms; rating score is thus not able to catch all systemic information at time t, whose 

residual and not predictable part will anyway arise in t+1 through . Two situations are 

consistent with a non-zero 

1+tX

cρ  : a “pure” Through The Cycle model with 0=Yβ , where  reflects 

only non-cyclical indicators, or a Hybrid one, which incorporates features of both TTC and PIT 

model.  

i

tS

                                                 
5 It could depend, as will be shown in the following, on rating grade. 
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In order to evaluate the degree of “pitness” for the stylized model described above, we need to 

introduce the concept of unconditional asset correlations: these can be interpreted as the 

correlations between firms when rating model does not include the systemic contribution , as it 

happens under TTC philosophy. Unconditional correlations should be larger than the conditional 

ones because in this case the rating model would be stable over the cycle, implying a greater 

volatility of defaults around unconditional default probabilities. 
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Equation [2.4] expresses unconditional asset correlation ( unρ ) in relation to cρ : it becomes thus 

very easy to prove the inequality cun ρρ ≥ . The level of cyclicality embedded in the rating model 

(τ ), which we have defined as degree of “pitness”, is the contribution of the variable  to the 

total systemic asset variance: 

tY

cY

Y

ρβ
β

τ
+

=
2

2

                                                          [2.5] 

In a PIT model, where cρ  tends to zero, τ  is near one, while in a TTC one, where cρ   is much 

bigger than Yβ , it approaches zero. 

FIGURE 1 Examples of rating system with different τ values. Each graph come from a 10 years simulation 

comparing average PD (calculated at the beginning of the year using the rating score) and DR (at the end of the year) 

for 20’000 counterparties. 
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τ = 50% - comparison between TD and PD 
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Until now, we outlined a general framework for cyclicality. Our next task will be to quantify τ , 

through a building block approach: it considers separately the internal rating sensitivity Yβ  and 

the conditional asset correlations cρ  using for both a maximum likelihood estimation technique: 

 In the first step, rating sensitivity calculation is based on historical transition matrix: we 

maximize the migration rates likelihood among internal performing risk classes, relating 

them to a single risk factor whose volatility is Yβ ; 
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 in the second step, conditional asset correlations cρ  and long run PD ( )iα−Φ  (grouped 

by rating grades) are estimated using a Bernoulli mixture model, where the probability of 

observing the sample default rates for each rating class and sample year are maximized.  

3. Internal rating sensitivity through a transition matrix approach 

In the proposed framework, we assume that the bank’s internal rating model produces a score 

based on financial and behavioral ratios and grouped into homogeneous risk classes
6
.  

Let  be the score of each borrower which is, as it was defined before, made up by an 

uncorrelated and time independent specific part  and a systematic part ; at the beginning of 

year t, scores are grouped in G performing rating (score) grades. Following the CreditMetrics 

approach described by Gupton, Finger, and Bhatia (1997), we assume that one-year transitions 

between grades reflect an underlying, continuous credit-change indicator (asset) explained in this 

case by , a normally distributed “credit rating cycle” variable:  

i

tS

i

tW tY

tY

FIGURE 2 Illustration of Y t impact on migration rates for rating grade 4. 
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i

tS

Figure 2 illustrates the distribution of a score initially in grade g (in the example grade 4). The 

score movement is caused by the common cyclical variable Y . On the x-axis, long run bins are 

defined so that the probability (assumed to be normal) that  falls within a given interval equals 

t

i

                                                

tS

 
6 The Basel II IRB approach requires in fact that the score values are mapped on a relatively small number of rating 

grades (at least seven non-default grades), but leaves their exact number at the institution’s discretion. This number 

will thus depend on the methodology the bank chooses for aggregating, such as cluster analysis (e.g. minimizing and 

maximizing within and between variance of potential buckets) or kernel density evaluation (in this case one could 

analyze the non-parametric score distribution and use the observed discontinuity points to assign firms to different 

buckets). However, the task is in any case to build a mapping function based on similarity rules, which classifies the 

score in risk classes. 
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the corresponding historical average transition rate observed for grade g. Theoretical migration 

rate  (from class g to class k) can thus be calculated in the following way: ( )kgkgˆ 1,, −
tYSSP ,,
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where  and  are the long run thresholds which delimit the grade k range when starting 

from the initial rating g. Φ is the normal cumulative density function.   

kg
S

, 1, −kg
S

Yβ  is estimated maximizing  the probability of observing historical migration rates, which are, 

conditional to migration probability as in [3.1], independent and multinomial distributed. The 

following equation indicates the unconditional likelihood of transition matrix at time t: 
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,  

is the total number of observations in rating state g and F is the cumulative normal density 

function of  factor common to all transitions. The first term of the product is called multinomial 

coefficient and explains all possible combination of  firms across all G rating classes, each one 

containing  (i from 1 to G) counterparties. From a statistical point of view, [3.2] quantifies the 

probability of an experiment repeated  times where  is the number of times (migrations) the 

different outcomes occurred with probability . The integral operator is used to generate all 

possible  scenarios over . 
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Due to the time independency assumption of , the probabilities of jointly observing all historical 

migration rates are calculated by the product 
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which through logarithmic transformation leads to the Log-Likelihood (LL) function: 
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( ) ( )[ ]∑
=

=
T

t
tyy LLnLL

1

ββ  

This expression, made of one-dimensional integrals sum, should be maximized over Yβ .  

Unfortunately, there is no analytical solution to this problem because the usual procedure – setting 

the first derivatives of the likelihood to zero – is not feasible; this expression is in fact tractable 

only through a numerical approach such as the gaussian-quadrature we choose
7
. 

To sum up, this method allows us to give an estimate of how much cyclical the rating model is: 

Yβ  in fact quantifies the sensitivity of rating scores to the common factor, usually identified with 

or explained by macroeconomic variables. 

4. Asset correlation estimation: a Bernoulli mixture model with rating effect  

Estimating (conditional) asset correlations is difficult in practice because of the historical data 

scarcity and the large number of parameters to be found. A natural solution is to impose some 

restrictions on parameters: in this case we used an exponential functional form for long run PDs 

and correlations, which in some way provides for the data span shortness. The method adopted 

here, called Bernoulli mixture model with rating effect, follows a maximum likelihood estimation 

technique similar to the one described in the previous paragraph: it determines long run PDs and 

asset correlations such that the probability of observing historical default data for each rating class 

is maximized.  

The main hypothesis here is that, once the  score has been assigned and grouped in G rating 

grade, it exists an unobservable systemic risk factor , shared by all firms and rating groups 

with different sensitivities, which allows for independence among all realized defaults 

(conditional independence technique). In addition, the G risk classes are homogeneous enough to 

assign the same long run PD 

i

tS

1+tX

( )
gα−Φ and correlations  to all firms within a given risk grade. g

cρ

In the remainder of the paragraph, we assume the historical performance data for the bank’s rating 

system to be available. For each one of the T years and G rating grades, we observe the number of 

obligors at the beginning of the year ( ), classified using a mapping function based on score  

value, and the number of those obligors that default by year-end ( ). 

g

tN
i

tS

g

tD 1+

Conditional on systemic risk , firm’s defaults are independent in grade g and can be described 

as the outcome of a Bernoulli trial with success (default) probability 

1+tX

                                                 
7 This approach, like other numerical ones, is normally solved by standard statistical software (e.g. MATLAB or 

SAS). 
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simply recovered analyzing and solving g-grade asset process in the following way: 
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and thus also  estimate. The g-grade number of defaults follows in fact a binomial distribution 
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Since defaults are also conditionally independent across grades thanks to the uniqueness of 

systematic risk , the joint likelihood 1+tX ∑ ++ =
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The unconditional likelihood is thus calculated integrating equation [4.3] over all possible 

outcome of  1+tX
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where  is the normal cumulative density function. If we maintain the hypothesis that X is 

time independent, we can represent the probability of total sample default as in the following 

equations: 
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[4.5] indicates the Maximum Log-Likelihood (LL) function we have to maximize over  and 

 parameters, given the observed values of  and

g
PD

g

cρ g

tN g

tD
8
.  

Rather than directly estimate  and , we can express these parameters in a more 

parsimonious way, through a monotonous function such as the exponential. We propose in fact 

two alternative ways for estimating: 

g
PD g

cρ

 hp1: g  and c

g
ePD

⋅+= 11 βα ρ  constant across grades as in the [2.2] asset equation; 

 hp2: g  and 
g

PD
depending on credit quality and thus allowing for a 

“rating effect”. 

g
ePD

⋅+= 11 βα g

c e
⋅+= 22 βαρ

In the first case, only three parameters need to be estimated: the intercept α1, the slope β1 defining 

long run PD and the conditional asset correlation ρc. In the second, α2 defines the level and β2 the 

relationship between asset correlations and long run PDs. β2 is expected to be negative, as 

suggested by both empirical evidence and economic consistency: to a higher borrower’s  risk is 

associated a stronger idiosyncratic component, meaning that default probability depends less on 

the overall state of the economy and more on individual risk drivers.  

In order to explore the reliability of the estimated parameters, we simulated their sample 

distribution through a Monte Carlo technique. The main purpose of the simulation is to check the 

robustness and significativity of parameters and in particular to test the hypothesis of ρc > 0 and 

β2 < 0.  A second issue to be analyzed is the entity of asset correlation (downward) bias, which 

typically occurs in small-sample estimation
9
. Assuming that the model is correctly specified, LL 

estimators will in fact be asymptotically consistent in the sense that the estimated parameters will 

approach the true ones as the number of T years of performance data gets increasingly large: 

unfortunately, in real-world applications, we have to deal with data span shortness, as it is very 

infrequent to observe a default dataset covering a sufficient number of years, particularly when 

referring to internal rating models.  

Thus, as there is no guarantee that LL will produce unbiased parameter estimates, it was decided 

to check the magnitude of the bias and verify if it can be considered as negligible. 

So as to perform the Monte Carlo simulation, we drew several historical default paths and 

maximized the Log-Likelihood function for each year, over α1, β1, ρc in hp1 and over α1, β1, α2, 

β2 in hp2. It was thus necessary to: 

1. specify a probability distribution apt to describe empirical default data: in this case, 

equations [4.1] – [4.4] with  LL parameters; 

                                                 
8 Also in this case we solved the integral numerically, as explained in the previous paragraph. 
9 This phenomenon was studied in many empirical works. 
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2. randomly draw a hypothetical dataset from the distribution specified in step 1: for each 

year, draw the time independent 1+tX  systemic factor, calculate g-grade conditional 

probability 1+t

g
XPD  and finally extract the number of defaults from a binomial 

distribution where g

tN  is the fixed number of firms at the beginning of year t; 

3. determine the LL estimators (α1, β1, ρc  or α1, β1, α2, β2) on the basis of the simulated 

data from step 2; 

4. repeat steps 2 and 3 several times to trace the parameters sample distribution. 

5. Empirical evidence: application of the methodology on an internal rating 

model and comparison with S&P ratings 

The dataset used to estimate contains about 61’000 Italian firms belonging to the corporate 

segment and covers seven years of defaults data, from 2000 to 2006. Each firm is evaluated 

through an internal rating model, based on balancesheet and behavioral ratios combined with a 

logistic approach: the output is a credit score, finally grouped in 15 homogeneous classes of 

increasing risk level built by cluster analisys. 

First of all we estimated the rating sensitivity Yβ  as described before, obtaining a value of 1.99%. 

The implied systemic factor  (“credit cycle”), calculated through the minimization of the 

quadratic distance between theoretical and observed one-year transition rates, shows the following 

trend: 

tY

FIGURE 3 Trend over time of  tY
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What emerges from the graph is a negative fluctuation in 2001-2002 (twin towers, financial crisis) 

and a positive economic growth in 2003-2004-2005 followed, in 2006, by a downturn which is 

likely to continue in the following years.  

TABLE 1 Hp1: Bernoulli mixture model in the case of asset correlations not differentiated per rating class. Statistics 

are generated simulating 5000 sample of 7 years default paths. 

  Estimates Mean Median σ Δ%Bias P2.5% P5% P95% P97.5%

α1 -8.121 -8.134 -8.127 0.223 0.16% -8.587 -8.512 -7.768 -7.712 

β1  

0.433 0.434 0.434 0.013 0.20% 0.409 0.413 0.457 0.461 

cρ  1.299% 1.092% 0.957% 0.707% -15.97% 0.13% 0.21% 2.44% 2.86% 

 11.397% 9.884% 9.784% 3.385% -13.27% 3.57% 4.56% 15.61% 16.91% cρ

As far as conditional asset correlations are concerned, we present the results of LL optimization 

under Hp1, where a single cρ  is estimated. Table 1 summarizes LL estimates in the first column, 

and the statistics deriving from simulation in the following ones: mean, median, standard error, 

bias (defined as percentage ratio between mean and LL estimates) and some percentiles of the 

bootstrapped samples. 

Long run PD parameters α1 and β1  show a low standard error and are significantly different from 

zero: in particular, the slope β1 indicates that the rating model discriminates quite well among 

rating grades; moreover, the upward bias we found seems to be rather small and probably would 

disappear when increasing the number of simulations. cρ  assumes a low value and presents a 

huge standard deviation, in relation to the average, which anyway becomes lower considering 

cρ , or the sensitivity, as represented in figure 4.  

FIGURE 4 Empirical distribution of conditional asset sensitivity cρ , derived from 5000 trials of 7-years 

default samples 
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As it is shown in the graph, the hypothesis of zero asset correlation can be refused, since the 

probability of observing a null value is about 0.4%. Furthermore, 2.5th and 5th percentiles are 

0.13% and 0.21% for cρ , 3.57% and 4.56% for cρ ; in other words, the independence 

assumption which would support a pure PIT philosophy seems not to be justified. 

The skewed shape of the distribution in figure 4 suggests the existence of a downward bias, 

mainly due to the historical data series shortness (T)
10

. It is anyway in line with the evidences 

presented in previous studies
11

, and could be taken into account through a prudential (e.g. 

13.27%) add-on on estimated sensitivity
12

, in order to get a simulated mean roughly 

corresponding to the value we think to be the “true” one. 

Combining the results for rating sensitivity ( Yβ ) and for conditional asset correlation ( cρ ) we 

obtain a value for τ , or the level of cyclicality embedded in the rating model, equal to 60% (see 

table 3). 

The same type of analysis was also applied on Standard & Poor’s data
13

, in order to compare the 

level of cyclicality of the two rating systems.  

The comparison is anyway not completely fair because of some differences in the dataset, as for 

instance: the data span, which, being for Standard & Poor’s much longer (from 1981 to 2003) and 

thus covering more than one credit cycle, is probably linked to a less stable default rate; the 

number of rating classes, as transition matrices were calculated for S&Ps on coarse rating grades 

(7 performing risk buckets). Furthermore, the internal portfolio is the result of customers selection 

for credit quality and of diversification strategies, which leads to a lower default volatility. 

The analysis on S&Ps data leads to a rating sensitivity Yβ  of 1.34%, while the following table 

summarizes the estimates for cρ  and the related statistics. We notice that the cρ ’s downward bias 

between simulated mean and estimate is lower than for the internal model, due to the longer time 

series.  

 

 

 

 

                                                 
10 This phenomenon is in fact negatively related to long run PD level and tends to disappear when the number of years 

T increases. 
11 See for instance Gordy & Heitfied (2002), Dullman & Scheule (2003), Demey et al. (2005)  
12 This is consistent with what Loffler & Posch (2007) suggested.  
13 “Special report, rating performance 2003”, Standard & Poor’s 02/2004. 
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TABLE 2 Bernoulli mixture model applied on S&P data from 1981 to 2003. Asset correlations are not differentiated 

among rating class and statistics are generated simulating 5000 sample of 23 years default paths  

  Estimates Mean Median σ Δ%Bias P2.5% P5% P95% P97.5%

α1 -12.175 -12.204 -12.193 0.389 0.24% -12.987 -12.862 -11.589 -11.468 

β1  

1.570 1.574 1.573 0.052 0.27% 1.477 1.492 1.661 1.681 

cρ  5.205% 4.951% 4.788% 1.684% -4.89% 2.114% 2.472% 8.002% 8.750% 

 22.814% 21.923% 21.881% 3.802% -3.91% 14.540% 15.724% 28.287% 28.287% cρ

Table 3 compares the parameters for the two rating models: consistently with expectations, 

correlations are higher and rating sensitivity is lower for S&P. τ  - the level of cyclicality 

embedded in the rating model - is thus much lower for S&Ps data, with a value of about 20%.  

TABLE 3 Estimated parameters for equation [2.4] – [2.6] to assess the degree of cyclicality τ. Comparison 

between internal and agency models. 

 cρ  
Yβ  unρ  

unρ  τ 

Internal model (2000-2006) 1.29% 1.99% 3.23% 17.97% 60.51% 

S&P (1981-2003) 5.21% 1.34% 6.46% 25.41% 20.52% 

As far as the component of asset correlation is concerned, we estimated the parameters also for 

the second hypothesis referred to in the previous pages, or the one which considers asset 

correlation as negatively dependent on PD. This was done only on internal data, in order to use 

the results for the binomial test application. Table 4 summarizes the parameters values and the 

related statistics, while figure 5 plots the results for PDs and asset correlations. 

TABLE 4 Hp2: Bernoulli mixture model where asset correlations depend on rating class. Statistics are generated 

simulating 5000 sample of 7 years default paths  

  Estimates Mean Median σ Δ%Bias P2.5% P5% P95% P97.5%

α1 -8.172 -8.188 -8.127 0.246 0.82% -8.690 -8.601 -7.797 -7.730 

β1  

0.436 0.437 0.434 0.015 0.27% 0.410 0.414 0.462 0.468 

α2 -4.179 -4.608 0.010 0.981 10.27% -6.652 -6.104 -3.479 -3.319 

β2  

-2.433 -2.802 0.098 5.522 15.15% -13.620 -12.850 6.357 7.695 

 

 

 

 

 

 16



FIGURE 5 Hp2 estimation results. Long run PD compared with sample default rates using α1 and β1 parameters on 

the left, conditional asset correlation using α2 and β2 on the right side. 
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Applying α2 and β2 coefficients, we found asset correlation ranging from 1.53% to 0.95% (the 

related sensitivity goes from 12.36% to 9.75%); β2 slope is negative as expected but not 

significantly greater than zero (2.5th and 97.5th percentiles are in fact -13.62 and 7.6 including 

zero value).  

Finally, if we compare the level of the asset correlation with those settled for corporate risk-

weight supervisory formula
14

, we find that our estimates are considerably lower. Basel II 

corporate sensitivities, which depends negatively on PD and firm size, lie in fact within a range of 

about 35%-45%, compared to the internal ones that range from 9.75% to 12.36%. This strong 

difference is of course influenced by the fact that Basel II correlations are unconditional: however, 

even if we had used the internal sensitivity derived from unconditional asset correlation presented 

in table 3, we would not have joined the supervisory lower bound. The main reasons that could 

explain this gap are that:  

 Basel II correlations incorporate a certain degree of conservatism because they are derived 

for capital purposes and thus calculated at a stressed level; 

 the historical period for internal estimation might be too short (2000- 2006) so that default 

rates appear to be more stable than they would have been over a longer time window; 

 as already said, the internal portfolio is selected, thus showing better credit quality, higher 

diversification and lower default volatility than average. 

6. Backtesting hybrid PD through a correlated binomial distribution 

If up to now the effort to define and quantify the degree of cyclicality of a rating system may seem 

to be a pure theoretical theme, some practical applications of this exercise can be found in a 

                                                 
14 “An Explanatory Note on the Basel II IRB Risk Weight Functions”, BIS, July 2005. 
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number of fields, like backtesting, benchmarking, stress testing. In the following we will just 

explore one among the different issues, i.e. the backtesting as a tool for validation.  

As stated in the WP14, supervisors and risk managers: “will need to understand how a bank 

assigns risk ratings and how it calculates default probabilities in order to accurately evaluate the 

accuracy of reported PDs”; “will not be able to apply a single formulaic approach to PD validation 

because dynamic properties of pooled PDs depend on each bank’s particular approach to rating 

obligors. …. will have to exercise considerable skill to verify that a bank’s approach to PD 

quantification is consistent with its rating philosophy”; “to effectively validate pooled PD’s, …. 

will need to understand the rating philosophy applied by a bank in assigning obligors to risk 

buckets”. 

The same idea that validation techniques should take into account the underlying rating 

philosophy turns up also in the Capital Adequacy Directive, where it is said that “credit 

institutions shall have sound internal standards for situations where deviations in realised PDs, 

LGDs […] from expectations become significant enough to call the validity of the estimates into 

question. These standards shall take account of business cycles and similar systematic variability 

in default experience.” 

Statistical tests generally used for backtesting, or to assess the distance between PD and DR 

(binomial, Hosmer-Lemeshow, and Mean Square Error), suffer from the independence 

assumption. They are in fact implicitly assuming that PDs are able to reflect the current state of 

the economy, so that default events among borrowers may be considered stochastically 

independent and so driven by orthogonal specific factors. From the point of view of the regulator 

(as it is for instance expressed in the Working Paper 14) this kind of tests go in the desired 

prudential direction: e. g. the binomial test is a one-side test, apt to detect if the ex ante PDs 

underestimate the realized defaults, but not a mis-calibration in terms of overestimation of PDs. 

Furthermore, from a statistical point of view this approach is very conservative in stating the 

distance between PDs and DRs. This framework can in fact only reasonably be used with PIT 

rating when conditional asset/default correlations are zero, while in all other cases the probability 

of rejecting the correct calibration hypothesis is higher than the “true” one. At the other extreme, 

there is the stylized TTC model, where unconditional correlations reach their highest level, thus 

maximizing the bias of the standard binomial confidence intervals with respect to the “true” ones, 

or those that would be calculated if correlations were taken into account.  

In the following paragraphs, we will illustrate an example of how the conditional asset correlation 

we calculated for the internal rating system (classified as hybrid) can be used to modify the 
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standard binomial test: the aim is to get the best-suited confidence intervals according to the 

cyclicality degree, even if we still apply a one-side approach.  

Generally, in the standard binomial test used for backtesting model calibration, we test the null 

hypothesis (Hp0) that stand-alone PD of a rating category is correct against the alternative (Hp1) 

of a default rate underestimation. This is a one-side test and can be represented, given a 

confidence level α (e.g. 95%), as in the following: 
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( )g

ind

g

t kDP ≤+1  is the cumulative binomial distribution of  future theoretical default,  is the 

number of firms in g-grade at the beginning of period t, 

g

tD 1+
g

tN

( )α*g

indk  is the maximum number of 

default we observe for α confidence level, under the assumption of independence. In this case, the 

null hypothesis is rejected if the observed number of default is greater than or equal to . ( )α*g

indk

Once we introduce asset dependency according to the parameterization shown in table 4, [6.1] 

becomes 
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where  is calculated as in [6.2] but through a numerical integration method or Monte Carlo 

simulation

( )α*g

cork

15
. 

A further interesting method for backtesting is the validation of total default rate, also viewed as a 

joint test on rating class PDs. In this case, a copula approach is needed (usually called factor 

gaussian copula model), in fact, resorting to conditional independence assumption: 
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    [6.4] 

At this stage, the aim is to calculate the observed total portfolio number of defaults and then 

compare it with the theoretical  at a given a confidence level. Under the assumptions of ( )α*
k

 
15 The latter consists in generating the variable contained in 1+tX 1+t

g
XPD and then randomly inverting the 

binomial cumulative function to recover the defaults number (i). Through iteration of the process, it’s possible to  

trace the stand alone class g defaults distribution and thus determine ( )α*g

cork . 
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independence or correlation we’ll call it respectively ( )α*

indk  and ( )α*

cork . For the latter we sketch 

the algorithm below: 

1) generate a realization 1+tx of 1+tX ; 

2) for each g grade, substitute 1+tx  into 1+t

g XPD  where g  and  

(table 4 parameters); 

g
ePD

⋅+= 11 βα g
PDg

c e
⋅+= 22 βαρ

3) generate g-grade independent g

cork  defaults from the binomial distributions (inside the  

[6.3]) and sum up the portfolio default number ∑ ;  
=

=
G

g

g

corcor kk
1

4) repeat step 1 to 3 many times;  

5) compute the whole distribution and calculate ( ) ( ){ }αα −≤≤= + 1min 1 cortcorcor kDPkk . 

Under the independence assumption, we adopt the same methodology starting from point 3 but 

with a consistent estimation of long run PD, using [4.5] without asset correlation parameters and 

thus removing integral treatment
16

. This slightly different PD calibration is also applied to stand-

alone test. 

Next step is to build a real case study in order to compare standard binomial with binomial test 

accounting for estimated correlations. For the purpose of illustration, we propose a realistic 

corporate portfolio at year t composed by 16’000 firms, with the following rating and t+1 defaults 

distribution: 

FIGURE 6 Corporate rating distribution at the beginning of year t (left y axis) and 

observed defaults (right axis).  
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16 This estimation leads to α1=-8.025, β1=0.429 and LL(D)=-258.41 while in table 4 we found α1=-8.172, β1=0.436 

and LL(D)=-228.43. As we expected, the performance expressed by log-likelihood  is lower although we observe a 

slight increase in long run PD; this is essentially due to the fatter tail of default distribution when estimation is 

conducted under asset correlation assumption, implying a decrease in the mean value. 
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Average PD calculated under correlation assumption (table 4 parameters) is 2.36%, whereas the 

average PD in the case of asset independency is 2.50% (the two values are different as PDs are 

endogenously estimated according to different calibrations). Figure 7 outlines the difference in 

shape between simulated stand-alone default rate distribution for some rating classes (classes 5-8-

10-15), according to the two assumptions (thus of the using [6.1] and [6.3] with 500’000 trials): 

FIGURE 7 Comparison between independent (blue) and correlated (red) binomial default rate distribution. 
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Furthermore, next figure compares in the same way the portfolio default distribution we traced 

according to the above explained algorithm for copula implementation: 

FIGURE 8 Comparison between independent (blue) and correlated (red) portfolio default rate distribution. 

  

When the whole default distribution is calculated, the granularity-effect, related to the 

independency assumption and due to the compensation of specific risk among risk grades, is 

stronger: this can be noticed in the shape of the blue distribution, which is more compressed 

around its mean than in the single class cases.          

Since our intention is to evaluate the reasonability of PD forecast, we build table 5, where 

observed default rates (DR) are compared to the 95
th

 and the 99
th

 percentiles of  the theoretical 
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distribution: in the right part of the table, statistics are based on the estimated coefficients shown 

in table 4 for Bernoulli mixture model, while in the left one binomial distributions without 

correlation assumption are computed for comparison. In the last row, figures refer to the whole 

portfolio distribution. 

TABLE 5 Summary statistics on defaults rates distributions under different correlation assumptions. To make 

comparison homogeneous, all numbers are computed by Monte Carlo simulation with 500’000 draws. 

  Binomial distribution with no correlations Binomial distribution with correlations 

Rating DR Mean Median 
( )

g

t

g

ind

N

k %95*
 ( )

g

t

g

ind

N

k %99*
p-value 

(DR) 
Mean Median 

( )
g

t

g

cor

N

k %95*
 ( )

g

t

g

cor

N

k %99*
 p-value 

(DR) 

1 0.206% 0.050% 0.000% 0.206% 0.412% 2.55% 0.044% 0.000% 0.206% 0.412% 2.25% 

2 0.943% 0.077% 0.000% 0.377% 0.377% 0.00% 0.068% 0.000% 0.377% 0.377% 0.00% 

3 0.000% 0.118% 0.157% 0.314% 0.472% 52.90% 0.104% 0.000% 0.314% 0.472% 46.60% 

4 0.769% 0.181% 0.154% 0.462% 0.615% 0.14% 0.162% 0.154% 0.462% 0.615% 0.26% 

5 1.176% 0.279% 0.235% 0.588% 0.824% 68.60% 0.250% 0.235% 0.588% 0.824% 58.76% 

6 0.316% 0.428% 0.421% 0.842% 0.947% 57.98% 0.388% 0.316% 0.842% 1.158% 46.97% 

7 0.923% 0.657% 0.692% 1.000% 1.154% 8.70% 0.599% 0.538% 1.154% 1.462% 11.69% 

8 0.778% 1.008% 1.000% 1.389% 1.556% 80.42% 0.926% 0.889% 1.611% 2.056% 58.25% 

9 2.045% 1.548% 1.545% 2.000% 2.182% 2.42% 1.432% 1.364% 2.364% 2.909% 11.31% 

10 3.017% 2.377% 2.396% 2.884% 3.106% 1.97% 2.215% 2.130% 3.505% 4.259% 12.64% 

11 4.494% 3.648% 3.628% 4.385% 4.656% 2.28% 3.427% 3.303% 5.252% 6.226% 13.75% 

12 5.109% 5.600% 5.620% 6.642% 7.080% 76.75% 5.298% 5.182% 7.810% 9.124% 50.39% 

13 8.449% 8.596% 8.602% 10.445% 11.214% 52.50% 8.195% 7.988% 11.674% 13.518% 40.79% 

14 12.500% 13.190% 13.214% 16.429% 18.214% 59.11% 12.674% 12.500% 17.857% 20.357% 47.72% 

15 21.429% 20.256% 20.408% 25.000% 27.041% 30.46% 19.603% 19.388% 26.531% 29.592% 28.77% 

TOT 2.800% 2.500% 2.500% 2.700% 2.781% 0.62% 2.357% 2.300% 3.425% 4.006% 20.92% 

Looking at stand alone rating class, the standard binomial test would reject the hypothesis of 

correct calibration for seven grades (1,2,4,5,9,10,11)  at 95% confidence level and for three grades 

(2,4,5) at 99%. We are facing a situation slightly less conservative when we introduce correlation 

parameters, because the test rejects the null for four grades (1,2,4,5) at 95% and for two grades 

(2,4) at 99%. However, the most relevant difference concerns the test performed on the entire 

portfolio: here, as far as default independency is concerned, we would not accept the bank’s 

forecast as adequate because the probability to observe a default rate greater than 2.8% is only 

0.62% (“p-value DR” in table 5). This probability becomes much less extreme in the case of asset 

dependency (20.92%), suggesting that the model and the calibration are not yet to be revised. This 

remark is deemed convincing only if a bank can explain somehow the dependency structure of its 

portfolio, for example by statistical evidence based on historical defaults, as we did. If in such a 

situation the standard binomial test was applied, the proper size of type I errors (rejection of the 

null hypothesis when it is true) would be higher than the α-level of confidence indicated by  the 

test. 
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7. Conclusion 

The paper presents a general framework of asset and default dynamics, which separates the 

cyclicality effect into a component which is embedded into the rating system and another one 

which explains the fluctuation of realized defaults around the ex-ante calculated probability of 

default. This framework allows us to detect the point where the rating system is situated in 

between the two purely theoretical extremes of Point In Time and Through The Cycle. 

Understanding and quantifying the philosophy which characterizes a system, and the implied 

rating dynamics, is crucial for a number of issues, like validation, pricing, stress testing, economic 

and regulatory capital. In this paper some results were presented regarding validation, and 

specifically a method to estimate asset correlations was suggested which can be usefully applied 

by banks to modify the standard tests that suffer from independence assumption.  

Still there are applications to other fields that can benefit from the cyclicality framework we 

sketched and that are still to be explored. As far as migration analysis is concerned, it is directly 

applicable  to stress testing: in the proposed framework the cyclical (systemic) variable is not 

identified, so that scenarios can only be expressed in terms of percentiles. Further work could 

anyway go in the direction of explaining this factor, at least partially, by macroeconomic 

variables, in order to better understand its contribution and to describe expected scenarios. A 

foreseeable problem in this case could be the shortness of the historical series of internal 

migrations, which doesn’t guarantee the necessary robustness of the estimated relationship 

between macro variables and the implicit cyclical factor.  
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