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Abstract

We present new sufficient conditions for the existence of a contin-
uous utility function for an arbitrary binary relation on a topological
space. Such conditions are basically obtained by using both the con-
cept of a weakly continuous binary relation on a topological space and
the concept of a countable network weight. In particular, we are con-
cerned with suitable topological notions which generalize the concept of
compactness and do not imply second countability or local compactness.
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1 Introduction

The problem concerning the existence of a continuous utility function for a
not necessarily total (linear) preorder (or for a partial order) on a topological
space was extensively treated in the literature concerning the applications of
mathematics to economics and social sciences.

Peleg [27] was the first who provided sufficient conditions for the existence
of a continuous utility function for a partial order on a topological space.
Peleg said that he was solving a problem raised by Aumann [1], who pointed
out that it is realistic not assume that an individual may compare any two ob-
jects according with its own preferences, so that “incomparability” may take
place in some cases (see also Ok ([25]).

Following the illuminating approach of Nachbin [24], who combined the
classical results of mathematical utility theory with some of the most impor-
tant achievements in elementary topology, Mehta was able to establish very
general conditions for the existence of a continuous utility function for a not
necessarily total preorder on a topological space (see e.g. Mehta [21] and the
survey in Mehta [22]). The reader may also consult the book by Bridges and
Mehta [6] for a miscellanea of theorems concerning the existence of continuous
order isomorphisms.

Herden [15] found a characterization of the existence of a continuous
utility function for a not necessarily total preorder on a topological space by
using the concept of a separable system. Herden also showed that the classical
utility representation theorems of Eilenberg-Debreu and Debreu (see Debreu
[10, 11] and Eilenberg [12]) concerning the existence of a continuous utility
function for a continuous total preorder on a connected and separable topo-
logical space and respectively on a second countable topological space are
corollaries of his main result. By using similar arguments, Bosi and Mehta [5]
presented a unified approach to the existence of a semicontinuous or contin-
uous utility function on a preordered topological space, while the continuous
utility representation problem in arbitrary concrete categories was discussed
by Bosi and Herden [4].

In a slightly different context, Chateauneuf [9] characterized in a very el-
egant way the representability of a preference relation with pseudotransitive
preference-indifference on a connected topological space by means of a pair of
continuous real-valued functions.

In order to possibly generalize the theorems of Eilenberg-Debreu and De-
breu to the case of a non-total preorder, Herden and Pallack [18] introduced
the concept of a weakly continuous preorder = on a topological space (X, 7).

We recall that a preorder = on a topological space (X, 7) is said to be
weakly continuous if for every z,y € X such that x < y there exists a continu-
ous increasing function u,, : (X, 7, ) — (R, That, <) such that w,, (z) < ugy(y).



Herden and Pallack showed that Debreu theorem is generalizable to the case
of a weakly continuous preorder while Eilenberg-Debreu theorem is not. Fur-
thermore, looking at the proof of theorem 2.15 in Herden and Pallack [18],
it is easily seen that there exists a continuous utility function for any weakly
continuous preorder < on a topological space (X,7) such that the product
topology 7 x 7 on X x X is hereditarily Lindelof (it is well known that this
requirement generalizes the assumption of second countability of the topolog-
ical space (X, 1)).

In this paper, we first generalize the aforementioned result presented by
Herden and Pallack by showing that the existence of a continuous utility func-
tion for a binary relation R on a topological space (X, 7) is equivalent to
the existence of a topology 7’ coarser than 7 such that R is weakly contin-
uous on (X,7') and (X,7") has a countable network weight (or equivalently
the product topology 7/ x 7/ on X x X is hereditarily Lindel6f). Then we
use this result in order to derive some sufficient conditions for the existence
of a continuous utility function. In this way, we generalize Debreu continuous
utility representation theorem by showing that every weakly continuous
binary relation on a topological space with a countable net weight has a contin-
uous utility representation. This result may be viewed as a generalization of a
proposition in Caterino, Ceppitelli and Mehta [8], where the authors consider
the case of a continuous total preorder on a topological space with a countable
net weight.

Finally, we show that suitable notions which generalize the concept of com-
pactness such as o-compactness, hemicompactness and the concept of k-space
(see e.g. McCoy [20]) may be invoked in order to guarantee the continuous
representability of a weakly continuous binary relation on a submetrizable
topological space (i.e., on a space that admits a coarser metrizable topology).
It is remarkable that these situations do not imply second countability or local
compactness (see Levin [19] and Back [2]). On the other hand, assumptions
of this kind are interesting in economics since they are very frequently applied
to function spaces (for example, the compact-open topology on the space of all
continuous functions is considered in Ok [26] in connection with the problem
of representing continuous multifunctions).

2 Notation and preliminaries

Throughout this paper, we shall denote by R a binary relation on an arbi-
trary nonempty set X. The strict part Rg of R and the symmetric part I of
R are defined as follows:

tRsy < (zRy) A ~(yRz) (z,y € X),
zly < (zRy) A (yRzx) (x,y € X).
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Further, we shall denote by Rs and R’ the graphs of Rg and the dual of
Rs, namely

Rs ={(z,y) € X x X : zRsy},
s ={(z,y) e X x X :(y,z) € Rg}.

A preorder R on X is a reflexive and transitive binary relation on X. A
preorder is said to be total if for any two elements x,y € X either xRy or yRx.
In the sequel, a preorder will be preferably denoted by the symbol <. In this
case, the strict part of a preorder = will be indicated by <.

The pair (X, R) will be referred to as a related set in the general case.
If in addition 7 is a topology on the set X, then the triplet (X, 7, R) will be
referred to as a topological related space.

If (X, R) is a related set, then a subset A of X is said to be decreasing if,
for every z € X and y € A, Ry implies that z € A.

Given a related set (X, R), a real-valued function u on X is said to be

(1) increasing if u(x) < u(y) for all z,y € X such that zRy,

(ii) order-preserving if it is increasing and u(x) < u(y) for all z,y € X
such that xRgy.

In the sequel, an order-preserving function will be referred to as a wutil-
ity function.

If 2 is a total preorder on a set X, then the associated order topology will
be denoted by 7=. We recall that 7= is the topology generated by the sets
Liz)={z€eX :z<z}and U(x)={z€ X :x < z} withx € X.

From Herden and Pallack [18], a binary relation R on a topological space
(X, 1) is said to be weakly continuous if for all z,y € X such that zRgy there
exists a continuous increasing real-valued function u,, on (X, 7, R) such that
() < 11y ().

Herden and Pallack [18, Lemma 2.2] proved that if R is a total preorder,
then the above defined continuity of R on (X, 7) coincides with the classical
requirement that L(z) = {z € X : zRgx} and U(z) = {# € X : zRgz} are
open subsets of X for every x € X. In this case, the total preorder R on (X, 7)
is said to be continuous.

We recall that a preorder = on a topological space (X, 7) is said to be
closed if = is a closed subset of X x X with respect to the product topology
7 x 7 on X X X. Herden and Pallack [18, Proposition 2.11] proved that every
weakly continuous binary relation R on a topological space (X, 7) has a weakly
continuous refinement by a closed preorder (i.e., for every weakly continuous
binary relation R on (X, 7) there exists a weakly continuous preorder =< on
(X, 7) such that R CZ and Rg C=).



We recall that a topology 7 on a set X is a hereditarily Lindelof topology
if for every subset A of X and every open covering C of A there exists some
countable subcovering C' C C of A.

Let us recall some classical definitions in the theory of cardinal functions.
As usual, the symbol ¥y will stand for the smallest infinite cardinal.

A family A of subsets of a topological space (X, 7) is called a network for X
if every non empty open subset of X is a union of elements of N.
The network weight (or net weight) of (X, 1) is defined by

nw(X,7) = min{|N] : NV is a network for (X, 7)} + Ro.
As usual, define by
w(X,7) =min{| B |: B is a base for (X,7)} + Ng

the weight of (X, 7). We recall that if (X, 7) is either metrizable or locally
compact or else linearly ordered then nw (X, 7) = w(X, 7) (see Engelking [13]).
For what concerns subspaces and topological products we have that if (Y, 7")
is a subspace of (X, 7) then

nw(Y, ) < nw(X, 1)

and
nw(H X, H 7s) = max{|S/|, sup nw(Xs, H Ts)}
s€s s€S €S s€S
So every subspace of a countable product of spaces having countable net
weight has countable net weight. Since nw(X,7) = Ry implies that (X, 1) is
Lindelof, a countable product of spaces with countable net weight is heredi-
tarily Lindelof.

3 Existence of continuous utilities

Herden and Pallack [18, Theorem 2.15] proved that every weakly continu-
ous binary relation on a second countable space has a continuous utility rep-
resentation. This result generalizes the famous Debreu utility representation
theorem which states that every continuous total preorder on a second count-
able topological space admits a continuous utility representation (see Debreu
(10, 11]).

The following theorem characterizes the existence of a continuous utility
function for an arbitrary binary relation on a topological space and therefore
generalizes the aforementioned result proved by Herden and Pallack.

Theorem 3.1 Let R be a binary relation on a topological space (X,T).
Then the following conditions are equivalent:
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(1) There exists a continuous utility function u on (X, 7, R);

(ii) There exists a topology ' on X coarser than T such that R is weakly
continuous on (X, 7') and (X, 7") is second countable;

(iii) There exists a topology ™" on X coarser than T such that R is weakly
continuous on (X, 7") and (X,7') has a countable net weight;

(iv) There exists a topology 7' on X coarser than T such that R is weakly
continuous on (X, 7") and the product topology ™" x 7" on X x X is
hereditarily Lindelof;

(v) There ezists a topology ' on X coarser than T such that R is weakly
continuous on (X,7') and the topology (7" X 7')grg induced by
the product topology ™" x 7' on the graph Rs of Rg is Lindeldf.

Proof. (i) = (ii). Let u be a continuous utility function on (X, 7, R).
Consider the total preorder < on X defined by

v Sy e u@) <uly) (z,yeX),

and let 7 = 7% be the order topology associated to <. Observe that from
the Debreu Open Gap Lemma (see e.g. Bridges and Mehta [6, Lemma 3.13]),
since there exists a utility function u on the totally preordered set (X, <)
there also exists a continuous utility function «’ on the totally preordered
topological space (X, 7/, <). Since < is (continuously) representable we have
that 7' is second countable (see Bridges and Mehta [6, Proposition 1.6.11]).
It is clear that 7’ is coarser than 7 from the definition of the total preorder <
and the continuity of the function u on the topological space (X, 7). Further,
we have that R is weakly continuous on (X, 7’) since v’ is continuous on (X, 7/)
and we have that, for all z,y € X,

rRy = u(z) <u(y) =z Sy = u'(z) <u'(y),

TRsy = u(x) <uly) =z <y = u(x) <u(y).
(ii) = (iii). Trivial.
(ili) = (iv). See the considerations at the end of section 2.
(iv) = (v). Immediate.
(v) = (i). Since the binary relation R on the topological space (X,7') is
weakly continuous, we have that for every pair (z,y) € X x X such that
xRgy there exists a continuous increasing function u,, on (X, 7', R) such that

Uzy(T) < Ugy(y). It is not restrictive to assume that u,, takes values in [0, 1].
Define for every pair (z,y) € X x X such that zRgsy

6



Then the family C' := {A,,, @) X Bu,, @)} (@.y)ers is an open cover of the graph
Rs of Rg. Since the topology (7" x 7') g induced by the product topology
7' x 7" on Rs is Lindelof, there exists a countable subfamily C” of C' which also
covers Rg, and therefore there exists a countable family {u, }ren of continuous
increasing functions on (X, 7/, R) such that for every (z,y) € X x X with zRgy
there exists some n € N such that wu,(z) < u,(y). Hence, u := )" >° 27", is
a continuous utility function on the topological related space (X, 7/, R). Since
7' is coarser than 7, we have that u is also a continuous utility function on the
topological related space (X, 7, R) and the proof is complete. O

We recall that from Herden [16] a topology 7 on a set X is said to be
useful if every continuous total preorder 3 on the topological space (X, 7) is
representable by a continuous utility function v : (X, 7,3) — (R, Thar, <)
(see also Herden and Pallack [17]). From Theorem 3.1 we immediately obtain
the following corollary which provides a condition under which a topology is
useful.

Corollary 3.2 A topology T on a set X is useful provided that the product
topology T x T on X x X is hereditarily Lindeléf (in particular, in case that T
has a countable net weight).

Remark 3.3 It is clear that Theorem 3.1 implies that whenever the prod-
uct topology 7 x 7 on X x X is hereditarily Lindelof then there exists a
continuous utility function u for every weakly continuous binary relation R on
(X, 7) (see the considerations in the introduction). On the other hand, the
condition according to which the product topology 7 x 7 on X x X is hered-
itarily Lindelof is not necessary for the topology 7 to be useful. An example
can be constructed in the following way. Consider a Tychonoff space Y (that is
a completely regular Hausdorff space) such that Y x Y is not Lindel6f, for in-
stance the Sorgenfrey line. It is know that Y can be embedded in a Tychonoff
cube X = [0,1]7 and so Y x Y is homeomorphic to a subspace of X x X. Hence
X x X is not hereditarily Lindelof. But, since X is compact, every continu-
ous total preorder on X has a maximum and minimum. Therefore applying
Theorem 3 in Monteiro [23] to X, which is pathwise connected, we get that
every continuous total preorder on X is representable by a continuous utility
function.

We say that a topology 7 on a set X is strongly useful (see Bosi and Herden
[3]) if every weakly continuous preorder 3 on the topological space (X, 7) is
representable by a continuous utility function u : (X, 7,3) — (R, Tha, <).
It is clear that a strongly useful topology on a set X is also useful. Further,
we say that a topology 7 on a set X is R-strongly useful if every weakly con-
tinuous binary relation R on the topological space (X, 7) admits a continuous



utility function v : (X, 7, R) — (R, That, <). Indeed the two definitions are
equivalent. In fact we can state the following proposition whose proof is based
on Proposition 2.11 in Herden and Pallack [18] (see the introduction).

Proposition 3.4 Let (X,7) be a topological space. The following condi-
tions are equivalent:

(i) 7 is R-strongly useful;
(i) 7 is strongly useful;

(iii) every closed and weakly continuous preorder = on (X,7T) admits a
continuous utility function.

The following corollary of Theorem 3.1 provides a characterization of R-
strongly useful topologies in the metrizable case. The proof is based on the
theorem in Estévez and Hervés [14].

Corollary 3.5 Let 7 be a metrizable topology on a set X. Then the follow-
ing conditions are equivalent:

(i) 7 is R-strongly useful;
(i) 7 is useful;
(iii) 7 s separable.

Denote by A(X) the diagonal of a set X (i.e., A(X) = {(z,z) : z € X}).
We recall that if (X, 7) is a topological space, then a subset of X is said to be
a Gys-set if it is a countable intersection of open subsets of X.

Corollary 3.6 Let (X, 7, R) be a linearly ordered topological space and as-
sume that R is continuous. If the product topology T x 7 on X x X is Lindelof
and X has a Gs- diagonal, then R has a continuous utility representation.

Proof. Since R is a linear order then {A(X),Rgs, R} is a partition of
X x X. Hence Re¢ URy = (X x X) \ A(X) is Lindeléf because it is a
countable union of closed subsets of X x X. Further, since R is a continuous
linear order on (X, 7), we have that Rg (R's) is open in X x X since for every
(z,y) € Rs ((x,y) € RY) there exists a continuous increasing function u,,
on (X, 7, R) such that g, () < Uy (y) (sy(r) > uyy(y)) and therefore if we
adopt the notation in the proof of Theorem 3.1 we have that A, (x) x B,,, (v)



is contained in Rg (Buy,,(x) X Au,,(y) 15 contained in RY). In particular, we
have that Rg is a Lindelof spaces when endowed with the induced topology
T X Trg, and therefore Theorem 3.1 applies (see in particular the equivalence
of the statements (i) and (v)). O

Corollary 3.7 Let = be a total preorder on a set X. Then 3 has a util-
ity representation if and only if the product topology = x 7= on X x X is
hereditarily Lindeldf.

Proof. If = is a total preorder on a set X and there exists a utility
representation for <, then the order topology 7= on X is second countable
(see e.g. Proposition 1.6.11 and Corollary 1.6.14 in Bridges and Mehta [6])
and therefore it is clear that the product topology 7= x 7= on X x X is
hereditarily Lindelof. The converse is an immediate consequence of Theorem
3.1 (see in particular the equivalence of the statements (i) and (iv)) since it is
clear that < is (weakly) continuous on (X, 7<). O

Remark 3.8 Using the proof of Corollary 3.7 we may immediately conclude
that if (X, ) is a linearly preordered set, then the following equivalence holds:

7= x 7= is hereditarily Lindelf < 73 is second countable.

From Theorem 3.1 we can also immediately deduce the following proposi-
tion (see in particular the equivalence of the statements (i) and (iii)) which
generalizes the classical Debreu continuous utility representation theorem.

Proposition 3.9 Let (X, 1) be a topological space with nw(X,T) =Ny and
let R be a weakly continuous binary relation defined on (X, 7). Then R has a
continuous utility representation.

The following corollary is an immediate consequence of Proposition 3.9.

Corollary 3.10 Let (X, 7) be a countable topological space and let R be a
weakly continuous binary relation defined on (X, 7). Then R has a continuous
utility representation. O

Remark 3.11 We may observe that since there exist countable spaces
which are not second countable, Corollary 3.10 is not a consequence of Theo-
rem 2.15 in Herden and Pallack [18]. O

In order to present further implications of Theorem 3.1, let us now recall
some definitions. A topological space (X, 7) is said to be submetrizable if
there is a metric topology 7" on X which is coarser than 7. Moreover, (X, 7) is

9



hemicompact if there is a countable family {K,,} of compact subsets of X such
that every compact subset of X is contained in some K,. Of course, every
hemicompact space is a countable union of compact sets, that is every hemi-
compact space is o -compact. Finally, X is a k-space if a subset A C X is open
if and only if AN K is open in K for every compact subset K of X. Theorem
2.15 in Herden and Pallack [18] generalizes the well known Levin’s Theorem
(see Levin [19]) which states that every closed preorder defined on a second
countable locally compact topological space is representable by a continuous
utility function. Caterino, Ceppitelli, Maccarino [7] extended Levin’s Theorem
to submetrizable hemicompact k-spaces. These spaces are, in general, neither
locally compact nor second countable. Therefore, Theorem 2.15 in Herden and
Pallack [18] cannot be applied in this case.

Proposition 3.12 Let (X, 7) be a submetrizable, o -compact space and let
R be a weakly continuous binary relation defined on (X, 7). Then R has a
continuous utility representation.

Proof. Since compact topologies are minimal among 75 topologies, every
compact submetrizable space is metrizable, hence second countable. By o-
compactness, we have that X = U, K, with K, compact, for every n € N.
Let B, be a countable base for K,,. Then it is easily seen that N' = U,B,, is a
countable network for (X, 7). Hence, the thesis follows from Proposition 3.9.
O

Remark 3.13 We recall that every submetrizable ¢ -compact space is sep-
arable. The weaker assumptions of submetrizability and separability are not
sufficient to guarantee the existence of a continuous utility representation for
every continuous linear preorder. As an example of this fact, consider the Sor-
genfrey line (R, 7) (see Remark 3.3).

Let = be the preorder on R defined by:

|z |>|y| or (|z|=|y| andz <0)orz=y Vr,ye]—1,1]
r3ys or
x €] — oo, —1JU]l,+oo[ and y € R

Then it is not hard to show that = is a continuous linear preorder on
R. Further =X has uncountably many jumps (i.e., uncountably many pairs
(z,y) € R x R such that z < y and for no z € R it happens that x < z < y).
Indeed, (—a,a) is a jump for every 0 < a < 1. Hence we may conclude that
= cannot be representable by a (continuous) utility function. This preorder
could be also constructed by means of a chain of open and closed subsets of R
(see Bosi and Herden [3]).
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The following proposition generalizes Proposition 2.12 in Herden and Pal-
lack [18], who showed that every closed preorder =X on a topological space (X, 7)
is weakly continuous provided that (X, 7) is either a compact (Hausdorff-)space
or a locally compact second countable (Hausdorff-)space. Indeed, if (X,7)
is either a compact (Hausdorff-)space or a locally compact second countable
(Hausdorff-)space then (X, 7) is a hemicompact k-space.

Proposition 3.14 Let (X,7) be a hemicompact k-space and let = be a
closed preorder on (X, 7). Then 3 is weakly continuous.

Proof. Assume that X = U, K, with K,, compact and K, C K, for
every n € N. Consider any two elements x,y € X with x < y. Then the set
F = {x,y} is contained in K, for some integer n. The function f : F — IR
defined by f(z) = 0, f(y) = 1 can be extended to a continuous increasing
function on all of K,, (see from Levin [19, Lemma 2]). Since X is a k-space,
by using a recursive process, we obtain an extension of the function f on all
of X which is increasing and continuous. O

Finally, from Proposition 3.12 and from the above Proposition 3.14 we
immediately obtain the following result which was already proved by Caterino,
Ceppitelli and Maccarino [7, Theorem 3] by using a different technique.

Proposition 3.15 Let (X, ) be a submetrizable, hemicompact k-space and
let 2 be a closed preorder on (X, 7). Then 3 has a continuous utility repre-
sentation.
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