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ABSTRACT

This paper develops and simulates a model of a Bayesian market maker who transacts with noise and position traders in
derivative markets. The impact of noise trading is examined relative to price determination in FX futures, noise
transmission from futures to options, and risk-management behaviour linking the two markets. The model simulations
show noise trading in futures results in wider bid—ask spreads, increased price volatility, and greater variation
in hedging costs. Above all, the Bayesian market maker manages price-risk by trend chasing not for speculative
purposes, but to avoid being caught on the wrong side of the market. The pecuniary effects from this risk-management
strategy suggest that noise trading tends to constrain the market maker’s capacity to arbitrage; particularly when the
underlying price is mean averting as opposed to a Martingale and trading sessions exhibit significant price volatility.
Copyright © 2008 John Wiley & Sons, Ltd. Copyright © 2008 John Wiley & Sons, Ltd.
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This paper examines the impact of ‘noise-trader risk” on market-making behaviour. Noise trading relates to
agents buying and selling an asset regardless of its fundamental value (Kyle, 1985). During bullish
conditions noise traders continue buying an overvalued asset believing that its price will continue rising.
Conversely, during bearish periods noise traders continue selling an undervalued asset believing that its
price will continue falling (Shleifer, 2003). This trend chasing tends to drive price away from fundamental
value, creating potential arbitrage opportunities.

Rational arbitrageurs with sufficient patience and capital endowments can profit from inefficient asset
pricing by taking contrarion positions, which in the aggregate tend to move price towards ‘fair value’
(Friedman, 1953; Fama, 1965, 1970, 1991, 1998). This process reflects a commitment of resources to exploit
price differentials over space and time, under conditions of market disequilibrium (Hirshleifer and Reilly,
2003). Yet as argued by Shleifer (2003) and DeLong et al. (1990, 1991), arbitrageurs assume significant risks
in taking contrarion positions against noise traders. Perhaps foremost is the risk that noise-trader beliefs
will become more extreme, resulting in deeper mispricing, i.e. ‘noise-trader risk.” Also see Schleifer and
Vishny (1997), and Schleifer and Summers (1990).

The argument that noise-trader risk discourages arbitrage may explain the persistence of inefficient asset
valuations under a variety of market conditions. Indeed, an arbitrageur who bets against noise traders runs
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the risk of losing the bet if forced to liquidate his/her position prior to a correction in market sentiments.
Thus, by discouraging arbitrage, noise-trader risk may forestall efficient price reversions and contribute to
the persistence of asset price bubbles, i.e. when an asset price rises at a rate beyond what can be explained
by market fundamentals (Kindleberger, 1978).

Early empirical studies of arbitrage opportunities in FX derivative markets provide strong support
for the absence of arbitrage conditions once transactions costs are accounted.' For example Galai
(1978) finds apparent arbitrage opportunities vanished for a CBOE options trader facing a 1% transaction
cost. In addition, more extensive tests by Bhattacharya (1983) confirm this view. Nonetheless, both authors
suggest that arbitrage opportunities may exist for a ‘very low-cost trader’, such as a market maker
(Kolb, 1991).

Certainly market-making behaviour is fundamental to the efficient operation of a market, both through
the provision of liquidity and the promotion of price discovery (Silber, 1984; Sarno and Taylor, 2001).2
However, it would seem that market makers face unique challenges in attempting to exploit noise-driven
arbitrage opportunities. A key concern in such operations is the inventory price-risk from maintaining a
contrarion market position—either briefly, in hopes of profiting from intraday price differentials, or over a
longer period.

The present study focuses on the impact of noise trading on market making in FX derivatives. Market
makers maintain two-sided markets by matching incoming buy-sell orders through market-clearing
adjustments in their bid—ask spreads. If they are unable to match incoming orders, they become
‘buyer—seller of the last resort’. Consequently under intense noise trading market makers add inventory as
prices get hammered, and otherwise lose inventory as they inflate.

Clearly noise trading exposes market makers to inventory price-risk from taking contrarion positions.
Here we consider the use of delta-hedging in managing the inventory price-risks posed by noise trading in
the underlying market. We maintain that noise trading increases hedging costs in derivative markets, thus
discouraging market makers from taking arbitrage positions in FX derivatives—particularly over volatile
trading periods when their trading capital is at greater risk.

Our framework contributes to a growing literature on ‘noise-trader risk’ by examining its
effect on market-making behavior in FX derivatives. Following Lyons (1991, 1996), we take a Bayesian
approach in modelling the effect of order flow on bid—ask prices and maintaining inventory balance.?
We assume that bid—ask prices are determined through an ‘information channel’ and an ‘inventory control
channel.” The market maker supplies liquidity by quoting bid and ask prices so as to match incoming orders
and generate profitable inventory turnover. This objective entails buying low and selling high
while managing the inventory price-risk from quoting too high a bid-price or too low an asked-price
(Garman, 1976).*

Our framework incorporates features from other theoretical models of FX market microstructure, i.e.
‘sequential-trade models’ of a single dealer and Kyle’s (1985) auction-market model.> Similar to these
models, we focus on an optimizing agent who uses available information in determining price, thereby
influencing asset liquidity and market efficiency. Also we adapt a trading protocol wherein the agent quotes
prices on one side of the transaction and then trades sequentially at these prices with other agents selected
from a pool at random. This protocol results in a ‘quote-driven market,” wherein private information is
gained from the sequential arrival of distinct orders and is impounded in the asset price (Lyons, 2001). The
resulting price discovery process has a unique game-like outcome in our model: either a Martingale or
mean-averting price prevails, depending on the odds of drawing a noise trader from the pool as opposed to
a position trader.

The study proceeds in the following manner. Section 2 uses a heuristic options pricing model to describe
arbitrage opportunities from noise trading in futures. Section 3 models a Bayesian market maker who
forms beliefs over market sentiments based on order flow from noise and position traders. This information
conditions liquidity and pricing in the futures market. Section 4 describes pricing and hedging in the
options market using Black’s (1976) framework for pricing European-style options on FX futures. Section 5
simulates the impact of intraday noise trading in the futures market on pricing and delta-hedging in the
options market. Section 6 concludes.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Fin. Econ. (2008)
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2. OPTION VALUE WITH NOISE TRADING

Consider a single-period binomial options pricing framework (Ross, 2003), where the underlying asset is an
FX futures contract. A representative trader takes a position at time 0 in both the futures and options
markets, buying (or selling) F futures contracts and O, call option contracts at ‘fair values,” py and c.. At
expiration the call option gives the trader the right to buy the underlying asset at the strike price p,. Assume
that the futures price follows a binomial random walk in terms of moving up («) or down (d) as described by
the random event Z = {p¥, p}’ }. Accordingly, the value of the portfolio P when the call option expires is
given by

()

{P?F +@f —p)Oc if py
piF if pf

This portfolio would have the same value under pyor p]‘f if the following position in options were taken at
time 0: ‘

@ —pf)
—_— 2
i = pe)] @

yielding a portfolio worth Fp;i . Given the original cost of taking long positions in both the futures and
options markets (poF + ¢.0.), portfolio profits = are given by Fp}’ — (poF + ¢.0.), or in view of equation

2),
u d
pr— Dy
n:F{p}l_pO'f'C((fu f)} (3)
Py = Pe

Consequently, the only option price that exhausts arbitrage profits is given by

d\( U
. = (Po Py )(I’_fd Pe) )
(wf = pp)
i.e. the ‘fair value’ of a call option. This value can also be derived on the basis of the expected return from
taking the long position in call options, E(R) = v(pf — p.) — ¢., where v denotes the probability that the
random event Z will realize Py and therefore that the call option will be exercised. Assuming that expected
returns are driven to zero, the ‘fair value’ option price is

¢ = v(p} — po) 5)

where v denotes the probability that event Z will realize the price pf and therefore that the call option will
be exercised.

Similar reasoning yields the fair value corresponding to a put option, i.e. an option to sell futures at the
strike price p,. In the case of put options the ‘fair value’ is given by

@ = po)pe — 1Y)

0.=—F

Cp= (6)
T

or the equivalent
¢y = (1= )pe — p) %)

where 1—v denotes the probability that event Z will realize the price p;’- and therefore that the put option
will be exercised.

Note that the only values for v and 1—v consistent with zero expected returns, and hence the perceived
absence of arbitrage opportunities, must satisfy

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Fin. Econ. (2008)
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Table 1. Noise-trader sentiments (vy, 1 — vy) and price expectations

Vars Bearish No-arbitrage Bullish

v 0.0000 0.1250 0.2500 0.3750 0.5000* 0.6250 0.7500 0.8750 1.0000
1—v 1.0000 0.8750 0.7500 0.6250 0.5000* 0.3750 0.2500 0.1250 0.0000
E(p 1.16 1.17 1.19 1.19 P,=1.20 1.21 1.22 1.23 1.24
C. 0.0000 0.0000 0.0000 0.0000 0.0200 0.0250 0.0300 0.0350 0.0400
C, 0.0400 0.0350 0.0300 0.0250 0.0200 0.0200 0.0000 0.0000 0.0000

*The no-arbitrage parameter values v=1—v = 0.5 assume a strike price p, = 1.20 and max-min p, = 1.24, p,= 1.16.
See Barnes and Logue (1975), Bollerslev and Domowitz (1993), Bollerslev and Melvin (1994), and Lyons (1998).

—pd u_
v:(po—p{,) andl—v:Lpg) ®)
(= pp) (= pf)

Under rational expectations the values for v and 1—v given in (8) are internally consistent with the ‘fair
value’ option prices (5) and (7). This is seen by considering the process by which rational traders form
expectations over the fundamental value of the underlying asset, py. Note that the expected returns from
taking a long position in the futures contract are given by

E(Ry) = vpf + (1 = v)pf — po

= E(ps) — po

No-arbitrage conditions imply zero expected returns from increased buying or selling of futures, or in other
words, the expected futures price is equivalent to its fundamental value at the beginning of the period. Thus,
FX derivative traders who form ‘rational expectations’ consistent with this ‘no-arbitrage property’ will take
the price at the beginning of the period as an unbiased predictor of the expected futures price at the end of
the period, E(ps) = 0. Otherwise, traders would overvalue or undervalue futures, and thus perceive
option values different from the ‘fair values’ given by (5) and (7).

To set the stage for later work, assume that position traders have unbiased beliefs denoted by the
random parameter v,, while noise traders have biased beliefs denoted by vy. Thus, under bullish conditions
noise traders believe that the underlying asset is undervalued with probability vy >v, = 0.5, and under
bearish conditions they believe that it is overvalued with probability 1 — vy >1— v,>0.5. Accordingly,
these biased sentiments form non-Bayesian expectations among noise traders, i.e. agents who trade on noise
rather than information (Black, 1986).

Table 1 gives the effect of bullish and bearish market sentiments relative to price expectations and option
values. The no-arbitrage future price is defined by P, = 1.20, consistent with unbiased sentiments
(v=1-v=0.5). Deviations from the no-arbitrage price reflect biased valuations: bullish traders who
overvalue futures will buy more calls and sell more puts; bearish traders who undervalue futures will sell
more calls and buy more puts. These transactions create apparent arbitrage opportunities for a contrarion
trader, such as a market maker.

©)

3. BAYESIAN MARKET MAKING

Initially, the sentiments implied by the parameters vy and v, reflect private information to noise
and position traders. Assume that a Bayesian market maker assigns binomial probability distributions
to these valuation parameters. Thus, at the market open, let Py (vy) and Py (v,) denote the market
maker’s prior beliefs over the valuation parameters vy and VoY where Py (vy) + Py(v,) = 1. Assume
that the market maker continually revises his/her priors on the basis of incoming market orders,

n=1,2,3,..., of which j represent buy orders and n—;j represent sell orders.” Given this information (®),
Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Fin. Econ. (2008)

DOI: 10.1002/ijfe



NOISE-TRADER RISK AND BAYESIAN MARKET MAKING

the market maker’s posterior probabilities are denoted by Py (vy|®) and Py (v,|®P), expressing
revised beliefs conditional upon buy—sell order flows. These posterior probabilities are obtained applying
Bayes’ rule:

P(®vy)Py(vy)
P(®|vy)Py(vy) + P(Ovo)Prs(vo)

where the conditional probability terms P(®|vy) and P(®|v,) denote the /ikelihood of biased and unbiased
asset valuations (vy and v,) given incoming order flow information, i.e.

Py(vy|®) =

and Py (v,|®) = 1 — P(vy|®) (10)

P(®lyy) = (J( )])Vl (11— VN)nij and  P(Qv,) = </( " )|>V/(1 —,)" - (11)

Note how the valuation parameters vy and v, are weighted by the j buy orders and n—j sell orders.
Consequently, the terms vy (1 — vy)" and V(1 — Vo) reflect the weighted sentiments of noise and
position traders, and the expression n!/j!(n — j)! reflects the number of possible combinations of j buy
orders out of n orders received.

Table 2 describes the market maker’s Bayesian learning process over 5.intraday time steps under bullish
and bearish conditions. For illustrative purposes the number of buy and sell orders at each time step is
represented by a random integer value of 1 or 0 orders, assuming valuation parameters vy = 0.5 for position
traders and vy = 0.65 for noise traders.

Panel (a) describes bullish sentiments among noise traders. These conditions increase the chance that buy
orders will outnumber sell orders. Thus, in time step 1 the market maker receives j= 1 buy orders and
n—j =0 sell orders. This information increases the likelihood of a bull market from 0.5 to 0.65, and moves
the market maker’s posterior probability of bullish valuation from 0.5 to 0.57. Additional order flow
information arrives in time step 2 via j=1 buy orders and n—j=1 sell orders. The arrival of new
information dampens the likelihood of a bull market from 0.65 to 0.46, thus decreasing the market maker’s
posterior probability of bullish valuation from 0.57 to 0.54.

Panel (b) describes bearish noise-trader sentiments with sell orders outnumbering buy orders. In time
step 1 the market maker receives n—j =1 sell orders and j = 0 buy orders. This information increases the
likelihood of a bear market from 0.5 to 0.65, thus increasing the market maker’s posterior probability of
bearish valuation from 0.5 to 0.57. Additional market orders arrive in time step 2 via j = 1 buy orders and
n—j = 0 sell orders. This new information dampens the likelihood of a bear market from 0.65 to 0.35, thus
decreasing the market maker’s posterior probability of bearish valuation from 0.57 to 0.48.

From the standpoint of market making, this Bayesian learning has implications in how noise trading
affects market-making behaviour; specifically, the determination of bid and ask prices, and their adjustment

Table 2. Bayesian learning process

j n_j P(I‘ VII) P(]‘ Vo) Pm(Vn‘I) Pm(Vo‘I)

Buy orders Sell orders n!/jl(n—j)! likelihood likelihood revised revised
Panel (a): bull market: vy = 0.65 noise traders; vy = 0.5 position traders
T=1 1 0 1 0.65 0.50 0.57 0.43
T=2 1 1 2 0.46 0.50 0.54 0.46
T=3 1 0 1 0.65 0.50 0.61 0.39
T=4 1 1 2 0.46 0.50 0.58 0.42
T=5 1 0 1 0.65 0.50 0.65 0.35
Panel (b): bear market: 1 — vy = 0.65 noise traders; vy = 0.5 position traders
T=1 0 1 1 0.65 0.50 0.57 0.43
T=2 1 0 1 0.35 0.50 0.48 0.52
T=3 0 1 1 0.65 0.50 0.54 0.46
T=4 0 1 1 0.65 0.50 0.61 0.39
T=5 0 1 1 0.65 0.50 0.67 0.33
Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Fin. Econ. (2008)
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Table 3. Market-making behaviour

J n—j

Buy orders Sell orders Inventory P, P, PP,
Panel (a): bull market: vy = 0.65 noise traders; vy = 0.5 position traders™
T=1 0 0 1.1995 1.2005 0.0010
T=2 1 0 -1 1.2008 1.2019 0.0010
T=3 0 1 0 1.1995 1.2005 0.0010
T=4 1 0 -1 1.2008 1.2018 0.0010
T=5 1 0 =2 1.2021 1.2032 0.0011
Panel (b): bear market: 1 — yy = 0.65 noise traders; vy = 0.5 position traders™
T=1 0 1 1 1.1984 1.1994 0.0010
T=2 0 1 2 1.1973 1.1984 0.0011
T=3 0 0 2 1.1973 1.1984 0.0011
T=4 1 0 1 1.1984 1.1994 0.0010
T=5 0 1 2 1.1973 1.1984 0.0011
*The unbiased values v, = 1—v, = 0.5 assume a strike price p, = 1.20 and max—min prices p, =1.24 and p,=1.16.

in maintaining inventory control. To describe this behaviour, we assume that bid and ask prices (P, and P,)
are quoted at each intraday time step relative to a market-clearing price for the underlying asset (P,), the
market maker’s perception of market sentiments (ay) and (ay)~', and the extant inventory position (/), i.e.

Py= Py~ (an) ™ 4 i) and Py = P+ 3 (ax) + filD) (12

where T denotes the minimum tick size; the terms (ay) and (ay)~! denote the odds of bullish and bearish
sentiments, i.e.

(a ) _ P,,,(VN|(D) 1 - Pm(VN|(D)
N T = Po(vy|®@) P(vy|®@)

and the terms f,(/) and f,(/) describe inventory control behaviour, where f)(/)<0,f;(I)<0 and
Ja(0) = /3(0) = 0.

Table 3 gives the effect of noise-driven order flow on market-making behaviour over 5 intraday time
steps. Panel (a) assumes bullish sentiments and thus an increased chance that buy orders will exceed sell
orders (j>n—j) at each time step. This tendency appears over time steps 3—5 as shown by an increasing odds
ratio ay and higher bid—ask prices. Panel (b) assumes bearish sentiments with net selling pressure over all 5
intraday time steps. These market perceptions increase ay' and lower the bid-ask prices. These price
adjustments reflect the operation of both an information and inventory control channel in determining
market-making behaviour by the optimizing agent.''

and (ay) ' =

4. HEDGING ‘NOISE-TRADER RISK’

Suppose that noise traders dominate position traders in the underlying asset market (FX futures).
Depending on the degree of noise trading, the market maker may be unable to correct order flow
imbalances through intraday adjustments in bid and ask price quotes. Consequently, noise-driven order
flow may result in inefficient liquidity supply, as reflected by undesired inventory positions. Here we
consider how the resulting noise-induced inventory price-risk can be delta-hedged (Silber, 1990).

Table 4 summarizes the qualitative relationship between noise-driven order flow in futures and the
market-maker’s inventory and hedging positions. Bearish sentiments tend to lower the futures price,
provoking an increased number of sell orders for calls and buy orders for puts. The market maker therefore
ends trading with a long position in calls and a short position in puts. This inventory position carries the
risk that the futures price will continue falling overnight. Conversely, bullish futures trading leaves the

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Fin. Econ. (2008)
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Table 4. Inventory and hedging positions from noise-driven order flow

State-of-the-world Order flow Inventory Inventory price-risk Hedge
Bear market 1 Sell orders for calls Long-in-calls | Futures price Sell futures
| Futures price 1 Buy orders for puts Short-in-puts | Call price 1Put price

Bull market 1 Buy orders for calls Short-in-calls 1 Futures price Buy futures
1 Futures price 1 Sell orders for puts Long-in-puts 1 Call price | Put price

market maker short in calls and long in puts; the risk here is that the underlying price will be bid-up even
further overnight. In either case, the inventory price-risk is due to the mean-averting tendency of the noise-
driven futures price.

Delta-hedging can be used to neutralize the risk posed by noise-driven price movements in the
underlying asset. For example, suppose intraday trading reduces the futures price by 4%, resulting in a 2%
change in both call and put prices. Thus, at the market close the delta-hedge ratios are 0.5 for calls (—0.02/
—0.04) and —0.5 for puts (0.02/—0.04). If the inventory position in puts-and calls is balanced then no
hedging is required, i.e. the options portfolio is delta-neutral. Otherwise delta-hedging is required to
neutralize inventory price-risk, either by selling or buying the underlying asset.

We examine delta-hedging using Black’s model for pricing European-style options on FX futures. The
pricing formulas for European call and put options on FX futures are given by

¢ = [FN(dy) — XN(db)]le """ and p = [XN(d>) — FN(=d)le-" 7" (13)
with parameters
In(F/X) + 0.5¢X(T —
gy = MEFO0STT =04y — ay — /T (14)

o T —t

The corresponding hedge ratios for call and put options on FX futures are given by
A, = N(d)e """ and A, = [N(dy) — 1]e "7 (15)

where N(°) is the cumulative probability distribution function for a normally distributed variable with mean
zero and standard deviation 1.

5. SIMULATION ANALYSIS

In order to simulate pricing and hedging behaviour we assume that a trading day covers 20 time steps over
which the market maker revises his/her probability beliefs based on the arrival of buy and sell orders. Order
flow and bid—ask pricing are determined simultaneously each time step conditional on extant noise-trader
sentiments, i.e. the 'V, parameter. Intraday trading is simulated n = 5000 times for each specific V-
parameter value. In total we obtain 1.5 million simulation trials, reflecting varying degrees of noise-trader
sentiments ranging from V,=0.35 (bearish) to V,=0.65 (bullish), with step increments
of size 0.001. The results from these simulations shed light on the impact of noise trading on liquidity
and pricing in the underlying market, and the prices and delta-hedge ratios for puts and calls on the
underlying asset.

Figures 1(a)—(d) illustrate price and inventory in the underlying market based on descriptive statistics
drawn from the entire sample of simulation trials. Figure 1(a) plots the mean values of the closing price
relative to noise-trader sentiments. With neutral sentiments the closing price remains near its initial value
(1.000), and otherwise becomes mean averting as noise traders lean in one direction or the other. This
tendency reappears in Figures 1(b) and (c), which plot mean values of the bid-ask spread and price
volatility (measured by the %-change between open—close prices). The spreads increase as noise-trader
sentiments grow stronger, adjusting to information arrival and inventory imbalances. Figure 1(d) shows

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Fin. Econ. (2008)
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Figure 1. Noise-trading effects in futures market. *Noise-trader sentiments vary from 0.350 (bearish) to 0.650 (bullish), with 0.500
representing neutral. Five thousand simulations were made at each value, using step sizes of 0.001. Thus, each figure reflects the output
from 1.5 million simulations, i.e. 5000 x (0.65—0.35)/0.001. Figure 1(a) shows the impact of noise on mean values of the futures price
(measured by the midpoint of the bid—ask spread at the end of trading); Figure 1(b) shows the effect of noise on the mean bid—ask
spread; Figure 1(c) shows the impact of noise on price-volatility (measured by the percentage change between open and closing prices);

and Figure 1(d) shows the impact of noise on inventory in the underlying asset (measured at the end of the trading session).

Table 5. Simulation results for futures market

Mean Std. dev. Min Max CvV

V,=0.35; N=4380

Closing futures price 0.9917 0.0041 0.9406 1.0008 0.0041

Bid-ask spread 0.0009 0.0015 9.91E—-05 0.0098 1.6667

Futures price volatility 0.0357 0.0182 1.03E—06 0.2654 0.5098

Futures inventory 10.42 6.4306 —12 26 0.6171
V,=0.50; N=5000

Closing futures price 0.9999 0.0001 0.973 1.0310 .0001

Bid—ask spread 1E—04 1.13E-08 9.73E—-05 0.0001 1.13E-04

Futures price volatility 0.0283 0.0003 0.0000 0.1386 0.0106

Futures inventory 0.0854 0.1129 -31 27 1.3220
V,,=0.65; N=4881

Closing futures price 1.0159 0.0169 0.8624 1.0920 .0166

Bid—ask spread 0.0019 0.0042 0.0001 0.0487 2.211

Futures price volatility 0.0772 0.0670 1.62E—05 0.6154 0.8679

Futures inventory —11.22 7.3664 -29 17 —0.6565

*Descriptive statistics are reported for 5000 simulation trials under varying degrees of noise-trader sentiment: 0.350 (bearish), 0.500
(neutral), and 0.650 (bullish). The futures price is measured by the midpoint of the bid-ask spread at the end of trading. Price
observations above 2 standard deviations were purged from the sample simulations, resulting in sample sizes of n = 4380 and 4881
under bearish and bullish market sentiments. Futures price-volatility is measured by the percentage change in open—close prices. The
futures inventory is measured at the end of the trading session. CV denotes the coefficient of variation.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Fin. Econ. (2008)
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inventory positions at the end of trading. Under neutral conditions the market maker ends trading with
minimal inventory. Otherwise, noise trading results in inventory imbalances at the end of trading.

Table 5 reports descriptive statistics for a sub-sample of the simulations represented in Figures 1(a)—(d).
Under neutral sentiments (V,, = 0.5; n = 5000 trials) the mean closing price (0.9917) and the pre-trade price
(1.0000) are virtually the same. In addition, the mean value of the bid—ask spread is consistent with a 1-tick
market (1E—04), wherein the market maker maintains efficient inventory turnover and market liquidity.
Not surprisingly, the mean value of inventory at the end of trading is practically zero (0.0854). On the
contrary, noisy sentiments (V,, = 0.35, 0.65; n = 4380, 4881 trials) correlate with increased price volatility
(0.0357 or 0.0772), wider bid—ask spreads (0.0009 or 0.0019), and non-zero inventory positions at the end of
trading (10.42 or —11.22).

Table 6 reports descriptive statistics for option prices and delta-hedge ratios for the same sub-sample of
simulation trials described in Table 5. The mean values of the noise-driven option prices and delta ratios
vary from the neutral-sentiment values according to the direction of the noise and the degree of price
volatility in the underlying market. In addition, the standard deviations corresponding to these variates
increase under noisy conditions in the underlying market. This noise-dependency is observed more
generally in Figures 2(a)—(d) over the entire sample of simulation trials.

Market sentiments also impact the cost of hedging inventory positions in the derivatives market. For
example, neutral sentiments are more likely to result in balanced inventory positions at the end of trading
(puts~calls), and thus minimal exposure to inventory price-risk if these positions are maintained overnight.
Accordingly, the cost of hedging options inventory will depend on the degree of noise trading in the
underlying market and the market maker’s overnight inventory constraint.

Table 7 reports descriptive statistics for delta-neutral hedging subject to an overnight position constraint
of $1 mm. Under neutral sentiments the market maker opens and closes trading with a balanced position in
puts and calls (four puts and four calls). No hedging s required in this case because the inventory position
is delta-neutral. Under bearish sentiments the market maker ends trading with a long position in calls and
short position in puts. In this case delta-hedging overnight inventory requires selling futures with a mean
cost of —$991 613 and a standard deviation of $55943. Under bullish sentiments the market maker ends
trading short in calls and long in puts. In this case delta-hedging overnight inventory requires buying
futures with a mean cost of $902 313 and a standard deviation of $64 350.

Table 6. Simulation results for options market

Mean Std. dev. Min Max CvV

V,=0.35; N=4380

Midpoint call price 0.0442 0.0019 0.0234 0.0487 0.0430

Call delta 0.9918 0.0041 0.9406 1.0008 0.0041

Midpoint put price 0.0522 0.0020 0.0479 0.0816 0.0383

Put delta 0.4927 0.0129 0.6552 0.4639 0.0262
V,=0.50; N= 5000

Midpoint call price 0.0483 5.808E-05 0.0355 0.0657 1.20E-03

Call delta 0.9999 0.0001 0.973 1.0310 0.0001

Midpoint put price 0.0484 5.276E-05 0.0353 0.0620 1.09E-03

Put delta 0.4669 0.0004 0.5529 0.3715 0.0009
V,=0.65; N=4881

Midpoint call price 0.0573 0.0098 0.0063 0.1079 0.1710

Call delta 1.0159 0.0169 0.8624 1.0921 0.0166

Midpoint put price 0.0416 0.0068 0.0176 0.1413 0.1635

Put delta 0.4179 0.0499 0.8559 0.2149 0.1194

*As in Table 5, the descriptive statistics reflect 5000 separate simulation trials at values 0.350 (bearish), 0.500 (neutral), and 0.650
(bullish). Reduced sample sizes are reported under bearish and bullish market sentiments, i.e. n = 4380 and 4881. The noise-driven
option prices and deltas are measured at the end of trading assuming expiration in 250 days, a risk-free interest rate of 5%, and mean
volatility values described in Table 5. CV denotes the coefficient of variation.
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Figure 2. Noise transmission from futures-to-options-market. *As in Figures 1(a)—(d), noise-trader sentiments reflect a variation
from 0.350 (bearish) to 0.650 (bullish) using step sizes of 0.001. Figures 2(a) and (c) show the impact of noise on mean values of the call
price and call delta, while Figures 2(b) and (d) measure the effect of noise on the mean values of the put price and put delta. These
noise-driven option prices and deltas are measured at the end of trading assuming expiration in 250 days, a risk-free interest rate of 5%,

and the mean volatility values shown in Figure 2(c).

For simplicity the simulation trials assume that the market maker rebalances his hedged position at the
end of the trading day subject to-an overnight inventory constraint. Here one sees that noise trading has a
notable impact on the variation in hedging costs. Moreover, the impact on hedging cost increases if the
hedged position is rebalanced less frequently under a less restrictive position constraint.

6. CONCLUDING REMARKS

‘Noise-trader risk” impacts the pricing and risk-management behaviour of a Bayesian market maker. We
model and simulate this behaviour assuming that order flow from noise and position traders gives a noisy
signal of market sentiments. Our theoretical framework identifies the price discovery process following
either a Martingale or a mean-averting process, depending on the degree of noise trading. Moreover, the
model predicts that noise transmission from futures to options will have pecuniary effects on delta-hedging
behaviour. To this end ‘noise-trader risk’ may keep market makers from taking arbitrage positions.

Under noisy market conditions a Bayesian market maker privately benefits from a risk-management
strategy, which coincides with trend chasing; that is, selling futures as their price gets hammered, or buying
them as it inflates—not for speculative purposes, but to avert the risk of being caught on the wrong side of
the market. This hedging behaviour tends to push the FX futures price further away from the fair value,
and is motivated by the argument that supplying liquidity in a noise-driven derivatives market engenders
significant inventory price-risk. In such an environment one is reminded that ‘it may pay more for smart
money to follow dumb money rather than to lean against it*—a perspective argued some time ago by
Haltiwanger and Waldman (1985) and Russell and Thaler (1985).
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Table 7. Noise effects on delta-hedging options

Neutral market close Bear market close Bull market close
Options position at close of trading Long 4 puts Long 12 calls Short 4 puts
(open market long 4 puts and 4 calls) Long 4 calls Short 4 calls Long 12 puts
Futures hedging transaction - Short futures Long futures
Interday delta-neutral hedging cost —5$25481 —5$991613 $902313

($23792) ($55943) ($64 350)

*Option pricing and delta ratios are calculated from the distribution of closing prices for FX futures, with each observation reflecting
the mid-point estimate of the closing bid and ask price quotes. Daily returns for FX futures are calculated using the percentage change
in open-to-close prices. The mean closing price and the standard deviation of returns are then used in the Black model to simulate the
option prices and delta-hedge ratios. Option prices and deltas are measured at the end of trading assuming expiration in 250 days, a
risk-free interest rate of 5%, and mean volatility values described in Table 5.

NOTES

1. Various empirical studies examine the efficiency of FX options in satisfying the no-arbitrage conditions, e.g. Tucker (1985), Bodurtha

and Courtadon (1986), Shastri and Tandon (1986a,b), and Ogden and Tucker (1987). See Kolb for full citations on these papers.

2. Silber provides a general review of options market making, while Sarno and Taylor review the literature specific to FX market making.

3. As noted in Sarno and Taylor (2001), Lyons models the formation of price expectations using a Bayesian model in the tradition of

Amihud and Mendelson (1980), Cohen et al. (1981), Conroy and Winkler (1981), Glosten and Milgrom (1985), and Madhaven and
Smidt (1991). See Flood (1994) for a non-technical discussion of this literature.

4. The literature explains bid—asked spreads on the basis of order-processing costs, asymmetric information costs, and inventory-
carrying costs. In the case of FX markets it has been suggested that inventory-carrying costs play the major role in explaining
spreads, where the costs of maintaining open positions will vary depending on the degree of price-risk and trading activity facing
market makers. Conversely, order-processing costs and asymmetric information costs are viewed as less significant in FX markets
given the large scale of transactions involved, efficiencies in order execution, and the absence of ‘inside information’ to trade on.

. See Lyons (2001) for an insightful discussion of the characteristics underlying the Kyle (1985) model and sequential-trade models,
esp. Chapter 4, pp. 63-93.

. As advanced by Muth (1961), rational expectations imply that agents make estimates of unknown variables (e.g. an asset’s price) in
the best possible manner (unbiased, on average), using all information currently available.

. This behaviour is inconsistent with the use of Bayes’ rule in predicting uncertain outcomes, as described in the seminal paper by
Kahneman and Tversky (1973) on the ‘psychology of prediction.’

. Recall from (5) and (7) that the parameter v, (or 1 — v,) reflects an unbiased probability of a rising (or falling) futures price, and
therefore that call (put) options will be exercised.

. Intuitively, consider a dice roll: one is red, representing sell orders; and the other is green, representing buy orders. Once rolled, the
resulting difference in red-versus-green values represents the market maker’s net position in maintaining a two-sided market. Thus,
noise trading is tantamount to rolling loaded dice.

10. Options market makers quote option prices based on the bid—ask spreads in the underlying futures market, which is both deeper

and more liquid (Silber, 1990).
11. These implications are consistent with standard inventory-cost models insofar as assuming that the market maker seeks to balance
order flow while maintaining inventory control, e.g. Amihud and Mendelson (1980) and Flood (1994).
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