Munich Personal RePEc Archive

Precautionary Learning and Inflationary Biases

Dave, Chetan and Feigenbaum, James (2007): Precautionary Learning and Inflationary Biases.

[thumbnail of MPRA_paper_14876.pdf]

Download (276kB) | Preview


Recursive least squares learning is a central concept employed in selecting amongst competing outcomes of dynamic stochastic economic models. In employing least squares estimators, such learning relies on the assumption of a symmetric loss function defined over estimation errors. Within a statistical decision making context, this loss function can be understood as a second order approximation to a von-Neumann Morgenstern utility function. This paper considers instead the implications for adaptive learning of a third order approximation. The resulting asymmetry leads the estimator to put more weight on avoiding mistakes in one direction as opposed to the other. As a precaution against making a more costly mistake, a statistician biases his estimates in the less costly direction by an amount proportional to the variance of the estimate. We investigate how this precautionary bias will affect learning dynamics in a model of inflationary biases. In particular we find that it is possible to maintain a lower long run inflation rate than could be obtained in a time consistent rational expectations equilibrium.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.