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Abstract 

 
Amid the controversies around the optimisation criteria and the objective 
functions when applying mathematical methods in economics, we 
proposed a method of quantifying a multi-criteria optimum, called 

critical distance method. The demonstration of this method is 
exemplified by assessing the investment optimum at microeconomic 
level (project or company portfolio choice). A hyperbolic paraboloid 
function of three variables (the recovery time, the investment value and 
the unit cost) representing a surface of the second degree has been 
defined. The intersection of the hyperbolic parabola planes identifies the 
point where the three considered variables have the same value, 
signifying an equal importance attached to them and revealing the 
optimum level of their interaction. The distance from this critical point to 
the origin represents, in fact, the criterion according to which one could 
choose the most efficient investment alternative. In our opinion, the 
proposed method could be extended to the study of any economic 
process. 
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 LUCIAN ALBU, ION CAMASOIU, GEORGE GEORGESCU 

 

 

As a rule, when we speak about the issue of the optimum of a 

certain process, we start by setting a criterion on the basis of which we 

are establishing the objective function; usually, this choice has a definite 

subjective character and one could not deny that, under certain 

circumstances, the present state of affairs itself imposes the restrictions 

and the factor which is to be optimised. But starting from a normal 

situation, when we do not need to fix a specific criterion, we shall usually 

try, after a selective filtering of possibilities, to choose the most 

convenient one, from our own point of view. Being fully aware of the 

importance of the volitional element, which lies at the basis of this 

consideration, no one could be satisfied because the maximisation or 

minimisation of a certain aspect of the respective process represents only 

a partial optimum. What we are interested in is optimising the process as 

a whole, not only one of its elements from a particular viewpoint. 

Considering all these elements and focusing on the economic field, 

all controversies that arise around the optimisation criteria and the 

objective functions, which have been chosen, are generated, in our 

opinion, by the one-sided way of approaching the essence of the 

economic optimum. This can be explained by the deficiencies of the 

mathematical methods applied in the economic field, which identify the 

optimum with the extreme value of a function, without taking into 
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account that the economic processes are extremely complex. Besides, the 

influencing factors are so numerous that, giving priority to one of them is 

risky. We emphasise the interdependent character of the economic 

processes in order to point out that, mainly at a microeconomic level, the 

optimum essence consists in ensuring the system functionality of the 

factors interdependence at the optimum level and not in the maximisation 

or minimisation of the action or the level of only one of them. Attaching 

importance to all the influencing factors, at least to the most relevant 

ones is required, so that a multi-criteria optimum of the economic process 

and not an economic optimum may come out from it. It is essential to 

find that method which is able to quantify the factors' interaction 

simultaneously as well as its optimum level, considering the equality 

between the assignments of the factors' importance in order to eliminate 

almost entirely the subjectivism when the priority is chosen. In this 

paper, starting from the example of the investment process, we propose a 

method, we have called the critical distance method by means of which 

one can establish the distance up to the point where the interaction of 

three investment factors is situated at an optimum level; the method as 

such can be generalised when approaching any kind of economic process, 

and the factors which are considered can be more numerous, only the 

mathematical calculus being a little bit more complicated. Being applied 

to the calculus of investment economic efficiency, to the level of the 

investment project or to the level of the economic unit, the optimum that 

is assessed by the critical distance method is a multi-criteria one. 

As regards the investment recovery time – the number of years in 

which the fixed assets value is recovered from the benefits at the level of 

the investment project or of the enterprise – it is calculated as follows: 

 

d = I / B      (1) 
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where: 

d – the investment recovery time  

I – the total value of the investment 

B – the annual benefit. 

The annual benefit resulting from subtracting the cost of the 

forecasted annual production (C) from the value of the commodity output 

(P) expected to be achieved, can be written: 

 

    d = I / (P - C)     (2) 

 

The annual production cost being obtained as a multiplication of the 

annual capacity of production expressed in physical units (Q) by the unit 

cost (c), it results that: 

 

    d = I / (P - Q c )     (3) 

 

Relation (3) is a basic prerequisite in our analysis because it has three 

main indicators that are used especially for choosing one or another of 

the investment alternatives. The correlation between the recovery time, 

the investment value and the unit cost, whose values are different from 

one alternative to another, is decisive in choosing the optimal one, taking 

into consideration that the implementation of a new investment's projects 

needs, is in most cases, a given value of the physical production, and 

under the circumstances of a specific selling price, the ensuring of a 

certain value of the annual production, the same for all alternatives 

included in the economic and technical feasibility studies. 

As a consequence, relation (3) is equivalent with: 
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    y = z / ( b - a x )     (4) 

 

where: 

y – the recovery time 

z – the total value of the investment 

a – the annual production capacity expressed in physical units 

b – the annual value of the commodity output. 

Analysing mathematically the relation (4) which will be explained 

in detail, we could choose the most efficient alternative of the 

investment, which will be suitable for an optimal correlation of the 

recovery time with the investment value and with the unit cost 

respectively, specifying that the critical distance method applied in this 

case, is valid for the same annual production capacities and for the annual 

values of the commodity output considered constant, as mentioned 

before. 

It is obvious that this method can be applied in other cases, too, for 

example, when one or both constants are meant to be considered 

variables due to the context and we have to choose other parameters. 

Writing relation (4) differently, we have: 

 

f ( x, y, z ) = a x y - b y + z = 0     (5) 

 

 This is a function of three variables representing a surface of the 

second degree, namely, a quadric. The invariant elements of the equation 

(5) (we call them invariant as they remain unaltered when the coordinate 

system is transformed), are: 

- the linear invariant I = 0 

- the square invariant J = [ ( a2 ) / 4 ] < 0  

      - the cubic invariant δ = 0 
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- the biquadratic invariant ∆ = [ ( a2 ) / 16 ] > 0 

So, ∆ being different from zero, it results that the function is a 

quadric proper, without a central point at a finite distance and because 

J<0 and ∆>0 it comes out a hyperbolic paraboloid function (the quadric 

or the surface of the second degree). 

In a general formula, a hyperbolic paraboloid function written in a 

canonical form represents the following equation: 

 

   [( x2 ) / m ] - [( y2 ) / n ] = 2 z    (6) 

 

where m, n are parameters. 

In the canonical form (6), a hyperbolic paraboloid has as 

symmetrical axes the standard coordinates, Ox, Oy, Oz, and as a central 

point the origin of these axes, namely the point O (0; 0; 0). The graphical 

representation of the canonical form is given in Fig. 1. 

In case of the hyperbolic paraboloid function defined by relation 

(5), from that we start in the mathematical demonstration of the critical 

distance method, we operated a translation of symmetrical axes of 

coordinates, as it is shown in Fig. 2. Also the origin point was translated 

to O’ (b/a; 0; 0). The translation of coordinates was made under the 

evidence that only the hyperbolic paraboloid surface for x, y, z > 0 is 

significant from an economic viewpoint; the negative values of these 

variables have no economic meaning. 

It is worth emphasising that the axis O'y' represents the asymptote 

of the hyperbolic paraboloid function, namely the maximum value just on 

the line of x, that is b/a, which, from an economic viewpoint stands for 

the proportion between the value of the annual commodity output and the 

physical production, being in fact the unit selling price. 
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Fig. 1 

 
 
 

 

Fig. 2 
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Applying the mathematical analysis to the function (5) it comes out 

that this one does not have extremes and we have to find a point that 

belongs to the hyperbolic paraboloid and could constitute a condition for 

efficiency. 

For this purpose, we consider each variable as constant, in turn. 

a) Considering x as constant, x = I, relation (5) becomes: 

 

z = (b – a I) y     (7) 

           

This represents the equation of a straight line which passes through the 

origin point and whose slope is m = b - a I. 

We can see that for: 

 

m = 1,  I = ( b - 1 ) / a  for y = z 

m < 1,  I > ( b - 1 ) / a  for y > z 

m > 1,                I > ( b - 1 ) / a  for y < z 

 

So, for I = (b-1)/a, z = y for any value of y and any value of z. This is a 

special point on Ox because (∀)y and (∀)z, x = (b-1)/a. For any other x 

different from this value, z ≠ y for any value of y and z. 

The intersection of the plane x = (b-1)/a (which is parallel to the 

plane xOy) with the hyperbolic paraboloid will be a straight line parallel 

to the bisection line of the angle zOy. The nearer it is to zero (slowdown), 

being continuously moving away from (b-1)/a, the bigger the value of z 

becomes, as compared to y, and the nearer x comes to b/a, then y is 

bigger than z. For x = b/a, the intersection of the plane with the 

hyperbolic paraboloid is the straight line O'y'. 
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b) Considering y as constant, namely y = t, the relation (5) 

becomes: 

 

z = bt – a t x      (8) 

 

This represents the equation of a straight line, having the ordinate 

n=bt and the slope m=at. We can see that for: 

  

t = x / ( b – a x )  or  t = z / ( b – a z ),  x = z 

 

This is a special point on Oy as for any value of x and any value of z, the 

point where 

 

x = z    is  y = x / ( b – a x ) = z / ( b – a z ) 

 

For any other y ≠ x / (b-ax) ≠ z / (b-az), x is different from z for (∀)x and 

(∀)z. Intersecting plane x = y (bisection line to planes zOy and xOy) with 

the hyperbolic paraboloid, we obtain a straight line which intersects the 

hyperbolic paraboloid in points of the value x = z. The nearer x is to the 

plane xOy, the bigger its value will be in comparison with z. 

c) Considering z as being constant  (z = k) the relation (5) 

becomes: 

 

b y – a x y = k      (9) 

 

This is the equation of a hyperbola which has as asymptotes, the 

axes Ox and O'y' and as asymptotical axis, the bisecting line of the OO'y 
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angle. This is an equilateral hyperbola with the central point in 0' and the 

vertex in M with the following coordinates: 

 

    [(b/a) - k/a; k/a; k ] 

 

The bisection plane of the angle formed by planes xOy and yOz 

intersected with the hyperbolic paraboloid represents a parabola and from 

relations x = y and y = z/(b-ax) we have the following parabolic equation: 

 

a x2 + b x – z = 0            (10) 

a y2 + b y – z = 0            (11) 

 

The parabola defined by relations (10) and (11) has the maximum 

of coordinates:  

 

[b/2a; b/2a; (b2)/4a ] 

 

For any z < (b2)/4a, any x and any y, there will exist two points in which 

x = y, which are the roots of the parabola of values x = y. For any z > 

(b2)/4a, any x and any y, there will exist no point in which x = y but x < 

y. 

For each level of z, there results, one by one, a hyperbole whose vertex 

M draws a central parabolic curve whose equation is: 

 

a x2 – 2 b x + ( b2 / a ) – z = 0          (12) 

 

The parabola defined by the relation (12) has as a minimum, the point 0' 

[(b/a); 0; 0 ] and as a final point from the hyperbolic paraboloid, the point 

N, having the coordinates [0; b/a; (b2)/2a]. 
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The parabolas (10) and (12) mark the limits of four zones on the 

hyperbolic paraboloid: 

- zone 1, between the plane z0v and the branch of the parabola (10) 

which is situated towards the origin. Starting from the value x =0 and y > 

0, x grows up faster than y, but x < y for the whole zone; 

- zone 2, between the branch of the parabola (10) situated towards 

the origin and parabola (12). Starting from the value x = y, x grows up 

faster than y, and x > y for the whole zone; 

- zone 3, between parabola (12) and the other branch of the 

parabola (10). Starting from the central parabola, x grows up more slowly 

than y, but x > y for the whole zone; 

- zone 4, between the branch situated on the right side of the 

parabola (10) and the straight line O’y’. Starting from x = y, x grows up 

more slowly than y (x tends to b/a, y tends to the infinite), and x < y for 

the whole zone. 

 

 

Fig. 3 
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Intersecting the resulting planes at points a, b, and c (Fig. 3) there 

results the point V that will be called "critical point", having the 

coordinates: 

 

[xcr = (b-1)/a; ycr = (b-1)/a; zcr = (b-1)/a ] 

 

This is the only point on the hyperbolic paraboloid in which the 

three variables considered, i.e. the recovery time, the investment value 

and the unit cost have the same value, signifying that equal an 

importance is attached to them. The coordinates of the critical point V are 

fundamental for establishing the unit of measure for the three variables. 

We mention that there exists a point on the hyperbolic paraboloid in 

which x, y, and z have the same coordinates, namely the origin O (0; 0; 

0) which, however, has not an economic meaning. 

The importance of the existence and determination of the critical 

point comes out from the fact that this is the maximum limit of the 

efficiency domain given by the distance from this point to the origin 

which is in fact, the criterion according to which we choose the efficient 

alternatives. 

The position of the critical point as to the origin is expressed by the 

critical distance d* which is calculated by the following formula: 

 

d* = ( xcr
2 + ycr

2 + zcr
2 )1/2 = [ ( b – 1 ) / a ] ( 31/2 )         (13) 

 

The efficiency condition of the investment alternatives will be 

given by respecting the inequality: 

 

d = ( x2 + y2 + z2 )1/2 < d*           (14) 
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Fig. 4 

 

 

Relation (14), is, in fact, a sphere with a radius d* = [(b-1)/a](31/2) 

with the centre in the origin whose intersection with the hyperbolic 

paraboloid will give birth to the efficiency domain: 

 

x2 + y2 + z2 – 3 [ ( b – 1 ) / a ]2 = 0 

y = z / ( b – a x )            (15) 

 

The graphical representation of the investment alternatives efficiency 

domain is given in Fig. 4. 

From a mathematical viewpoint, the interpretation of the 

correlation between the recovery time, the investment value and the unit 
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cost, did not take into account the units of measurement in which these 

indicators are expressed, but only their mathematical relation, the 

variation of one in comparison with others, reflected by the spatial 

representation of their interdependence. 

The recovery time of investments is generally measured in years, 

i.e. in units of time, because the total value of the investments is related 

to the benefit obtained in one unit of time: the year.  

On the other hand, the recovery time can be interpreted as a 

proportion between value units of measures, representing how many 

monetary units have to be invested to obtain one monetary unit of the 

return in a year. This means that, being interpreted in this way, the 

measurement units of these three indicators studied from their 

mathematical relation viewpoint are comparable, and that their spatial 

representation on the three axes has significance, and can be 

economically interpreted.  

The application of the critical distance method raises some issues 

related to setting a unitary criterion according to which one could choose 

the measurement units both for expressing the variables and for the 

parameters. It is worth mentioning that the right choice of the 

conventional measurement units with a view to determining correctly 

both the critical distance and the distances as to the critical point of each 

alternative depends on the concrete situation of the investment 

alternatives. We also point out that because of the diversity and 

complexity in practice of the investment process, the application of a 

unitary criterion according to which we could choose the measurement 

units is not possible.  

Synthesising the above elements, the algorithm for the investment 

optimum assessment according to the critical distance method is the 

following: 

 14 



1. One establishes the conventional units of measure of the 

parameters a and b and, on their basis, those of the variables x and z, y 

being expressed a priori in years; 

2. One calculates the values reduced to conventional units for all 

investment variants, which will be taken into consideration later on; 

3. One calculates  d* = [ ( b – 1 ) / a ] ( 31/2 ) 

4. One calculates di = ( x2 + y2 + z2 )1/2 for each investment  

alternative 

5. One chooses the efficient alternatives on the basis of the 

criterion:  

    di < d* 

 

6. One assesses the optimum on the basis of the criterion: 

                             

min (di) 

 

The mathematical approach for assessing the economic efficiency 

of the investment alternatives by the critical distance method, points out 

general characteristics of the investment process, analysing the recovery 

time in correlation with the investment value and the unit cost. This 

means that: 

- for a low level of the unit cost, the investment value increases 

more in comparison with the increase of the recovery time, and the nearer 

the unit cost is to the selling price, the bigger the recovery time is in 

comparison with the increase of the investment value; 

- for a low level of the investment, the unit cost increases more in 

comparison with the increase of the recovery time and the bigger the 

level of the investment is, the bigger the increase of the recovery  time, 
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tending to the infinite, in comparison with the increase of the unit cost 

which tends to the value of the selling price; 

- for a low level of the recovery time, the increase of the unit cost 

is bigger in comparison with the increase of the investment value, and the 

bigger the recovery time, the higher the increase of the investment value 

in comparison with the increase of the unit cost. 

The critical distance method proposed in order to quantify the 

microinvestment optimum has to be applied only according to specific 

circumstances. Its general principles being valuable for all cases, it can 

be extended, in our opinion, to the study of any economic process. 
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