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Abstract: 

Theoretical constraints on economic model parameters often are in the form of inequality 

restrictions.  For example, many theoretical results are in the form of monotonicity or 

nonnegativity restrictions.  Inequality constraints can truncate sampling distributions of parameter 

estimators, so that asymptotic normality no longer is possible.  Sampling theoretic asymptotic 

inference is thereby greatly complicated or compromised.  We use numerical methods to 

investigate the resulting sampling properties of inequality-constrained estimators produced by 

popular methods of imposing inequality constraints, with particular emphasis on the method of 

squaring, which is the most widely used method in the applied literature on estimating integrable 

neoclassical systems of demand equations.  See Barnett and Binner (2004).   
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1.  Introduction 

We investigate the possible bias in the asymptotic standard errors of estimators of 

inequality constrained estimators, when the constraint is imposed by the popular method of 

squaring.  That approach is known to violate a regularity condition in the available asymptotic 

proofs regarding the unconstrained estimator, since the sign of the unconstrained estimator, prior 

to squaring, is nonidentified.  Most existing theoretical results on asymptotics subject to 

inequality constraints condition upon linearity of the model, while most integrable neoclassical 

demand and supply system models are nonlinear.  But even in the case of linear models, the 

regularity conditions used in the existing asymptotic proofs are violated by the nonidentification 

of the sign of the transformed parameter in the method of squaring.  See. e.g., Barnett (1976), 

Gourieroux and Monfort (1982), Gourieroux and Monfort (1995, p. 247), Rothenberg (1971), and 

Silvapulle and Sen (2005, section 4.9). 

 

2.  Example 

As an illustration, consider this simple classical linear regression model, t ty x tβ ε= + , 

for t = 1, …, n, where the disturbance tε  is assumed to be normally distributed with mean zero at 

every observation.  Let y = (y1, …, yn)
T, x = (x1, …, xn)

 T, and ε = (ε1, … , εnሻ T , so that the regression model can be written as  β= +x εy , and let the covariance matrix of ε be 
2σ I, 

where I is the nn×  identity matrix.  Suppose that the unconstrained least squares estimate of the 

model’s one parameter is  with standard error of 2.   1ˆ =β

Suppose that prior information about the parameter is available in the form of a 

nonnegativity constraint. When nonnegativity is imposed, the constrained estimator would impute 

zero probability to the area to the left of the origin. The region not satisfying the constraint in 

figure 1 would be replaced by a probability mass function concentrated at zero with height 0.3015 

in our example.  The result is a mixed discrete-continuous distribution in the form of a truncated 

normal distribution.  Inferences based on the standard error of the unconstrained estimator or on 

asymptotic normality of the constrained estimator would be compromised.  The sampling 

distribution of the estimator, with and without inequality constraint, is displayed in figure 1. 

To address problems stemming from truncation of sampling distributions, different 

techniques have been proposed in the literature, some using the sampling theoretic approach and 

same using the Bayesian approach.  In this paper we focus on the sampling theoretic approach 

and its asymptotic properties. 



3 

 

 

3.  Sampling Theoretic Approaches 

We consider the following transformation approach, widely used to impose inequality 

constraints in econometrics.  If  is a continuous function of g θ , and β  is the constrained 

parameter, each approach acquires point estimates of β  from the transformation )(θβ g= , 

where g is chosen such that ( )g θ satisfies the relevant inequality constraint for all unconstrained 

values of θ .  The constrained parameter β  is replaced within the regression by )(θβ g= , and 

the parameter θ  is estimated without constraints.  The unconstrained parameter can be estimated 

by maximum likelihood, and the constrained parameter estimate can be recovered from the 

invariance property of maximum likelihood estimator.1  No compromise in the approach to point 

estimation is implied by truncation of the sampling distribution, but computation of the standard 

error of the constrained estimator presents problems. 

 The "method of squaring" and the exponential functional form are two commonly used 

transformations, g.  For example, to constrain the parameter β  to be nonnegative, the “method of 

squaring” transformation, , could be used.  Then substitute   for 
2θβ = 2θ β  in the equation to 

be estimated and estimate θ  without constraints.  Alternatively an exponential transformation 

could be employed by defining e
θβ =  and then proceeding as in the method of squaring. This 

exponential transformation can be used, if β  must be strictly positive.  But that approach has an 

obvious problem when the constraint is binding, so is much less widely used than the method of 

squaring. 

In the next three subsections, we present competing techniques for determining the 

standard errors of the estimates. 

 

3.1.  The Delta Method 

The delta method exploits the asymptotic properties of the estimators.  Under certain 

additional assumptions, if  is a vector of continuous functions of the vector of parameters, 

, such that 

( )g θ

θ ( )
T

∂=
∂

g θΓ
θ

                                                

  and if  has asymptotic distribution with mean  and covariance θ̂ θ

 
1 The maximum likelihood estimator of )(θβ g= is . )ˆ( MLg θ
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matrix V, then  has a limiting distribution, with mean  and covariance matrix 

.

ˆ ˆ( )=β g θ ( )g θ

TΓVΓ 2 

Two problems arise when using this approach.  The first is that the sample size in 

economic applications often is small. To avoid having our results compromised, we will increase 

our sample sizes sequentially to assure that small sample size is not a source of efficiency loss. 

The second problem, on which we focus, is related to the choice of the functional form 

used for the transformation of parameters.  If the function g  is continuous but not bijective, the 

signs of the unconstrained parameters, , may be nonidentified.  For example, when using the 

method of squaring to impose nonnegativity on βi = gi(θi), the estimation of 

θ
ˆ( )i ig θ  cannot 

distinguish between ˆ
iθ−  and ˆ

iθ+ .  Hence, one of the regularity conditions is violated in the 

asymptotic proof with the delta method.  We investigate the extent of the damage by using the 

delta method, when the sign of θi is nonidentified. 

It should be observed that the delta method usually is used, with  assumed to be 

asymptotically normal and the stronger conclusion than we use is that β  is asymptotically 

normal.  But since we are exploring the implications of truncation of the distribution of , 

asymptotic normality is not possible.  Our concern is only with the first two moments of the 

limiting distribution.

θ̂

ˆ = g ˆ( )θ

ˆ ˆ( )=β g θ

3 

 

3.2.  The Jackknife 

The jackknife is a resampling technique that consists in creating n samples from an 

observed sample of size n, by deleting one observation each time. The resulting n samples are of 

size n - 1. The statistic of interest is estimated using each sample, and the n estimates are 

combined to obtain the mean and the standard errors. Wu (1986) refers to this approach as the 

                                                 
2 We use the superscript T to designate transpose of a matrix.  In the case of linear least square estimation, 

the covariance matrix V is 

2
1

n

σ −Q , where Q is the limit of  as n goes to infinity.  In nonlinear 

least square estimation of the model 

( ) /T
nX X

( , )= +y h β X ε , the covariance matrix V  is found by replacing Q by 

0 0 0

1

1
plim( ) p lim[ ( ,

n

in =
= = ∂ ∂∑Q X X h x( ( , ) / )(i∂h x β β ) / )]T T

i∂ β β , where X is the matrix having as its 

rows the vectors {xi
T:  i = 1, …, n}. 

3 As we discuss below, problems with higher order moments are unavoidable. 
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delete-one jackknife.  In large samples, Miller (1974) proves that this technique produces 

consistent results for bias and variance estimation.4  

Another jackknifing technique known as the delete-k jackknife consists in deleting an 

arbitrary number, , of observations.  Some method must be selected for choosing k .  Wu 

(1985, 1986) shows that in practice, if one chooses 

k

nkn 72.=− , where n is sample size, the 

delete-k jackknife possesses "nice asymptotic properties." 

 

3.3.  The Bootstrap 

The bootstrap is a computer-based resampling method for assigning a measure of 

accuracy to a statistical estimate (Efron 1979). In regression analysis, the bootstrap method often 

is used to estimate finite-sample standard errors, when asymptotic standard errors are unreliable.  

Consider the regression equation, εβXy += ),(h , where X is a vector of k regressors and β is a 

vector of parameters.  Two frequently used methods are bootstrapping the fitted residuals or 

bootstrapping the pairs, (X,y), where X is the n ൈ k matrix of k regressors and y is the n 

observations on the dependent variable. 

Bootstrapping the residuals consists of creating J bootstrap samples,  

)})ˆ,(,(),...,)ˆ,(,(),)ˆ,(,{( **

222

*

111

*

jnnnjjj hhhX εεε +++= βxxβxxβxx

* * *
1 2( , , ..., )j j jn

 for j = 1, 2, ... , J, 

where xi is the ith row of matrix X, and ε ε ε

εβXy

 are the errors drawn with replacement 

from the residuals during the j’th bootstrap, when estimating += ),(h .5  

Alternatively, bootstrapping (X,y) proceeds as follows.  The matrix X of n observation on 

the k exogenous variables, x, and the vector y of n observations on the one endogenous variable, 

y, are bootstrapped J times, creating { }*
1 1 2 2( , ), ( , ),..., ( , )j j j j j jn jnX y y y= x x x  for j = 1, 2, ... , 

J, where ( , )ji jiy x  is the ith draw with replacement from the original sample during the j’th 

bootstrap.  After estimating the model on the J bootstrap samples, we obtain the bootstrap sample 

estimates of the parameters, , , …, . 
 
Assuming , then the J bootstrap 1β̂ 2β̂ Jβ̂ }ˆ,...,ˆ{ˆ 1 k

jj ββ=jβ

                                                 
4
 Wu (1986) warns about the theoretical difficulties in generating confidence intervals and in estimating 

variances, when the functional form is non-smooth.  But all of the transformations we use in 

reparameterizing are smooth. 

 
5 This resampling method assumes that the errors are independently and identically distributed.  That 

assumption is violated in the presence of heteroskedastic or autocorrelated errors.  Extensions that correct 

for those problems exist.  See, among others, Efron and Tibshirani (1986). 
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replications of (
rβ̂ },...,2,1{ kr∈ ) can be used to compute the estimate of the standard error, 

 of , as follows:)ˆ(ˆ rβσ rβ̂ 6 

)1(ˆ

2

=σ
1

]ˆˆ[
1

*

−

−∑
=

J

J

i

rr

i ββ
)ˆ( rβ  

 

where 

)2(

ˆ r

iβ
ˆ 1

J

J

i

∑
=β

                                                

*r =  

 

4.  A Nonlinear Money Demand Function Illustration 

In this section we describe a typical model having the ability to estimate the elasticity of 

substitution between two goods.  That model will be used in the remainder of this paper to 

provide parameter values used as a “norm” for illustration in the figures.  To conserve on journal 

space, we are presenting plots of results only with parameter estimates acquired from that 

illustration.  But results with only one vector of parameter values are of limited value, without 

confirmation that the results are robust to the parameter value choices.  In fact, we ran our Monte 

Carlo simulations with different values of the parameters.  Since we found our results to be robust 

to different parameter settings, we are providing the plots only for our one (admittedly arbitrary, 

but currently interesting) calibrated “norm” settings of model parameters.
7   

 

4.1.  Problem Description 

In producing our parameter setting norm, we decided to look at the relationship between 

two components of financial transactions balances.  The degree of substitution among monetary 

assets is an important issue that has macroeconomic consequences and has been the subject of 

many published papers and books.  The commonly published statistics on monetary aggregates 

use simple sum aggregation.  Such summation aggregation implies that the assets are regarded by 

consumers as perfect substitutes. When different goods are perfect one-to-one substitutes, utility 

maximizers will hold the asset with the lowest opportunity cost.  But investors’ portfolios of 

monetary assets usually include a variety of assets with different opportunity costs.  Hence, 

 
6  See Efron and Tibshirani (1993).   
7 The SAS code and outputs with other parameter settings are available upon request. 
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monetary assets are revealed not to be regarded as perfect substitutes.  Knowledge of the 

elasticities of substitution among monetary assets is highly relevant to determining bias, when 

assets are aggregates using simple sum aggregation. 

In the two-goods case, the constant elasticity of substitution (CES) utility function is both 

flexible and globally regular.  Hence, the CES is a suitable choice for our illustration. 

 

4.2.  Data Description and Model Design 

Monetary Services Index (MSI) data are supplied for the United States by the Federal 

Reserve Bank of St. Louis on a regular basis.  MSI data accurately measure the flow of monetary 

services received by households from monetary assets
8.  These data are based upon Divisia 

aggregation over highly disaggregated component data.  We extract from these input data two 

elements between January 1992 and August 2005:  the seasonally adjusted savings deposits at 

commercial banks net of money market deposit accounts ( ) and the seasonally adjusted 

savings deposits at thrift institutions net of money market deposit accounts ( ). 

(1)
q

(2)
q

We estimate a 2-good demand function system derived from a C.E.S. utility function of 

the form: 

(1) (2) (1) (2) 1/
1 2( , ) [ ( ) ( ) ] , (3U q q A q q

ρ ρ ρα α= + )  

where 121 =+αα , 1<ρ , and A is a positive scalar, which can be normalized to 1.  When a 

representative consumer is maximizing utility subject to the budget constraint, the demand 

function for commodity 1 can be written in budget share form as follows: 

(1) 1
1 1

(1) 1 (2) 1
1 2

( )
, (4

( ) ( )

t
t

t t

w )
σ σ

σ σ σ σ
α π

α π α π

−

− −=
+

 

where the elasticity of substitution between the two goods is σ , with )1/(1 ρσ −= .  The 

constraint 1<ρ  implies 0>σ .  The subscript t represents time,   is the share of savings at 

commercial banks, and 

)1(
w

(1)
tπ  and 

(2)
tπ  are the user costs of savings deposits at commercial banks 

and at thrift institutions respectively.  The formula for monetary services user costs was derived 

in Barnett (1978,1980).  With the parameter  normalized to be 1, we change the notation for 

 to γ, leaving two parameters to be estimated:  γ and σ. 

σα 2

σα1

                                                 
8 For details on the theory and methodology relevant to these indexes, see Barnett (1977, 1978, 1980) and 

Anderson, Jones and Nesmith, 1997. 
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4.3.  Econometric Results 

We employ maximum likelihood estimation of the model represented by equation 4.  

Since the two expenditure shares sum to one, the second equation will be omitted from the 

estimation and can be recovered from equation 4. The model is estimated with an additive AR(1) 

error term.9      

The parameter estimates of equation 4 with an additive autoregressive error structure are 

shown in table 1. Note the finding that substitution among the two assets, savings deposits at 

commercial banks and savings deposits at thrift institutions, is very low (σ = .21).  Even though 

both are savings deposits, simple sum aggregation over them would not be justifiable, since the 

services produced by the two types of savings deposits are far from perfect substitutes.  We were 

surprised by just how low that elasticity of substitution was for savings deposits at different 

institution types.  In addition, since this minor step in our procedure is only to produce a 

calibration norm for illustration figures from our Monte Carlo experiments, we felt that such a 

low elasticity of substitution cannot be viewed as adequately typical.  So in generating simulated 

data for our initial Monte Carlo experiments, we adjusted the elasticity of substitution upwards to 

0.37.  We round γ only slightly upwards to 2.8.  The figures in this paper are conditional upon 

those initial calibrated settings for parameters, but the figures produced the same conclusions with 

other parameter settings.  

 

Table 1: Parameter estimates (standard errors in parenthesis) 

σ  γ α

0.21 

(0.42) 

2.728 

(0.15) 

1.004 

(0.002) 

 

 

5.  Monte Carlo Experiment 

The two goods we simulate are assumed to be substitutable to some degree, so that the 

two goods (perhaps monetary assets, but only used as an illustration in the one calibrated case) 

are subject to the inequality constraint 0σ > .  With the simulated data described below, we 

estimate the demand model with the simulated data subject to that inequality constraint, using the 

method of squaring by applying the reparameterization, , while alternatively 

the exponential transformation approach is implemented by applying the reparameterization, 

220 01.010 θσ += −

                                                 
9 We choose α to be the parameter of the AR(1) process.   
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0.00001e
θσ = .  The next sections describe the data generation process and the estimation 

method, followed by the results.  There are two objectives of our Monte Carlo experiment:  (1) 

assess the potential damage to the asymptotic properties of )(θσ g=  resulting from the 

indeterminacy of the sign of the squared parameter θ  in the method of squaring10  and (2) 

determine the asymptotic properties of the constrained parameter when the jackknife and the 

bootstrap are used to calculate the finite sample standard errors, with sample sizes permitted to 

increase to large values. 

The parameters (σ,γ) are set at various values, but since our results were robust to the 

setting of those parameters, we provide illustrative figures only for the case calibrated to have 

(σ,γ) = (0.37,2.8). 

 

5.1.  Data Generation Process 

The data generation process proceeds in six steps, following the setting of the values of 

the parameters. 

 

Step 1: Generate three series of 100,000 random numbers that will be the seeds for generating 

two user costs series and the white noise errors.  

 

Step 2: Generate two stationary series containing S observations and representing the unit costs of 

two categories of assets {
(1)
tπ  and 

(2)
tπ :  t = 1, 2, 3,…, S].  We generated that data from the 

following simple stationary specifications:   and , where v1 and v2 

are uniformly distributed between 0 and 1.

(1)
12 6t vπ = + (2)

tπ 22 6v= +
11      

 

Step 3:  Use equation 4 to generate a series of expenditure shares of asset 1, , with the true 

values of the parameters set at 

(1)
tw

37.0=σ , 8.2=γ . The expenditure share of monetary asset 2 

are then derived from . 
(1)

w w
(2) 1t t+ =

 

Step 4: Generate a white noise error term series with mean zero and standard deviation equal to 

0.04. 

                                                 
10 In this context,  

220 01.010)( θθ += −
g

11 We considered using simulated autogressive price data, but the nature of those stochastic processes 

seems unrelated to the truncation and sign-identification issues that are our focus.   
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Step 5: Add the errors created in step 4 to the series of expenditure shares of asset 1 from step 3.  

The resulting realized stochastic shares are designated by fw1.  

 

Step 6: The set of increasing sample sizes are chosen to be S 800 ,400 ,200 ,100 ,60 ,45 ,30} א, 

1000, 2000, 3000, 4000 ,..., 100000}. 

 

5.2.  Estimation Techniques 

With the simulated data, maximum likelihood is used to estimate equation 4 with  

replaced by fw1. The positivity constraint on σ is imposed using the method of squaring with 

1
tw

20 210 0.01σ θ−= +  and alternatively by using the exponential transformation, 0.00001e
θσ = .  

Our primary objective is to determine whether )]()ˆ([ θθ gEgNY −=  has a limiting 

distribution providing accurate measures of its standard deviation.  Other properties of the 

limiting distribution are not relevant to this study, and figure 1 demonstrates that limiting 

normality is impossible for Y with the distribution of ˆ( )g θ  being truncated at the origin.   

Nevertheless, it is possible that enough properties of the limiting distribution may be 

undamaged so that limiting normality of Y cannot be rejected empirically.  Since we are only 

concerned with the first two moments, the unavoidable errors in the higher order moments (that 

do not exist with the normal distribution) need not concern us.  In fact our objective is focused 

solely on convergence of the standard deviation, which remains possible, even if the distribution 

cannot converge to a limiting normal.    

For every generated sample of size S, we estimate the model using the method of 

squaring first and then by using the exponential transformation.  If the parameter estimation 

converges as S increases with the method of squaring, we consider the trial to be successful.  This 

procedure is repeated 1000 times and the parameter estimates from the first 220 successful 

experiments are collected to compute ˆ( ) ( )N g Eg ˆθ θ⎡ ⎤−⎣ ⎦ , with N being the sample size, set at 

the increasing values of S.12 

We first look at the evolution of the finite-sample estimated standard deviation of 

ˆ( ) ( )N g Eg ˆθ θ⎡ −⎣
⎤
⎦

                                                

, as N diverges to infinity, since those standard deviations are the focus of 

 
12 This number of replications, 1000, is arbitrary but its only importance is to guarantee that each sample of 

parameter estimates will have 220 observations. 
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this paper.  If a limiting distribution exists, the variance should be stationary as the sample size 

increases.  Although limiting normality is impossible with truncated distribution, we also 

compare with the known quantiles for the normal distribution.  Finally, we use three normality 

tests: the Kolmogorov-Smirnov, the Cramer-von Mises, and the Anderson-Darling tests. 

These tests are based on the empirical distribution function (EDF).  The Kolmogorov-

Smirnov test statistic D is based on the largest vertical difference (sup norm) between the EDF, 

, and the theoretical distribution function F(x) so that ( )nF x ( ) ( )x nD Sup F x F x= − .  The 

Anderson-Darling and the Cramer-von Mises tests use the weighted square difference as the 

norm.  The Cramer-von Mises test weights are constant and equal to 1, while the Anderson-

Darling weights are given by F(x)(1 - F(x)).  The tails are weighted more in the Anderson-Darling 

test than in the Kolmogorov-Smirnov or the Cramer-von Mises tests.  With each of the three tests, 

the smaller the test statistic, the closer the empirical distribution is to the normal distribution.    

We cannot take seriously limiting normality with truncation, since the normal distribution 

has no moments higher than the second moment, while a truncated distribution does.  

Nevertheless, empirical inability to reject limiting normality could strengthen our ability to use 

the first two moments from the limiting distribution in producing asymptotic inferences, since the 

first two moments have particularly heavy influence on normality tests. 

 

5.3.  Estimation Results 

The results about the asymptotic properties of ˆ( ) ( )N g Eg ˆθ θ⎡ ⎤−⎣ ⎦  are summarized in 

tables 2a,b and in figure 2 - 5.  The method of squaring was implemented by defining 

 and the exponential transformation by defining g(θ) = 0.00001exp(θ).
220 01.010)( θθ += −

g 13  

We have not attempted to weaken the existing asymptotic proofs for the delta method to permit 

the nonidentified sign of the unconstrained parameter estimates.  But our Monte Carlo results 

demonstrate that the nonidentified sign does not compromise the asymptotic standard errors.  It 

should be emphasized that the regularity assumptions in the existing proofs are sufficient but not 

necessary for the results on the variance of the limiting distribution. 

Figure 2 exhibits the estimated standard deviation of the limiting distribution of 

ˆ( ) ( )N g Eg ˆθ θ⎡ −⎣
⎤
⎦

                                                

 with the two reparameterizations (method of squaring and exponential 

transformation).  These results were acquired from the delta method’s asymptotic distribution 

 
13 As mentioned in a prior footnote above, we also ran our model with different values of the constrained 

parameter (elasticities of substitution), and those results are available upon request. 
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theory, but with increasing simulated sample sizes.  The results are almost identical, which 

demonstrates that the estimated asymptotic standard errors do not depend on the transformation 

used to impose the inequality constraint, or the nonidentification of the sign of the unconstrained 

parameter with the method of squaring. The exponential transformation and the method of 

squaring perform equally well. As the sample size increases, the estimated standard deviation of 

ˆ( ) ( )N g Eg ˆθ θ⎡ −⎣
⎤
⎦  converges to approximately 0.42 in both cases.  This convergence tends to 

support the use of the asymptotic theory. 

The results in figure 2 are consistent with those in the first plot (Std1) of figure 3, which 

shows the directly computed finite sample estimated standard deviation of ˆ ˆ( ) ( )N g Egθ θ⎡ ⎤−⎣ ⎦  

from the Monte Carlo simulation results.  The standard error again converges to approximately 

0.42 as the sample size increases.  We view 0.42 thereby as being the correct limiting standard 

deviation against which all other computations should be compared.14   

The second and third plots (Std2 and Std3) in figure 3 show the evolution of the finite 

sample estimated standard deviation of ˆ( ) ( )N g Eg ˆθ θ⎡ ⎤−⎣ ⎦  for increasing sample size, when 

the bootstrap and the jackknife are utilized. The jackknifed standard deviation appears to be 

stationary around 0.22, which is almost half the table 1 standard deviation of the constrained 

estimator. 

The bootstrap performs better than the jackknife, since the bootstrapped standard 

deviation does converge to the Std1 estimated standard deviation of the limiting distribution of Y, 

as the sample size increases, while the jackknifed standard deviations are consistently lower than 

the bootstrapped standard deviation.  Figure 4 shows that this result is a consequence of the 

relatively small proportion, k, of jackknife observations deleted.  After almost 90 percent of the 

sample is deleted, the jackknifed finite-sample standard deviation of Y does converge to the 

estimated standard deviation of the limiting distribution of Y.  These results strongly argue against 

the jackknife, in such applications as consumer demand modeling, where very large sample size 

is the exception rather than the rule. 

                                                 
14 This Delta method standard deviation converges to the table 1 standard errors of the constrained 

parameter, regardless of the distribution of the unconstrained parameter and regardless of whether or not 

the sign of the unconstrained parameter is identified.  But we view this as being a coincidence.  In Table 1, 

we are using real monetary asset user cost data, while in Figure 3, we are using simulated user cost data.  

Also in Figure 3, we are plotting the standard deviation of the limiting distribution of 

ˆ( ) ( )N g Eg ˆθ θ⎡ −⎣
⎤
⎦   , while in table 1, we provide the standard error of the estimate of ˆ( )g θ .   
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The bootstrap standard deviation of Y performs very similarly to the estimated standard 

deviation from the theoretical limiting distribution, as figure 5 shows.  Not only are the two very 

similar to each other at all sample sizes, but converge to each other as sample size grows. 

As the sample size increases, the normality of the limiting distribution of 

ˆ( ) ( )N g Eg ˆθ θ⎡ −⎣
⎤
⎦  from both the bootstrap and the jackknife cannot be rejected.  This is 

despite the fact that normality is impossible, as a result of the truncation displayed in figure 1.  As 

displayed in table 2b, we cannot reject the null hypothesis of normality at the 15 percent level 

with the Kolmogorov-Smirnov test and at 25 percent with both the Cramer-von Mises and the 

Anderson-Darling tests.  In addition, as displayed in table 2a, the estimated quantiles of the 

normal distribution of ˆ( ) ( )N g Eg ˆθ θ⎡ −⎣
⎤
⎦  converge to the observed quantiles, as the sample 

size diverges to infinity.  While we know that limiting normality is impossible for a truncated 

distribution, we are only concerned in this paper about whether or not the asymptotic theory is 

adequate for certain properties --- in particular standard errors.  Our numerical experiments 

demonstrate that the asymptotic theory, using the delta method, is undamaged by the sign of the 

unconstrained parameter being nonidentified.  Our results with tests of limiting normality suggest 

that there are properties of the limiting distribution that also are undamaged, at least 

approximately, but we do not pursue the implications for other properties of the limiting 

distribution.  Clearly higher order limiting moments cannot be used, since the normal distribution 

has no moments higher than the second moment, while the truncated distribution in table 1 

displays existence of higher order moments, such as skewness towards the right.   

 

6.  Conclusion 

In this paper, our goal is to investigate the empirical implication of inequality constraints 

imposed on the parameters of a regression.  In particular, we are interested in knowing the 

asymptotic implications of the nonidentified sign of the unconstrained parameter in the method of 

squaring.  While that nonidentified sign violates the regularity conditions of the currently 

available asymptotic proofs with the delta method, we cannot rule out the possibility that the 

usual asymptotic properties of the constrained parameter still apply, despite the unavailability of a 

theoretical proof.  As a result, we explore that issue using numerical Monte Carlo methods.  

Results with the popular method of squaring were compared to results with the exponential 
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transformation, which violates different regularity conditions of available theoretical asymptotic 

proofs.15 

We find that the theoretical regularity conditions violations do not affect the usefulness of 

existing asymptotic theory in determining standard errors of the constrained parameter estimates 

by the delta method.  In addition, the results were not sensitive to the functional form used to 

impose the inequality constraint. 

Our second result compares the estimated standard errors from the jackknife and the 

bootstrap.  We find that the finite sample bootstrapped standard errors and the estimated standard 

errors from the limiting distribution of the constrained parameter estimate converge to each other.  

However, the finite sample jackknifed standard errors is an increasing function of the proportion 

of the sample deleted within that procedure.  For that reason, the bootstrap dominates the 

jackknife, even though the finite sample jackknifed standard errors are lower than the finite 

sample bootstrapped standard errors. 

                                                 
15 Any transformation that produces truncated sampling distribution for the transformed parameters 

inherently must violate the existing proofs, which produce the excessively strong result of asymptotic 

normality. 
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Table 2a:  Normality tests for ˆ( ) ( )N g Eg ˆθ θ⎡ ⎤−⎣ ⎦ , where g(θ) = σ.  Quantiles for 

limiting normal distribution of Y. 

 
 

  BOOTSTRAP 100 JACKKNIFE N=100 

-----Quantiles------ -----Quantiles------ 
Percent Observed Estimated Observed Estimated 

1.0 -1.65570 -1.667597 -0.49016 -0.554355 

5.0 -1.25156 -1.179081 -0.40389 -0.391958 

10.0 -1.02117 -0.918654 -0.32782 -0.305385 

25.0 -0.43871 -0.483493 -0.16927 -0.160725 

50.0 0.03750 0.000003 0.00314 0.000003 

75.0 0.47197 0.483498 0.18360 0.160731 

90.0 0.92255 0.918660 0.29008 0.305390 

95.0 1.14766 1.179086 0.33082 0.391964 

99.0 1.46774 1.667603 0.54913 0.554361 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 

BOOTSTRAP 30,000 JACKKNIFE N=30,000 

-----Quantiles------ -----Quantiles------ 
Percent Observed Estimated Observed Estimated 

1.0 -0.51335 -0.5418 -0.08953 -0.094693 

5.0 -0.40140 -0.3830 -0.06416 -0.066954 

10.0 -0.30727 -0.2984 -0.05586 -0.052167 

25.0 -0.14700 -0.1570 -0.03173 -0.027458 

50.0 0.01539 0.00000 0.00216 -0.000004 

75.0 0.14528 0.1571 0.02984 0.027450 

90.0 0.30632 0.2985 0.05063 0.052159 

95.0 0.41219 0.3831 0.06246 0.066947 

99.0 0.48937 0.5419 0.09395 0.094686 
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Table 2b:  Normality tests for ˆ( ) ( )N g Eg ˆθ θ⎡ ⎤−⎣ ⎦ , where g(θ) = σ. Goodness of fit tests 

for limiting normal distribution of Y. 
 
 
Sample size=100 

 

TESTS  BOOTSTRAP  JACKKNIFE 
--Statistic--   --p Value-- --Statistic-- --p Value-- 

Kolmogorov-Smirnov   

Cramer-von Mises     

Anderson-Darling   

D    0.0467   

W
2
   0.0704   

A
2
   0.4567  

Pr > D    > 0.15 

Pr > W
2     

> 0.25 

Pr > A
2     

> 0.25 

D  
 
  0.057   

W
2       

0.201   

A
2       

1.28  

Pr > D   < 0.010 

Pr > W
2   

< 0.005 

Pr > A
2   

< 0.005 

 
Sample size=30,000 

 

TESTS  BOOTSTRAP  JACKKNIFE 
--Statistic--   --p Value-- --Statistic-- --p Value-- 

Kolmogorov-Smirnov   

Cramer-von Mises     

Anderson-Darling   

D    0.0368   

W
2
   0.0585   

A
2
   0.3831  

Pr > D   > 0.150 

Pr > W
2   

> 0.250 

Pr > A
2   

> 0.250 

D     0.035   

W
2       

0.049   

A
2       

0.271  

Pr > D   > 0.150 

Pr > W
2   

> 0.250 

Pr > A
2   

> 0.250 
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Figure 1: Sampling distribution of the estimator, with and without inequality constraint
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Figure 2: Estimated standard deviation of the limiting distribution of
√

N [g(θ̂) − Eg(θ̂)] as the

sample size, N, increases
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Figure 4: Finite sample estimated standard deviation of
√

N [g(θ̂) − Eg(θ̂)] where N = 800, as the

percentage of observations deleted, k, increases(Jackknife)
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Figure 5: Bootstrapped versus asymptotic standard deviation of the limiting distribution of Y =
√

N [g(θ̂) − Eg(θ̂)] as N increases to 2000
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