Pötscher, Benedikt M. (2007): Confidence Sets Based on Sparse Estimators Are Necessarily Large.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_15087.pdf Download (166kB) | Preview |
Abstract
Confidence sets based on sparse estimators are shown to be large compared to more standard confidence sets, demonstrating that sparsity of an estimator comes at a substantial price in terms of the quality of the estimator. The results are set in a general parametric or semiparametric framework.
Item Type: | MPRA Paper |
---|---|
Original Title: | Confidence Sets Based on Sparse Estimators Are Necessarily Large |
Language: | English |
Keywords: | sparse estimator, consistent model selection, post-model-selection estimator, penalized maximum likelihood, confidence set, coverage probability |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C44 - Operations Research ; Statistical Decision Theory C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General |
Item ID: | 15087 |
Depositing User: | Benedikt Poetscher |
Date Deposited: | 09 May 2009 07:34 |
Last Modified: | 29 Sep 2019 04:01 |
References: | Beran, R. (1992): The radial process for confidence sets. Probability in Banach spaces, 8 (Brunswick, ME, 1991), 479--496, Progress in Probability 30, Birkhäuser Boston, Boston, MA. Bunea, F. (2004): Consistent covariate selection and post model selection inference in semiparametric regression. Annals of Statistics 32, 898-927. Bunea, F. & I. W. McKeague (2005): Covariate selection for semiparametric hazard function regression models. Journal of Multivariate Analysis 92, 186-204. Fan, J. & R. Li (2001): Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360. Fan, J. & R. Li (2002): Variable selection for Cox's proportional hazards model and frailty model. Annals of Statistics 30, 74-99. Fan, J. & R. Li (2004): New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. Journal of the American Statistical Association 99, 710-723. Kabaila, P. (1995): The effect of model selection on confidence regions and prediction regions. Econometric Theory 11, 537--549. Kabaila, P. (1998): Valid confidence intervals in regression after variable selection. Econometric Theory 14, 463--482. Kabaila, P. & H. Leeb (2006): On the large-sample minimal coverage probability of confidence intervals after model selection. Journal of the American Statistical Association 101, 619-629. Kale, B. K. (1985): A note on the super efficient estimator. Journal of Statistical Planning and Inference 12, 259-263. Leeb, H. & B. M. Pötscher (2005): Model selection and inference: facts and fiction. Econometric Theory 21, 21--59. Leeb, H. & B. M. Pötscher (2008): Sparse estimators and the oracle property, or the return of Hodges' estimator. Journal of Econometrics 142, 201-211 . Li, R. & H. Liang (2008): Variable selection in semiparametric regression modeling. Annals of Statistics 36, 261-286. Pötscher, B. M. (1991): Effects of model selection on inference. Econometric Theory 7, 163--185. Pötscher, B. M. (1995): Comment on `The effect of model selection on confidence regions and prediction regions'. Econometric Theory 11, 550--559. Pötscher, B. M. & H. Leeb (2007): On the distribution of penalized maximum likelihood estimators: the LASSO, SCAD, and thresholding. Working Paper, Department of Statistics, University of Vienna. Pötscher, B. M. & U. Schneider (2009): On the distribution of the adaptive LASSO estimator. Journal of Statistical Planning and Inference 139, 2775-2790. Wang, H. & C. Leng (2007): Unified LASSO estimation via least squares approximation. Journal of the American Statistical Association 102, 1039-1048. Wang, H., Li, G. & C. L. Tsai (2007): Regression coefficient and autoregressive order shrinkage and selection via the lasso. Journal of the Royal Statistical Society B 69, 63-78. Wang, H., Li, R. & C. L. Tsai (2007): Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94, 553-568. Yang, Y. (2005): Can the strength of AIC and BIC be shared? A conflict between model identification and regression estimation. Biometrika 92, 937-950. Zhang, H. H. & W. Lu (2007): Adaptive lasso for Cox's proportional hazards model. Biometrika 94, 691-703. Zou, H. (2006): The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101, 1418-1429. Zou, H. & M. Yuan (2008): Composite quantile regression and the oracle model selection theory. Annals of Statistics 36, 1108-1126. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/15087 |
Available Versions of this Item
-
Confidence Sets Based on Sparse Estimators Are Necessarily Large. (deposited 10 Nov 2007 02:43)
- Confidence Sets Based on Sparse Estimators Are Necessarily Large. (deposited 09 May 2009 07:34) [Currently Displayed]