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ABSTRACT

The cross-entropy approach is extended to the estimation of cointegrated equations.
The entropy estimators for an appropriately constructed moment form, are asymptot-
ically equivalent to Fully Modi�ed estimators since they converge to these estimates
su¢ciently quickly. The performance of the entropy estimators are examined by using
some Monte Carlo trials, and in an applied example for the estimation of a production
function for South African agriculture.
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1. Introduction

The publication of the book by Golan Judge and Miller (1996) (henceforth GJM), has
promoted a renewed surge of interest (see AJAE 1999, Vol 3, and Journal of Econo-
metrics 2002, Vol 107) in �information based� estimation using the entropy measure of
Shannon (1948) and Kullback-Liebler Information measure (1959). As Golan (2002)
outlines, the objective of the entropy approach is to make use of partial or incomplete
information. Entropy can be used in order to make minimal assumptions about the
data generating process, or it can be used to integrate prior and sample information.

The aim of this paper is to develop a �double support� approach to cross-entropy
for the estimation of a cointegrated system. Since the Fully-Modi�ed (FM) (Phillips
and Hansen, 1990) estimator can be expressed as a linear solution for a moment form,
given estimates of the long-run covariance matrices, entropy can be used to estimate the
parameters of this system. Given prior knowledge, entropy has the potential to yield
improved estimates in �nite samples, with tests that have better empirical size compared
to using either a simple entropy approach or a Fully Modi�ed approach alone. In order to
demonstrate the utility of the approach a small Monte-Carlo study is undertaken, along
with an applied application to the estimation of a Cobb-Douglas production function
within South African Agriculture.

2. Overview

There is now a considerable body of work which gives a philosophical foundation to
the use of entropy as an �extremum� criteria (Zellner, 1996). GJM outline how entropy
can be used to estimate parameters in several ways. These include direct and dual
approaches. The entropy approach can be applied to a wide class of models including
Seemingly Unrelated Regressions (SUR, see also Harmon et al., 1998), Simultaneous
Systems (Marsh et al., 1998) and systems with censored or multinomial data (Golan, et
al., 1997, 1999).

The asymptotic normality and consistency of entropy estimators has been proved un-
der the assumption that (inter-alia) the �rst moment matrix of the explanatory variables
converges to a constant positive de�nite matrix. However, to the author�s knowledge,
there has been no work which has examined entropy estimation in the context of linear
cointegrated systems. Therefore, this paper examines entropy estimation within SURs
where the explanatory variables are I(1). The estimation of SURs using entropy under
the assumption of stationary regressors has already been dealt with (GJM, chapter 11.
and Harmon, et al., 1998). Here, the entropy approach is extended to cointegrated
systems in a �two-boundary� setting using the �moment form�. This paper restricts its
attention to the case where upper and lower boundaries are set for each of the para-
meters along with a prior expected value within this support. In addition, all equation
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errors are assumed to be within a symmetric interval around zero, with the prior ex-
pectation for each of the errors being zero. The GJM framework allows for multiple
supports for each parameter/error, and also allows non-zero prior expectations to be
set for the errors. While the approach employed here is a considerable simpli�cation of
the formulations in GJM, it o¤ers a tractable solution with entropy expressed in terms
of the data, parameters, and expected values. It also enables a direct comparison of
the relationship between entropy estimators and conventional Seemingly Unrelated Re-
gression (SUR), and FM (and FM-SUR) estimators (Phillips and Hansen, 1990; Moon,
1999, and Balcombe and Ti¢n, 2001).

There are insights to be gained from exploring the relationship between entropy
based estimators with other estimators (Prekel, 1998). The computation of the entropy
based estimators can be improved by utilising these relationships. Moreover, the as-
ymptotic distribution of an estimator may be deduced from its convergence (and rate
of convergence) to other estimators.

This paper notes some results for a �pure inverse� problem in Section 3. It examines
the relationship between the simple inverse solution for the parameters in the pure
inverse problem, and that of entropy estimates. It outlines the conditions under which
the matrices and vectors in the pure inverse form yield entropy estimates that converge
to the inverse solution given �nite supports for the parameters and equations errors.
These conditions are subsequently related to the SUR and FM estimators.

Alternative entropy formulations may not require �nite supports (Golan and Gzyl,
1999). However, providing the supports are made wide enough, entropy estimates will
almost certainly exist and converge in distribution and this assumption does not present
signi�cant problems on a practical level. Under certain conditions entropy forms of
FM and SUR are asymptotically equivalent. However, the properties of the entropy
estimates may be superior in �nite samples. This is particularly important with regard
to the FM estimates which have excellent asymptotic properties, but do not always
display these qualities in small samples.

3. The Pure Inverse Problem

Notation
In the following, the Greek letter � will be reserved for the population value of

a 1 � K parameter vector in a linear model. The letter b will denote an arbitrary
vector in RK : b̂ will always refer to the �OLS estimate� of the parameter vector �, and
~b will refer to the cross-entropy estimator of � which will be de�ned in the subsequent
sections. v (b) will also be used to denote the estimate of the residual in a model for
some value of b replacing �: The notation b > �; de�nes every element of b to be larger

than the associated element of �: For conciseness, we will use v̂ = v
�
b̂
�
, ~v = v

�
~b
�
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and v = v (�) :The letter b (in bold) will always refer to a vector which plays the role

of a bound or �support�. The notation
d
! and

p
! will be used to denote convergence

in distribution and probability respectively and MN (�;
) will be used to denote the
multivariate normal distribution with mean � and covariance matrix 
.

Examine the linear system


K�1

= M
K�K

�
K�1

+ v
K�1

(3.1)

whereM and  are observable matrices with M being invertible (a restrictive assumption
that is made throughout the paper). Assume that v

K�1
is treated as a random error with

a mean of zero and an identity covariance matrix.
The OLS estimate of � is simply b̂ =M�1: Cross-entropy is not directly de�ned in

terms of parameters and errors. Rather, it is de�ned on a set of probabilities p1; ::::pk
where

P
pi = 1: If p�1; ::::p

�
k represent a set of prior expectations of the probabilities,

then cross-entropy is de�ned as C =
Pk
i=1 pi ln

�
pi
p�i

�
: Cross-entropy is a measure of the

divergence of the probabilities from the prior p�i . The essential idea behind using cross-
entropy estimation is to �nd estimates of the probabilities that minimise the divergence
of the probabilities from their priors, as measured by cross-entropy, subject to a set of
constraints that arise from a model and data.

The objective cross-entropy function is sum of two cross-entropy functions, one for
the errors (measuring their divergence from zero), and one for the parameters (b) (mea-
suring their divergence from prior or �expected� values). If the prior values for b are
completely compatible with the data, then both cross-entropy functions would be at
their minimal values. However, for a given data set (i.e. values of  andM in [3.1]), the
parameters (b) consistent with zero errors are likely to di¤er from their priors. Likewise,
if the parameters were set at their prior values, the errors (v) would not be zero.

A �two boundary� cross-entropy formulation is outlined more formally below. Let bl
and bu be (K � 1) vectors, where bu > bl (this notation denoting that every element
of bu is larger than the associated element of bl). It is assumed that � 2 (bl;bu) where
(bl;bu) denotes the set

�
(b1::::; bK)

0 : bk = pkbl;k + (1� pk)bu;k; pk 2 (0; 1)
	

(3.2)

Put simply, the vector � is speci�ed so as to lie within a predetermined interval. Like-
wise, it is assumed that the errors are symmetrically distributed around zero and sup-
ported by the set (�s; s) (s being a K � 1vector s0=(s; :::::s)). The elements of � and
v can therefore be expressed as

bk = pkbu;k + (1� pk)bl;k (3.3)
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vk = wks� (1� wk) s (3.4)

where p0 = (p1; ::::pK) and w
0 = (w1; :::::wK) and all elements of p and w are between

zero and one. There may be prior knowledge about the parameter values in the form of
an �expected value� for each of the estimates (b�k) which are within the supports. The
associated values p�k are the probabilities that solve the equation (given bu;k; bl;k and
b�k)

p�k =
b�k � bl;k
bu;k � bl;k

(3.5)

If b and v are de�ned in terms of p and w as in [3.3] and [3.4], then equations may be
reversed so as to express the p and w in terms of b and v as below

pk =
bk � bl;k
bu;k � bl;k

(3.6)

and

wk =

�
vk + s

2s

�
(3.7)

where

v =  �Mb:

Throughout this article, we will refer to the problem in terms of one to be max-
imised (maximising negative cross-entropy). The objective function [3.8] (negative cross-
entropy) can be expressed in terms of p and w as (treating s;bl;bu;M; ; p

� as constants
which underly the construction of f� (:) and g� (:)) :

E� (p; w) = f� (w) + g� (p) (3.8)

where

g� (p) = �
KX

k=1

pk ln

�
pk

p�k

�
�

KX

k=1

(1� pk) ln

�
1� pk
1� p�k

�
(3.9)

f� (w) = �

KX

k=1

wk ln (wk)�

KX

k=1

(1� wk) ln (1� wk)

The second of these functions is equal to �ln(12)K minus cross-entropy if the priors are
w�k =

1
2 for all K. However, since pk, p

�
k and wk can be expressed as in [3.5],[3.6] and

[3.7], we can substitute in these quantities so as to obtain

E (b) = f� (p (b)) + g� (w (b)) (3.10)

= f (b) + g (b)
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The cross-entropy estimates for b and v (~b and ~v) are then obtained by maximising
[3.8] and equivalently [3.10] subject to the constraints in [3.1]. An insight into the
motivation for using entropy can be obtained by examining equation [3.8] which is the
sum of two components. The �rst , f� (p) ; will be zero (its maximum value) at p = p�.
This function diminishes as p diverges from the p� and, equivalently, as b diverges
from the b�: The second , g� (w) will be zero (its maximum) where each wk = :5
corresponding to where errors (vk) [3.4] are zero. However, the restriction [??] prevents
both functions simultaneously achieving their maximums (at zero) unless the priors are
fully consistent with the data. Therefore, the maximisation of [3.8] requires a trade-o¤
between divergence of p� from p (or equivalently b� from b), and the divergence of 
from M b.

Derivatives and Optimisation
The �rst order derivatives for each of the functions f (:) and g (:) are:

f 0k (b) =
KX

j=1

ln

�
s+ vj (b)

s� vj (b)

�
mj;k

2s
(3.11)

g0k (b) = � ln

 
(bk � bl;k) (bu;k � b

�
k)

(bu;k � bk)
�
b�k � bl;k

�

!
1

bu;k � bl;k

and consequently
E0k (b) = f

0
k (b) + g

0
k (b) : (3.12)

The second order derivatives are (dk;i = 1; k=i, and zero otherwise)

f
00

k;i (b) = �

KX

j=1

 
1

s2 � vj (b)
2

!

mj;imj;k (3.13)

g
00

k;i (b) = �
dk;i

(bk � bl;k) (bu;k � bk)

and consequently,
E00k;i = f

00

k;i (b) + g
00

k;i (b) : (3.14)

It is useful to view these quantities in vector and matrix form. The gradient and Hessian
matrix for g (b) are:

5g (b)0 =
�
g01 (b) ; ::::::::::::::::::g

0
K (b)

�
(3.15)

52g (b) =
n
g
00

k;i (b)
o

k;i
:

6



The gradient vectors of f (:) can be de�ned by using:

� (b)0 =

�
ln

�
s+ v1 (b)

s� v1 (b)

�
; ::::::; ln

�
s+ vK (b)

s� vK (b)

��

�(b) = f�ijg �jj =
�1

s2 � vj (b)
2 , �ij = 0 otherwise. (3.16)

Therefore,

5f (b) =
1

2s
M 0� (b) : (3.17)

The Hessian matrix for f (:) is

52f (b) =M 0�(b)M: (3.18)

Therefore, the gradient vector for cross-entropy is

5E (b) = 5f (b) +5g (b) (3.19)

and the Hessian for E (b) is:

52E (b) = 52f (b) +52g (b) (3.20)

The problem at hand can therefore be represented as maximising E

~b = argmax
b

[E (b)] (3.21)

By using these formulae, the function E (b) can be maximised using a Gauss-Newton
algorithm, should it be well behaved.

4. Moment Forms and Regression Equations

This section sets out some su¢cient conditions under which the entropy estimates would
converge in distribution to b̂ =M�1 as the sample size grows.

Conditions
As before, let  =M� + v; and assume the following conditions:

C1: � 2 (bl + '1;bu � '1) for some small positive number ' and 1 is a conformable
vector of ones

C2: M is constructed from a set of data with sample size T .

M = GN�1 (4.1)

where
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C2.1: G is the Cholesky decomposition of a (K �K) positive de�nite matrix Q =
G0G where Q converges in distribution to a positive de�nite matrix Q� =
G�

0

G� as T !1:

C2.2: N is a (K �K) matrix with negative powers of T in its diagonal

N = fnijg ; nii = T
�'i and nij = 0 otherwise (4.2)

'i > 0 where i = 1; :::K; and 'i is a real number

C3: v is a random vector which converges in distribution to a vector v� with standard

normal distribution with zero mean and an identity covariance matrix (where
d
!

denotes convergence in distribution, andMN (0; I) denotes a multivariate normal
distribution with mean zero and identity covariance matrix)

v
d
! v� �MN (0; I) (4.3)

C4: In addition to C2 and C3,

G�1v
d
! G��1v� (4.4)

C5: s is a constant or increases with the sample size

s = s0T
� (4.5)

where s0; � are constants s.t. � � 0; s0 > 0 and

T 2�N ! 0 as T!1 (4.6)

It follows that using the de�nition b̂ =M�1; in conjunction with C2 and [3.1] gives

N�1
�
b̂� �

�
= G�1v:

Therefore, under (C4)

N�1
�
b̂� �

�
d
! G��1v� (4.7)

and consequently �
b̂� �

�
= N:G�1v

d
! 0: (4.8)

Weak convergence to a degenerate distribution implies b̂
p
! b; therefore under C1.

Therefore the following theorem is now stated
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Theorem 1 : Under C1-C5 the estimator b̂ = M�1 and the cross-entropy estimator
~b have the property

N�1
�
~b� b̂

�
d
! 0 (4.9)

The proof of theorem 1 is given in the appendix.

Under Theorem 1, and [4.7] it follows that

GN�1
�
~b� �

�
d
! v� (4.10)

5. Cointegrated Systems

This section considers the case where all the explanatory variables are integrated of
order 1 ( I(1)), and the errors are stationary. The theory can be extended to the case
where deterministic variables are included also. However, the exposition is considerably
simpli�ed by the exclusion of these components. Again, assume the system in [??].
Additionally, denote the vector of residuals (ut) and innovations in the regressors (et)
as

�0t =
�
u0t:e

0
t

�
(5.1)

e0t = �x0t � E
�
�x0t

�
:

Here the following assumptions are made (the conditions under which these assumptions
hold are outlined in a number of articles, see Phillips and Hansen, 1990):

A1: The vector �0t is weakly stationary and obeys the invariance principle

T�
1

2

[rT ]X

t=1

�t
d
! !� (r) (5.2)

where !� (r) is a vector Brownian Motion and is partitioned in accordance with
the dimensions of u and e as

!0� (r) =

 

!0u (r)
1�ky

: !0e (r)
1�kx

!

: (5.3)

The long-run covariance matrix of !� (r) can be de�ned as

E
�
!� (1)!� (1)

0
�
= 
 =

1X

i=�1

E(�0:�
0
i) =

�

uu 
ue

eu 
ee

�
=

�

u�

e�

�
: (5.4)
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The �one-sided� long run covariance matrices are de�ned as

� =
1X

i=0

E(�0:�
0
i) =

�
�uu �ue
�eu �ee

�
=

�
�u�
�e�

�
: (5.5)

A2: 
 is full rank

The following matrices are then constructed.

�
ky�(ky+kx)

= (Im : ��) (5.6)

�
ky�kx

= 
ue

�1
ee

and

�� = �
�

0 : (5.7)

Now de�ne the moment equations as

 =M� + v (5.8)

where N = IT�1 and

Q = N
X

zt

�1
�� z

0
tN = G0G (5.9)

M = GN�1

 = G0�1
�
N
X

zt

�1
�� �

�
yt
et

�
� V ec

�
�e��

0
�1��
��

� =
�
I : �
eu


�1
ee

�
:

The estimator b̂ =M�1 is simply FM-SUR estimator based on the estimator of Phillips
and Hansen (1990). This estimator is also outlined in Moon (1999) and Balcombe and
Ti¢n (2001), where the notation in the latter article has been adopted here. These arti-
cles establish that under conditions A1 and A2 Q weakly converges to a random matrix
Q� (see the Subsection 9 in the appendix for details) with a Cholesky decomposition
Q� = G�0G�:

N
�
b̂� �

�
d
!MN (0; Q�) : (5.10)

With some straight forward algebra, it is evident that

v = G0�1
�
N
X

zt

�1
�� �

�
ut
et

�
� V ec

�
�e��

0
�1��
��

(5.11)
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where (Appendix, Subsection 9).

N
X

zt

�1
�� �

�
ut
et

�
d
!MN

�
V ec

�
�e��

0
�1��
�
; G�0G�

�
: (5.12)

Therefore, under A1 and A2

G0�1N
X

zt

�1
�� �

�
ut
et

�
d
!MN

�
G�0�1V ec

�
�e��

0
�1��
�
; I
�

(5.13)

and, therefore, under A1 and A2

v
d
! v� �MN (0; I) : (5.14)

The estimator which maximises cross-entropy for the moment equations above, will
be hereon referred to as MEFM-SUR, or MEFM for the single equation case. These
moment equations obey the conditions C1-C4 in the previous section. Therefore, from
Theorem 1,

N
�
~b� b̂

�
d
! 0 : (5.15)

Thus, the asymptotics relating to the FM-SUR estimator also extend to the entropy
estimates of the cointegrated system.

Long-Run Covariance Estimation
As in the SUR case, the long-run covariance matrices must be estimated. This can

be done in using the estimated residuals from the �rst round OLS estimates from OLS or
using the entropy approximation and the long-run covariance matrices, then estimated
using the procedures as in Andrews, (1991). The improved e¢ciency of the entropy
estimates should also be re�ected in improved estimates of the long-run matrices, and
potentially improved bias correction, and inference.

The algorithms used here proceed by using iterated FM estimation in the �rst in-
stance. The moment forms are then reconstructed and entropy is then maximised.
The long-run matrices are then reconstructed and entropy is again maximised. This
continues until there is no change in the parameters (within tolerance). As previously
remarked, the use of estimated long-run covariances in the construction of the fully
modi�ed regressions will not be innocuous in small samples, since the estimated error
will be

v̂ = Ĝ0�1
�
N
X

zt
̂
�1
�� �

�
ut
et

�
� V ec

�
�̂e��̂

0
̂�1��

��
:

As with the SUR case, s is set to 5, since it was found that setting s = 3 often generated
errors outside their supports.
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6. A Monte Carlo Study

In this section the entropy method is explored using Monte-Carlo methods. It shows how
information concerning the approximate values of parameters can aid their estimation
when using the entropy approaches outlined in the previous sections. It uses the example
of a production function. However, the principles used here can be applied to any linear
cointegrated model.

A simple Cobb-Douglas production function [6.1] is used for the following Monte
Carlo study:

yt = �0 +

kX

i=1

�ixi;t + ut (6.1)

where yt is logged output, and the x
0
its are logged input levels. The recent literature in

production economics has focused on the use of alternative functional forms and indirect
approaches to the estimation of production technology. However, arguably, it has paid
little attention to developments within time series econometrics. The estimation of
�exible forms is attractive, however, little is known about the properties of estimators
containing quadratic terms or non-linear parameters when the data contains stochastic
trends. For this reason there is a powerful argument for returning to simpler linear
models.

In this study the inputs xi;t are treated as being (potentially) integrated of order one.
The �shocks� to production (ut) may be due to stationary factors such as breakdowns,
weather, transient changes in technology as well as technical change of a non-stationary
nature. However, for the purposes of the Monte Carlo study these will treated as
stationary. The transient components may alter the level of factors that are employed
in a given time period so that a priori it is di¢cult to assert that ut is strictly exogenous
or serially uncorrelated.

In these circumstances FM estimation would be an appropriate estimation proce-
dure. Cobb-Douglas production functions are commonly estimated using between 30
and 50 years of data with 3 or more inputs. Characteristically, production functions
are assumed to have diminishing but positive marginal returns. Providing the main in-
puts into the production processes have been included, constant returns to scale might
be considered a reasonable approximation.. However, usually researchers would expect
deviations from constant returns to scale also, and may not wish to enforce this prior
sharply. Therefore, in the absence of any other information, a reasonable prior expec-
tation would be

�1 = �2 = ::::�k =
1

k
(6.2)

Some inputs may a priori be thought to have higher marginal returns than others.
Naturally, if researchers feel that they have better prior information than this, then they
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may shift their priors accordingly. Another potential prior which might be explored is:

�1 = �2 = ::::�k = 0 (6.3)

In this case the variables are extraneous. It should be recalled that position of the
supports will also have an e¤ect. Therefore, if the supports are centered above zero,
then this prior will tend to o¤set the tendency of the supports to overstate the value
of the parameters in the case where the variables are in fact extraneous. On the other
hand, if the parameters diverge from this value to a large extent, then clearly this prior
will induce poor performance in �nite samples.

The following Monte Carlo Study examines the performance of the, OLS, MEOLS
FM, and MEFM procedures outlined above. It generates I(1) regressors and incorpo-
rates some moderate serial correlation and endogeneity between the innovations in the
regressors and the error. The introduction of serial correlation and endogeneity that
the Fully Modi�ed estimator should perform better than OLS, at least in large samples.
Without the serial correlation and/or endogeneity OLS will dominate FM, since FM
has no potential advantages in this case.

Simply generating data which conformed exactly to the expectational priors (as in
[6.2]) could give a falsely positive re�ection on the entropy procedures. Therefore, the
data was generated so as to loosely conform to these priors, but also in many cases they
di¤er substantially. The Monte-Carlo design generates data where the priors (as in the
expected values) will be correct on average (where ��i =

1
k
) but incorrect in any given

trial. However, the impact of setting the prior expectations to ��i = 0 is also explored.
In the case where k = 1, this prior is severely downwardly biased for the generating
process. However, it might be useful for readers to be able evaluate the impact of this
false prior. The design is therefore as follows:

� For a given k,

� q is generated as a k � 1vector of uniformly distributed variables between 0
and 1

� z is generated as a standard normal random variable

� �0 = (a1; :::; ak) (the parameter vector in the Cobb Douglas equation) is
generated using

� =
q0

Pk
i=1 qi

(1 + :125z)

� xt are generated as I(1) processes, t = 1; :::::::T by �rst generating the inno-
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vations using

�
ut
et

�
= :5�

�
ut�1
et�1

�
+

�
w1t
w2t

�

�
w1t
w2t

�
� MN (0;�)

� =

�
I :2510k
:251k I

�

with xt =
Pt
i=1 ei; and,

� yt is generated as
yt = x

0
t�+ ut:

This was repeated 2500 times for each k (1 and 4) and T=30, 50 100 and 1000. k
was set to two values, so as to get an idea of the impact of dimension on the performance
of the estimators. k=4 was chosen so as to correspond with the empirical example given
latter on in this section which uses four inputs. Each pseudo sample was then estimated
using OLS, MEOLS, FM and MEFM. The results for these experiments are given in
Tables 1 and 2.

The correlation structure used in this study is a similar to studies such as Xiao and
Phillips (2002) except that it incorporates correlations between the innovations and the
errors. Other designs were also used including moving average serial correlation, and no
serial correlation at all. These alternative designs did not change the broad conclusions
that are made vis-a-vis the performance of the entropy procedures relative to their
�standard� counterparts. The results for these are not given here, since they paint
broadly the same picture as the results which are subsequently presented. Alternative
designs do e¤ect the relative performance of FM relative to OLS. However, it is not the
aim of this paper to cover this topic, which has already been the subject of extensive
Monte-Carlo trials (for example Phillips and Hansen, 1990, Haug, 1999). Denoting the
estimated and actual parameters from each trial are denoted as �̂n and �n respectively,
the average root mean square of the estimated elasticities was produced as in [6.4]

TABLE 1: One Input Variable (k=1)
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T=30 T=50 T=100 T=1000

OLS
ARMSE
(E-size 0.10)

.073
(:286)

.044
(:307)

.022
(:324)

.0021
(:336)

FM
ARMSE
(E-size 0.10)

.067
(:248)

.040
(:218)

.019
(:179)

.0018
(:127)

MEOLS
�� = 1

ARMSE
(E-size 0.10)

.059
(:212)

.040
(:283)

.021
(:311)

.0021
(:336)

MEFM
�� = 1

ARMSE
(E-size 0.10)

.056
(:178)

.038
(:199)

.018
(:176)

.0018
(:126)

MEOLS
�� = 0

ARMSE
(E-size 0.10)

.071
(:288)

.043
(:331)

.021
(:327)

.0021
(:320)

MEFM
�� = 0

ARMSE
(E-size 0.10)

.089
(:315)

.044
(:255)

.019
(:182)

.0019
(:125)

ARMSE =
1

kN

NX

n=1

vuut
kX

j=1

�
�̂n;j � �n;j

�2
(6.4)

The supports were set so as to include the generated parameters and the expectations
were set as 1

k
for one set of trials, and 0 for another set of trials: The intervals for the

intercept were set to be �non-informative� (very wide) �0 2 (�10000;+10000) : The
supports and the expected values for the elasticities were set at

�j 2

�
�
1

k
; 1 +

1

k

�
j=1,...k

��j =
1

k
or

��j = 0

Therefore, the supports would become close to (0,1) as k increases. s was set to �ve,
for reasons discussed earlier in the paper.

The number of rejections at the 10% nominal level is summarised also in Tables 1
and 2 (Denoted E-Size 0.10) using an F-test for the joint restrictions that �j;n = �j;n for
all j in each trial. The F-statistics for the k restrictions are constructed as by dividing
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the conventional Wald statistic by the number of restrictions. This was then treated
as an F (k; T � k � 1) distribution. This will have less of a tendency than the Wald to
over-reject in �nite samples.

TABLE 2: Four Input Variables (k=4)
T=30 T=50 T=100 T=1000

OLS
ARMSE
(E-size, 0.10)

.106
(:666)

.069
(:770)

.037
(:786)

.004
(:825)

FM
ARMSE
(E-size, 0.10)

.114
(:780)

.055
(:713)

.020
(:498)

.0016
(:152)

MEOLS
��i = :25

ARMSE
(E-size 0.10)

.067
(:345)

.051
(:598)

.033
(:752)

.004
(:826)

MEFM
��i = :25

ARMSE
(E-size 0.10)

.063
(:483)

.043
(:590)

.019
(:462)

.0016
(:156)

MEOLS
��i = 0

ARMSE
(E-size 0.10)

.063
(:464)

.046
(:663)

.028
(:780)

.003
(:846)

MEFM
��i = 0

ARMSE
(E-size 0.10)

.070
(:652)

.040
(:662)

.016
(:496)

.0015
(:154)

The results for the trials in Tables 1 and 2 indicate that:

� The e¢ciency gains (as measured by the reduction in ARMSE) for FM regression
over OLS can be substantial. In all but one case (T=30, k=4) FM estimation
improves on OLS. This is expected, however, it also illustrates that for FM to be
more e¢cient than OLS (even with endogeneity and serial correlation) there must
be reasonably large sample sizes and/or few parameters;

� Where the priors are set at 1, and .25 for k=1 and k=4 respectively:

� The entropy procedures signi�cantly improve on both the OLS and the FM
procedures in terms of e¢ciency except at very large sample sizes where the
entropy estimates become identical to the non-entropy estimates (consistent
with the theory);

� The MEFM has the lowest ARMSE in all examples where T<1000. Even
when OLS dominated the FM estimates, the MEFM estimates dominated
the MEOLS at T=30 and k=4;
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� The entropy procedures mitigate, but do not remove, the tendency for the
(adjusted) F-tests to over-reject as indicated by the empirical size in the
tables. Consistent with previous work (for example Xaio and Phillips(2002)),
Wald tests have biases that decrease with sample size but increase with the
dimension of the tests, which the degrees of freedom adjustments used by
the F-test do little to decrease. In the case where k=4, these biases were
signi�cant, even where T=1000. The large empirical size of these tests are
partly due to the residual second order bias in the test statistics, but possibly
also due to the fact that the standard errors are understated. Therefore, while
the entropy approaches probably give better estimates of the standard errors,
these standard errors may still be understated in �nite samples.

� Where the priors are set to zero (��j = 0)

� Where k = 1, the results are, as expected, slightly worse than for the non-
entropy case, and the entropy where using unbiased priors. The performance
for the entropy case and the non-entropy methods become virtually identical
for T greater or equal to one hundred, and are only slightly worse for T=50.

� Where k is four, the entropy results remain better than for their non-entropy
counterparts. In certain instances they seem to do slightly better relative to
the unbiased priors, but this is not uniformly the case. This suggests that
the entropy is not overly sensitive to misspeci�ed priors, and is dominated
by the data relatively quickly.

In summary, the Monte Carlo results here indicate that both entropy can improve
over both OLS and FM results when the prior information is informative, but also
inexact. In very small sample sizes with many variables, the utility of using FM is likely
to be minimal or negative. However, in many practical cases there may be additional
advantages in using FM estimation in conjunction with the Entropy procedure.

7. Application to South African Agriculture

The following data uses chained divisa indices for inputs to South African Agriculture
for 1947 until 1994 (inclusive T=48). The data is as in Thirtle et.al , (1993), though
it has been revised and updated. Thirtle et al. also contains a description of the
data. It contains four inputs and one aggregate output. The inputs are Labour, Land,
Intermediate Inputs (e.g. seeds fertiliser and so forth) and Capital.

TABLE 3: Results for South African Data.
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ME

OLS
OLS

ME

FM
FM

� Se (�) � Se (�) � Se (�) � Se (�)

Intercept .602 2.46 3.447 2.26 .888 2.39 3.108 2.16

Time Trend .013 .003 .0072 .002 .013 .003 .0067 .002

Labour .207 .118 .2855 .109 .136 .115 .104 .104

Land .218 .600 -0.567 .551 .219 .584 -.309 .527

Inter Inputs .407 .081 .588 .075 .397 .079 .577 .071

Capital .034 .056 -0.045 .051 .056 .054 -.034 .049

Test: CRS [.806] [.138] [.718] [.164]

The values in square parentheses are the prob values for an F-test for constant returns to scale.

The logged variables have been tested for unit roots using a range of tests , both
under the null of a unit root and under the null of stationarity (not presented). All
are broadly consistent with I(1) behaviour with drift. Labour and Land have tended to
drift downwards over the sample period, whereas Intermediate Inputs and Capital have
shown signi�cant increases over the period. The results for the production function
are presented in Table 3. All variables are logged and a time trend is included which
may �soak up� any deterministic trends such as long-term technical progress. A test
for cointegration using the Augmented Dickey-Fuller and Phillips-Perron tests on the
OLS residuals gives a value of -5.033 and -5.042 respectively (no lags selected using
the Dickey Fuller), which are less than their critical value (-4.49) at the 5% level of
signi�cance, indicating the rejection of �no-cointegration�.

Turning to the OLS and FM results �rst which are contained in the second set and
fourth set of results in Table 3, it can be observed that the results are very poor indeed
and the coe¢cients for land and capital are negative. However, the standard errors for
these coe¢cients are very large, and they are insigni�cantly di¤erent from zero. The
only highly signi�cant input according to both sets of results is Intermediate Inputs.

For the entropy results, the supports and expectations have been set as in the Monte
Carlo trials (k=4). The time trend and the intercept have intervals set extremely wide
so as to make the priors on these parameters di¤use. The introduction of the supports
and expected values has resulted having no negative coe¢cients, but they still re�ect
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the data to a large degree. From Table 3 it appears that the use of MEFM has had little
impact relative to MEOLS in this instance, since the elasticities are ostensibly similar
as are the standard errors. In both cases the large standard errors underline that
little con�dence can be held in the precise values of the parameters in this production
function.

The fact that entropy is not a panacea for inadequate sample information should
not be used as an argument against entropy, or any other method which utilises prior
information. Rather, it is the contention here that situation here has been transformed
from one where the results were of little or no use, to one where some guarded inferences
about the elasticities can be made. It seems, for instance, that variations in the level of
Capital alone appear to have a relatively small impact on the level of output. Moreover,
there is evidence that much of the increases in output are likely to be due to variations
in the intermediate inputs, even in the long-run. While in all cases there is evidence
for decreasing returns to scale, the tests for constant returns to scale in the last row of
Table 3 suggest constant or increasing returns to scale cannot be rejected, even at very
high levels of signi�cance.

8. Conclusion

This paper has outlined how prior information can be integrated into estimates of para-
meters within cointegrating regressions using entropy. It showed that once in appropri-
ate moment form, the cross-entropy estimate converged to the FM-SUR estimator at a
rate which made it asymptotically equivalent to the FM-SUR estimator, providing the
supports for the errors and parameters were su¢ciently large. Given prior information
on the values and supports of parameters, the entropy techniques have the potential to
reduce the MSE of parameter estimates in both stationary and cointegrated systems.

The Monte Carlo evidence presented in the paper demonstrated that even when this
prior information was inexact, it improved the e¢ciency of the estimates, and reduced
the bias in the standard errors. However, while the poor performance of F-tests were
mitigated using the entropy approach, these tests continued to over-reject to a large
extent, even when complemented with prior information.
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TECHNICAL APPENDIX

Notation
The notation jbj where b is a vector in RK denotes the vector of absolute values of

that vector whereas kbk denotes the Euclidean length of b. The inequality between two
vectors, such as b < v; indicates that every element of b is less than v; and max (b)
denotes the maximum element of the vector b. An open (closed) ball of radius " in RK

around a point b is denoted as S (b; ") (S [b; "]). (That is, S (b; ") is the set of all vectors
x for which kx� bk < " ; where b; x 2 RK and the closed ball is de�ned in the same way
with kx� bk � "). If Bf;T denotes an open set, then B

c
f;T denotes the closure of Bf;T

(as in 3.19 Apostol, 1974). 1 denotes a conformable vector of ones. All other quantities
are as de�ned in the main text.

The negative cross-entropy function maximised in the paper (3.10)

ET (b) = fT (b) + g (b) (8.1)

is the sum of the two entropy functions. The �rst is:

g (b) = �
KX

k=1

pk (b) ln

�
pk (b)

p�k

�
�

KX

k=1

(1� pk (b)) ln

�
1� pk (b)

1� p�k

�
(8.2)

where

pk (b) =

�
bk � bl;k
bu;k � bl;k

�
and p�k =

�
b�k � bl;k
bu;k � bl;k

�
: (8.3)

The second is

fT (b) = �
KX

k=1

wk (b) ln (wk (b))�
KX

k=1

(1� wk (b)) ln (1� wk (b)) (8.4)

where

wk (b) =

�
vk + s

2s

�
=
k �m

0
kb+ s

2s
: (8.5)

g (:) is non-stochastic function which only depends on a K � 1 vector b, whereas
fT (:) is stochastic sequence of functions since  and M are stochastic. For this reason
it is useful to subscript f (:) with T . Consequently, ET (:) ; fT (:) and their domains
usefully acquire T subscripts here, although not in the main text. The following can be
veri�ed straightforwardly:

a) The domain of g(:) is Bg = fb : bu < b < blg;
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b) The codomain of g(:) is G =(�1; g (b�)] where g (b�) = 0;

c) The domain of fT (:) is Bf;T = fb : jvk (b)j < s , k = 1; 2; ::Kg;

d) The codomain of fT (:) is F =
�
�1; fT

�
b̂
�i
where fT

�
b̂
�
= �K ln

�
1
2

�
(since at

b̂; v̂ = 0 and wk =
1
2); and;

e) The domain of ET (:) is BE;T= Bf;T \ Bg and its Codomain ET is bounded from
above (for all T ) by �K ln 12 (the sum of the maximums of fT (:) and g(:))

Lemma 1: fT and g are �nitely twice continuously-di¤erentiable (w:r:t to b) every-
where within their domains for all T .

Proof of Lemma 1: f� (:) and g� (:) (de�ned in [3.9]) are di¤erentiable on
IK = (0; 1)� (0; 1) :::� (0; 1) and p (b) and w (b) [3.6] [3.7] are di¤erentiable
with respect to bk at any point in R

K : Therefore, for any value b for which
p (b) 2 IK ; w (b) 2 IK the derivatives of the composite functions of fT and
g must (Theorem 5.5. Apostol, 1974) exist. Applying the chain rule, the
partial derivatives are

f 0k;T (b) =

KX

j=1

ln

�
s+ vj (b)

s� vj (b)

�
mj;k

2s
(8.6)

g0k (b) = � ln

 
(bk � bl;k) (bu;k � b

�
k)

(bu;k � bk)
�
b�k � bl;k

�

!
1

bu;k � bl;k
:

For Bf;T = fb : jvk (b)j < s , k = 1; 2; ::Kg; f
0
k;T (b) is continuously de�ned.

The condition that fb : bu < b < blg, implies that g
0
k (b) ; is continuously

de�ned. The �rst order derivatives above are composites of continuous di¤er-
entiable functions on the domains of g (b) and fT (b) respectively. Therefore,
the second order derivatives are (for dk;i = 1; k = i; and zero otherwise)

f
00

k;i;T (b) = �
KX

j=1

 
1

s2 � vj (b)
2

!

mj;imj;k (8.7)

g
00

k;i (b) = �
dk;i

(bk � bl;k) (bu;k � bk)
:

f
00

k;i;T (b) is therefore de�ned providing for each j, jvj (b)j < s ( i:e: Bf;T )

and the domain of g
00

k;i (b) is de�ned on everywhere on R
K except at the

boundary of Bg:
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Lemma 2: Negative Cross Entropy is a concave function w:r:t: b everywhere on its
domain.

Proof of Lemma 2:

Under Lemma 1, the condition that the Hessian Matrices for fT () and g(:)
are negative de�nite is su¢cient for concavity, (Magnus and Neudecker, 1994,
Theorem, 7, note 2).

The Hessian for g (b) is

52g (b) =
n
g
00

k;i (b)
o

k;i
=

�
�

dk;i

(bk � bl;k) (bu;k � bk)

�

k;i

dk;i = 1 where i=k, and 0 otherwise. (8.8)

which is a diagonal matrix with diagonal negative elements (and therefore
negative de�nite). The Hessian matrix for fT () is

52fT (b) =M
0�(b)M (8.9)

where the center matrix �(b) is also diagonal with diagonal negative ele-
ments

�(b) = f�ijg �jj =
�1

s2 � vj (b)
2 , �ij = 0 otherwise : (8.10)

SinceM is invertible, for any non-zero vector z, z052f (b) z = z0M 0�(b)Mz =
y0�(b) y < 0: Noting that the sum of two convex (concave) functions is also
convex (concave) (Berck and Sydsaeter, 12.10) completes the proof.

Lemma 3:

If Bcf;T � Bg , then g (:) is bounded (above and below) on Bf;T :

Proof of Lemma 3: If Bcf;T � Bg then g (:) is de�ned on B
c
f;T and since B

c
f;T

is a compact set, and g (:) is continuous on Bcf;T then g (:) is bounded on
B
c
f;T (Apostol, 1974 Theorem 4.25). Therefore, g (:) has a �nite supremum
and in�mum on Bf;T .

Lemma 4

If Bcf;T � Bg; then ET (:) is de�ned on Bf;T and Bf;T contains a maximum point (~b)

at which rET

�
~b
�
= 0
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Proof of Lemma 4: From Lemma 1, g (:) has a �nite in�mum and supremum
on Bf;T . Consequently,

�Kln

�
1

2

�
+ sup
Bf;T

g (b) � sup (ET (b)) � �Kln

�
1

2

�
+ inf
Bf;T

g (b) :

As b approaches the boundary of Bf;T from any direction, fT (b) ! �1:
Consequently, ET (:) ! �1 as b approaches its boundary from any di-
rection since g (b) is bounded above and below. Therefore, a point can
always be chosen su¢ciently close to the boundary of Bf;T for which ET (:)
is less than sup (ET (b)). The supremum must therefore be contained within
Bf;T and must therefore be a maximum. The second part of the Lemma�
rET

�
~b
�
= 0
�
follows from the fact that under Lemma 1, the derivatives

of ET are �nite over the Bf;T (though not bounded). Using Apostol (1974)
p.362, Ex 12, if ET contains a maximum within Bf;T then the existence of �-
nite partial derivatives within Bf;T , is su¢cient to ensure that the derivatives
are zero at the maximum point.

Lemma 5

lim
T!1

Prob
�
B
c
f;T � Bg

�
= 1 (8.11)

Proof of Lemma 5:

The proof of Lemma 5, is in two parts. The �rst part, shows that for
any point that is a �xed distance from b̂ will asymptotically not belong
in Bcf;T with probability one. Conversely, the second part shows that for

any point within a radius of '2 from b̂ will asymptotically be a member of

Bg with probability one. Therefore, any point which is close enough to b̂
to be a member of Bcf;T must asymptotically also be a member of Bg with
probability one.

Part 1:

For any point (b) (using notation de�ned at the beginning of Section 3)

b = b̂�M�1v (b) : (8.12)

An open K-Ball around b̂ can be expressed as:

S(b̂; ") =

�
b :
�
b� b̂

�0 �
b� b̂

�
= v (b)0M�2v (b) < "2

�
: (8.13)
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The Closure of Bf;T is:

B
c
f;T =

n
b : jv (b)j =

���M
�
b� b̂

���� � 1s
o
: (8.14)

De�ne the vector �
b� b̂

�0
N�1 = h (b)0 : (8.15)

Under C2 and C5, M�2 = N�1Q�1N�1: Therefore, any point in Bcf;T has
the property that:

v (b)0 v (b) = h (b)0Q�1h (b) � Ks20T
2� : (8.16)

The middle part of [8.16] can be decomposed as:

h (b)0Q�1h (b) = h (b)0
�
Q�1 �N

�
h (b) +

�
b� b̂

�0
N�1

�
b� b̂

�
: (8.17)

Under C2,
Q�1 �N

p
! Q��1 (8.18)

where Q��1 is positive de�nite. Under C5, T�2�N�1 diverges. There-

fore, a small positive � can exists for which
�
b� b̂

�0
T�2�N�1

�
b� b̂

�
>

T �
�
b� b̂

�0 �
b� b̂

�
and for

�
b� b̂

�0 �
b� b̂

�
> "2;

lim
T!1

Pr ob

�
T �
�
b� b̂

�0 �
b� b̂

�
� Ks20

�
= 0 : (8.19)

Therefore, any point more than a �xed Euclidean distance " > 0 from b̂ will
not asymptotically lie within Bcf;T with probability one. Consequently,

lim
�!1

Pr ob
�
B
c
f;T � S

�
b̂; "
��
= 1 : (8.20)

Part 2:

Under C1, S (�; ') � Bg: Therefore, given the consistency of b̂; for any " > 0

lim
T!1

Pr ob
�b̂� �

 < "
�
= 1 (8.21)

C1-C5, in turn, implies that for any " 2
�
0; '2

�

lim
T!1

Pr ob
�
S
�
b̂; "
�
� S (�; ') � Bg

�
= 1 : (8.22)
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Therefore

lim
T!1

Prob
�
B
c
f;T � S

�
b̂; "
�
� Bg

�
= 1 : (8.23)

BE;T will become non-empty (in probability) since it becomes equivalent to

Bf;T which by de�nition is a non-empty K-Ball around b̂

The following Lemmas are most easily stated and proved as a group.

Lemmas 6.1, 6.2: Under C1-C5:

6:1)5 g
�
b̂
�

d
!5g (�) ; (8.24)

6:2)52 g
�
b̂
�

d
!52g (�) :

Proof of Lemmas 6.1 and 6.2:

From Lemma 1, 5g (�) and 52g (�) exist and are �nite . If cross entropy is
de�ned at b̂, by the continuous mapping theorem (Davidson, 1994, Theorem,
22.11 the consistency of b̂; and Lemma 5, 6.1 and 6.2. hold.

Lemmas 7.1, 7.2: Under C1-C5:

7:1) 5 fT

�
b̂
�
= 0; (8.25)

7:2)T 2�N 52 fT

�
b̂
�
N = s�20 Q :

Proof of Lemmas 7.1. and 7.2:

Lemma 7.1 is trivially proved by observing that �
�
b̂
�
= 0; and therefore

5fT

�
b̂
�
=
1

2s
M

0

�
�
b̂
�
= 0 : (8.26)
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Lemma 7.2. follows from

52fT

�
b̂
�
=M 0�

�
b̂
�
M = �

1

s2
M 0M : (8.27)

From C2 and C5

52fT

�
b̂
�
= �

1

s2
N�1G0GN�1 = �T�2�s�20 N

�1QN�1 : (8.28)

Therefore,

T 2�N 52 fT

�
b̂
�
N = �s�20 Q : (8.29)

Lemma 8.1 and 8.2: Under C1 to C5 (and de�ning two new quantities W1

�
b̂
�
and

W2

�
b̂
�
) :

8:1 : W1

�
b̂
�
= T 2�N 5 ET

�
b̂
�

d
! 0;

8:2 : W2

�
b̂
�
= T 2�N 52 ET

�
b̂
�
N

d
! �s�20 Q

� :

Proof of Lemma 8.1 :

From Lemma 7.1

W1

�
b̂
�
= T 2�N5ET

�
b̂
�
= T 2�N

�
5g
�
b̂
�
+5fT

�
b̂
��
= T 2�N

�
5g
�
b̂
��

:

(8.30)
The second component

T 2�N 5 g
�
b̂
�

d
! 0 (8.31)

follows from Lemma 6.1 and T 2�N ! 0 (under C5).

Proof of Lemma 8.2 :

Expanding W2

�
b̂
�
and then using Lemma 7.2 :

W2

�
b̂
�

= T 2�N 52 fT

�
b̂
�
N + T 2�N 52 g

�
b̂
�
N (8.32)

= s�20 Q+ T
2�N 52 g

�
b̂
�
N :

From Lemma 6.2, 52g
�
b̂
�

d
!52g (�) ; and under C5, T 2�N ! 0: Therefore:

T 2�N 52 g
�
b̂
�
N

d
! 0 : (8.33)
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Proof of Theorem 1:

Theorem 1 claimed that under C1-C5 the estimator b̂ = M�1 and the
cross-entropy estimator ~b have the property

N�1
�
~b� b̂

�
d
! 0 : (8.34)

Proof of Theorem 1:

Lemmas 1 through to 3 establish that if Bcf;T � Bg then cross entropy will
be de�ned, the derivatives will exist, and negative cross entropy will have
a maximum at a point where the derivatives are equal to zero. Lemma 5
establishes that Bcf;T � Bg will be met asymptotically with probability one.
Therefore, Lemmas 1 through 5, establish that the cross-entropy estimator
will exist on the interior of Bf;T asymptotically with probability one. The
functions are concave everywhere on Bf;T and that the maximum will have a
derivative of zero. Therefore, using an expansion for ~b (the entropy estimate)
around b̂ =M�1

rE
�
~b
�
= 0 = rE

�
b̂
�
+r2E

�
b̂
��
~b� b̂

�
+ o

�
~b� b̂

�
; (8.35)

a manipulation of [8.35] gives

N�1
�
~b� b̂

�
= �N�1

�
r2E

�
b̂
���1

rE
�
b̂
�

�
�
N
�
r2E

�
b̂
��
NT 2�

��1
NT 2�o

�
~b� b̂

�
: (8.36)

Using the de�nitions in Lemmas 8.1 and 8.2,

N�1
�
~b� b̂

�
= �W2

�
b̂
��1

W1

�
b̂
�
�W2

�
b̂
��1

NT 2�o
�
~b� b̂

�
: (8.37)

By using Lemmas 8.1, 8.2 and C5, each of the components on the right hand
side converge to zero in distribution. Therefore,

N�1
�
~b� b̂

�
d
! 0: (8.38)

which completes the proof of Theorem 1.

Remark.
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Note that the above also suggests an approximate relationship between the

entropy estimate
�
~b
�
and

�
b̂
�
as

~b � b̂�
�
r2E

�
b̂
���1

5 g
�
b̂
�

(8.39)

which may be useful approximation in practice.

9. Weak Convergence Results

These results are outlined in the work of Phillips, for which Phillips, (1990)
is a starting reference. Using similar notation to that in Balcombe and Ti¢n
(2001), Equation A1 and A2 give

N
X

Zt:

�1
�� Z

0
tN = G0G

d
!

Z
We


�1
��W

0
e = G

�0G� (8.40)

and

T�1
X

Zt:

�1
�� :�

�
ut
et

�
d
!

�Z
We:


�1
�� :�:d!� + V ec

�
�e��

0
�1��
��

(8.41)
where We = Ik 
 !e where !e and !� are vectors of Brownian Motions.
The construction of � ensures that �!� is independent of !e and thereforeR
We:


�1
�� :�:d!� is mixed normal with mean zero and covariance matrixR

We:

�1
��W

0
e: Therefore, given N = T�1I it follows that:

N
X

zt

�1
�� �

�
ut
et

�
d
!MN

�
V ec

�
�e��

0
�1��
�
; G�0G�

�
: (8.42)

It follows that v constructed as in [5.11] weakly converges to a multivariate
normal.
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