
Munich Personal RePEc Archive

OLS Estimator for a Mixed Regressive,

Spatial Autoregressive Model: Extended

Version

Mynbaev, Kairat

Kazakh-British Technical University

10 May 2009

Online at https://mpra.ub.uni-muenchen.de/15153/

MPRA Paper No. 15153, posted 11 May 2009 01:47 UTC



OLS Estimator for a Mixed Regressive, Spatial
Autoregressive Model: Extended Version

Kairat T. Mynbaev

kairat mynbayev@yahoo.com

International School of Economics, Kazakh-British Technical University,

Almaty, Kazakhstan

Abstract

We find the asymptotic distribution of the OLS estimator of the pa-

rameters β and ρ in the mixed spatial model with exogenous regressors

Yn = Xnβ + ρWnYn + Vn. The exogenous regressors may be bounded or

growing, like polynomial trends. The assumption about the spatial matrix

Wn is appropriate for the situation when each economic agent is influenced

by many others. The error term is a short-memory linear process. The key

finding is that in general the asymptotic distribution contains both linear and

quadratic forms in standard normal variables and is not normal.

Keywords: Lp-approximability, mixed spatial model, OLS asymptotics

1 INTRODUCTION

This paper is an extended version of [16]. In addition to the main statements and

proofs, it contains an example, report on computer simulations and GAUSS code.

We study the Ordinary Least Squares (OLS) estimator of parameters β and

ρ in the model

Yn = Xnβ +ρWnYn +Vn (1)

where Xn is an n× k matrix of deterministic exogenous regressors, β is an un-

known k×1 parameter, ρ is an unknown real parameter, the n×n spatial matrix

Wn is given and the elements of WnYn represent spatial lags of the n-dimensional

dependent vector Yn. Vn is an unobservable error vector with zero mean.

Model (1), known as a mixed spatial model, has been used in situations where

possible dependence across spatial units is an issue: in urban, real estate, regional,
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agricultural and other areas of economics, as well as geostatistics. A good general

account of the theory and applications can be found in Paelinck & Klaasen [1],

Cliff & Ord [2], Anselin [3], Cressie [4], and Anselin & Florax [5].

A range of estimation techniques for this model has been investigated in the lit-

erature: the Maximum Likelihood (ML) and Quasi-Maximum Likelihood (QML),

the Method of Moments (MM) and generalized MM, the Least Squares (LS)

and Two-Stage Least Squares (2SLS) and the Instrumental Variables (IV) esti-

mator, see Ord [6], Kelejian & Prucha [7; 8], Smirnov & Anselin [9], and Lee

[10; 11; 12; 13]. Despite the conceptual and technical differences in approaches,

all those authors have been looking for a normal asymptotics.

Recently, Mynbaev & Ullah [14] in a paper devoted to the OLS estimator ρ̂
for the purely spatial model

Yn = ρWnYn +Vn (2)

have established two results that are out of line. Firstly, in their Theorem 1 they

have proved that ρ̂ −ρ converges in distribution to a ratio of two infinite linear

combinations of χ2-variables:

ρ̂ −ρ
d→ ∑

i≥1

u2
i ν i

(

∑
i≥1

u2
i ν2

i

)−1

(3)

where {ν i : i ∈ N} is a summable sequence of real numbers and {ui : i ∈ N} is

a sequence of independent standard normal variables. The ratio in (3) is not a

normal variable and, in general, does not belong to any class of standard tabulated

distributions. Secondly, they have shown that QML and MM estimators as devel-

oped earlier by Kelejian & Prucha [8] and Lee [10] are not applicable under the

conditions of their Theorem 1.

These results raise legitimate concerns as to what may happen in case of a

more general mixed model (1). Do linear combinations of χ2-variables appear in

the asymptotic distribution of the OLS estimator θ̂ of the parameter θ = (β ′,ρ)′?
We answer this question affirmatively, and this answer has profound implications

for hypothesis testing for the least squares estimation in spatial econometrics.

Based on the available theoretical papers, a practitioner assumes that the asymp-

totic distribution is normal and selects the test statistics accordingly. However, if

the asymptotics is not normal and, more generally, is not of any standard type,

then all testing procedures should be revisited.
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The possibility of a non-normal asymptotics leads to an important issue of

the choice of the theoretical assumptions and format of the asymptotic expres-

sion. Suppose that one researcher claims that under Set 1 of assumptions the OLS

estimator is asymptotically normal, while another researcher develops Set 2 of

conditions under which the OLS asymptotics is not normal. Since assumptions

in the asymptotic theory usually involve infinite sequences of matrices, the prac-

titioner, based on his/her data, would not be able to choose between Sets 1 and 2.

Thus, the assumptions should be sufficiently general and the asymptotic expres-

sion should be flexible enough to include, as particular cases, both normal and

non-normal asymptotics. Our result satisfies this requirement. Under the same set

of conditions, the asymptotic distribution may include or exclude quadratic forms

in standard normal variables, due to built-in automatic switches, which reflect the

behavior at infinity of the exogenous regressors and spatial matrices.

The method used here relies on the Lp-approximability theory of deterministic

regressors developed in Mynbaev [15] (which should be distinguished from the

Lp-approximability of stochastic processes defined in Pötscher & Prucha [17]).

Under the Lp-approximability assumption, the exogenous regressors and spatial

matrices are close to some functions of a continuous argument. The asymptotic

distribution is characterized in terms of those functions. This fact allows us to

perform what we call analysis at infinity: the limits of the elements of the normal

equation can be analyzed further to formulate a precise (necessary and sufficient)

condition for multicollinearity (or absence thereof). Such a condition is stated

using a special function that can be termed a multicollinearity detector. A new

phenomenon, perhaps specific to spatial econometrics, is that the multicollinearity

detector may be in terms of a random function even though the regressors and

spatial matrices are deterministic.

The plan of the paper is as follows. Section 2 contains the main statements

(Theorems 1 through 4). In Theorems 1 and 2 we improve the method of Mynbaev

and Ullah [14] who consider model (2) with independent identically distributed

(i.i.d.) errors. In Theorem 1 here we generalize their Theorem 1 on the purely

spatial model by allowing the errors to be linear processes of i.i.d. innovations.

In Theorem 2 we show that in their Theorem 3 about a new two-step estimator

one condition is superfluous. In Theorem 3 we present the asymptotics of the el-

ements of the normal equation for the mixed spatial model. Theorem 4 contains

statements regarding the multicollinearity detector and convergence of the OLS

estimator in absence of multicollinearity, as well as two particular cases illustrat-

ing how good (that is, normal) or bad (non-normal) the asymptotics may be. An

example in the end of Section 2 illustrates the theory. All proofs are given in Sec-
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tion 3. Section 4 contains the concluding remarks. The GAUSS code is given in

the Appendix.

2 MAIN RESULTS

2.1 Notation and L2-approximability

A limit in distribution is denoted
d−→ or dlim. Likewise, symbols

p−→ or plim are

used interchangeably for limits in probability. c,c1,c2, ... denote various inconse-

quential constants (which do not depend on the variables of interest). Everywhere

u1,u2, ... stand for independent standard normal variables.

l2(I) denotes the space of sequences {xi : i ∈ I} provided with the scalar prod-

uct (x,y)l2 = ∑i∈I xiyi and norm ‖x‖2 =
(
∑i∈I x2

i

)1/2
. The set of indices I depends

on the context. Its continuous analog L2(0,1) consists of square-integrable func-

tions on (0,1) provided with the scalar product (F,G)L2
=
∫ 1

0 F(t)G(t)t. and norm

‖F‖2 =
(∫ 1

0 F2(t)t.

)1/2
. In case of the space L2((0,1)2) of square-integrable func-

tions on (0,1)2 we use the same notation for the scalar product and norm.

The discretization operator δ n : L2(0,1)→R
n is defined by (δ nF)i =

√
n
∫

qi
F(x)x. ,

i = 1, ...,n, where qi = q
(n)
i =

(
i−1

n
, i

n

)
are small intervals that partition (0,1). Let

{ fn} be a sequence of vectors such that fn ∈ R
n for each n. We say that { fn} is

L2-approximable if there exists a function F ∈ L2(0,1) such that ‖ fn −δ nF‖2 →
0, n → ∞. In this case we also say that { fn} is L2-close to F .

These definitions easily generalize to a two-dimensional case. A 2-D analog

of δ n maps a function K ∈ L2((0,1)2) to an n×n matrix with elements (δ nK)i j =

n
∫

qi j
K(x,y)x.y. , i, j = 1, ...,n, where qi j =

{
(x,y) : i−1

n
< x < i

n
, j−1

n
< y < j

n

}

are small squares that partition (0,1)2. Let {Wn} be a sequence of matrices such

that Wn is of size n× n. Then we say that {Wn} is L2-approximable if there ex-

ists a function K ∈ L2((0,1)2) such that ‖Wn − δ nK‖2 → 0, n → ∞. While L2-

approximability is sufficient for our purposes in the 1-D case, in the 2-D case we

need to impose a stronger assumption, as the reader will see below.

2.2 Main Assumptions and Statements

Assumption 1 (on the spatial matrices) There exists a function K ∈ L2((0,1)2)
such that (a) ‖Wn−δ nK‖2 = o(1/

√
n) and (b) K is symmetric and the eigenvalues
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of the integral operator (K F)(x) =
∫ 1

0 K(x,y)F(y)y. are summable: ∑
∞
i=1 |λ i| <

∞.

This condition implies [14] that the influence of a spatial unit on the others

tends to zero and the total interaction among the units tends to infinity: maxi, j |wni j|→
0, ∑i, j |wni j| → ∞, n → ∞ (here and elsewhere ai j denote the elements of a

matrix A). A condition similar to Assumption 1 is widely used in Tanaka [18].

K is considered an operator in the space L2(0,1) of square-integrable func-

tions on (0,1). Its eigenvalues λ i and eigenfunctions Fi are listed according

to their multiplicity; the system of eigenfunctions is complete and orthonormal

in L2(0,1). For a symmetric and square-integrable K, its eigenvalues are real

and square-summable: ∑i≥1 λ 2
i < ∞. The summability condition is stronger be-

cause
(

∑λ 2
i

)1/2
≤ ∑ |λ i|. Necessary and sufficient conditions (in terms of K) for

summability of eigenvalues can be found in Gohberg & Kreı̆n [19, Theorem 10.1].

The kernel can be decomposed into the series K(x,y) = ∑i≥1 λ iFi(x)Fi(y) which

converges in L2

(
(0,1)2

)
. Therefore it can be approximated by its initial segments

KL(x,y) = ∑
L
i=1 λ iFi(x)Fi(y). This approximation plays an important role in the

proof.

In the next assumption {et} is a sequence of random variables adapted to an

increasing sequence of σ -fields {Ft}.

Assumption 2 (on the error term) (a) The innovations {et : t ∈ Z} are martin-

gale differences with respect to σ -fields {Ft : t ∈ Z} (that is, Ft ⊂ Ft+1, et is

Ft-measurable, E(et |Ft−1) = 0 for all t ∈ Z) satisfying the following higher-

order conditions: the second-order conditional moments are constant and equal,

E(e2
t |Ft−1) = σ2 for all t, the third conditional moments are constant (not nec-

essarily equal), E(e3
t |Ft−1) = ct , and the fourth unconditional moments are uni-

formly bounded, µ4 = supt Ee4
t < ∞. (b) The components of the error term Vn =

(v1, ...,vn)
′ are linear processes vt = ∑ j∈Z ψ jet− j, t = 1, ...,n, with summable real

coefficients ψ j.

The summability of ψ j means that we deal with short-memory processes. For

simplicity, the reader can think of {et} as i.i.d. We denote αψ = ∑ j∈Z |ψ j| <

∞, β ψ = ∑ j∈Z ψ j and ν(λ ) = λ
1−ρλ , Sn = In − ρWn, Gn = WnS−1

n when S−1
n

exists, where In is the identity matrix of size n×n. Gn appears in the elements of

the normal equation (9) and (10) below.
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Mynbaev & Ullah [14] have shown that Assumption 1 and the condition

|ρ| < 1/

(

∑
i≥1

λ 2
i

)1/2

(4)

are sufficient for the existence of S−1
n . For the asymptotic result they have imposed

a stronger condition which we retain here:

Assumption 3 The spatial parameter satisfies |ρ| < 1/∑i≥1 |λ i|.

Theorem 1 If Assumptions 1, 2 and 3 hold, then the OLS estimator for (2) satis-

fies (3) where ν i = ν(λ i), i ∈ N.

When the components v1, ...,vn of Vn are i.i.d., this theorem becomes [14,

Theorem 1] where the reader can find the results of Monte Carlo simulations.

Theorem 2 If Wn is symmetric with eigenvalues λ ni, i = 1, ...,n, then Assumption

1 implies supn ∑
n
i=1 |λ ni| < ∞.

This theorem shows that [14, Assumption 4] is redundant and, therefore, their

Theorem 3 (which treats the properties of a new two-step estimator) is applicable

under the same conditions on the spatial matrices as in their Theorem 1.

We refer to (2) as Submodel 1 of the mixed spatial model and to

Yn = Xnβ +Vn (5)

as Submodel 2. The constructions below are based on the belief that what is

known for Submodels 1 and 2 should be incorporated in the investigation of the

main model (1). In the representation of the OLS estimator for (5) Anderson [20,

Theorem 2.6.1] uses the matrix with normalized columns Hn = XnD−1
n where

Dn = diag[‖x
(1)
n ‖2, ...,‖x

(k)
n ‖2] (6)

and x
(1)
n , ...,x

(k)
n are the columns of Xn. See also Amemiya [21, Theorems 3.5.4,

3.5.5], who has relaxed the assumption on Hn and discussed the advantage of this

normalization over the classical
√

n, and Mynbaev & Castelar [22], who have

shown this normalization to be superior to any other (in the sense that if any other

normalization works, then this one works too).
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Assumption 4 (on exogenous regressors) (a) The sequence of columns {h
(l)
n : n ∈

N} of the normalized regressor matrices Hn is L2-close to Ml ∈ L2(0,1), l =
1, ...,k. (b) The functions M1, ...,Mk are linearly independent and, consequently,

the determinant of the Gram matrix Γ0 =
(
(Mi,M j)L2

)k

i, j=1
is positive, see Gant-

macher [23, Chapter IX, §5].

Assumptions 1, 2 and 4 allow one to prove a variant of Amemiya’s [21, Theo-

rem 3.5.4] for the OLS estimator for Submodel 2: Dn(β̂ −β )
d−→N(0,(σβ ψ)2Γ−1

0 ).
While the condition on the regressors is stronger, the error term here is more gen-

eral than in Amemiya’s result.

DEFINITION OF THE NORMALIZER OF REGRESSORS. In the mixed spatial

model (1) the regressor is Zn = (Xn,WnYn). For the exogenous regressor Xn we

choose Anderson’s normalizer Dn and for the autoregressive part WnYn we choose

dn = dn(β ) = max
{
‖x

(1)
n ‖2|β 1|, ...,‖x

(k)
n ‖2|β k|,1

}
(7)

based on the analogy with the time series autoregression considered in Mynbaev

[24]. Thus, Zn is normalized by

Dn = diag[Dn,dn]. (8)

DEFINITION OF THE ELEMENTS OF THE NORMAL EQUATION. The normalized

regressor is Hn = ZnD
−1
n and the normal equation Z′

nZn(θ̂ − θ) = Z′
nVn can be

rearranged to H
′
nHnDn(θ̂ − θ) = H

′
nVn. Denoting κn = κn(β ) = 1

dn
Dnβ , Φn =

H
′
nHn, ζ n = H

′
nVn we have Hn =

(
Hn,GnHnκn + 1

dn
GnVn

)
. The normal equation

becomes ΦnDn(θ̂ −θ) = ζ n where

ζ n =

(
(H ′

nVn)
′,

(
κ ′

nH ′
nG′

nVn +
1

dn
V ′

nG′
nVn

)′)′
(9)

and Φn has the blocks Φn11 = H ′
nHn, Φn12 = H ′

nGnHnκn + 1
dn

H ′
nGnVn, Φn21 =

Φ′
n12, and

Φn22 = κ ′
nH ′

nG′
nGnHnκn +

2

dn
κ ′

nH ′
nG′

nGnVn +
1

d2
n

V ′
nG′

nGnVn. (10)

According to Lemma 13 and (58) from Section 3, all parts of ζ n and Φn not

involving dn and κn converge under Assumptions 1-4. We emphasize that on top

of these assumptions we need just one more to prove the remaining results:
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Assumption 5 For all β , the limits d = limn→∞ dn ∈ [1,∞] and κ i = limn→∞ κni =

limn→∞
‖x

(i)
n ‖2β i

dn
∈ [−1,1] exist .

DEFINITIONS RELATED TO ANALYSIS AT INFINITY. (a) We employ infinite-

dimensional matrices A of size l ×m where one or both dimensions can be infi-

nite. Matrices can extend downward or rightward but not upward or leftward. We

consider only matrices with finite l2-norms. Summation and multiplication are

performed as usual and preserve this property because ||A+B||2 ≤ ||A||2 + ||B||2,

||AB||2 ≤ ||A||2||B||2. The last inequality ensures the validity of the associativity

law for multiplication. (b) With a function F ∈ L2(0,1) we associate a vector

JF ∈ l2 of its Fourier coefficients JF = ((F,F1)L2
,(F,F2)L2

, ...)′. By Parseval’s

identity (JF)′JG = (F,G)L2
for any functions F,G ∈ L2(0,1). Hence, J is an iso-

morphism from L2(0,1) to l2. (c) Denote M = (M1, ...,Mk)
′. By Assumption 4 the

matrix X = (JM1, ...,JMk) = JM′ has square-summable and linearly independent

columns. ||X ||2 < ∞ because the number of the columns is finite. It is easy to

check that the operators

P = X(X ′X)−1X ′ and Q = I −P (11)

are symmetric and idempotent (for the identity operator I we don’t use a ma-

trix representation because ||I||2 = ∞). (d) Denote νJ = diag[ν(λ 1),ν(λ 2), ...] an

infinite-dimensional diagonal matrix. It has been shown in [14] that Assumptions

1 and 3 imply

∑
i≥1

|ν(λ i)| < ∞, (12)

so ||νJ||2 < ∞. (e) Denote ν i
J powers of νJ and

Γi = X ′ν i
JX , i = 1,2, u = (u1,u2, ...)

′, (13)

ξ = (ξ 1,ξ 2,ξ 3,ξ 4,ξ 5)
′

= |σβ ψ |((X ′u)′,(X ′νJu)′,(X ′ν2
Ju)′, |σβ ψ |u′νJu, |σβ ψ |u′ν2

Ju)′. (14)

We cannot be sure that X ′u belongs to l2 for every point in the sample space

Ω. However, because of Assumption 4(a) the series X ′u converges in L2(Ω).
Similar remarks apply to other components of ξ . Note that ξ 1, ξ 2, ξ 3 are linear

in standard normal variables and ξ 4, ξ 5 are quadratic.

Theorem 3 If Assumptions 1-5 hold, then the limit in distribution

dlim(ζ n,Φn) = (ζ ,Φ) (15)

8



exists where, with Γ0 defined in Assumption 4(b),

ζ =

(
ξ 1

κ ′ξ 2 + 1
d

ξ 4

)
, Φ =

(
Γ0 Γ1κ + 1

d
ξ 2

κ ′Γ1 + 1
d

ξ ′
2 κ ′Γ2κ + 2

d
κ ′ξ 3 + 1

d2 ξ 5

)
. (16)

For any sequence {ui : i ∈N} of independent standard normal variables denote

uL = (u1, ...,uL,0, ...)′ and define a multicollinearity detector by

Ξ = plimL→∞

∥∥∥∥QνJ

(
Xκ +

|σβ ψ |
d

uL

)∥∥∥∥
2

2

. (17)

DEFINITION OF EXTREME CASES. Theorem 1 means that the normalizer for Sub-

model 1 is unity. On the other hand, Anderson’s normalizer for Submodel 2 uses

l2-norms of the columns of Xn. This is why we say that the exogenous regres-

sors dominate if d = ∞. Since dn ≥ 1, it is natural to say that the autoregressive

term dominates when κ = 0. Domination of the exogenous regressors and of the

autoregressive term are mutually exclusive by Lemma 14(c) from Section 3.

By ν(K ) we denote a function of the integral operator K defined using its

spectral decomposition: if F = ∑
∞
i=1(F,Fi)L2

Fi, then ν(K )F = ∑
∞
i=1 ν(λ i)(F,Fi)L2

Fi.
Also let M be the linear span of M1, ...,Mk.

Theorem 4 Let Assumptions 1 through 5 hold. Then

(a) the limit (17) exists and the condition |Φ| 6= 0 a.s. is equivalent to

Ξ > 0 a.s. (18)

If the last condition is satisfied, then the OLS estimator converges in distribution

Dn(θ̂ −θ)
d→ Φ−1ζ . (19)

(b) If the autoregressive term dominates, then

ζ =

(
ξ 1

ξ 4

)
, Φ =

(
Γ0 ξ 2

ξ ′
2 ξ 5

)
, Ξ = plimL→∞(σβ ψ)2||QνJuL||22. (20)

and the condition β ψ 6= 0 is necessary for (18).

(c) If the exogenous regressors dominate, then

ζ =

(
ξ 1

κ ′ξ 2

)
, Φ =

(
Γ0 Γ1κ

κ ′Γ1 κ ′Γ2κ

)
, κ 6= 0, (21)

9



Ξ = dist2(ν(K )κ ′M,M) (22)

where dist(x,M) stands for the distance from point x to the subspace M. This

means that linear independence of ν(K )κ ′M and M1, ...,Mk is necessary and

sufficient for |Φ| 6= 0. Further, if the constant Ξ is positive, then

Dn(θ̂ −θ)
d→ N(0,(σβ ψ)2Φ−1). (23)

We call (18) an invertibility criterion. It is a precise condition under which it is

possible to pass from convergence in distribution of the pair (15) to that of the ratio

Φ−1
n ζ n. Thus, in case of the exogenous regressors domination the quadratic parts

disappear from ζ and Φ; Φ becomes nonstochastic and the asymptotic distribution

is normal. If the autoregressive term dominates, the linear parts vanish in ζ 2 and

Φ22. These are the traces of features of Submodels 1 and 2. None of these extreme

cases involve ξ 3, which reflects interaction between the exogenous regressors and

spatial lags.

REMARK 1. There are two important issues that will not be considered here

in full because of their complexity.

(1) For the purposes of statistical inference, one needs to estimate the variance-

covariance matrix of the vector Φ−1ζ from Theorem 4. The situation is relatively

simple in case of exogenous regressors domination, when Φ is constant, Φn =
H

′
nHn converges to Φ in probability and, hence, Φ−1

n estimates Φ−1. (σβ ψ)2 can

be estimated by Φ−1
n V (ζ n) (see the end of the proof of Theorem 4). Even in this

case there is a problem because Φn = H
′
nHn depends, through dn, on unknown β .

This problem is partially alleviated by the fact that ζ n depends on β in the same

way. Therefore if some of ‖x
(1)
n ‖2, ...,‖x

(k)
n ‖2 tend to infinity and, for example,

‖x
(1)
n ‖2 is the largest of these quantities and β 1 6= 0, then dn = ‖x

(1)
n ‖2|β 1| for

all large n and the quantities that depend on β 1 in Φn and V (ζ n) cancel out. If,

on the other hand, all of ‖x
(1)
n ‖2, ...,‖x

(k)
n ‖2 are bounded, then 1 ≤ dn ≤ const, so

that dependence on β is weak. In the general case, when Φ is stochastic, there

is no simple link between estimates of Φ, V (ζ ) and V (Φ−1ζ ). At the moment I

can suggest no constructive ideas on the matter and invite the profession to think

about it.

(2) The second issue is consistency of the OLS estimator. Again, the problem

deserves another paper, and only general considerations will be offered. Firstly,

for a purely spatial model in [14] we have shown that, because of the presence

of quadratic forms in standard normals in the asymptotic distribution, the consis-

tency notion itself should be modified, from plimρ̂ = ρ to plimρ̂ = ρ + X where
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EX = 0. Since the mixed spatial model inherits those quadratic forms, the sit-

uation for the problem at hand must be even more complex. Secondly, what is

known for Submodel 2, about consistency [21, Theorem 3.5.1] and asymptotic

normality [21, Theorem 3.5.4] of the OLS estimator, indicates that consistency

and convergence in distribution are two essentially different problems that require

different approaches and conditions. That is to say, trying to extract from Theo-

rem 4 conditions sufficient for consistency may not be the best idea. Still, if one

wishes to realize it, this is how. The components of θ̂ −θ converge with different

rates. This can be written as mni(θ̂ i − θ i)
d→ φ i, i = 1, ...,k + 1, where mni are

normalizing multipliers and φ i are random variables. mni → 0 means a swelling

distribution, so in such cases θ̂ i−θ i does not converge in probability. If mni → ∞,
then θ̂ i −θ i behaves as 1

mni
φ i, which goes to 0 in probability. Finally, for i with

mni ≡ 1 it suffices to impose conditions providing φ i = 0. The next example illus-

trates Theorem 4 and shows, in particular, that consistency can be obtained as its

consequence.

Example Denote lm = (1, ...,1)′ (m unities) and Bm = (lml′m − Im)/(m− 1).
The Case matrices [25] are defined by Wn = Ir ⊗Bm where n = rm. Let us call

W̃n = Ir⊗(lml′m)/(m−1) pseudo-Case matrices. In the model Yn = β ln +ρWnYn +
Vn with a constant term and Case matrix Wn the regressors are collinear because

Wnln = ln and Zn = Wn(ln,Yn) is of rank at most 2. Therefore we consider Yn =
β ln +ρW̃nYn +Vn. The pseudo-Case matrix W̃n satisfies Assumptions 1 and 3 [14,

Lemma 7] with ∑i≥1 |λ i| ∼ 2r − 1, if r is fixed and m → ∞. For simplicity, the

components of the error vector Vn are assumed i.i.d. with mean 0 and variance σ2.

Application of Theorem 4 leads to the following conclusions. The conditions d =
∞ (exogenous regressors domination) and κ = 0 (autoregressive term domination)

are mutually exclusive and together cover all possible β .

Table 1. Asymptotic distribution
β = 0 β 6= 0

d = 1, κ = 0 (autoregressive term domi-

nation)

d = ∞, |κ|= 1 (exogenous re-

gressor domination)

If r = 1, there is asymptotic multi-

collinearity.

If r ≥ 2, (
√

n(β̂ −β ), ρ̂−ρ)
p→ (0,1−ρ).

For any natural r, there is

asymptotic multicollinearity.

In this example ζ and Φ contain quadratic forms of standard normal variables

but those forms cancel out in Φ−1ζ . Still, the asymptotic distribution, when it

exists, is not normal. In particular, β̂ is consistent and ρ̂ is not when β = 0, r ≥ 2.
Computer simulations confirm the theoretical results. For pseudo-Case ma-
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trices the values of m,r have been fixed at m = 200, r = 10 giving n = 1000.
Each of the values β = −1,0,1 was combined with 20 values of ρ from the seg-

ment [−0.2,0.2], to see if there is deterioration of convergence at the boundary of

the theoretical interval of convergence ρ ∈ (−1/19,1/19). For each combination

(β ,ρ) 100 simulations were run. The ranges of sample means and sample stan-

dard deviations for the samples of size 100 are reported in the next table (for small

values we indicate just the order of magnitude).

Table 2. Simulation results for pseudo-Case matrices
β = −1 β = 0 β = 1

mean β 10−12 10−12 10−16

st.d. β 10−11 10−11 10−15

mean ρ 0.995 0.995 0.995

st.d. ρ 10−11 10−11 10−14

As we see, the estimate of β = 0 is good, as predicted, and the estimates of

β = ±1 are not. The estimate of ρ is always bad (closer to 1 than to the true

ρ). To see the dynamics of ρ̂ as m increases we combined β = 0,ρ = −0.2 with

m = 200,300, ...,1000. The corresponding values of ρ̂ approach 1, starting from

0.9966 and monotonically increasing to 0.999. These simulations did not reveal

any deterioration of convergence outside the theoretical interval, suggesting that

the convergence may hold in a wider interval. For combinations β =−1,0,1 with

ρ = 0.2 the null hypothesis of normal distribution for β̂ and ρ̂ is rejected (the

p-value of Anderson-Darling statistic is less than 0.0001).

The results for Case matrices are reported in the following table:

Table 3. Simulation results for Case matrices
β = −1 β = 0 β = 1

mean β [−1.7,−1.02] [−0.92,−0.17] [−0.008,0.014]
st.d. β [0.54,1.15] [0.57,1.63] [0.02,0.05]
mean ρ̂ −ρ [−0.82,−0.02] [−0.95,−0.06] [−0.79,−0.03]
st.d. ρ [0.43,1.34] [0.49,1.95] [0.46,2.35]

There is no definite pattern in these numbers, and for the combination β =
0,ρ = −0.2 an increase in m from 200 to 1000 did not improve the estimates.

Finally, in cases β = ±1 both for the Case and pseudo-Case matrices the sample

correlation between the estimates of β and ρ was at least 0.99 in absolute value.

12



3 PROOFS OF THE MAIN RESULTS

Roadmap. Since the proofs contained herein deviate from the conventional ap-

proach in several respects, some ideas are highlighted below. (a) One of the main

results of [15], stated here as Lemma 5(g), is a general central limit theorem (CLT)

for weighted sums of short-memory processes. For the purposes of Lemma 10 it

had to be generalized as Lemma 9, to allow β ψ = 0 and |Γ0| = 0. (b) The im-

portance of the operator Tn defined in Lemma 5(d) is explained by the fact that

linear processes are defined as convolutions and induce the operator Tn. (c) Some

results in the asymptotic theory are obtained by what can be termed a perturbation

argument. Two examples are: (1) Find the asymptotic distribution of the OLS es-

timator when the normalized regressors are exact images under the discretization

mapping δ n and then extend the result to those regressors that can be approxi-

mated by exact images (which takes one to the L2-approximability notion). (2)

Find the asymptotic distribution of the estimator for ”good” (say, i.i.d.) errors

and then generalize to more flexible specifications (say, linear processes). For the

problem under consideration, the second type of perturbation is easier done at the

CLT level than when analyzing the OLS estimator. Lemmas 7 and 8 are a part

of the corresponding perturbation argument. (d) Assumption 1(b) means that the

integral operator K is nuclear. The main properties of such operators are taken

from [19]. Lemma 5, parts (a), (b), (c) and (h), and Lemmas 11 and 12 provide

the necessary links between the operator theory and the theory of functions. (e)

The study of nonlinear functions s(Wn) and ν(K ) was an important innovation of

[14]. Most results of that study are stated as Lemma 6. It is because of them that

the present theory is free from any assumptions involving Gn (which are high-level

and abound in the previous papers). (f) The idea of a double-index approximation,

as in (37), has been borrowed by Mynbaev [15] from [26]. It has been employed

further in [14] and, in a more ornate manner, here in Lemma 10. Lemma 10

combines convergence to a normal vector, of type [15, Theorem 4.1], with con-

vergence to a quadratic form, of type [15, Theorem 4.2]. (g) A limit in distribution

to a variable other than normal can be obtained in two ways: (1) by applying a

CLT on convergence to a nonnormal distribution, or (2) by combining a CLT on

convergence to a normal distribution with the continuous mapping theorem. The

second way in the context of spatial models has been followed in [14] and here

in Theorems 1 and 3. Lemmas 13 through 18 demonstrate the technical obstacles

awaiting an adventurous researcher on this path. See the long explanation before

Lemma 15 for details. Notice the multiple applications of Lemma 8, too. After

experimenting with variance we found that using Lemma 8 for bounding asymp-
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totically negligible terms is better. (h) Since Φ in Theorem 3 may be stochastic,

the use of the continuous mapping theorem (CMT) to prove convergence in distri-

bution of Φ−1
n ζ n in Theorem 4 is inevitable. The CMT is applicable when |Φ|> 0

a.e. This condition is expressed in an equivalent and somewhat simpler form us-

ing the multicollinearity detector. The analysis at infinity has been developed in

order to apply matrix algebra to the derivation and study of the multicollinearity

detector.

3.1 Convenience List

In this section for the reader’s convenience we provide a list of necessary facts.

Some of them are pretty simple. If 1qi
denotes the indicator of qi (1qi

= 1 on qi

and 1qi
= 0 outside qi), then the interpolation operator ∆n : R

n → L2(0,1) takes

a vector x ∈ R
n to a step function ∆nx =

√
n∑

n
i=1 xi1qi

.

Lemma 5 (a) ∆n preserves scalar products: (∆nx,∆ny)L2
= (x,y)l2 for all x,y∈

R
n and n.

(b) The discretization operators are uniformly bounded: ||δ nF ||2 ≤ ||F ||2.

(c) The product δ n∆n coincides with the identity operator in R
n and the product

∆nδ n coincides with the Haar projector defined by PnF = n∑
n
i=1

∫
qi

F(x)x. 1qi
.

(d) For the convolution operator Tn : R
n → lp(Z) defined by (Tnx) j = ∑

n
t=1 xtψ t− j,

j ∈ Z, x ∈ R
n one has

x′Vn = ∑
j∈Z

e j(Tnx) j. (24)

(e) If the sequence {ψ j} is summable, then

||Tnx|| ≤
√

3αψ ||x||2. (25)

(f) If { fn} is L2-close to F and {gn} is L2-close to G, then

f ′ngn → (F,G)L2
, || fn||2 → ||F ||2. (26)

(g) Under Assumptions 2, 4 and β ψ 6= 0 one has H ′
nVn

d−→ N(0,(σβ ψ)2Γ0).

14



(h) Denote by δ 1
n and δ 2

n the 1-D and 2-D discretization operators, respectively.

Then for a product F(x,y) = G(x)H(y) one has (δ 2
nF)st = (δ 1

nG)s(δ
1
nH)t ,

for s, t = 1, ...,n.

(i) Denote En : R
n → l2(Z) the extension operator defined by En(x1, ...,xn)

′ =
(...,0,x1, ...,xn,0...)′, x ∈ R

n. If { fn} is L2-close to F ∈ L2(0,1) and αψ <
∞, then ||Tn fn −β ψEn fn||2 → 0.

Proof. Statements (a)-(c) are straightforward. (d)-(h) have been proved in Myn-

baev [15] (see equation (4.13), Theorems 2.2(a), 3.1(b), 3.4(c) and 4.1). (i) fol-

lows from Mynbaev [15, Theorem 3.1(c)] and the identity ||Tn fn −β ψEn fn||22 =

∑
n
t=1(Tn fn −β ψ fn)

2
t +∑t<1(Tn fn)

2
t +∑t>n(Tn fn)

2
t .

In the following lemma in the beginning of the statements in brackets we pro-

vide references to [14].

Lemma 6 (a) [Lemma 6a)] One has limn→∞ ‖Wn‖2 = limn→∞ ‖δ nK‖2 = ‖K‖2

under Assumption 1.

(b) [Equations (3.35), (3.36)] Let Assumption 1 and (4) hold. For any square

matrix such that |ρ|‖A‖2 < 1 put s(A) = ∑
∞
l=0 ρ lAl+1. Then there exists

n0 > 0 such that

‖s(Wn)− s(δ nK)‖2 =
∥∥s(Wn)

′− s(δ nK)
∥∥

2
≤ c‖Wn −δ nK‖2 f orn ≥ n0,

(27)

sup
n≥n0

‖s(Wn)‖2 < ∞, sup
n≥n0

‖s(δ nK)‖2 < ∞. (28)

(c) [Lemma 6b)] Let {Fi} ⊂ L2(0,1) be any orthonormal system and let i =
(i1, ..., il+1) be a collection of positive integers. Define a chain product µni

by µni = ∏
l
j=1(δ nFi j

,δ nFi j+1
)l2 if l > 0 and µni = 1 if l = 0 and put µ∞i = 1

if (i1 = i2 = ... = il+1 and l > 0) or (l = 0) and µ∞i = 0 otherwise. Then for

all i

lim
n→∞

µni = µ∞i. (29)

(d) [Section: Estimating gammas] The functions µni allow us to write elements

of the series s(δ nKL) and s2(δ nKL) in a relatively compact form

(s(δ nKL))st = ∑
p≥0

ρ p ∑
i1,...,ip+1≤L

p+1

∏
j=1

λ i j
µni(δ nFi1)s(δ nFip+1

)t , (30)
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(s2(δ nKL))st = ∑
p≥0

ρ p(p+1) ∑
i1,...,ip+2≤L

p+2

∏
j=1

λ i j
µni(δ nFi1)s(δ nFip+2

)t ,

s, t = 1, ...,n. (31)

(e) For |ρλ i| < 1 one has expansions

ν(λ i) = ∑
p≥0

ρ pλ
p+1
i , ν2(λ i) = ∑

p≥0

ρ p(p+1)λ p+2
i . (32)

(f) [Equations (3.43), (3.44)] Under Assumptions 1 and 3 the inequalities

supn∈N, 1≤L≤∞ ‖s(δ nKL)‖2 < ∞, supn‖s(δ nK)− s(δ nKL)‖2 ≤ c ∑
i>L

|λ i|,

(33)

are true, where c does not depend on L.

(g) [Equation (3.54)] Under Assumption 3 one has an equivalence

∑
i≥1

|λ i| < ∞ i f and only i f ∑
i≥1

|ν(λ i)| < ∞. (34)

3.2 Proof of Theorem 1

Lemma 7 Denote µ pqrs = Eepeqeres for p,q,r,s ∈ Z. If the m.d. array {et ,Ft}
satisfies conditions stipulated in Assumption 2(a), then µ pqrs = σ4 if [(p = q) 6=
(r = s)] or [(p = r) 6= (q = s)] or [(p = s) 6= (q = r)] and µ pqrs = Ee4

p if p = q =
r = s. In all other cases µ pqrs = 0.

Proof. Without loss of generality we can order the indices: p ≤ q ≤ r ≤ s.

(i) If s > r, by the m.d. property µ pqrs = E[epeqerE(es|Fs−1)] = 0. (ii) If s =
r > q, then by orthogonality of m.d.’s and the second moment condition µ pqrs =

E[epeqE(e2
r |Fr−1)] = σ2Eepeq = σ4 if p = q and µ pqrs = 0, if p < q. (iii) If s =

r = q > p, then µ pqrs = E[epE(e3
q|Fq−1)] = cqEep = 0. (iv) In case s = r = q = p

one has µ pqrs = Ee4
p.

Because of the assumed ordering the cases [(p = r) 6= (q = s)] and [(p =
s) 6= (q = r)] are impossible. The case [(p = q) 6= (r = s)] is covered in (ii),

while p = q = r = s is contained in (iv). In ”all other cases” s > r ≥ q ≥ p or

s ≥ r ≥ q > p should be true. The equality of µ pqrs to zero then follows from (i),

(ii) and (iii).
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Lemma 8 For an n×n matrix A denote N(A) = [E(V ′
nAVn)

2]1/2. Under Assump-

tion 2 for any matrices A,B such that the product AB is of size n× n one has

N(AB) ≤ c||A||2||B||2.

Proof. Denoting a1, ...,ak the columns of A and b1, ...,bk the rows of B, by (24)

we get (al)′Vn = ∑i ei(Tnal)i, blVn = ∑ j e j(Tnbl) j, l = 1, ...,k. Hence, V ′
nABVn =

(A′Vn)
′BVn = ∑i, j∈Z eie j ∑

k
l=1(Tnal)i(Tnbl) j. By Lemma 7

E(V ′
nABVn)

2 =
k

∑
l,m=1

∑
i1,i2, j1, j2∈Z

Eei1ei2e j1e j2(Tnal)i1(Tnbl) j1(Tnam)i2(Tnbm) j2

= σ4
k

∑
l,m=1

∑
i, j∈Z

[(Tnal)i(Tnam)i(Tnbl) j(Tnbm) j

+(Tnal)i(Tnbl)i(Tnam) j(Tnbm) j

+(Tnal)i(Tnbm)i(Tnam) j(Tnbl) j]+∑

= σ4
k

∑
l,m=1

[(Tnal,Tnam)l2(Tnbl,Tnbm)l2

+(Tnal,Tnbl)l2(Tnam,Tnbm)l2

+(Tnal,Tnbm)l2(Tnam,Tnbl)l2]+∑

where ∑ = ∑
k
l,m=1 ∑i∈Z Ee4

i (Tnal)i(Tnam)i(Tnbl)i(Tnbm)i. By the Cauchy-Schwartz

inequality, (25) and Assumption 2 |(Tnx,Tny)l2| ≤ ||Tnx||2||Tny||2 ≤ c1||x||2||y||2,

sup j |(Tnx) j| ≤ ||Tnx||2 ≤ c2||x||2, supi Ee4
i < ∞. Therefore

E(V ′
nABVn)

2 ≤ c3

k

∑
l,m=1

||al||2||am||2||bl||2||bm||2

+ c4

k

∑
l,m=1

sup
i

|(Tnal)i|sup
i

|(Tnbl)i| ∑
i

|(Tnam)i(Tnbm)i|

≤ c3

(
k

∑
l=1

||al||2||bl||2
)2

+ c5

k

∑
l,m=1

||al||2||bl||2||Tnam||2||Tnbm||2

≤ c6

(
k

∑
l=1

||al||22

)1/2(
k

∑
l=1

||bl||22

)1/2

= c6||A||22||B||22.
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Lemma 9 If Assumptions 2 and 4(a) hold, then H ′
nVn

d−→ N(0,(σβ ψ)2Γ0).

Proof. (i) Lemma 5(g) has this statement under the additional conditions |Γ0| >
0, β ψ 6= 0. Let |Γ0|> 0, β ψ = 0. By Assumptions 2(a) and 4(a), Lemma 5(i) and

(24)

E|h(l)′
n Vn|2 = E

∣∣∣∣∣∑
j∈Z

e j(Tnh
(l)
n ) j

∣∣∣∣∣

2

= σ2 ∑
j∈Z

|(Tnh
(l)
n ) j|2 = σ2||Tnh

(l)
n ||22 → 0.

Hence, H ′
nVn

d→ 0 and H ′
nVn

d→ N(0,(σβ ψ)2Γ0).
(ii) We can let β ψ be arbitrary and consider linearly dependent M1, ...,Mk. We

can number these functions in such a way that the first l are independent and the

last k− l are their linear combinations:

M j =
l

∑
i=1

c jiMi, j = l +1, ...,k. (35)

(35) implies

S = CR, M =

(
R

CR

)
, R ≡




M1

...
Ml


 , S ≡




Ml+1

...
Mk


 , C ≡




cl+1,1 ... cl+1,l

... ... ...
ck,1 ... ck,l




Γ0 = (M,M′)L2
=
∫ 1

0

(
RR′ RR′C′

CRR′ CRR′C′

)
x. =

(
ΓR ΓRC′

CΓR CΓRC′

)

where ΓR = (R,R′)L2
is the Gram matrix of R. The proof will be complete if we

show that H ′
nVn converges in distribution to a normal vector with variance of this

structure. With rn = (h1
n, ...,h

l
n), sn = (hl+1

n , ...,hk
n) the matrix Hn is partitioned

accordingly into Hn = (rn,sn). Put s̃n = rnC′, H̃n = (rn, s̃n). Then

H̃ ′
nVn =

(
r′nVn

s̃′nVn

)
=

(
r′nVn

Cr′nVn

)
=

(
I

C

)
r′nVn.

By part (i) of this proof r′nVn
d→U with U distributed as N(0,(σβ ψ)2ΓR). There-

fore H̃ ′
nVn

d→ N(0,(σβ ψ)2Γ0).

Now it suffices to show that plim(H ′
nVn − H̃ ′

nVn) = 0 or, since the first blocks

in these vectors are the same, that plim(s′nVn −Cr′nVn) = 0. The jth component of
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s′nVn −Cr′nVn is (h
( j)′
n − c jr

′
n)Vn, j = l + 1, ...,k, where c j denotes the jth row of

C. By Hölder’s inequality and Lemma 8

E|(h( j)′
n − c jr

′
n)Vn|2 = EV ′

n(h
( j)′
n − c jr

′
n)

′(h( j)′
n − c jr

′
n)Vn

≤ {E[V ′
n(h

( j)′
n − c jr

′
n)

′(h( j)′
n − c jr

′
n)Vn]

2}1/2

= N((h
( j)′
n − c jr

′
n)

′(h( j)′
n − c jr

′
n)) ≤ c||h( j)

n − rnc′j||22.

Applying the discretization operator to both sides of (35) we get

||h( j)
n − rnc′j||2 ≤ ||h( j)

n −δ nM j||2 + ||δ nM j −∑c jih
(i)
n ||2

≤ ||h( j)
n −δ nM j||2 +∑ |c ji|||δ nMi −h

(i)
n ||2 → 0

by the L2-approximability assumption.

For any natural n,L denote

UnL =




H ′
nVn

(δ nF1)
′Vn

...
(δ nFL)

′Vn


 , XnL =




H ′
nVn

∑
L
i=1 ν(λ i)(M,Fi)L2

UnL,k+i

∑
L
i=1 ν2(λ i)(M,Fi)L2

UnL,k+i

∑
L
i=1 ν(λ i)U

2
nL,k+i

∑
L
i=1 ν2(λ i)U

2
nL,k+i




. (36)

The limiting behavior of XnL, as n → ∞, is described in terms of

ξ L = |σβ ψ |




∑
∞
i=1(M,Fi)L2

ui

∑
L
i=1 ν(λ i)(M,Fi)L2

ui

∑
L
i=1 ν2(λ i)(M,Fi)L2

ui

|σβ ψ |∑L
i=1 ν(λ i)u

2
i

|σβ ψ |∑L
i=1 ν2(λ i)u

2
i




, 1 ≤ L < ∞.

Lemma 10 Let Assumptions 1, 2 and 4 hold and let (12) be true. Then

dlimn→∞ XnL = ξ L f or all L < ∞, plimL→∞ ξ L = ξ . (37)

Proof. The matrix (Hn, δ nF1, ..., δ nFL) satisfies all conditions of Lemma 9.

Therefore UnL converges in distribution to a normal vector with zero mean and

variance (σβ ψ)2Γ where Γ is the Gram matrix of the system {M1, ...,Mk,F1, ...,FL}.

Putting F(L) = (F1, ...,FL)
′ we see that

Γ =
(
Γi j

)2

i, j=1
, Γ11 = (M,M′)L2

=
∞

∑
i=1

(M,Fi)L2
(M′,Fi)L2

,
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Γ12 = (M,F(L)′)L2
= ((M,F1)L2

, ...,(M,FL)L2
), Γ21 = Γ′

12,

Γ22 = (F(L),F(L)′)L2
= I

(the upper left block is obtained by Parseval’s identity; the lower right block is

a consequence of orthonormality of {Fi}). If we take a sequence of independent

standard normals ui and define UL by UL = |σβ ψ |(∑∞
i=1(M

′,Fi)L2
ui,u1, ...,uL)

′
,

then it will be normal, have zero mean and variance Γ. Hence, UnL
d→ UL. XnL,

being a continuous function of UnL, converges in distribution to the same function

of UL. Keeping in mind that the relationship H ′
nVn

d→ N(0,(σβ ψ)2(M,M′)L2
) is

equivalent to H ′
nVn

d→ |σβ ψ |∑∞
i=1(M,Fi)L2

ui and that UnL,k+i
d→ ui we get the first

equation in (37). The second equation is obvious because all components of ξ L

converge to those of ξ in L1(Ω) and in probability.

Proof of Theorem 1 Our Theorem 1 is proved by making in the proof of

[14, Theorem 1] the following changes: (a) Instead of their δ nL and ∆L use the

last two components of XnL and ξ L: δ nL = ∑
L
i=1U2

nL,k+iai, ∆L = (σβ ψ)2 ∑
L
i=1 u2

i ai

where ai = diag[ν(λ i),ν
2(λ i)]. (b) Instead of their Lemma 5d) apply our Lemma

8. (c) Their UnL corresponds to the vector of the last L coordinates of our UnL.

(d) Replace their Lemma 7 by our Lemma 10. (e) Minor changes in estimating

β nL, γnL are necessary. Instead of describing those changes we refer to Lemmas

17 and 18 below where the proofs are given in full.

3.3 Proof of Theorem 2

Lemma 11 Let Pn, ∆1
n and δ 1

n be the 1-D Haar projector, interpolation operator

and discretization operator, respectively. Denote δ 2
n the 2-D discretization opera-

tor and Kn = PnK Pn. Then Kn = ∆1
n(δ

2
nK)δ 1

n.

Proof. By Lemma 5(c) we have Kn = ∆1
n(δ

1
nK ∆1

n)δ
1
n and the statement will

follow if we establish δ 1
nK ∆1

n = δ 2
nK. The definitions give:

[δ 1
n(K ∆1

n f )]s =

[
δ 1

n

∫ 1

0
K(·,y)(∆1

n f )(y)y.

]

s

=
√

n
n

∑
t=1

[
δ 1

n

∫

qt

K(·,y)y.
]

s

ft = n
n

∑
t=1

∫

qs

(∫

qt

K(x,y)y.

)
x. ft

= n
n

∑
t=1

∫

qst

K(x,y)x.y. ft = [(δ 2
nK) f ]s, s = 1, ...,n.
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Since f is arbitrary, this proves the desired equation.

Lemma 12 If K is symmetric and integrable, then the point spectrum of Kn coin-

cides with that of δ 2
nK, meaning that their nonzero eigenvalues, repeated accord-

ing to their multiplicities, are the same.

Proof. If KnF = λF , then by Lemmas 5(c) and 11 one can see that λδ 1
nF =

δ 1
nKnF = (δ 1

n∆1
n)(δ

2
nK)δ 1

nF = (δ 2
nK)δ 1

nF and, hence, f = δ 1
nF is an eigenvec-

tor of δ 2
nK corresponding to λ . Conversely, if (δ 2

nK) f = λ f , then we multiply

both sides by ∆1
n and use Lemma 5(c) to substitute f = δ 1

n∆1
n f : ∆1

n(δ
2
nK)δ 1

n∆1
n f =

λδ 1
n f . Application of Lemma 11 shows that F = ∆1

n f is an eigenvector of Kn

corresponding to λ . In both cases, when we go from Kn to δ 2
nK and back, if G

(or g = δ 1
nG) is another eigenvector corresponding to the same eigenvalue λ and

orthogonal to F (or f , respectively), orthogonality is preserved by Lemma 5(a).

This implies preservation of multiplicities. Note that since the image of Kn is

finite-dimensional, the subspace of eigenvectors of Kn corresponding to λ = 0 is

infinite-dimensional and mapped to {0} by δ 1
n.

Proof of Theorem 2 We need a series of definitions and facts from Gohberg

& Kreı̆n [19]. Let A be a compact linear operator in a Hilbert space H. If A is

self-adjoint, then {λ n(A) : n ∈ N} denotes its sequence of eigenvalues counted

with their multiplicities and numbered in the order of decreasing absolute values.

If A is not necessarily self-adjoint, then its s-numbers are defined by sn(A) =
λ n((A

∗A)1/2). The expression ||A||σ1
= ∑

∞
j=1 s j(A) is a norm [19, p.92]. For

self-adjoint operators s j(A) = |λ j(A)| [19, p.27], so

||A||σ1
=

∞

∑
j=1

|λ j(A)|. (38)

For any bounded operators B and C

s j(BAC) ≤ ||B||s j(A)||C|| (39)

[19, §2.1]. If for some orthonormal basis {φ j} one has ∑ j ||Aφ j|| < ∞, then

||A||σ1
≤ ∑ j ||Aφ j|| [19, §7.8]. If A is a square matrix of order n, then plugging

the jth unit vector φ j = (0, ...,0,1,0, ...,0)′ ∈ R
n in the last inequality produces

Aφ j = (a1 j, ...,an j)
′ ( jth column) and

||A||σ1
≤ ∑

j

||(a1 j, ...,an j)||2 ≤
√

n||A||2. (40)
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Now we can proceed with the proof. Kn is self-adjoint because K and Pn are. By

Lemma 12 ||Kn||σ1
= ||δ 2

nK||σ1
. Hence, by (38), (40) and Assumption 1

∣∣∣∣∣
n

∑
i=1

|λ ni|− ||Kn||σ1

∣∣∣∣∣=
∣∣∣||Wn||σ1

−||δ 2
nK||σ1

∣∣∣

≤ ||Wn −δ 2
nK||σ1

≤
√

n||Wn −δ 2
nK||2 → 0.

Since ||Pn|| ≤ 1 by Lemma 5, parts (a) and (b), bound (39) and Assumption 1 lead

to

||Kn||σ1
=

∞

∑
j=1

s j(PnK Pn) ≤
∞

∑
j=1

s j(K ) =
∞

∑
j=1

|λ j(K )| < ∞.

The last two displayed equations prove the theorem.

3.4 Proof of Theorem 3

Lemma 13 If Assumptions 1, 3 and 4(a) hold, then (a) limn→∞ H ′
nHn = Γ0, (b)

limn→∞ H ′
nGnHn = Γ1 = limn→∞ H ′

nG′
nHn, (c) limn→∞ H ′

nG′
nGnHn = Γ2.

Proof. (a) directly follows from Assumption 4(a), (26) and the definition of X :

lim
n→∞

(H ′
nHn)lm = lim

n→∞
h

(l)′
n h

(m)
n =

∫ 1

0
Ml(x)Mm(x)x.

=
∞

∑
j=1

(Ml,Fj)L2
(Mm,Fj)L2

= (X ′X)lm.

(b) The elements of the matrix H ′
nGnHn are h

(l)′
n Gnh

(m)
n , 1 ≤ l,m ≤ k. For any

l,m h
(l)′
n Gnh

(m)
n = h

(l)′
n [s(Wn)− s(δ nK)]h

(m)
n +h

(l)′
n s(δ nK)h

(m)
n . Here the first term

tends to zero by Assumption 1(a), (27) and (26): |h(l)′
n [s(Wn)− s(δ nK)]h

(m)
n | ≤

c‖h
(l)
n ‖2 ‖Wn −δ nK‖2 ‖h

(m)
n ‖2 → 0. For the second term (30) with L = ∞ gives

h
(l)′
n s(δ nK)h

(m)
n =

∞

∑
p=0

ρ p
∞

∑
i1,...,ip+1=1

p+1

∏
j=1

λ i j
µni(δ nFi1,h

(l)
n )l2(δ nFip+1

,h
(m)
n )l2 .

Here the series converge uniformly in l,m,n because the scalar and chain products

µni are uniformly bounded and (see Lemmas 5(b) and 5(f) and Assumption 3)

|h(l)′
n s(δ nK)h

(m)
n | ≤ c

∞

∑
p=0

|ρ|p
∞

∑
i1,...,ip+1=1

|λ i1...λ ip+1
|
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= c
∞

∑
p=0

(
|ρ|

∞

∑
i=1

|λ i|
)p

∞

∑
i=1

|λ i| < ∞.

Besides, by (29) and (26) we have element-wise convergence, so

h
(l)′
n s(δ nK)h

(m)
n →

∞

∑
p=0

ρ p
∞

∑
i1,...,ip+1=1

p+1

∏
j=1

λ i j
µ∞i(Fi1,Ml)L2

(Fip+1
,Mm)L2

(µ∞i vanishes outside the diagonal i1 = ... = ip+1)

=
∞

∑
p=0

ρ p
∞

∑
i=1

λ
p+1
i (Fi,Ml)L2

(Fi,Mm)L2

(using (32) and the definition of X)

=
∞

∑
i=1

ν(λ i)(Fi,Ml)L2
(Fi,Mm)L2

= (X ′νJX)lm.

We have proved the first equation in (b). The second equation in (b) follows from

the first equation and the fact that |h(l)′
n (Gn−G′

n)h
(m)
n | ≤ ‖h

(l)
n ‖2(‖Gn − s(δ nK)‖2+

‖G′
n − s(δ nK)‖2)‖h

(m)
n ‖2 → 0 (recall that Gn = s(Wn)).

The next lemma partially answers the question of what Assumption 5 means

in terms of the regressors and β .

Lemma 14 Under Assumption 5 the following is true: (a) If β i = 0, then x
(i)
n

is arbitrary and κ i = 0. (b) Let β i 6= 0. Then (b1) κ i = 0 is equivalent to

‖x
(i)
n ‖2 = o(dn) and (b2) κ i 6= 0 is equivalent to ‖x

(i)
n ‖2/dn → ci > 0 where ci

is some constant. (c) Conditions

max
i

|κ i| < 1 andd > 1 (41)

are mutually exclusive. In particular, conditions κ = 0 and d = ∞ are mutu-

ally exclusive. (d) κ = 0 if and only if either (d1) β = 0 or (d2) β 6= 0 and

limn→∞ ‖x
(i)
n ‖2 = 0 for any i such that β i 6= 0. In either case dn = 1 for all large n

and d = 1.
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Proof. (a) is obvious. (b) If β i 6= 0, then ‖x
(i)
n ‖2 = κnidn/β i. This equation

implies (b1) and (b2). (c) Suppose that (41) is true and denote ε = 1−maxi |κ i|.
Then for all large n one has dn = max{‖x

(1)
n ‖2|β 1|, ...,‖x

(k)
n ‖2|β k|}> 1 and |κni|=

‖x
(i)
n ‖2|β i|/dn ≤ 1−ε/2. This leads to a contradiction: dn ≤ (1−ε/2)dn. (d) Let

κ = 0. If β = 0, there is nothing to prove. If β 6= 0, then consider any i such that

β i 6= 0. By (b1) for any such i we have ‖x
(i)
n ‖2 = o(dn). By (c) the assumption κ =

0 excludes the possibility d = ∞. Hence, d < ∞ and ‖x
(i)
n ‖2 = o(dn) is equivalent to

‖x
(i)
n ‖2 = o(1). Since this is true for any i with β i 6= 0, we have dn = 1 for all large

n and, consequently, d = 1. We have proved (d2). Conversely, if (d1) is true, then

trivially κ = 0. If (d2) is true, then dn = 1 for all large n and κni = ‖x
(i)
n ‖2β i → 0

for any i such that β i 6= 0. Hence, κ = 0.

Now we define auxiliary random vectors used in the proof of Theorem 3. All

random components contained in ζ n (9) and Φn (10) are dumped into one vector

An = ((An1)
′,(An2)

′,(An3)
′,An4,An5)

′

= ((H ′
nVn)

′,(H ′
nGnVn)

′,(H ′
nG′

nGnVn)
′,V ′

nG′
nVn,V

′
nG′

nGnVn)
′.

H ′
nG′

nVn (which is a part of ζ n) is not included because plim(H ′
nGnVn−H ′

nG′
nVn) =

0, see Lemma 15(b) below. The first three components of An are k×1 and linear

in Vn, whereas the last two are (scalar) quadratic forms of Vn.

An is represented as

An = αn +β nL + γnL +XnL (42)

where the vectors at the right-hand side have blocks conformable with those of

An. XnL has been defined in (36) and represents the main part of An. The other

three vectors will be shown to be negligible in some sense and are defined by

αn =




0

H ′
n[Gn − s(δ nK)]Vn

H ′
n[G

′
nGn − s2(δ nK)]Vn

V ′
n[G

′
n − s(δ nK)]Vn

V ′
n[G

′
nGn − s2(δ nK)]Vn




, β nL =




0

H ′
n[s(δ nK)− s(δ nKL)]Vn

H ′
n[s

2(δ nK)− s2(δ nKL)]Vn

V ′
n[s(δ nK)− s(δ nKL)]Vn

V ′
n[s

2(δ nK)− s2(δ nKL)]Vn




, γnL =




0

H ′
ns(δ nKL)Vn

H ′
ns2(δ nKL)Vn

V ′
ns(δ nKL)Vn

V ′
ns2(δ nKL)Vn



−




0

XnL2

XnL3

XnL4

XnL5


 .

(43)

Intuitive explanations: for αn, if Wn is close to δ nK, then G′
n = s(W ′

n) and

G′
nGn = s(W ′

n)s(Wn) should be close to s(δ nK) and s2(δ nK), resp.; the definition

of β n reflects approximation of K by its segments, and γn is a small correction

needed to obtain a continuous function of an asymptotically normal vector. In

αn, β nL, γnL the first blocks are null because Lemma 9 is directly applicable to

the first block of An.
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Lemma 15 (a) For any n×n matrix An one has (E‖H ′
nAnVn‖2

2)
1/2 ≤ c‖Hn‖2‖An‖2

provided that Assumption 2 is met. (b) If, additionally, Assumptions 1 and 4(a)

hold and ρ satisfies (4), then plim(H ′
nGnVn −H ′

nG′
nVn) = 0.

Proof. (a) Use the partition of Hn into its columns:

E‖H ′
nAnVn‖2

2 = E
k

∑
l=1

(
h

(l)′
n AnVn

)2
=

k

∑
l=1

EV ′
nA′

nh
(l)
n h

(l)′
n AnVn

(apply Hölder’s inequality and Lemma 8)

≤
k

∑
l=1

[E(V ′
nA′

nh
(l)
n h

(l)′
n AnVn)

2]1/2 =
k

∑
l=1

N(A′
nh

(l)
n h

(l)′
n An)

≤ c
k

∑
l=1

||A′
nh

(l)
n ||2||h(l)′

n An||2 ≤ c
k

∑
l=1

||An||22||h
(l)
n ||22 = c‖Hn‖2

2‖An‖2
2.

(b) (26) and Assumption 4(a) imply

lim
n→∞

‖Hn‖2
2 =

k

∑
l=1

||Ml||22. (44)

Hence, by part (a) of this lemma, (27) and Assumption 1

(E‖H ′
n(G

′
n −Gn)Vn‖2

2)
1/2 ≤ c‖Hn‖2‖G′

n −Gn‖2

≤ c‖Hn‖2(
∥∥G′

n − s(δ nK)
∥∥

2
+‖s(δ nK)−Gn‖2)

≤ c‖Wn −δ nK‖2 → 0.

Lemma 16 Suppose Assumptions 1, 2 and 4(a) are met and let ρ satisfy (4). Then

E‖αn‖2
2 = o(1).

Proof. Since the number of components of αn is finite and αn1 = 0, it suffices

to prove E‖αn j‖2
2 = o(1), j = 2, ...,5. Assumptions of this lemma allow us to use

(27), Lemma 15(a) and (44):

(
E‖αn2‖2

2

)1/2
= (E‖H ′

n[Gn − s(δ nK)]Vn‖2
2)

1/2

≤ c‖Hn‖2 ‖Gn − s(δ nK)‖2 ≤ c1 ‖Wn −δ nK‖2 → 0.
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Similarly, applying also (28),

(
E‖αn3‖2

2

)1/2
= (E‖H ′

n[G
′
nGn − s2(δ nK)]Vn‖2

2)
1/2

≤ c‖Hn‖2 [‖G′
n − s(δ nK)‖2||Gn||2 +‖s(δ nK)‖2 ‖Gn − s(δ nK)‖2]

≤ c1 ‖Wn −δ nK‖2 → 0.

In the next two cases in place of Lemma 15(a) we use Lemma 8:

(
E‖αn4‖2

2

)1/2
= N(I[G′

n − s(δ nK)])

≤ c
√

n||G′
n − s(δ nK)||2 ≤ c1

√
n‖Wn −δ nK‖2 → 0,

(
E‖αn5‖2

2

)1/2
= N(G′

nGn − s2(δ nK))

≤ N([G′
n − s(δ nK)]Gn)+N(s(δ nK)[Gn − s(δ nK)])

≤ c[‖G′
n − s(δ nK)‖2||Gn||2 +‖s(δ nK)‖2 ‖Gn − s(δ nK)‖2]

≤ c1 ‖Wn −δ nK‖2 → 0.

Lemma 17 If Assumptions 1-3 and 4(a) hold, then
(
E‖β nL‖2

2

)1/2 ≤ c∑i>L |λ i|,
where c does not depend on n,L.

Proof. Like in the previous lemma, we need only consider the last four compo-

nents of β nL. By Lemma 15(a), (44) and the second bound in (33)

(
E‖β nL2‖2

2

)1/2
= {E‖H ′

n[s(δ nK)− s(δ nKL)]Vn‖2
2}1/2

≤ c‖Hn‖2 ‖s(δ nK)− s(δ nKL)‖2 ≤ c1 ∑
i>L

|λ i|.

For β nL3 we also use the first estimate in (33):

(
E‖β nL3‖2

2

)1/2
= (E‖H ′

n[s
2(δ nK)− s2(δ nKL)]Vn‖2

2)
1/2

≤ c‖s2(δ nK)− s2(δ nKL)‖2

≤ c(‖s(δ nK)‖2 +‖s(δ nKL)‖2)‖s(δ nK)− s(δ nKL)‖2

≤ c1 ∑
i>L

|λ i|.
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The proofs for β nL4 and β nL5 given in [14] don’t work for the current error struc-

ture. For any 1 ≤ L ≤ M ≤ ∞ consider a segment KL,M = ∑
M
j=L λ jFj(x)Fj(y) of K.

By Lemma 5(h)

(δ 2
nKL,M)st =

M

∑
j=L

λ j(δ
1
nFj)s(δ

1
nFj)t , (45)

so Lemma 5(b) gives

||δ 2
nKL,M||22 =

n

∑
s,t=1

M

∑
i, j=L

λ iλ j(δ
1
nFi)s(δ

1
nFi)t(δ

1
nFj)s(δ

1
nFj)t

=
M

∑
i, j=L

λ iλ j(δ
1
nFi,δ

1
nFj)

2
l2
≤
(

M

∑
j=L

|λ j|
)1/2

. (46)

Using Lemma 8 in the proof of [14, Equation (3.5)] we have

N(Ak+1 −Bk+1) ≤ c||A−B||2(k +1)(max{||A||2, ||B||2})k (47)

for any natural k and square matrices A,B of order n. Now we can proceed with

bounding β nL4:

(
E|β nL4|22

)1/2
= {E|V ′

n[s(δ nK)− s(δ nKL)]Vn|22}1/2

= N(s(δ nK)− s(δ nKL)) ≤ N(δ nK −δ nKL)

+ ∑
k>0

|ρ|kN((δ nK)k+1 − (δ nKL)
k+1). (48)

By Lemma 8 and (45)

N(δ nK −δ nKL) = N



(

∑
j>L

λ j(δ nFj)s(δ nFj)t

)n

s,t=1




= N

(

∑
j>L

λ jδ nFj(δ nFj)
′
)

≤ ∑
j>L

|λ j|N
(
δ nFj(δ nFj)

′)

≤ c ∑
j>L

|λ j|||δ nFj||22 ≤ c ∑
j>L

|λ j|. (49)

For the remaining terms at the right of (48) by (47) we have

N((δ nK)k+1 − (δ nKL)
k+1)
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≤ c(k +1)(max{||δ nK||2, ||δ nKL||2})k||δ nK −δ nKL||2

≤ c(k +1)

(
max

{
∞

∑
j=1

|λ j|,
L

∑
j=1

|λ j|
})k

∑
j>L

|λ j|

≤ c(k +1)

(
∞

∑
j=1

|λ j|
)k

∑
j>L

|λ j|. (50)

Here we have applied three particular cases of (46). Putting together (48), (49)

and (50) yields

(
E|β nL4|22

)1/2 ≤ c ∑
j>L

|λ j|+ c ∑
k>0

(k +1)

(
|ρ|

∞

∑
j=1

|λ j|
)k

∑
j>L

|λ j| = c1 ∑
j>L

|λ j|.

In the proof for β nL5 we apply Lemma 8 and (33):

(
E|β nL5|22

)1/2
= {E|V ′

n[s
2(δ nK)− s2(δ nKL)]Vn|22}1/2

= N(s2(δ nK)− s2(δ nKL)) ≤ N(s(δ nK)[s(δ nK)− s(δ nKL)])

+N([s(δ nK)− s(δ nKL)]s(δ nKL))

≤ c(‖s(δ nK)‖2 +‖s(δ nKL)‖2)‖s(δ nK)− s(δ nKL)‖2

≤ c1 ∑
i>L

|λ i|.

Lemma 18 If Assumptions 1 through 4 hold, then for any positive (small) ε and

(large) L there exists n0 = n0(ε,L) such that ∑
5
j=1 E||γnL j||2 ≤ cε for all n ≥ n0

where c does not depend on n and L.

Proof. Recall definitions (36) and (43): γnL1 = 0,

γnL2 = H ′
ns(δ nKL)Vn −

L

∑
i=1

ν(λ i)(M,Fi)L2
UnL,k+i,

γnL3 = H ′
ns2(δ nKL)Vn −

L

∑
i=1

ν2(λ i)(M,Fi)L2
UnL,k+i,

γnL4 = V ′
ns(δ nKL)Vn −

L

∑
i=1

ν(λ i)U
2
nL,k+i,
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γnL5 = V ′
ns2(δ nKL)Vn −

L

∑
i=1

ν2(λ i)U
2
nL,k+i.

Using (36) and (30) we write the lth component of H ′
ns(δ nKL)Vn as

h
(l)′
n s(δ nKL)Vn =

∞

∑
p=0

ρ p ∑
i1,...,ip+1≤L

p+1

∏
j=1

λ i j
µni

n

∑
s,t=1

(δ nFi1)s(h
(l)
n )s(δ nFip+1

)tvt

=
∞

∑
p=0

ρ p ∑
i1,...,ip+1≤L

p+1

∏
j=1

λ i j
µni(h

(l)
n ,δ nFi1)l2UnL,k+ip+1

. (51)

To rearrange the lth component of XnL2, we use the first equation from (32) and

the definition of µ∞i from Lemma 6(c):

(XnL2)l =
L

∑
i=1

ν(λ i)(Ml,Fi)L2
UnL,k+i

=
∞

∑
p=0

ρ p
L

∑
i=1

λ
p+1
i (Ml,Fi)L2

UnL,k+i

=
∞

∑
p=0

ρ p ∑
i1,...,ip+1≤L

p+1

∏
j=1

λ i j
µ∞i(Ml,Fi1)L2

UnL,k+ip+1
. (52)

The last two equations give the next expression for the lth component of γnL2:

(γnL2)l =
∞

∑
p=0

ρ p ∑
i1,...,ip+1≤L

p+1

∏
j=1

λ i j
[µni(h

(l)
n ,δ nFi1)l2 −µ∞i(Ml,Fi1)L2

]UnL,k+ip+1
.

(53)

Due to Lemmas 5(f) and 6(c) for any ε,L > 0 there exists n0 = n0(ε,L) such that

|µni(h
(l)
n ,δ nFi1)l2 −µ∞i(Ml,Fi1)L2

| < ε, n ≥ n0, (54)

for all i which appear in (γnL2)l . Besides, by Lemmas 5(b) and 8

E|UnL,k+ip+1
| ≤ (E|UnL,k+ip+1

|2)1/2 = [E(V ′
nδ nFip+1

(δ nFip+1
)′Vn)]

1/2

≤ {E[V ′
nδ nFip+1

(δ nFip+1
)′Vn]

2}1/4

= N(δ nFip+1
(δ nFip+1

)′)1/2 ≤ c||δ nFip+1
||2 ≤ c. (55)
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The result of (53), (54) and (55) is the desired estimate of (γnL2)l:

E|(γnL2)l| ≤ cε
∞

∑
p=0

|ρ|p ∑
i1,...,ip+1≤L

p+1

∏
j=1

|λ i j
|

≤ cε
∞

∑
p=0

(
|ρ| ∑

j≥1

|λ j|
)p

∑
j≥1

|λ j| = c1ε, l = 1, ...,k.

Similarly, using (31) instead of (30) and the second equation in (32) instead of the

first one in the derivation of (52), we obtain a representation for the lth component

of γnL3:

(γnL3)l =
∞

∑
p=0

ρ p(p+1) ∑
i1,...,ip+2≤L

p+2

∏
j=1

λ i j
[µni(h

(l)
n ,δ nFi1)l2

−µ∞i(Ml,Fi1)L2
]UnL,k+ip+2

.

Application of (54) and (55) finishes the proof for (γnL3)l .

Replacing in (51) h
(l)
n by Vn gives

V ′
ns(δ nKL)Vn =

∞

∑
p=0

ρ p ∑
i1,...,ip+1≤L

p+1

∏
j=1

λ i j
µniUnL,k+i1UnL,k+ip+1

.

Using (32) and properties of µ∞i yields

L

∑
i=1

ν(λ i)U
2
nL,k+i =

∞

∑
p=0

ρ p
L

∑
i=1

λ
p+1
i U2

nL,k+i

=
∞

∑
p=0

ρ p ∑
i1,...,ip+1≤L

p+1

∏
j=1

λ i j
µ∞iUnL,k+i1UnL,k+ip+1

.

The last two equations imply

γnL4 =
∞

∑
p=0

ρ p ∑
i1,...,ip+1≤L

p+1

∏
j=1

λ i j
(µni −µ∞i)UnL,k+i1UnL,k+ip+1

. (56)

By Lemmas 5(b) and 8

(E|UnL,k+i1UnL,k+ip+1
|2)1/2
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= [E(V ′
nδ nFi1(δ nFip+1

)′Vn)
2]1/2

= N(δ nFi1(δ nFip+1
)′) ≤ c||δ nFi1||2||δ nFip+1

||2 ≤ c1. (57)

Equations (56), (57) and Lemma 6(c) allow us to conclude that

E|γnL4| ≤ c1ε
∞

∑
p=0

|ρ|p ∑
i1,...,ip+1≤L

p+1

∏
j=1

|λ i j
| ≤ c2ε.

If in the derivation of (56) one replaces (30) by (31) and the first equation from

(32) by the second one, then one gets

γnL5 =
∞

∑
p=0

ρ p(p+1) ∑
i1,...,ip+2≤L

p+2

∏
j=1

λ i j
(µni −µ∞i)UnL,k+i1UnL,k+ip+2

.

The rest of the proof is the same as for γnL4.

REMARK 2. Since Hn does not appear in the last two components of αn, β nL

and γnL, the results of Lemmas 16-18 regarding those components do not depend

on Assumption 4 and can be used in the proof of Theorem 1.

Proof of Theorem 3 Assumption 3 implies (4). By the Chebyshev inequality

and Lemma 16 plimn→∞ αn = 0. By Lemma 17 P(‖β nL‖2 > ε)≤ 1
ε (E‖β nL‖2

2)
1/2 ≤

c
ε ∑i>L |λ i| where c does not depend on ε,n,L. Lemma 18 implies plimn→∞γnL = 0

for any fixed L. The facts we have just listed and (42) show that for any fixed L

limsupn→∞ P(‖An −XnL‖2 > ε) ≤ c
ε ∑i>L |λ i|. Equivalence (34) allows us to use

Lemma 10. By Billingsley’s [27, Theorem 4.2] we have

dlimAn = ξ . (58)

This relation and Lemma 15(b) ensure convergence in distribution of all parts of

the pair (ζ n,Φn) involving the error. Convergence in probability of all other (de-

terministic) parts of (ζ n,Φn) is provided by Lemma 13 and Assumption 5. Thus,

(ζ n,Φn) converges in distribution. The expressions for the limit (16) and (16) are

established by comparing the formulas for ζ n, Φn, An, ξ , κ and d contained in

(9), (10), (42), (14) and Assumption 5.

3.5 Proof of Theorem 4

(a) Assumption 4(b) enables us to apply the standard fact for partitioned matrices

(see Lütkepohl [28, Section A.10]) |Φ| = |Γ0|∆, where ∆ = |Φ22 −Φ21Γ−1
0 Φ12|.
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Here Φi j are the blocks of (16) and Φ11 = Γ0. From (16) we see that the random

variable ∆ is

∆ = κ ′Γ2κ +
2

d
κ ′ξ 3 +

1

d2
ξ 5 −

(
κ ′Γ1 +

1

d
ξ ′

2

)
Γ−1

0

(
Γ1κ +

1

d
ξ 2

)

= κ ′(Γ2 −Γ1Γ−1
0 Γ1)κ +

1

d2
(ξ 5 −ξ ′

2Γ−1
0 ξ 2)+

2

d
κ ′(ξ 3 −Γ1Γ−1

0 ξ 2).

Let uL = (u1, ...,uL,0, ...)′ ∈ l2,

ξ L = |σβ ψ |
(
(X ′uL)

′′νJuL)
′′ν2

JuL)
′, |σβ ψ |u′LνJuL, |σβ ψ |u′Lν2

JuL

)′
.

Obviously, components of ξ L converge to those of ξ in L2(Ω), so plimL→∞ξ L = ξ
and ∆ = plim∆L where ∆L is obtained from ∆ by replacing the components of ξ
with those of ξ L. Using also the definitions of matrices Γ j (see Assumption 4(b)

and (13)) we get

∆L = κ ′[X ′ν2
JX −X ′νJX(X ′X)−1X ′νJX ]κ

+
(σβ ψ)2

d2
[u′Lν2

JuL − (X ′νJuL)
′(X ′X)−1X ′νJuL]

+
2

d
|σβ ψ |κ ′[X ′ν2

JuL −X ′νJX(X ′X)−1X ′νJuL].

Now rearrange this using (11):

∆L = (νJXκ)′(I −P)νJXκ +
(σβ ψ)2

d2
(νJuL)

′(I −P)νJuL

+
2

d
|σβ ψ |(νJXκ)′(I −P)νJuL

= νJXκ)′Q2νJXκ +
(σβ ψ)2

d2
(νJuL)

′Q2νJuL+

+
|σβ ψ |

d
(νJXκ)′Q2νJuL +

|σβ ψ |
d

(νJuL)
′Q2νJXκ

=

∥∥∥∥QνJ

(
Xκ +

|σβ ψ |
d

uL

)∥∥∥∥
2

2

.

We arrive to the conclusion that the limit (17) exists and |Φ| = |Γ0|Ξ. Conse-

quently, conditions P(|Φ| > 0) = 1 and (18) are equivalent.
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Convergence (19) follows from (15) and the invertibility condition (18) by the

continuous mapping theorem.

(b) If the autoregressive term dominates, by Lemma 14(d) d = 1. Thus, (20)

follows from (16) and (17) on putting κ = 0, d = 1.

(c) Equations (21) follow from (16) with d = ∞ (in this case κ 6= 0 by Lemma

14(c)). Let us prove (22). Since for any x∈ l2 the vector Px is a linear combination

of JM1, ...,JMk, P projects l2 onto the image JM of M under the mapping J.

Hence, Q projects onto the subspace of l2 orthogonal to JM and ||Qx||22 is the

squared distance from x to JM. Thus,

Ξ = plimL→∞ ‖QνJXκ‖2
2 = ‖QνJXκ‖2

2 = dist2(νJXκ,JM). (59)

Since JFj = (0, ...,0,1,0, ...)′ (unity in the nth place), we have for any F ∈ L2(0,1)

Jν(K )F = ∑
i≥1

ν(λ i)(F,Fi)L2
(JFi)= (ν(λ 1)(F,F1)L2

,ν(λ 2)(F,F2)L2
, ...)= νJJF.

Hence, Jν(K ) =νJJ. By linearity of J

νJXκ = νJ

k

∑
l=1

κ lJMl = νJJκ ′M = Jν(K )κ ′M. (60)

We get (22): Ξ = dist2(Jν(K )κ ′M,JM)̇ = dist2(ν(K )κ ′M,M)̇ (recall that J is

an isomorphism and apply (59) and (60)).

Now we calculate

V (ζ ) = (σβ ψ)2E

(
ξ 1

κ ′ξ 2

)(
ξ ′

1 ξ ′
2κ
)

= (σβ ψ)2

(
EX ′uu′X EX ′uu′νJXκ

Eκ ′X ′νJuu′X Eκ ′X ′νJuu′νJXκ

)

= (σβ ψ)2

(
X ′X X ′νJXκ

κ ′X ′νJX κ ′X ′ν2
JXκ

)
= (σβ ψ)2Φ.

This equation and (21) lead to (23).

4 CONCLUSIONS

We have characterized the asymptotic distribution of the OLS estimator for a

mixed spatial model under the scenario that each unit can be influenced by many
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neighbors. The main lesson learned is that the asymptotic distribution may be

nonnormal. It can include quadratic forms in standard normal variables, and the

limit in distribution of the matrix in the denominator of the estimator may not be

a constant matrix. The suggested multicollinearity detection device in general is a

random variable. In a situation like this several methodological recommendations

can be made. Since various components of the estimator may have different rates

of convergence (usually unknown a priori in practice), a self-adjusting normalizer

of the regressors of Anderson’s type should be used. A balanced choice of theo-

retical assumptions, sufficiently general and unequivocally feasible, is desirable.

The expression of the asymptotic distribution should include automatic built-in

switches which would select the appropriate distribution without the user having

to fit his/her setup in particular theoretical assumptions. Our result calls for re-

consideration of hypothesis testing procedures for the least squares estimation of

the parameters in the mixed spatial model.

The present theory is far from being complete. Estimation of the variance-

covariance matrix of the limit distribution, conditions for consistency and some

other problems have to be addressed in the future research. On a more general

note, if one is willing to adopt higher standards of verifiability and transparency of

assumptions, asymptotic results for QML and MM also need to be reconsidered.

Appendix. GAUSS code

/* All parameters have to be chosen in Part 1.

Either Part 2 or 3 should be commented out.

For Part 3 (changing rho) numsim can be large (several hundred).

For Part 2 (changing m) matrix inversion takes a lot of time, and numsim is better

left at 100. */

/* Part 1. Assign all parameters in this section */

/* clear input-output window and start the timer */

cls; t= time; print ”start time =” t;

/* all parameters for spatial model are set here */

m first=200;r=5; @ parameters for (pseudo)Case matrix @

rho first=-0.2;beta=0; @ parameters for spatial model @

grid=8;step=100; @ number and size of steps for changing m or rho @

numsim=100; @ number of simulations to run for one combination

of m, r, rho and beta @

sheet=8; @ sheet number of Excel file ”Mixed spatial Monte Carlo.xls”
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to write the results @

switch =0; @ The value of switch is either 1 for ”pseudo-Case” or

0 for ”Case” @

/* First part of info to write in Excel file. I know little about what this means

*/

field = 1;prec = 2;fmat = ”%*.*lf;”;

info = ”m 1=” $+ ftos(m first,fmat,field,prec)$+ ”r=”

$+ ftos(r,fmat,field,prec) $+ ”rho 1=” $+ ftos(rho first,fmat,field,prec)$+ ”beta=”

$+ ftos(beta,fmat,field,prec) $+ ”grid=” $+ ftos(grid,fmat,field,prec)$+ ”step=”

$+ ftos(step,fmat,field,prec) $+ ”numsim=” $+ ftos(numsim,fmat,field,prec);

/* allocating space for variables */

bias=matalloc(numsim,2);

bias out=matalloc(grid,1);

mean b=matalloc(grid,1);

std b=matalloc(grid,1);

mean r=matalloc(grid,1);

std r=matalloc(grid,1);

declare cor b r;

/* Part 2. changing m */

rho=rho first; @ rho is fixed @

for j (1,grid,1); @ starting a loop for m @

m=m first+step*j; n=m*r; @ model dimension @

l n=ones(n,1); @ constant term @

if switch == 1;

W n=eye(r) .*. (ones(m,m)/(m-1)); @ pseudo-Case matrix definition @

elseif switch ==0;

W n=eye(r) .*. ((ones(m,m)-eye(m))/(m-1));@ Case matrix definition @

endif;

G n=W n*inv(eye(n)-rho*W n);

for i (1, numsim, 1);

Vn= rndn(n,1); @ generating error vector @

Zn=l n (G n*(beta*l n+Vn)); @ together with G n and Vn this defines

regressor matrix Z n @

bias[i,.]=(inv(Zn’*Zn)*(Zn’*Vn))’; @ this gives bias theta=theta hat-theta @

endfor;

bias b=submat(bias,0,1); @ extracting bias beta from bias theta @

mean b[j]=(sumc(bias b))/numsim; @ mean of bias beta @

std b[j]=sqrt((bias b-mean b[j]*ones(numsim,1))’*(bias b-mean b[j]*ones(numsim,1))/(numsim-
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1));@sample standard deviation of bias beta@

bias r=submat(bias,0,2); @ extracting bias rho from bias theta @

mean r[j]=(sumc(bias r))/numsim; @ mean of bias rho @

std r[j]=sqrt((bias r-mean r[j]*ones(numsim,1))’*(bias r-mean r[j]*ones(numsim,1))/(numsim-

1)); @ sample standard deviation of bias rho @

if j>grid-1; @ ”if” statement to retain bias and

sample correlation from the last run @

cor b r=(bias b-mean b[j]*ones(numsim,1))’*(bias r-mean r[j]*ones(numsim,1))/((numsim-

1)*std b[j]*std r[j]);@ sample correlation between bias beta and bias rho @

bias out=bias;

endif;

endfor;

if switch == 1;

info=”pseudo-Case matrix: changing m: ” $+ info;@ info for output if pseudo-

Case matrix used @

elseif switch ==0;

info=”Case matrix: changing m: ” $+ info;@ info for output if Case matrix used

@

endif;

/*

Part 3. changing rho

m=m first;n=m*r; @ m and n are fixed @

l n=ones(n,1); @ constant term @

I n=eye(n); @ identity matrix of order n @

if switch == 1;

W n=eye(r) .*. (ones(m,m)/(m-1)); @ pseudo-Case matrix definition @

elseif switch ==0;

W n=eye(r) .*. ((ones(m,m)-eye(m))/(m-1));@ Case matrix definition @

endif;

for j (1,grid,1); @ starting a loop for rho @

rho=rho first+step*j;

G n=W n*inv(I n-rho*W n);

for i (1, numsim, 1);

Vn= rndn(n,1); @ generating error vector @

Zn=l n (G n*(beta*l n+Vn)); @ together with G n and Vn this de-

fines regressor matrix Z n @

bias[i,.]=(inv(Zn’*Zn)*(Zn’*Vn))’;

endfor;
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bias b=submat(bias,0,1); @ extracting bias beta from bias theta

@

mean b[j]=(sumc(bias b))/numsim; @ mean of bias beta @

std b[j]=sqrt((bias b-mean b[j]*ones(numsim,1))’*(bias b-mean b[j]*ones(numsim,1))/(numsim-

1));

@ sample standard deviation of bias beta @

bias r=submat(bias,0,2); @ extracting bias rho from bias theta

@

mean r[j]=(sumc(bias r))/numsim; @ mean of bias rho @

std r[j]=sqrt((bias r-mean r[j]*ones(numsim,1))’*(bias r-mean r[j]*ones(numsim,1))/(numsim-

1));@ sample standard deviation of bias rho @

if j>grid-1; @ ”if” statement to retain bias

and sample correlation from the last run @

cor b r=(bias b-mean b[j]*ones(numsim,1))’*(bias r-mean r[j]*ones(numsim,1))/((numsim-

1)*std b[j]*std r[j]);@ sample correlation between bias beta and bias rho @

bias out=bias;

endif;

endfor;

if switch == 1;

info=”pseudo-Case matrix: changing rho: ” $+ info;@ info for output if pseudo-

Case matrix used @

elseif switch ==0;

info=”Case matrix: changing rho: ” $+ info;@ info for output if Case matrix used

@

endif;

*/

/* Part 4. Write the results in ”Mixed spatial Monte Carlo.xls” */

print info;

ret = xlsWrite(info, ”Mixed spatial Monte Carlo.xls”, ”a1”, sheet, ””);

ret = xlsWrite(”mean b”, ”Mixed spatial Monte Carlo.xls”, ”a2”, sheet, ””);

ret = xlsWrite(”std b”, ”Mixed spatial Monte Carlo.xls”, ”b2”, sheet, ””);

ret = xlsWrite(”mean r”, ”Mixed spatial Monte Carlo.xls”, ”c2”, sheet, ””);

ret = xlsWrite(”std r”, ”Mixed spatial Monte Carlo.xls”, ”d2”, sheet, ””);

ret = xlsWrite(mean b, ”Mixed spatial Monte Carlo.xls”, ”a3”, sheet, ””);

ret = xlsWrite(std b, ”Mixed spatial Monte Carlo.xls”, ”b3”, sheet, ””);

ret = xlsWrite(mean r, ”Mixed spatial Monte Carlo.xls”, ”c3”, sheet, ””);

ret = xlsWrite(std r, ”Mixed spatial Monte Carlo.xls”, ”d3”, sheet, ””);

ret = xlsWrite(cor b r, ”Mixed spatial Monte Carlo.xls”, ”e3”, sheet, ””);
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ret = xlsWrite(bias out, ”Mixed spatial Monte Carlo.xls”, ”f3”, sheet, ””);

print ”execution time=” time-t;
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