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Abstract

Existing indices of residential segregation are based on an arbitrary partition of the

city in neighborhoods: given a spatial distribution of racial groups, the index provides

different levels of segregation for different partitions.

This paper proposes a method in which individual locations are mapped to ag-

gregate levels of segregation, avoiding arbitrary partitions. Assuming a simple spatial

process driving the locations of different racial groups, I define a location-specific segre-

gation index and measure the city-level segregation as average of the individual index.

After deriving several distributional results for this family of indices, I apply the idea to

US Census data, using nonparametric estimation techniques. This approach provides

different levels and rankings of cities’ segregation than traditional indices. I show that

high aggregate levels of spatial separation are the result of very few locations with

extremely high local segregation.

I replicate the study of Cutler and Glaeser (1997) showing that their results change

when segregation is measured using my approach. These findings potentially challenge

the robustness of previous studies about the impact of segregation on socioeconomic

outcomes.
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1 Introduction

The spatial separation of racial groups in US metropolitan areas is a well documented fact,

being the topic of an enormous body of research in sociology and economics.1 Most of

the studies find a negative correlation between residential segregation and socioeconomic

outcomes of minorities. The empirical strategy in this literature consists of regressing a

measure of socioeconomic performance on several controls and an index that proxies for the

level of segregation in the metropolitan area.

However, all the existing indices of segregation are based on a partition of the city in

neighborhoods, that makes the index directly dependent on the specific partition adopted.

In particular, given a spatial distribution of racial groups, the index measures different

segregation levels for alternative neighborhood definitions.2 This mismeasurement problem

raises concerns about the robustness of the estimated relationship between segregation and

outcomes.

To overcome these issues, this paper proposes a method mapping individual locations

to the level of aggregate segregation in a city and analyze how this affects the estimated

correlation between racial segregation and socioeconomic outcomes. Assuming that the

spatial distribution of socioeconomics characteristics is a realization of a spatial stochastic

process that generates (exogenous) clustering by race, I define an individual location-specific

index of segregation. The primitives of my index are the individual coordinates and their

segregation levels. The metropolitan area segregation is measured as average of the individual

indices.

The intuition behind this formulation is simple. Suppose to select a random coordinate

in the metropolitan area and draw a circle of 1km radius around the point. Compute the

share of blacks living in the circle: this is the probability of black location in that small area.

Now let’s shrink the radius until the area around the point becomes infinitesimal. The limit

of the black share is the probability that the individual at that location is African American.

Now suppose to repeat this procedure for all the points in the metropolitan area: the result

will be a continuous spatial density, that describes the probability of blacks location in the

city. If there is no segregation the spatial distribution of blacks does not vary over the

1See for example Massey and Denton (1988 and 1993), Cutler and Glaeser (1997), Cutler, Glaser and

Vigdor (1999), Ananat (2007), Echenique and Fryer (2007), Oscar and Volij (2008), Card and Rothstein

(2007), Collins and Margo (2000), La Ferrara and Mele (2009), Ananat and Washington (2008).
2The Spectral Segregation Index of Echenique and Fryer (2007) is an exception. Their index uses indi-

vidual locations as primitive of the index and therefore does not depend on an arbitrary partition of the city

in neighborhoods.
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metropolitan area, it is flat. Therefore the metropolitan area segregation will be higher the

greater the difference between the actual spatial distribution of racial groups and the flat

spatial density.

This method has several advantages with respect to the traditional neighborhood-based

approach. First, the index does not depend on arbitrary partitions of the city in neighbor-

hoods. I obtain the probability of location for each racial group for all possible locations in

the metropolitan area, without relying on arbitrary neighborhood definitions. If the neigh-

borhood definition changes over time my measure of segregation is unaffected.3

Second, this method provides the entire distribution of segregation among individuals and

over space, allowing the researcher to identify which individuals or spatial regions are driving

the spatial separation of groups. Indeed in the empirical section I argue that in many cases

the synthetic index alone may be misleading: the estimated distributions are very skewed

and very few extremely highly segregated individuals drive the average segregation, while

most of the population experiences moderate levels of spatial separation.

Third, the estimation method relies on simple nonparametric techniques, available in

standard statistical software. Therefore the computational burden is minimal and the time

needed for estimation is reasonable.4 In this paper the spatial distribution and the index

are estimated using kernel estimation methods. In principle, as long as the researcher has

access to a spatial random sample of individuals/locations for the metropolitan area, it is still

possible to estimate the average segregation. This could possibly reduce the computational

burden even further.

The paper describes several distributional properties of the spatial approach. After de-

riving the theoretical moments for any possible index of segregation, I restrict my attention

to the family of additive indices, where each individual location contributes additively to

the aggregate index. For each individual I define a location-specific index of segregation and

measure the aggregate level of spatial separation as the average individual segregation. I

characterize the expectation and variance for this family of indices.

Using alternative distance functions to measure the difference between spatial densities,

I build several indices of diversity and segregation based on the spatial approach. The di-

3Most researcher define a neighborhood as a Census Tract. The US Census Bureau periodically revises the

definitions of census tracts. Therefore the neighborhood partitions change over time, making comparability

of the indices even more problematic.
4The only available individual level measure of segregation, the Spectral Segregation Index, is computa-

tionally very challenging for big cities. This is because the index is based on the network of each individual,

requiring the computation of eigenvalues of an association matrix. This computation itself may require

several hours for cities like New York. My index for New York can be computed in less than a minute.

3



versity indices are the Spatial Fractionalization Index and the Spatial Entropy Index, that

measure the average population heterogeneity in the metropolitan area, taking into account

the location of individuals and their local diversity. Several measures of segregation are

also derived: a Spatial Dissimilarity, a Spatial Relative Fractionalization, a Spatial Relative

Entropy, a Spatial Exposure and a Spatial Normalized Exposure. All these indices mea-

sure the segregation of the average individual in the metropolitan area, but differ in the

specific distance function used as primitive. Other traditional indices of segregation can be

reformulated in this framework.

The methodology is applied to the study of racial segregation in US metropolitan areas

using Census 1990 and 2000 data. The estimate of the spatial distribution is obtained using

standard nonparametric kernel estimation techniques for spatial point processes.5

I estimate actual segregation levels for all the metropolitan areas in the US using the

average individual segregation. I compare the segregation levels measured by the spatial

dissimilarity and the traditional dissimilarity. The levels of segregation and ranking of cities

are very different when using my approach. For example, Muncie (IN) is the metropolitan

area with highest segregation for African Americans according to the spatial dissimilarity,

while according to the traditional dissimilarity is 141st. Correlations between the spatial

dissimilarity index and the traditional indices are between 0.65 and 0.75. An analysis of

individual segregation suggests that in several cities the high levels of spatial separation are

driven by very few locations with extremely segregated individuals.

The differences between the two alternative approaches have significant economic im-

plications. Using data from the 1% PUMS 1990 and Summary Tape File 1B of the 1990

Census, I replicate part of Cutler and Glaeser’s (1997) study. They find that racial segrega-

tion undermines the socioeconomic performance of blacks in education, unemployment and

earnings. Furthermore, segregation does not affect all the individuals, but mostly African

Americans.

I compare results obtained using the Traditional Dissimilarity Index and the Spatial

Dissimilarity Index,6 using the same sample and variable definitions of the original work.

My results confirm that racial segregation of African Americans is negatively related to

blacks’ individual socioeconomic outcomes.

However, I find that in the least squares estimates, segregation is negatively correlated

with the outcomes of all individuals, not only blacks. By instrumenting racial segregation

5See Diggle (2003), Diggle, Zheng and Durr (2005) and Cressie (1993) for details.
6Echenique and Fryer (2007) replicate the ordinary least squares results of Cutler and Glaeser (1997)

using the Spectral Segregation Index, confirming the original results.
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with the number of local governments in 1962 and the transfer of federal revenues in 1962

as in the original paper, I find that the magnitude of the coefficients is amplified, implying

an even stronger negative impact of segregation on socioeconomic outcomes.

These empirical findings suggest that the conclusions of previous studies may not be ro-

bust: when segregation is measured in a more precise way, i.e. taking into account the spatial

location of each individual, the estimated correlation between segregation and outcomes may

be different.

Finally, I show simple extensions of the methodology that can be used to measure segre-

gation of continuous variables (e.g. income) or vectors. The definition of segregation slightly

changes but the main theorems still hold. Furthermore, this approach is not confined to

measuring residential segregation, but it can be applied in other fields of economics as well.

For example, the spatial approach can be used to measure clustering of economic activities

or spatial concentration of industries.7

2 Motivation and Related Literature

Residential separation by race (or other socioeconomic variables) is commonly observed in

US metropolitan areas. The spatial separation has important economic implications: many

studies show that there is a negative correlation between segregation and socioeconomic

performance of minorities. Massey and Denton (1993) argue that residential segregation is

responsible for the poor socioeconomic outcomes of blacks in US cities. Cutler and Glaeser

(1997) is one of the most influential papers in the economics literature. They show that racial

segregation undermines the socioeconomic performance of African Americans in education,

unemployment, earnings and single motherhood, while the remaining racial groups are not

affected significantly. Ananat (2007) provides similar results using a better instrumental

variable technique for correcting the endogeneity of segregation. In particular she finds a

mix of positive and negative effects on whites. Echenique and Fryer (2007) develop and

use the Spectral Segregation Index to replicate the least squares regressions in Cutler and

Glaeser (1997). They find that results are qualitatively the same as in the original paper,

with slightly different point estimates. Collins and Margo (2000), suggest that the negative

impact of residential segregation on African Americans outcomes is relatively recent, starting

7Several recent works follow the spatial approach. Arbia, Copetti and Diggle (2008) present methods

similar to those used here for the analysis of spatial concentration of economic activity. Quah and Simpson

(2003) build a model of spatial location of economic activity whose implication are empirically tested using

techniques from spatial statistics.
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from 1980. Card and Rothstein (2007) find that the black-white test score gap is higher in

more segregated cities.8

In all these studies, the level of segregation of (say) blacks is measured with a synthetic

index. The city is partitioned in K neighborhoods and for each neighborhood k we compute

the share of blacks Bk/Pk, where Pk is the number of individuals and Bk the number of

blacks in neighborhood k. If there is no segregation, the fraction of blacks in each neighbor-

hood Bk/Pk should be equal to the fraction of blacks in the whole city, B/P . An index of

segregation is then a synthetic measure of the difference between the actual distribution of

races across neighborhoods, i.e. the distribution (B1/P1, ..., BK/PK), and the distribution

arising when there is no segregation, (B/P, ..., B/P ). The index is normalized to obtain a

number from 0 to 1 that is comparable across cities. Different distance functions used by

the researcher to measure this difference will lead to alternative indices.

To be concrete, consider the dissimilarity index, which is commonly used in empiri-

cal work. The distance between the distribution is computed using the absolute deviation

|Bk/Pk −B/P |. The index is

D =
KX

k=1

Pk

P

|Bk/Pk −B/P |

2 (B/P ) (1−B/P )

and it measures the proportion of blacks that should change neighborhood in order to

achieve a perfectly integrated city.

We can also interpret the index as mean deviation from evenness. Define φk =
|Bk/Pk−B/P |
2(B/P )(1−B/P )

for each neighborhood k: this can be interpreted as the neighborhood-level segregation index.

The global segregation D can be interpreted as average neighborhood segregation, weighting

each neighborhood with the population proportion

D =
KX

k=1

Pk

P
φk =

1

P

KX

k=1

Pkφk (1)

However, any index constructed according to the neighborhood-based approach presents

some flaws, illustrated in Figure 1. The figure shows four stylized cities with the same spatial

distribution of racial groups but a different partition in neighborhoods.

[Insert Figure 1 here]

8Recently Alesina and Zhuravskaya (2008) constructed measures of segregation at the country level. Their

results show that countries with high ethnic and linguistic segregation have a lower quality of government.
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First, the index is based on an arbitrary partition of the metropolitan area in neighbor-

hoods (as argued by Echenique and Fryer (2007)), usually census tracts or blocks, making

the measurement directly dependent on the specific partition adopted. If segregation is mea-

sured using the standard dissimilarity then city A and C are perfectly segregated, city B is

perfectly integrated and city C has an intermediate level of segregation. However, the spatial

distribution of the racial groups is the same in the four cities: the difference in the measured

segregation is just the outcome of different partitions.

Second, if we compute the index of segregation using different levels of aggregation of the

data (tracts, block groups or blocks) we will observe different values and (even worse) different

ranking of the cities, a problem known in spatial analysis as Modifiable Area Unit Problem

(MAUP). In Figure 1, the neighborhood partition in city A is obtained by partitioning each

of the neighborhoods in city B in four sub-areas of same size. This results in a dissimilarity

of 1 in city A, while in B segregation is 0.

Third, the majority of the indices does not take into account the spatial location of the

individuals over the urban area, thus completely ignoring the within neighborhood spatial

distribution. The dissimilarity index assigns the same segregation level φk to all individuals

living in the same neighborhood. However, the black individual located at (4,5) is surrounded

by 8 blacks, while the black individual in (3,3) has 5 white neighbors and 3 black neighbors:

an index of segregation should consider the former more segregated than the latter.

If segregation is defined as a function of individual locations, without relying on an

arbitrary partition in neighborhoods, all these flaws do not apply. This is the main motivation

of the present work.

To make the argument clear, let’s assign to each individual i, i = 1, .., n, an individual

index of segregation φi =
|Bi/Pi−B/P |

2(B/P )(1−B/P ) , where Bi/Pi is the fraction of blacks in a small

area around individual i.9 The aggregate level of segregation is the average of individual

segregation

Dind =
1

P

KX

k=1

PkX

i=1

φi (2)

By comparing (1) and (2) we notice that the traditional dissimilarity imposes a restriction

on the individual level segregation, i.e.

φi = φk for all i living in neighborhood k

In other words the traditional dissimilarity assumes no intra-neighborhood variation of

9I will be more precise about the definition of small area around the individual in the theoretical section.
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spatial segregation. The approach presented here does not impose such a restriction and

explicitly considers the spatial distribution of racial groups within neighborhoods.

The paper is related to several strands of literature. The literature on segregation indices

is certainly heavily influenced by the work of Massey and Denton (1988). They review the

indices of segregation and group them in five categories: evenness, exposure, concentration,

centralization and clustering. They show that the dissimilarity index can explain almost

the entire variability of segregation in US cities. Reardon and O’Sullivan (2004) extend the

traditional theory of segregation indices to spatial measures. They adapt the properties often

required to neighborhood-based indices to a framework based on the location of individuals

on a city map. They extend the existing indices in this new framework and check if they

satisfy the properties required. Segregation is measured as a function of the agents’ local

environment, where the latter is defined by a proximity function. There are two main

differences between their framework and mine: 1) the local environment in this paper is

infinitesimal, since I consider a continuous spatial density; 2) I assume that locations are the

realization of a stochastic process, while in their paper individual coordinates are assumed

as given.

Most of the contributions in economics are based on axiomatic approaches, but consider

the neighborhood partitions as given (See Frankel and Volij (2008a and b) and Hutchens

(2000) for examples). I do not rely on an axiomatization, but I impose assumptions on the

stochastic process that generates locations and marks. In this sense, part of this paper’s

contribution is to operationalize the estimation of the spatial density using a simple spatial

process.

Echenique and Fryer (2007) is an exception in the axiomatic approach: they develop

a segregation index based on individuals’ social networks, satisfying three axioms. The

Spectral Segregation Index measures segregation based on social interactions with same race

neighbors, where neighbors are defined as agents living within 1 km.

I borrow several concepts and results from the literature on point processes.10 ,11 In par-

ticular, this paper is related to Diggle, Zheng and Durr (2005), that study the clustering of

bovine tuberculosis in Cornwall. They assume that the cases of different types of tuberculosis

follow a multivariate inhomogeneous poisson process and compute conditional probabilities

of a specific type of disease at a specific location. Their definition of segregation is similar to

10See Diggle (2003), Moller and Waagepetersen (2004), Stoyan, Kendall and Mecke (1987) and Stoyan and

Stoyan (1994) for excellent introductions to the theory and some applications.
11Statistical models of point patterns are used in spatial epidemiology (Diggle, Zheng and Durr (2005),

Kelsall and Diggle (1998)), Neuroscience (Diggle, Eglen and Troy (2006)), Astrophysics, Ecology, Geology

(Zhuang, Ogata and Vere-Jones (2006)) and Image Recognition.
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the one contained in this paper, but the conditional probabilities are computed taking into

account the control cases, i.e. bovines which did not developed any form of tuberculosis.12 ,13

The use of spatial techniques in economics is very recent. Arbia, Copetti and Diggle

(2008) apply techniques from spatial statistics to the analysis of firms’ location. Quah

and Simpson (2003) empirically test an economic model of location of economic activity

using spatial processes that exhibit clustering. While the statistical techniques used in these

papers are similar to the ones I propose, they do not rely on synthetic indices to analyze the

clustering of the spatial process.

3 Theoretical Results

3.1 Notation, Basic Properties and Definitions

A spatial point process X is a stochastic process that maps points over a set S ⊆ R2.

Alternatively it can be defined as a random counting measure over bounded sets A ⊆ S.14 ,15
I denote the random set as X = {x1, ..., xn}, where xi denotes the generic point of the

process. The random variable N (A) indicates the number of points in a bounded set A ⊆ S.
I denote the realizations of X as x and the realizations of N as n. I write ξ or η to indicate

a generic point (coordinate) in S and xi for the generic realized point of the process. The

area of region A is |A| and dξ refers to the infinitesimal region containing ξ.

I consider only finite spatial processes, with realizations x in the setN1f = {x ⊆ S : n (x ∩A) <∞},
for any bounded A ⊆ S. A point process is stationary if all the probability statements about
the process in any bounded set A of the plane are invariant under arbitrary translations.

This implies that all the statistics are invariant under translation, e.g. EN (A) = ENp (A),

where Np (A) is the process X translated by the vector p. A point process is isotropic if the

invariance holds under arbitrary rotations. The process is simple (or orderly) if there are no

coincident points. In this paper I consider simple nonstationary and anisotropic processes.

12In their model there are four types of tubercolosis and there is also a control group, i.e. locations in

which there is an animal not infected by the disease. We don‘t have to model the control group in our

application.
13They provide a test for detection of segregation based on Monte Carlo simulation. However, their test

is not particulary useful in the present context. indeed, in a segregation study the researcher is interested

in comparing segregation levels among cities, therefore testing if, say, New York is more segregated than

Chicago.
14See Conley (1999) for a more technical explanation of point processes in the context of spatial GMM.
15Diggle (2003), Stoyan, Kendall and Mecke (1987), Stoyan and Stoyan (1994), Moller and Waagepetersen

(2004) are the basic references.
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Let X be a spatial point process defined over S ⊆ R2. The intensity function of the
process is a locally integrable function16 λ : S → [0,∞), defined as the limit of the expected
number of points per infinitesimal area

λ (ξ) = lim
|dξ|→0

½
E [N (dξ)]

|dξ|

¾
(3)

A stationary process has constant intensity λ (ξ) = λ for all ξ. The intensity measure of

a point process X is defined for A ⊆ S as

Λ (A) = EN (A) =

Z

A

λ (ξ) dξ (4)

and measures the expected number of points of the process in the set A.

3.2 Measuring Segregation

Consider a spatial pattern X = {xi,m (xi)}
n
i=1 characterized by the locations xi’s in the city

S and marks m (xi). The mark attached to a location is a random variable describing the

characteristics of an individual living at xi. Examples of marks are racial groups, income

groups, income levels, education levels, or a mix of them.

I assume that the locations of individuals X0 are the realization of an Inhomogeneous

Poisson Point Process over the metropolitan area S ⊆ R2 with intensity function λ0 (ξ)

ASSUMPTION 1 The individuals locations X0 follow an Inhomogeneous Poisson Process

with intensity λ0 (ξ) over S

X0 ∼ Poi (S, λ0 (ξ))

therefore

1. for any bounded region A ⊆ S

P [N0 (A) = n] = [Λ0 (A)]
n exp [−Λ0 (A)]

n!
, n = 0, 1, 2, ....

2. for any bounded region A ⊆ S , conditional on N0 (A) = n the locations are i.i.d. with

density

f (ξ) =
λ0 (ξ)R

A
λ0 (ξ) dξ

16A function is locally integrable if
R
A

λ (ξ) dξ <∞ for all bounded A ⊆ S
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This assumption provides a simple but flexible model for the spatial distribution of house-

holds in the urban area, which exhibits clustering. Notice that the clustering of locations in

a certain region is exogenous and depends on the intensity only. In other words, this assump-

tion imposes no behavioral or equilibrium restriction on how people choose their residential

locations. In this context, I am not interested in studying the determinants of residential

segregation: the important point is being able to estimate the spatial distribution of racial

groups. The assumption of spatial Poisson locations allows this estimation in a simple way

(as shown in the estimation section), while allowing the process to exhibit complex clustering

properties of individual locations.

The second assumption concerns the interaction among marks: I assume that conditional

on the realized locations, the marks are independent.

ASSUMPTION 2 Conditional on X0, the marks are mutually independent

This implies that the presence of a specific attribute at a specific location does not

influence the attributes at other locations. On the other hand, the assumption does not rule

out clustering of marks.

Let ρ (ξ,m,X0Âξ) ≡ P (m (ξ) = m|X0) be the probability that an individual located in

ξ has mark m, conditional on the realization of the locations X0. The third assumption

states that the probability distribution of a mark is location-specific and does not depend

on the entire realization x of the process. I assume that this conditional probability depends

on the location ξ, but it does not depend on the locations of the other points of the process

X0 \ ξ.

ASSUMPTION 3 For all ξ ∈ X0, for all m ∈M

ρ (ξ,m,X0 \ ξ) = ρ (ξ,m)

Assumptions 2 and 3 imply that the probability that an household has a certain char-

acteristic is not affected by the location or attributes of any other household. Marks are

independent conditioning on the realized locations, but they are not identically distributed

at each point. Each location faces a different mark distribution and clustering can occur

exogenously according to the functional form of the intensity function and the mark distri-

bution.

Under these three assumptions it is possible to derive several distributional results, which

I prove in Lemmas 1 and 2 in Appendix B. Lemma 1 characterizes the probability law of
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the process under the three assumptions. For a bounded region A ⊆ S and a configuration
of points F it is possible to show that the probability law of the process is

P [(X ∩A) ∈ F ] (5)

=
∞X

n=0

exp [−Λ0 (A)]
n!

Z

A×M

· ·

Z

A×M

1[{(x1,m1),...,(xn,mn)}∈F ]

nY

i=1

[λ (xi,mi)] dx1 · ·dxndm1 · ·dmn

To make exposition more concise I will focus on the case of discrete marks, which is

the appropriate framework for racial segregation. In the last section of the paper I show

how the definitions and theorems can be extended if marks are continuous or multivariate.

Notice that both the main theorems are general and do not depend on the mark space being

discrete.

Lemma 2 analyzes the stochastic process when the mark space is discrete: in this setting I

use notation ρm (ξ) to indicate the probability of markm occurring at location ξ. The Lemma

proves that the spatial process is equivalent to a multivariate Inhomogeneous Poisson process

X =
MS

m=1

Xm with intensities λm (ξ) = λ0 (ξ) ρm (ξ), m = 1, 2, ...,M respectively, where the

Xm’s are stochastically independent.

The definition of segregated spatial distribution is operationalized using the conditional

mark distributions. Intuitively, there is no segregation when the conditional probability of

each attribute/mark does not vary over S: ρm (ξ) = ρm for all ξ. Such a process is said

to exhibit random labelling. Therefore the marked poisson process is defined as completely

unsegregated if there is random labelling of the events. The maximum level of segregation is

reached when the conditional mark distribution is degenerate: for each point of the process

there is a mark occurring with probability one at that location, while the remaining marks

occur with probability zero at the same location.17

DEFINITION 1 Assume that the process X satisfies Assumptions 1-3. Then:

1. The marked point process X is completely unsegregated if and only if the conditional

mark distribution follows random labelling, i.e. ρm (ξ) = ρm for all individuals ξ ∈ X0,

for all racial groups m ∈M.

2. The marked point processX is completely segregated if and only if for each individual

location ξ ∈ X0, there is a racial group m
∗ ∈M such that ρm∗ (ξ) = 1 and ρm (ξ) = 0

for any other racial group m 6= m∗.

17See Diggle, Zheng and Durr (2005) for a similar definition. The same idea is proposed in Arbia, Copetti

and Diggle (2008).
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An index of segregation measures the level of spatial clustering of the point process. I

focus on indices measuring the difference between the actual spatial distribution of racial

groups and the distribution arising under no segregation. In order to have comparability

across cities the index is normalized to assume values between 0 and 1, where zero corresponds

to the case of no segregation and one to the maximum level of segregation. The index

increases with the difference between the distributions ρm (ξ) and ρm: different notions of

distances between distribution will result in different indices.

Define N1m to be the set of all the possible realizations of the marked point process.

DEFINITION 2 A segregation index is a function T : N1m → [0, 1] such that

1. T (X) = 1 iff X is completely segregated

2. T (X) = 0 iff X is completely unsegregated (integrated)

3. T (X) is increasing in the difference between the conditional distributions ρm (ξ) and

ρm.

If the processX satisfies Assumptions 1-3 it is possible to derive the moments of any index

T (X). The following theorem applies to any possible index based on the above definition:

it is therefore a very general result.

THEOREM 1 If X is a point process satisfying Assumptions 1-3, then the expected value

of any index T (X) is

E [T (X)] =
∞X

n=0

exp [−Λ (S ×M)]

n!

Z

S×M

··

Z

S×M

T ({xi,mi}
n
i=1)

nY

i=1

λ (xi,mi) dx1··dxndm1··dmn

(6)

More generally the r-th raw moment of T (X) is

E [T r (X)] =
∞X

n=0

exp [−Λ (S ×M)]

n!

Z

S×M

··

Z

S×M

T r ({xi,mi}
n
i=1)

nY

i=1

λ (xi,mi) dx1··dxndm1··dmn

(7)

Proof. If the process satisfies Assumptions 1-3, then it is Poisson over S×M by Lemma

1. Therefore the probability law of X is given by (5). Notice that T (X) is a nonnegative

function. Since any nonnegative function can be expressed as a weighted sum of indicator

functions, the result follows. The same argument delivers the results for all the moments.
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I specialize the framework and impose another restriction often requested in the literature.

I focus on indices that satisfy additivity: the segregation level of the city is the sum of

individual level segregation. Additivity is very common in the literature on segregation,

since it allows the researcher to determine which components provide higher contributions

to the global level of segregation. Many of the traditional indices are indeed additive at the

neighborhood level.

I define an individual or location-dependent segregation function φ (ξ), summarizing the

difference between ρm (ξ) and ρm at ξ, and a global segregation index that aggregates the

individual-level indices at the city level. I assume that the global index is computed as

average of the normalized individual-level segregation indices.

ASSUMPTION 4 Assume the global index T (X) is the average of the individual indices

φ (ξ)

T (X) =
1

N (S)

X

ξ∈X0

φ (ξ) (A4)

where φ : S → R+ is a location-specific segregation index.

The function φ maps the location into the segregation level of the individual. I provide

examples of possible functional forms for φ below. The general distributional results are

summarized in the following theorem.

THEOREM 2 Assume X follows a point process satisfying Assumptions 1-4. Then

E [T (X)] = E [φ (ξ)] =

Z

S

φ (ξ)
λ0 (ξ)

Λ (S)
dξ (8)

V [T (X)] = E

·
1

N (S)

¸
V [φ (ξ)] (9)

Proof. In appendix C

The results in Theorem 2 show that there is no difference between the expectation of

global or individual level segregation. This follows from the independence assumption in

the Poisson process. The variance of the global index is proportional to the variance of the

individual level segregation. Moreover, this variance should be smaller for cities with higher

population, or in terms of the poisson process, in cities with higher intensity measure.18

If we condition on the realized N (S) = n, we obtain the following corollary

18To the extent that intensity measures for metropolitan areas are of the order of 100 thousands, we have

that E
h

1
N(S)

i
≈ 1

EN(S) and therefore bigger cities will have smaller variances.
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COROLLARY 1 Under the assumptions of Theorem 2,

E [T (X)|N (S) = n] = E [φ (ξ)] (10)

and

V [T (X)|N (S) = n] =
1

n
V [φ (ξ)] (11)

The work of Diggle, Zheng and Durr (2005) is based on the conditional specification of

the spatial process.

I now provide several examples of indices of segregation. It is worth noting that most

of the existing indices can be adapted to this approach by redefining the neighborhoods as

individuals.

4 Spatial Indices of Segregation and Diversity

4.1 Spatial Dissimilarity Index

The spatial dissimilarity is constructed by using the absolute deviation as distance function

between distributions

d (ξ) =
X

m∈M
|ρm (ξ)− ρm| (12)

In order to derive the distributional results, it is necessary to know the value of (12)

under complete segregation. The following result applies to any index using a discrete set of

marks. Let ξs be a generic point of a perfectly segregated process.

PROPOSITION 1 If the mark space is discrete the value of (12) under complete segre-

gation is

d (ξs) = 2
X

m∈M
ρm (1− ρm) (13)

Proof. In Appendix C

Incidentally notice that d (ξs) is equivalent to twice the fractionalization of the city as

defined below in (24). The individual-level segregation index is then measured by the function

φD (ξ) =

P
m∈M |ρm (ξ)− ρm|

2
P

m∈M ρm (1− ρm)
(14)

and the global Spatial Dissimilarity Index is

15



TD (X) =
1

N (S)

X

ξ∈X0

φD (ξ) (15)

The main difference is that in the traditional dissimilarity the conditional probability

ρm (ξ) is assumed to be the same for all locations in the same neighborhood, while the

spatial dissimilarity does not impose such within-neighborhood restriction on the spatial

segregation.

Using the results in Theorem 2, one can derive the theoretical expected value of the

index.

E [TD (X)] =

"
2Λ0 (S)

X

m∈M
ρm (1− ρm)

#−1 Z

S

"
X

m∈M
|ρm (ξ)− ρm|

#
λ0 (ξ) dξ (16)

In most of the literature, the dissimilarity index is used to measure the segregation of a

minority group from the rest of the population: this is the dichotomous version, in which

the racial groups are assumed to be two, the minority and the rest of the population. In

its dichotomous version, the spatial dissimilarity can be simplified, by using the fact that

ρnb = 1− ρb (where b=blacks and nb=nonblacks), with φDic (ξ) =
|ρb(ξ)−ρb|
2ρb(1−ρb)

TDic (X) =
1

N (S)

X

ξ∈X0

φDic (ξ)

4.2 Spatial Exposure Indices

The spatial exposure indices are derived using the squared deviation as distance function

between spatial densities

d (ξ) =
X

m∈M
[ρm (ξ)− ρm]

2 (17)

The value of the index under perfect segregation is derived in the following proposition

PROPOSITION 2 If the mark space is discrete the value of (17) under complete segre-

gation is

d (ξs) =
X

m∈M
ρm (1− ρm) (18)

Proof. In Appendix C
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The individual Spatial Exposure Index is defined as the location-specific squared devia-

tion from perfect integration, normalized using (18).

φExp (ξ) =

P
m∈M [ρm (ξ)− ρm]

2

P
m∈M ρm (1− ρm)

(19)

and the global Spatial Exposure Index is defined as

TExp (X) =
1

N (S)

X

ξ∈X0

φExp (ξ) (20)

An alternative approach to construct an exposure index is suggested in Reardon and

Firerbaugh (2002). One can consider the dichotomous version of the index (19) for each

group m, that is

φV,m (ξ) =
[ρm (ξ)− ρm]

2

ρm (1− ρm)
(21)

giving the dichotomous version of (20)

TV,m (X) =
1

N (S)

X

ξ∈X0

φV,m (ξ) (22)

This index corresponds to a spatial version of Eta2 (see White (1986) for a description)

and it is a measure of how isolated a racial group is from the rest of the population. This is an

index varying between 0 and 1, therefore a normalized index is constructed as the weighted

sum of (22), where the weights are the ρm’s. The Spatial Normalized Exposure Index

is derived as

TP (X) =
X

m∈M
ρmTV,m (X) (23)

=
1

N (S)

X

ξ∈X0

X

m∈M

[ρm (ξ)− ρm]
2

(1− ρm)

Notice that this is not equivalent to index (20).

17



4.3 Spatial Fractionalization Indices

Many studies relate ethnic and racial heterogeneity to economic outcomes.19 The level of

heterogeneity in these studies is usually measured with the Fractionalization Index. The

latter measures the probability that two randomly drawn individuals belong to different

racial groups. The index is derived from the Herfindhal index of homogeneity and it is equal

to

I = 1−
X

m∈M
ρ2m =

X

m∈M
ρm (1− ρm) (24)

In the sociological literature the index is also known as the Simpson Interaction index.

An index of zero indicates perfect homogeneity, in which only one racial group is present.

Increasing values of the index imply increasing heterogeneity.

In a recent contribution, D‘Ambrosio, Bossaert and La Ferrara (2008) develop a more

general version of the index in which the primitives are assumed to be individuals and

their similarity. I follow a similar idea and develop a spatial version of the fractionalization

index, in which the primitives of the aggregate index are the individual location-specific

heterogeneity indices. The location-specific index is the level of fractionalization in location

ξ

I (ξ) =
X

m∈M
ρm (ξ) (1− ρm (ξ))

and therefore the aggregate Spatial Fractionalization Index is

TI (X) =
1

N (S)

X

ξ∈X0

I (ξ) (25)

This index measures the racial heterogeneity in the city incorporating the spatial location

of individuals. Moreover the index can be disaggregated at the individual level, to examine

the distribution of heterogeneity in the population. It can also be disaggregated over space

showing which regions of the metropolitan area are more diverse.

An index of segregation can be derived from the spatial fractionalization using the dis-

tance

d (ξ) = |I (ξ)− I|

19Alesina, Baqir and Easterly (1999) show that more fractionalization is correlated with lower provision

of local public goods. Easterly and Levine (1997) argue that more racially heterogenous societies show

slower economic growth. Alesina and La Ferrara (2000) that participation in social activities is lower in

more unequal and in more racially or ethnically heterogeneous localities. Mauro (1994) associates racial

heterogeneity to more corruption.
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It is straightforward to show that under complete segregation d (ξs) = I: in each location

there is maximum homogeneity therefore I (ξ) = 0 for any ξ. Define

φF (ξ) =
|I (ξ)− I|

I

to be the individual spatial relative fractionalization, which measures the absolute devi-

ation from spatial homogeneity. The global Spatial Relative Fractionalization Index

is

TF (X) =
1

N (S)

X

ξ∈X0

φF (ξ) (26)

4.4 Spatial Entropy Indices

An alternative to the fractionalization indices is the Theil Entropy (or Information) Index

(see Theil (1972) and Theil and Finezza (1971)). The entropy index for the metropolitan

area is

E =
X

m∈M
ρm ln

µ
1

ρm

¶
(27)

and it can be thought of as a measure of heterogeneity of the city since it is equal to

zero if there is only one group and it reaches its maximum when all the groups have equal

probability. I define a location-specific entropy index as

E (ξ) =
X

m∈M
ρm (ξ) ln

µ
1

ρm (ξ)

¶

The Spatial Entropy Index is

TE (X) =
1

N (S)

X

ξ∈X0

E (ξ) (28)

This index measures the average racial heterogeneity in the city but incorporates the

spatial location of each individual as a primitive. As for the fractionalization index it can

be disaggregated at the individual and spatial level.

A simple index of segregation based on the spatial entropy can be constructed by defining

a distance function

d (ξ) = |E (ξ)−E|

It is straightforward to show that under complete segregation d (ξs) = E: in fact complete

segregation implies E (ξ) = 0 for all ξ. Define the individual location-specific spatial relative

entropy as

φH (ξ) =
|E (ξ)−E|

E
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This is the value of the absolute deviation from spatial homogeneity as measured by the

entropy of the metropolitan area. The Spatial Relative Entropy Index formula is

TH (X) =
1

N (S)

X

ξ∈X0

φH (ξ) (29)

and measures the average absolute deviation from spatial homogeneity.

5 Empirical Methodology

All the data analysis was performed with R20 by using some available packages for the

analysis of spatial point patterns and by custom functions written by the author in R and

C.21

5.1 Data

I apply this approach to census data from the 1990 and 2000 US Census of Population and

Housing. The ideal dataset would consist of individual or household level data on location,

racial group and socioeconomic characteristics. Unfortunately such data are not publicly

available for confidentiality reasons.22 A possible alternative is the 1% PUMS 1930 Census,

where each household’s address is reported. However, there are concerns about the spatial

randomness of this sample and the geocoding of historical addresses, therefore I prefer to

not use these data.

As a necessary compromise between estimation precision and reliability of data, I use

the most disaggregated data publicly available: census block data containing the location of

the block centroid and the racial composition. In Appendix D I illustrate the methodology

using exact locations from artificial datasets.

[Insert Figure 2 here]

I have data for all the 331 MSA’s (Metropolitan Statistical Areas) and PMSA’s (Primary

Metropolitan Statistical Areas) for years 1990 and 2000. In order to maintain comparability

20http://www.r-project.org/
21In particular I used the packages Splancs and SpatStat. I also used a modified version of the package

spatialkernel developed by Diggle, Zheng and Durr (2005). I created some additional C routines in order

to compute the indices using the kernel regression approach explained below.
22I have an application pending at the Census Bureau in order to gain access to such data.
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across census years, I adopt the racial categories in Census 1990: Whites/Caucasians, African

Americans, Asian/Pacific Islanders, Native American, Other.

Figure 2(a) plots all blocks centroids locations in the New York PMSA for the 2000: the

black dots represent blocks in which the majority is black while red dots are blocks in which

the majority is nonblack. The pattern of geographic separation is clear: African Americans

are concentrated in Harlem, Bronx and Bedford-Stuyvesant. Figure 2(b) plots all racial

groups: black points are African Americans, red points are Whites, green are Asians and

light blue correspond to Other racial groups (including Hispanics).23

5.2 Estimation Strategy with Exact Location Data

The estimation strategy consists of estimating the intensity function using nonparametric

techniques. When individual location data are available there are standard methods used in

spatial statistics to estimate the intensity of the process.24

Lemma 2 in Appendix B states that a multitype point process can be reformulated

as a multivariate Poisson process with independent univariate processes, therefore one can

estimate the intensities of each univariate process separately. This observation leads to a

convenient estimate of bρm (ξ)

bρm (ξ) =
bλm (ξ)
bλ0 (ξ)

(30)

where bλm (ξ) is the estimate of the intensity function for the univariate process Xm,

corresponding to the spatial pattern of group m. Diggle (1985) and Berman and Diggle

(1989) suggested a nonparametric estimator based on the definition of intensity function,
bλ (ξ) = N (ξ, h) /πh2, where N (ξ, h) is the number of points within distance h from ξ. The

estimator counts the points within the disc of radius h and centered in ξ, dividing by the

area of the disc πh2.25 More generally one can weight the points using a Kernel function,

which leads to estimators of the form (see Diggle (2003), p.148 or Moller and Waagepetersen

(2004))26

23Other metropolitan areas are available from the author.
24See Diggle (2003), Diggle, Zheng and Durr (2005).
25This can be intepreted as a kernel estimator in which the kernel is

k (u) =

(
1

πu2 if 0 ≤ u ≤ 1
0 otherwise

26There are alternative ways to estimate the conditional mark probability. For example, Diggle, Zheng
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bλ (ξ) =
nX

i=1

Kh (ξ − xi)R
S
Kh (ξ − xi) dξ

(31)

where Kh (u) =
1
h2
K (u/h). In my computations I will use a multiplicative quartic kernel

in order to speed up the estimation procedure.27

It is known in the spatial statistics literature that the choice of the bandwidth is more

important than the choice of the kernel function. The optimal h should be different for each

city, since it should take into account the specific geographic density. The bandwidth can be

interpreted as defining the relevant neighborhood for the individual (the local environment, in

the words of Reardon and O’Sullivan (2004)), which is possibly different for each metropolitan

area.

I choose h using the Mean Squared Error (MSE) minimization procedure suggested in

Diggle (1985) and Berman and Diggle (1989). The formula for the MSE (h) is28 ,29

MSE (h) = µ (0) + Λ (A)
1− 2K (h)

πh2
+
¡
πh2

¢−2
Z Z

µ (kξ − ηk) dηdξ (32)

where µ (kξ − ηk) is the second-order intensity function defined as

µ (ξ, η) = lim
|dξ|,|dη|−→0

½
E [N (dη)N (dξ)]

|dη| |dξ|

¾
(33)

which is a measure of the spatial association of the process. Notice that E [N (dη)N (dξ)] ≈
P [N (dη) = N (dξ) = 1], for ξ and η close. If we assume stationarity and isotropy then

µ (ξ, η) = µ (kξ − ηk), i.e it is a function of the euclidean distance among the two points.

The quantity K (h) is

and Durr (2005) exploit the fact that conditioning on the realized n, the mark distribution is a multinomial

distribution and can be estimated through kernel regression.

Alternative smoothing techniques can be used. For example, the method of total variation regularization

proposed in Koenker and Mizera (2004).
27I have tried with a gaussian kernel, but the computational time is increased without differences in the

estimated probabilities.
28A Cox Process is a point process such that:

1)
©
Λ (ξ) : ξ ∈ R2

ª
is a non-negative-valued stochastic process

2) Conditional on the realization
©
Λ (ξ) = λ (ξ) : ξ ∈ R2

ª
, the point process follows an Inhomogeneous

Poisson Point process with intensity λ (ξ).

We can see an Inhomogeneous Poisson Point process as a particular Cox process in which the distribution

of Λ (ξ) is degenerate at λ (ξ).
29This is a simple method of computing the optimal bandwidth. The literature on Point Processes usually

relies on ad hoc criteria. Diggle, Zheng and Durr (2005) use cross-validated likelihood methods.
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K (h) = λ−1E [No (h)] = 2πλ
−2
Z h

0

µ (ξ) ξdξ (34)

and it is defined as the expected number of further points in the circle of radius h and

center ξ. I estimate K (h) with the Ripley’s estimator: define w (ξ, u) as the proportion

of the circumference of the circle with center ξ and radius u, which lies in S, and wij =

w (xi, uij), where uij = kxi − xjk .

bK (h) = 1

n (n− 1) |S|
nX

i=1

X

j 6=i

w−1ij Ih (uij) (35)

where Ih (uij) = I (uij ≤ h) is an indicator function. This gives edge-corrected estimates

of the K(h) function. For the remaining part of (32), µ (0) does not depend on h, while

for the integral we use the weighted integral suggested by Berman and Diggle (1989). By

plugging these estimates in (32) we obtain an estimated \MSE (h).

As a practical matter, when estimating the conditional probability, I use the same band-

width for bλm (ξ) and bλ0 (ξ), to avoid probabilities greater than one or conditional probabilities
not summing up to one. In Appendix D I show how the technique works using artificial data.

5.3 Estimation Strategy with Block Level Data

In many cases the exact location data are not available, thus I develop an approximated

estimation technique to deal with data at the block level. I assume the researcher has the

number of individuals of each racial group for each block and the location of the block

centroid, as it is the case in my empirical application.

The metropolitan area S is partitioned in K disjoint blocks, S =
K[

k=1

Sk and Sk ∩Sl = ∅,

for k 6= l. By the independent scattering property of the inhomogeneous poisson process

the counting variables N0 (Sk) and N0 (Sl) over disjoint regions Sk and Sl are independent

(see Appendix B.1 for a proof). The definition of intensity measure implies that EN0 (Sk) =R
Sk
λ0 (ξ) dξ, for any k. One can model the number of points as

N0 (Sk) =

Z

Sk

λ0 (ξ) dξ + uk

where uk is an error with mean zero, and independent across blocks. For any block

k there exists a ξk ∈ Sk such that
R
Sk
λ0 (ξ) dξ = λ0

¡
ξk
¢
|Sk| and thus

N0 (Sk) = λ0
¡
ξk
¢
|Sk|+ uk (36)
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Notice that ξk is not necessarily the centroid of the block. An approximation of (36) for

any ξ ∈ Sk is N0 (Sk) ≈ λ0 (ξ) |Sk|+ uk.

The expected number of points in Sk is then approximated as

E [N0 (Sk)| ξ] ≈ λ0 (ξ) |Sk|

and thus the function λ0 (ξ) |Sk| can be estimated through kernel regression as

bλ0 (ξ) |Sk| =
KX

k=1

Kh (ξ − xk)PK
j=1Kh (ξ − xj)

n0k (37)

where xk’s are the centroids of the census blocks and n0k the number of individuals

observed in each block. Applying this procedure to each racial group process we can then

estimate bλm (ξ) |Sk| for each m.

Taking the ratio
bλm(ξ)|Sk|
bλ0(ξ)|Sk|

we get the estimator for bρm (ξ)

bρm (ξ) =
bλm (ξ)
bλ0 (ξ)

=

PK
k=1Kh (ξ − xk)nmkPK
k=1Kh (ξ − xk)n0k

(38)

where n0k is the number of people living in block k and nmk is the number of people

belonging to race m and living in block k; I use the estimated conditional probabilities

evaluated at the block centroid to compute the index.

6 Empirical Results

6.1 Global Segregation In US Cities

I have estimated the Spatial Dissimilarity Index for all the racial groups and all the US

metropolitan areas in 1990 and 2000. In this section I present results based on the 2000

data while in next section I use the indices for 1990 to estimate the impact of segregation

on individual outcomes. In the tables I show only several metropolitan areas for ease of

exposition.30

In Figure 3 I show the estimated conditional probability of African Americans in the

New York PMSA. The bandwidth for the Kernel estimator obtained using the Berman and

Diggle (1989) procedure is 0.348 km.

[Insert Figure 3 here]

30The complete tables in Excel files are available from the author.
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The three main black areas in Bronx, Harlem and Bedford-Stuyvesant shown in Figure 2

above, correspond to the whiter areas in Figure 3, where the conditional probability is close

or equal to 1.31 The spatial dissimilarity of African Americans for New York is estimated to

be 0.69.

In Figure 4(a) I plot the spatial dissimilarity and the neighborhood-based dissimilar-

ity (computed using blocks) for African Americans. Figure 4(b) shows the same plot but

the traditional dissimilarity is computed using census tract data. Each point represents a

metropolitan area, indicated with the MSA FIPS code.

[Insert Figure 4 here]

Spatial dissimilarity is positively associated with the traditional dissimilarity, as expected.

However the measured levels of segregation in many metropolitan areas are strikingly differ-

ent when we compare the two methodologies. For example, the metropolitan area of Muncie

(IN), with MSA FIPS code 5280 in the figure, has a dissimilarity of 0.7022 while the spatial

dissimilarity is 0.8785. Furthermore, the spatial dissimilarity implies a different ranking of

cities in terms of racial segregation: Muncie (IN) is indeed the most segregated metropolitan

area according to the spatial approach, while using the traditional approach it was 141st.

The segregation levels are shown in Table 1 for several cities. I compare the segrega-

tion levels obtained with the spatial dissimilarity and those obtained with the traditional

approach, using blocks and census tracts, in column 3, 5 and 7. I also present the different

ranking of the cities in columns 4, 6 and 8. Panel A and B are the ten most and least

segregated MSAs respectively. Panel C shows the results for the most populated MSAs.

[Insert Table 1 here]

Not all the metropolitan areas show strikingly different levels of segregation when using

the two approaches. For example, Detroit (MI) and Flint (MI) have comparable levels of

segregation according to spatial and traditional dissimilarity. Muncie (IN) and Beaumont

(TX) instead have dramatic differences in both level and rank. The least segregated city for

African Americans is San Jose (CA). In Panel C of Table 1, I show the estimates for the

most populated MSAs. The pattern seems confirmed: both levels and ranks are different.

31The reader should be aware that Figure 3 is realized with a grid 1000 × 1000. In the computation of

the index I estimate the conditional probability only at the observed locations. This is more precise and

computationally faster than imposing the grid.
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[Insert Figure 5 here]

Figure 5(a) and (b) plot the multigroup Spatial Dissimilarity index against the traditional

Dissimilarity. A similar pattern is present and not surprisingly the most segregated cities

for African Americans are also the most segregated when considering all racial groups. This

suggests that multigroup segregation levels are mainly driven by blacks’ segregation.

[Insert Table 2 here]

This is confirmed in Table 2, where the multigroup spatial dissimilarity is compared to

its neighborhood-based version. The most segregated MSA in US is Flagstaff (AZ-UT), with

a level of 0.866741 while the lease segregated is Laredo (TX), with a spatial dissimilarity of

0.27716. The most populated cities display the same behavior of the previous table.

I computed the correlation among the spatial dissimilarity and several neighborhood-

based indices in Table 3. I present correlations with the standard dissimilarity, the isolation

index, the information index and the Gini index (see Massey and Denton (1988) or Reardon

and Firebaugh (2002) for a detailed description). For blacks I also show the correlation with

the Spectral Segregation Index of Echenique and Fryer (2007), which is the only index based

on individuals locations available in the literature.

[Insert Table 3 here]

For the dichotomous version of the index (blacks) in Panel A, the correlation with the

standard dissimilarity is 0.6675. Similarly the correlation with the Gini is 0.6749. Notice that

Gini and Dissimilarity are almost perfectly correlated. The correlation with the Information

and Isolation indices is slightly higher but still far from one.

The correlation with the Spectral Segregation Index (SSI) is similar, 0.7044. As explained

in Echenique and Fryer (2007), the SSI is more correlated with the isolation index, since it is a

more precise measure of exposure to same race neighbors. The correlations for the multigroup

indices in Panel B are slightly higher but the pattern is similar. Rank correlations not shown

here confirm the same pattern.32

6.2 Individual Segregation Distribution

One of the main advantages of using the spatial approach is that the researcher can examine

the entire distribution of segregation. Figure 6 shows the distribution of individual-level

32Rank correlation results are available from the author.
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segregation for African Americans, smoothed using a kernel estimate.

[Insert Figure 6 here]

The four distributions show that using the average to measure the level of segregation

of a metropolitan area can be misleading. The red vertical line is the average segregation,

which I use to measure segregation for the entire city. The green vertical line is the median

segregation, while the blue lines are the 10th and 90th percentiles. Notice that in all four

MSAs the average is above the median. The distribution is very skewed and there are very

few blocks with extremely high levels of segregation that drive the average up.

[Insert Table 4 here]

I show the quartiles of the distributions for several MSAs in Table 4. For comparison I

report the average segregation levels as in Table 1. Muncie (IN), which is the most segregated

metropolitan area according to the average segregation, shows that this high average is due

to very few blocks that are highly segregated, while most of the individuals are exposed to

moderate levels of segregation. The same is valid for Detroit (MI), since most of the blocks

have moderate levels of segregation. The average segregation is 0.87 while the 3rd quartile

is about 0.65.

[Insert Table 5 here]

I repeat the same exercise for the multigroup version of the index, in Table 5. The distribu-

tional pattern is confirmed.

6.3 The Impact of Segregation on Socioeconomic Outcomes

The literature on the effect of segregation on socioeconomic outcomes usually shows a nega-

tive correlation of spatial separation and individual performance. In particular, Cutler and

Glaeser (1997) is one of the most influential papers in economics. They regress measures of

individual socioeconomic performance on the (traditional) dissimilarity and the interaction

of dissimilarity and a dummy for African Americans, showing that racial segregation under-

mines the socioeconomic performance of African Americans in education, unemployment,

earnings and single motherhood. They also find that whites are not affected significantly by

segregation, even after controlling for the possible endogeneity of segregation. Ananat (2007)

provides similar results using an alternative instrumental variable strategy. In particular she

finds a mix of positive and negative effects on whites. Echenique and Fryer (2007) use the
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Spectral Segregation Index to replicate the least squares regressions in Cutler and Glaeser

(1997), finding qualitatively the same results, with slightly different point estimates.

I use the 1% PUMS 1990 and the Summary Tape File 1B to replicate the Cutler and

Glaeser (1997) study. I analyze the same sample and the same specifications of the original

paper, while substituting the traditional dissimilarity with the spatial dissimilarity. The

samples contain all 20-24 years old and 25-30 years old individuals born in US. I consider

only the MSAs for which the fiscal variables instruments are available.

The estimated linear probability model has the following specification

yic = α+ βSegc + γSegc × blacki + δXi + εic (39)

where i indicates an individual and c a MSA/PMSA, yic is a socioeconomic outcome,

blacki is a dummy indicating if the individual is black, Segc is the segregation level of the

MSA, and the controls Xi’s are: fraction of blacks in MSA, dummies for race (black, asian,

hispanic and other nonwhite), dummy for female, age dummies, log of population in MSA,

log of median income in MSA, manufacturing share of MSA. The last three variables are

also included interacted with the black dummy.

The dependent variables are: the probability of high school graduation, the probability

of college graduation, the probability of being idle (not in school nor at work) and the log

of total earnings.

[Insert Table 6 here]

Table 6 compares the replication of Cutler and Glaeser’s least squares estimates (upper

panel) with the ones I obtained using the spatial dissimilarity (bottom panel), for the sample

of 20-24 years old individuals.

There are several differences. When using the spatial dissimilarity, the segregation is

harmful per se, decreasing the probability of high school graduation for all individuals and

not only for blacks. The coefficients for college graduation are not significant in my analysis,

implying that segregation is not correlated with this outcome. The results on idleness are

similar, but I find that the log of total earnings is negatively correlated with segregation and

strongly significant. These findings suggests that the conclusions of previous studies may be

driven by the mismeasurement of segregation and may not be very robust.

To check the robustness of my estimates, I ran all the regressions using the Spatial

Dissimilarity computed using a fixed bandwidth of .5 and 1 km. The point estimates are

slightly different but the qualitative implications of Table 6 are confirmed. I also use the
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specification in Echenique and Fryer (2007), where variables are normalized, and the results

do not change.

In order to correct for the endogeneity of segregation I use the fiscal instruments of

Cutler and Glaeser. It is not clear if these are good instruments for the spatial dissimilarity

and I leave the search of a good instrument for the spatial dissimilarity to future research.

Nonetheless this exercise provides some insights.

The results of these regressions are reported in Table 7.

[Insert Table 7 here]

The results confirm the qualitative conclusions of the original paper. On the other hand

the coefficients have higher magnitudes, implying a stronger negative impact of segregation

on socioeconomic performance of blacks. Assuming that the instrumental variables are valid

for the spatial dissimilarity, this suggests that segregation’s negative impact may have been

underestimated in previous studies.

The same pattern is confirmed by the 25-30 years old sample. The least squares estimates

are in Table 8 and the instrumental variable estimates are in Table 9

[Insert Table 8 and 9 here]

Even if the causal interpretation of these results is unclear, the estimation exercise pro-

vides some evidence that when segregation is measured with more precision, i.e. taking

into account the intra-neighborhood distribution of racial groups, the estimated impact on

socioeconomic outcome is different.33

7 Extensions to Continuous and Multiple Marks

Throughout the paper I maintained the assumption that the marks were discrete, since I

focused on the measurement of racial segregation. Here I show how to extend the basic

definitions and results to continuous and multivariate segregation. Assume the researcher is

interested in measuring income segregation.

The definition of extreme spatial separation slightly changes.

DEFINITION 3 The process X is completely unsegregated if and only if ρ (ξ,m) =

ρ (m) for all ξ ∈ X0, m ∈M. The process X is completely segregated if and only if for

33In results not shown I repeat the estimation using standardized variables as in Echenique and Fryer

(2007). The qualitative results are unchanged. These results are available from the author.
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all ξ ∈ x0, there is an m∗ = m∗ (ξ) ∈M such that ρ (ξ,m) = δ (m−m∗), where δ (u) is the

Dirac-Delta function.

To measure the level of income segregation (or any nonnegative continuous variable)

the mark space is assumed to be M = [0,∞). The spatial dissimilarity index is derived
analogously to the racial segregation case. Consider the quantity

d (ξ) =

Z

M

|ρ (ξ,m)− ρ (m)| dm (40)

PROPOSITION 3 If the mark space isM = [0,∞) then under Complete Segregation

d (ξs) = 2

Proof. In Appendix C

Therefore the individual Spatial Dissimilarity index for income segregation is defined as

φD_Inc (ξ) =
1

2

Z

M

|ρ (ξ,m)− ρ (m)| dm

and the average index for the metropolitan area is

TD_Inc (X) =
1

2N (S)

X

ξ∈X0

Z

M

|ρ (ξ,m)− ρ (m)| dm (41)

As emphasized in the theoretical section, Theorem 1 and 2 are general and do not depend

on the mark space. The expectation computed using Theorem 2 is

E
£
TD_Inc (X)

¤
=

1

2Λ0 (S)

Z

S

Z

M

|ρ (ξ,m)− ρ (m)|λ0 (ξ) dmdξ (42)

Furthermore, the researcher may be interested in computing segregation levels for more

than one variable, for example residential segregation by race and income. This is easily

done in this framework: define the mark as a vector r = (m, y), where m is the racial group

and y is the income level, and compute the joint conditional spatial probability of the marks

ρ (ξ, r). All the previous results apply.

Moreover the researcher can allow for correlation among marks of different type. In

the case just mentioned, there is no restriction on the correlation between racial group and

income levels. In other words, the mark vectors r must be independent, but there is no

restriction about the joint distribution of m and y, i.e ρ (ξ,m, y) 6= ρm (ξ) ρ (ξ, y)
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8 Conclusions

In this work I propose an alternative method for measuring spatial segregation of socioeco-

nomic variables that considers individuals and their locations as primitives. Existing indices

of segregation are based on an arbitrary partition of the metropolitan area in neighbor-

hoods: given the same spatial distribution of racial groups, the index will measure different

segregation levels for different neighborhood definitions.

The proposed method assumes that the locations of racial groups are the realization of

a simple spatial process that generates a spatial density of racial groups characterized by

(exogenous) clustering. For each coordinate of the metropolitan area, one can measure the

probability that an individual living at that specific location belongs to a specific racial

group. If there is no segregation the spatial density does not vary over space, it is flat. The

segregation level of an individual is defined as difference between the actual spatial density

and the flat spatial density at her location. The level of segregation of the entire metropolitan

area is the segregation level of the average individual.

This method has several advantages with respect to the traditional neighborhood-based

approach. First, the index does not depend on arbitrary partitions of the city in neighbor-

hoods. Second, this method provides the entire distribution of segregation among individuals

and over space, and therefore it is more informative than a synthetic index. I show that for

most cities, the extremely high average level of segregation is driven by very few locations

with excessive segregation, while most of the location are exposed to moderate levels of

spatial separation. Third, the estimation method relies on simple nonparametric estimation

techniques, available in standard statistical software. Furthermore, I derive several distri-

butional properties of the indices derived under the spatial approach that could be used to

develop rigorous statistical tests for segregation.

The methodology is not confined to indices of racial segregation, but it can be extended

to measure segregation of continuous variables or vectors of variables as I show in the last

section of the paper. Other applications include the study of clustering of economic activities

or the spatial concentration of industries. These are topic of interest in the rapidly growing

literature of economic geography, but there are very few applications of spatial statistics

techniques in this field.34

This method delivers different segregation levels than the ones measured by traditional

indices. Using 1990 and 2000 Census data I compute a spatial dissimilarity and compare it

with the traditional dissimilarity. The resulting levels of segregation and ranking of cities in

34An exception is Arbia, Copetti and Diggle (2008).
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terms of spatial separation are significantly different.

These differences have important economic implications. I replicate Cutler and Glaeser

(1997) analysis of the impact of segregation on socioeconomic outcomes, showing that results

change when the traditional dissimilarity is replaced by the spatial dissimilarity. I conclude

that my empirical findings may potentially challenge the robustness of the estimated impact

of racial segregation on individual outcomes: when segregation is measured in a more precise

way, i.e. taking into account the spatial location of each individual, the conclusions of

previous studies may be different.
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A Background Theory

In this section I briefly review the fundamental concepts and definitions needed to develop

my main theoretical results.35 I provide proofs of some results in Appendix B. The interested

reader can refer to the books listed in the references for more details, while the reader familiar

with spatial Poisson point processes can skip this appendix.

A.1 Notation, Basic Properties and Definitions

A spatial point process X is a stochastic mechanism that maps points over a set S ⊆ R2.
Alternatively it can be defined as a random counting measure over bounded sets A ⊆ S. I
denote the random set as X = {x1, ..., xn}, where xi denotes the generic point of the process.

The random variable N (A) indicates the number of points in bounded set A ⊆ S. I denote
the realizations of X as x and the realizations of N as n. I write ξ or η to indicate a generic

point (coordinate) in S and xi for the generic realized point of the process. The area of

region A is |A| and dξ refers to the infinitesimal region containing ξ.

I consider only finite point processes, with realizations x in the setN1f = {x ⊆ S : n (x ∩A) <∞},
for any bounded A ⊆ S. A point process is stationary if all the probability statements about
the process in any bounded set A of the plane are invariant under arbitrary translations.

This implies that all the statistics are invariant under translation, e.g. EN (A) = ENp (A),

where Np (A) is the process X translated by the vector p. A point process is isotropic if

the invariance holds under arbitrary rotations. A process that is stationary and isotropic is

called motion-invariant. For convenience I will also assume that the process is simple (or

orderly), i.e that multiple coincident events cannot occur.

In this paper I consider simple nonstationary and anisotropic processes.

A.2 First and Second Order Properties

Let X be a spatial point process defined over S ⊆ R2. The intensity function is a locally
integrable function36 λ : S → [0,∞), defined as the limit of the expected number of points
per infinitesimal area

35Diggle (2003), Stoyan, Kendall and Mecke (1987), Stoyan and Stoyan (1994), Moller and Waagepetersen

(2004) are the basic references.
36A function is locally integrable if

R
A

λ (ξ) dξ <∞ for all bounded A ⊆ S

36



λ (ξ) = lim
|dξ|→0

½
E [N (dξ)]

|dξ|

¾
(43)

A stationary process has constant intensity λ (ξ) = λ for all ξ. The intensity measure of

a point process X is defined for A ⊆ S as

Λ (A) = EN (A) =

Z

A

λ (ξ) dξ (44)

and measures the expected number of points of the process in the set A. I follow the

literature and assume that Λ (A) is locally finite, i.e. Λ (A) < ∞ for all bounded A ⊆ S,
and diffuse, i.e. Λ ({ξ}) = 0, for ξ ∈ S (or alternatively @ξ ∈ S s.t. Λ ({ξ}) > 0). The fact
that Λ (A) is diffuse implies that P [N (dξ) > 1] = o (|dξ|): in words, there are no coincident

points, and the process is simple.37

A.3 Poisson Processes and Marked Poisson Processes

The Poisson point process is the simplest point process and is widely used in practical

applications. The definition of the process consists of two conditions, that also provide a

practical algorithm for simulation.

DEFINITION 4 (Poisson Point Process) A point process X on S is a Poisson Point

Process with intensity λ (ξ) if the following two conditions are satisfied:

1. for any bounded A ⊆ S with Λ (A) <∞

P [N (A) = n] = [Λ (A)]n
exp [−Λ (A)]

n!
, n = 0, 1, 2, .... (45)

2. for any n ∈ N and any bounded A ⊆ S with 0 < Λ (A) <∞ , conditional on N (A) = n

the point are i.i.d. over S with density

f (ξ) =
λ (ξ)R

A
λ (ξ) dξ

(46)

We will write X ∼ Poi (S, λ (ξ)).

37The intensity function has also an infinitesimal interpretation, since the fact that P [N (dξ) > 1] = o (|dξ|)

implies that E [N (dξ)] converges to P [N (dξ) = 1] as |dξ| → 0. It follows that the quantity λ (ξ) dξ can

be interpreted as the probability of an event in the infinitesimal region dξ, i.e λ (ξ) dξ ≈ P [N (dξ) = 1].

Analogously notice that E [N (dη)N (dξ)] ≈ P [N (dη) = N (dξ) = 1], for ξ and η close, and we can interpret

the quantity λ2 (ξ, η) dξdη as the probability of observing two events in the infinitesimal regions dξ and dη.
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The first condition requires that for any bounded set the number of points of the process

is a draw from the Poisson distribution with mean Λ (A) =
R
A
λ (ξ) dξ, implying EN (A) =

Λ (A) for any bounded A ⊆ S. The second condition requires that, conditioning on the

number of points, the locations are i.i.d. draws from a density function proportional to the

intensity function. Therefore the intensity function entirely characterizes the process.

Sometimes condition (46) is replaced by the independent scattering property: if X ∼
Poi (S, λ (ξ)), then for disjoint sets A1, A2, A3, ...AK ⊆ A the random variables N (A1) ,

N (A2) , ..., N (AK) are stochastically independent Poisson random variables, i.e.

P [N (A1) = n1, ..., N (AK) = nK] =
KY

k=1

[Λ (Ak)]
nk exp [−Λ (Ak)]

nk!
(47)

for n = n1 + n2 + ...+ nk. In Appendix B, I prove that conditions (45) and (46) imply (47).

In this paper I consider only Inhomogeneous Poisson Point Processes (IPP): these pro-

cesses are nonstationary and anisotropic, with spatially varying intensity function.38 The

IPP is a very simple and parsimonious model for clustered points. Notice that the clustering

of locations arises only exogenously, being a consequence of the intensity specification: there

is no behavioral interpretation of points clusters.

In Appendix B, I show that a point process X is Poisson if and only if its probability

law is39

P [(X ∩A) ∈ F ] =
∞X

n=0

exp [−Λ (A)]
n!

Z

A

· ·

Z

A

1[{x1,...,xn}∈F ]

nY

i=1

λ (xi) dx1 · ·dxn (48)

for all A ⊆ S, with Λ (A) =
R
A
λ (ξ) dξ < ∞, and for all F ⊆ N1f . By convention for

n = 0, I write 1[∅∈F ]. The probability over S ⊆ R2 is obtained by substituting A with S.
It is possible to enrich the Poisson model, assigning to each point a random variable (or

vector) representing an attribute: this random variable is called mark and the process is

called Marked Poisson Process.

38A Poisson Point Process is said Homogeneous (or stationary) if λ (ξ) = λ, for all ξ ∈ S and f (ξ) = |A|−1,
for any bounded A ⊆ S. It follows that for an Homogeneous Poisson Process (HPP) EN (A) = λ |A|. The

HPP is considered the ideal of complete spatial randomness in literature. Complete spatial randomness

means that we do not expect the intensity of the process to vary over the region we are considering and that

there are no interactions amongst different events. Indeed, by condition (45) and the fact that λ (ξ) = λ,

an HPP shows stationarity and isotropy, cause N (A) ∼ Poisson (λ |A|), and thus the expected number of

events does not vary over the planar region A; by condition (46) and f (ξ) = |A|
−1
, we have no clustering or

inhibition (the presence of a point in ξ does not make more or less likely the occurrence of an event η in the

neighborhood of ξ).
39See also Proposition 3.1 in Moller and Waagepetersen (2004).
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More formally, let X0 be a spatial point process defined over the space S ⊆ R2. If there
is a random mark m (ξ) ∈M attached to each point ξ ∈ X0 then the process

X = {{ξ,m (ξ)}| ξ ∈ X0}

is called Marked Point Process with events in S and marks inM. The mark spaceM

may be a finite set, i.e. M = {1, 2, ...,M}, in which case X is called a multitype process, or

a more general setM ⊆ Rq, q ≥ 1.

DEFINITION 5 (Marked Poisson Process) The process X = {{ξ,m (ξ)}| ξ ∈ X0} is

a Marked Poisson Process if

1. X0 is a Poisson Point Process over S with intensity function λ0 (ξ) (with
R
A

λ0 (ξ) dξ <

∞ for all bounded A ⊆ S)

2. conditional on X0 the marks {m (ξ)| ξ ∈ X0} are mutually independent

The framework developed in the paper is based on the simple processes described above.

B Point Processes Theory

B.1 Independent Scattering Property

PROPOSITION If X ∼ Poi (S, λ (ξ)), then for disjoint sets A1, A2, A3, ...Ak ⊆ A the

random variables N (A1) , N (A2) , N (A3) , ... are stochastically independent, i.e.

P [N (A1) = n1, ..., N (Ak) = nk] =
kY

j=1

[Λ (Aj)]
nj exp [−Λ (Aj)]

nj!
(49)

for n = n1 + n2 + ...+ nk.

Proof. Consider the case in which we have only two disjoint sets, i.e. A = A1 ∪
A2. The extension to k sets is done by induction. Conditional on N (A) = n1 + n2 = n,

P [ξ ∈ (X ∩A)] = f (ξ) = λ (ξ) /Λ (A). Then given N (A) = n,

P [N (A1) = 1|N (A) = n] =

Z

A1

f (ξ) dξ =
Λ (A1)

Λ (A)
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and by condition (1) of the definition of a Poisson process, P [N (A1) = n1|N (A) = n] =h
Λ(A1)
Λ(A)

in1
and also

P [N (A1) = n1, N (A2) = n2|N (A) = n] =

µ
n1 + n2

n1

¶·
Λ (A1)

Λ (A)

¸n1 ·Λ (A2)
Λ (A)

¸n2

=
n!

n1! (n− n1)!

[Λ (A1)]
n1 [Λ (A2)]

n−n1

Λ (A)n

and thus condition (2) of the definition of a Poisson process implies that the unconditional

probability is

P [N (A1) = n1, N (A2) = n2] =
n!

n1! (n− n1)!

[Λ (A1)]
n1 [Λ (A2)]

n−n1

[Λ (A)]n
[Λ (A)]n

exp [−Λ (A)]
n!

= [Λ (A1)]
n1 exp [−Λ (A1)]

n1!
[Λ (A2)]

n−n1 exp [−Λ (A2)]
(n− n1)!

B.2 Probability Law of a Poisson Point Process

PROPOSITION A point process X is a Poisson Point Process, i.e X ∼ Poi (S, λ (ξ)) , if

and only if for all A ⊆ S, with Λ (A) =
R
A
λ (ξ) dξ <∞, and for all F ⊆ N1f

P [(X ∩A) ∈ F ] =
∞X

n=0

exp [−Λ (A)]
n!

Z

A

· ·

Z

A

1[{x1,...,xn}∈F ]

nY

i=1

λ (xi) dx1 · ·dxn (50)

where by convention for n = 0 we have 1[∅∈F ]

Proof. Conditioning on N (A) = n, a specific realization {x1, ..., xn} over A has proba-

bility
nY

i=1

f (xi) =
nY

i=1

h
λ(xi)R
A λ(ξ)dξ

i
. Therefore all the possible realizations {x1, ..., xn} ∈ F have

probability

P [(X ∩A) ∈ F |N (A) = n] =

Z

A

· ·

Z

A

1[{x1,...,xn}∈F ]

nY

i=1

·
λ (xi)

Λ (A)

¸
dx1 · ·dxn.

In order to get the unconditional probability we just need to multiply by P [N (A) = n] =
exp[−Λ(A)]

n!
Λ (A)n and sum for all n, obtaining (50).
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For the necessary part of the proof just multiply (50) inside the sum by Λ(A)n

Λ(A)n
and notice

you can rewrite the probability as

P [(X ∩A) ∈ F ] =
∞X

n=0

exp [−Λ (A)]
n!

Λ (A)n
Z

A

· ·

Z

A

1[{x1,...,xn}∈F ]

nY

i=1

·
λ (xi)

Λ (A)

¸
dx1 · ·dxn

=
∞X

n=0

P [N (A) = n]× P [(X ∩A) ∈ F |N (A) = n]

where P [N (A) = n] is a Poisson distribution and P [(X ∩A) ∈ F |N (A) = n] is a bino-

mial point process.

The probability law of the process over S ⊆ R2 is obtained from (50), by substituting A

with S.

B.3 The process under A1,A2 and A3 is Poisson

In our framework we use the Marked Poisson Process extensively and we exploit a property

that we prove in the following lemma (see also Proposition 3.9 in Moller and Waagepetersen

(2004), p. 26).

LEMMA1 IfX satisfies Assumptions 1-3 withM ⊆ Rq, q ≥ 1 thenX ∼ Poi (S ×M, λ (ξ,m))

Proof. Notice that Assumptions 1 and 2 are simply the definition of a Marked Pois-

son Process. If we add Assumption 2, the probability of a pair (ξ,m) is f (ξ) ρ (ξ,m) =
λ0(ξ)
Λ0(A)

ρ (ξ,m) for any bounded A ⊆ S. Therefore, conditioning on N (A) = n we have

P [(X ∩A) ∈ F |N (A) = n]

=

Z

A

· ·

Z

A

Z

M

· ·

Z

M

1[{(x1,m1),...,(xn,mn)}∈F ]

nY

i=1

·
λ0 (xi)

Λ0 (A)
ρ (xi,mi)

¸
dx1 · ·dxndm1 · ·dmn

=

Z

A×M

· ·

Z

A×M

1[{(x1,m1),...,(xn,mn)}∈F ]

nY

i=1

·
λ (xi,mi)

Λ0 (A)

¸
dx1 · ·dxndm1 · ·dmn

Therefore the unconditional distribution is

P [(X ∩A) ∈ F ]

=
∞X

n=0

exp [−Λ0 (A)]
n!

Z

A×M

· ·

Z

A×M

1[{(x1,m1),...,(xn,mn)}∈F ]

nY

i=1

[λ (xi,mi)] dx1 · ·dxndm1 · ·dmn
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Notice that

Z

A×M

λ (ξ,m) dξdm =

Z

A

λ0 (ξ)



Z

M

ρ (ξ,m) dm


 dξ =

Z

A

λ0 (ξ) dξ = Λ0 (A)

for any A and define t = (ξ,m) with values in T = S ×M and λ (t) = λ0 (ξ) ρ (ξ,m) to get

P [(X ∩A) ∈ F ] =
∞X

n=0

exp
h
−
R
A×M

λ (t) dt
i

n!

Z

A×M

· ·

Z

A×M

1[{t1,...,tn}∈F ]

nY

i=1

[λ (ti)] dt1 · ·dtn

It follows from (50) that X ∼ Poi (T, λ (t)) or X ∼ Poi (S ×M, λ (ξ,m))

B.4 The case of Multitype Point Process

If the process is a multitype point process then the previous proposition can be specialized

in the following

LEMMA 2 If a Marked Point Process X with discrete mark spaceM = {1, 2, ...,M}

satisfies Assumptions 1-3, it is equivalent to a multivariate Poisson Process (X1, X2, ...,XM),

i.e Xm ∼ Poi (S, λm (ξ)) are mutually independent and λm (ξ) = λ0 (ξ) ρm (ξ), m = 1, ...,M .

Proof. Assumptions 1 and 2 together form the definition of a Multitype Poisson Process.

The (IF) part of the proof then just requires to prove that Assumption 3 implies the multivari-

ate poisson process, i.e. that P (m (ξ) = m|X0 = x0) = ρm (ξ) implies Xm ∼ Poi (S, λm (ξ))

and mutually independent.

(IF ) A Poisson Point Process is uniquely determined by its void probabilities (Theorem

3.1 p. 16 in Moller and Waagepetersen (2004))

v (A) = P [N (A) = 0] = P [X ∩A = ∅] = exp [−Λ (A)]

Therefore for independent Poisson Processes X1 and X2 with intensity measure Λ1 (·)

and Λ2 (·), their joint distribution is uniquely determined by the joint void probabilities

P [X1 ∩A = ∅,X2 ∩B = ∅] = exp [−Λ1 (A)− Λ2 (A)]

for any bounded A,B ⊆ S. For simplicity consider a multitype point process with

M = {1, 2} only: the extension to M types can be proven by induction. Let the inten-

sity functions of the univariate processes be λm (ξ) = λ0 (ξ) ρm (ξ) with intensity measures

Λm (A) =
R
A
λm (ξ) dξ. The univariate process X1 can be thought of as obtained from the

multitype process X0 by including ξ ∈ X in X1 with probability P (m (ξ) = 1|X0 = x0) =
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ρ1 (ξ). Such a process is called an independent thinning of X0 with retention probabili-

ties ρ1 (ξ). The events are excluded or included independently of each other. Formally the

process X1 can be thought of as the process

X1 = {ξ ∈ X0 : U (ξ) ≤ ρ1 (ξ)}

where U (ξ) ∼ U [0, 1].

Notice that Λ0 (A) = Λ1 (A) + Λ2 (A) and that conditional on ξ ∈ X0, for ξ ∈ A

P [ξ ∈ X1] =

Z

A

ρ1 (ξ)
λ0 (ξ)

Λ0 (A)
dξ

The definition of Poisson process then implies that

P [X1 ∩A = ∅] =
∞X

n=0

P [N (X0 ∩A) = n]× P [X1 ∩A = ∅|N (X0 ∩A) = n]

=
∞X

n=0

exp [−Λ0 (A)]
n!

Λ0 (A)
n

Z

A

· ·

Z

A

Ã
nY

i=1

[1− ρ1 (xi)]
λ0 (xi)

Λ0 (A)

!
dx1 · ·dxn

=
∞X

n=0

exp [−Λ0 (A)]
n!

·Z

A

[1− ρ1 (ξ)]λ0 (ξ) dξ

¸n

= exp [−Λ0 (A)]
∞X

n=0

£R
A
λ0 (ξ) dξ −

R
A
ρ1 (ξ)λ0 (ξ) dξ

¤n

n!

= exp [−Λ0 (A)]
∞X

n=0

[Λ0 (A)− Λ1 (A)]
n

n!

= exp [−Λ0 (A)] exp [Λ0 (A)− Λ1 (A)]

= exp [−Λ1 (A)]

Using the same argument we can show that

P [X2 ∩A = ∅] = P [X0ÂX1 ∩A = ∅] = exp [−Λ0 (A) + Λ1 (A)]

Therefore we have proven that X1 and X2 are Poisson processes. It remains to be shown

that they are independent. Rewrite the joint probability of X1 and X2 for A,B ⊆ S as

P [X1 ∩A = ∅, X2 ∩B = ∅] = P [X ∩ (A ∩B) = ∅,X1 ∩AÂB = ∅,X2 ∩BÂA = ∅]
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Using the independent scattering property of the Poisson Process, for A,B ⊆ S

P [X ∩ (A ∩B) = ∅, X1 ∩AÂB = ∅, X2 ∩BÂA = ∅]
= P [X ∩ (A ∩B) = ∅]P [X1 ∩AÂB = ∅]P [XÂX1 ∩BÂA = ∅]
= exp [−Λ0 (A ∩B)] exp [−Λ1 (AÂB)] exp [−Λ0 (BÂA) + Λ1 (BÂA)]

= exp [−Λ0 (A ∩B)− Λ1 (AÂB)− Λ0 (BÂA) + Λ1 (BÂA) + Λ1 (A ∩B)− Λ1 (A ∩B)]
= exp [−Λ1 (A)− Λ0 (B) + Λ1 (B)]

= exp [−Λ1 (A)] exp [−Λ0 (B) + Λ1 (B)]

= P [X1 ∩A = ∅]P [X2 ∩B = ∅]

Then X1 and X2 are independent Poisson Processes with intensity λm (ξ) = λ0 (ξ) ρm (ξ),

m = 1, 2. We can extend the argument to m = 1, ..,M by induction.

(ONLY IF ) Remember that the union of independent Poisson Processes is a Poisson

Process with the intensity function equal to the sum of the single processes intensities.

Therefore

Ã
M[

m=1

Xm

!
∼ Poi

Ã
S,

MX

m=1

λm (ξ)

!
= Poi (S, λ0 (ξ)) = X0. This means that the

process satisfies Assumption 1. The proof follows from the fact that conditioning on the sum

of M independent Poisson variables we obtain a multinomial distribution

P (m (ξ) = m|X0 = x0) = P

"
ξ ∈ Xm| ξ ∈

M[

m=1

Xm

#

= P

"
(ξ ∈ Xm) ∩

Ã
ξ ∈

M[

m=1

Xm

!#
×

Ã
P

"
ξ ∈

M[

m=1

Xm

#!−1

=
λm (ξ)

MX

m=1

λm (ξ)

=
λ0 (ξ) ρm (ξ)

MX

m=1

λ0 (ξ) ρm (ξ)

= ρm (ξ)

Therefore also Assumption 3 is satisfied and since Assumption 3 implies Assumption 2,

the proof is complete.

When the conditional mark distribution does not depend on location, ρ (ξ,m) = ρ (m)

for all ξ, then we have random labelling.

C Proofs of the Main Results

PROOF OF THEOREM 2
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The Poisson assumption allows us to compute the expectation in the following way

E [T (X)] =
∞X

n=0

E [T (X)|N (S) = n]× P [N (S) = n]

It follows that

E [T (X)] = E

"
1

N (S)

X

ξ∈X0

φ (ξ)

#

=
∞X

n=0

E

"
1

n

X

ξ∈X0

φ (ξ)

¯̄
¯̄
¯N (S) = n

#
× P [N (S) = n]

=
∞X

n=0

1

n

X

ξ∈X0

E [φ (ξ)|N (S) = n]× P [N (S) = n]

=
∞X

n=0

1

n

·
n

Z

S

φ (ξ)
λ0 (ξ)

Λ0 (S)
dξ

¸
× P [N (S) = n]

=

Z

S

φ (ξ)
λ0 (ξ)

Λ0 (S)
dξ

∞X

n=0

P [N (S) = n]

=

Z

S

φ (ξ)
λ0 (ξ)

Λ0 (S)
dξ

= E [φ (ξ)]

where the fourth equality follows from the fact that the locations of the poisson process

are i.i.d points with density λ0(ξ)
Λ0(S)

The variance of the index is computed in several steps

V [T (X)] = V

"
1

N (S)

X

ξ∈X0

φ (ξ)

#

= E



Ã

1

N (S)

X

ξ∈X0

φ (ξ)

!2
−

Ã
E

"
1

N (S)

X

ξ∈X0

φ (ξ)

#!2

= E

"
1

N (S)2

X

ξ∈X0

φ (ξ)2
#
+ E




1

N (S)2

X

ξ∈X0

X

η∈X0

η 6=ξ

φ (ξ)φ (η)


−

Ã
E

"
1

N (S)

X

ξ∈X0

φ (ξ)

#!2
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The first component of the sum above is

E

"
1

N (S)2

X

ξ∈X0

φ (ξ)2
#
=

∞X

n=0

1

n2

·
n

Z

S

φ (ξ)2
λ0 (ξ)

Λ0 (S)
dξ

¸
× P [N (S) = n]

= E

·
1

N (S)

¸Z

S

φ (ξ)2
λ0 (ξ)

Λ0 (S)
dξ

= E

·
1

N (S)

¸
E
£
φ (ξ)2

¤

The second component of the sum is

E




1

N (S)2

X

ξ∈X0

X

η∈X0

η 6=ξ

φ (ξ)φ (η)


 =

∞X

n=0

1

n2

·
n (n− 1)

Z

S

Z

S

φ (ξ)φ (η)
λ0 (ξ)λ0 (η)

Λ0 (S)
2 dηdξ

¸

×P [N (S) = n]

= E

"
n− 1
n

µZ

S

φ (ξ)
λ0 (ξ)

Λ0 (S)
dξ

¶2#

=

µ
1− E

·
1

N (S)

¸¶
E [φ (ξ)]2

where the second equality follows from the i.i.d. condition of the Poisson process, so ξ

and η are independent points. Therefore the variance is

V [T (X)] = E

·
1

N (S)

¸
E
£
φ (ξ)2

¤
+

+

µ
1− E

·
1

N (S)

¸¶
E [φ (ξ)]2

−E [φ (ξ)]2

= E

·
1

N (S)

¸ £
E
£
φ (ξ)2

¤
− E [φ (ξ)]2

¤

= E

·
1

N (S)

¸
V [φ (ξ)]

PROOF OF PROPOSITION 1

Consider the quantity
P

m∈M |ρm (ξ)− ρm|. Under complete segregation, for all ξ ∈ X0,

∃m∗ ∈M such that ρm∗ (ξ) = 1 and ρm (ξ) = 0 for any m 6= m∗. The probability of m∗ is
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ρm∗ , therefore

X

m∈M
|ρm (ξ)− ρm| = ρ1 |1− ρ1|+ (1− ρ1) |0− ρ1|+ ...

...+ ρM |1− ρM |+ (1− ρM) |0− ρM |

= 2ρ1 (1− ρ1) + ...+ 2ρM (1− ρM)

= 2
X

m∈M
ρm (1− ρm)

= 2I

PROOF OF PROPOSITION 2

This proof follows the same lines of the proof for Proposition 1. Consider the quantityP
m∈M (ρm (ξ)− ρm)

2. Under complete segregation, for all ξ ∈ X0, ∃m∗ ∈ M such that

ρm∗ (ξ) = 1 and ρm (ξ) = 0 for any m 6= m∗. The probability of m∗ is ρm∗ , therefore

d (ξs) =
X

m∈M
(ρm (ξ

s)− ρm)
2

= ρ1 (1− ρ1)
2 + (1− ρ1) (0− ρ1)

2 +

...+ ρM (1− ρM)
2 + (1− ρM) (0− ρM)

2

= ρ1 (1− ρ1) (1− ρ1 + ρ1) + ...+ ρM (1− ρM) (1− ρM + ρM)

=
X

m∈M
ρm (1− ρm) = I

PROOF OF PROPOSITION 3

Consider the quantity
R
M
|ρ (ξ,m)− ρ (m)| dm. For a given ξ and under complete seg-

regation, ∃m∗ = m∗ (ξ) ∈M such that ρ (ξ,m) = δ (m−m∗). The density associated with

the realization of m∗ is ρ (m∗). Therefore we get

Z

M

|ρ (ξ,m)− ρ (m)| dm =

Z ∞

0

ρ (m∗)

·Z ∞

0

|δ (m−m∗)− ρ (m)| dm

¸
dm∗
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We can solve the integral inside to get

Z ∞

0

|δ (m−m∗)− ρ (m)| dm = lim
ε→0

Z m∗− ε
2

0

ρ (m) dm+ lim
ε→0

Z m∗+ ε
2

m∗− ε
2

|δ (m−m∗)− ρ (m)| dm+

+ lim
ε→0

Z ∞

m∗+ ε
2

ρ (m) dm

= lim
ε→0

Z m∗− ε
2

0

ρ (m) dm+ lim
ε→0

Z m∗+ ε
2

m∗− ε
2

δ (m−m∗) dm

− lim
ε→0

Z m∗+ ε
2

m∗− ε
2

ρ (m) dm+ lim
ε→0

Z ∞

m∗+ ε
2

ρ (m) dm

By taking the limit for ε→ 0, using the fact that for Dirac-Delta limε→0
R m∗+ ε

2

m∗− ε
2

δ (m−m∗) dm =

1 and limε→0
R m∗+ ε

2

m∗− ε
2

ρ (m) dm = 0

Z ∞

0

|δ (m−m∗)− ρ (m)| dm = 1 +

Z m∗

0

ρ (m) dm+

Z ∞

m∗
ρ (m) dm = 2

It follows that
Z

M

|ρ (ξ,m)− ρ (m)| dm =

Z ∞

0

2ρ (m∗) dm∗ = 2

D Artificial Cities

In Figure A1, I show six artificial cities: A(symptotia), B(ayesia), C(lassica), D(eMoivria),

E(mpirica) and F(isheria). Each city contains 800 individuals, distributed over the square

[0, 4]× [0, 4]. There are 25% blacks (the black circles) and 75% whites (the red circles). The

grid represents the partition in neighborhoods.

[Insert Figure A1 here]

For Cities A, B and C, I simulated an homogeneous Poisson Process with 50 points

on a unit square, one for blacks and a different one for whites; I used the unit squares as

neighborhoods of the cities, assigning 4 of them to be black and 12 of them to be white.

City D was constructed by simulating white locations as an HPP with 600 points over the

square [0, 4] × [0, 4]. Then I simulated blacks locations as an HPP with 200 points in the

circle of radius one, where the center of the circle coincided with the center of the city. City
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E was constructed by simulating an HPP with 600 points over the square [0, 4]× [0, 4] for the

whites. Then I simulated two HPP with 100 points each over the circle of radius 1 for the

black population. This creates an irregular black neighborhood in the city, while allowing

whites to be inside the ghetto too. Finally, city F is the result of a simulation of an HPP

with 600 points over the square [0, 4]× [0, 4] for the whites and an HPP with 200 points over

the square [0, 4]× [0, 4] for the blacks. This is the perfect integrated case, according to our

framework.

I report results for the spatial dissimilarity index estimation. In Table A1 I report the

results of estimation for the artificial cities. The bandwidth is chosen using the Diggle and

Berman (1989) procedure.

Table A1: Traditional vs Spatial Dissimilarity

Bandwidth Spatial Dism Trad. Dism

City A 2.83 0.9225333 1

City B 2.605 0.900698 1

City C 0.37 0.9061751 1

City D 2.445 0.803017 0.7816667

City E 2.85 0.8993939 0.8816667

City F 2.73 0.03108531 0.1216667

For cities A, B and C the estimated spatial dissimilarity is smaller than the traditional,

since the conditional probabilities surfaces make the estimate smoother. For cities D and

E spatial and traditional index are very close. Of course if we change the neighborhoods

definition this does not have to hold.40 For the perfectly integrated city F, the spatial

dissimilarity measures less segregation than the standard measure.

40I computed the dissimilarity index for several different partitions of cities D and E: 4, 16, and 64

neighborhoods respectively.

For city E there is a clear increase of the index as we increase the number of neighborhoods. Surprisingly,

for city D, the value of the index is not necessarily monotonically increasing in the number of neighborhoods:

from 4 neighborhoods to 16 the index increases, while it decreases from 16 neighborhoods to 64.

This suggests another potential problem of the neighborhood-based approach: the relationship between

the scale of the partition and the index is not necessarily monotonic.

These results are available from the author

49



Table 1: Spatial Dissimilarity vs Traditional Dissimilarity (African Americans) 

 

MSA Metropolitan Area  Spatial   Dissimilarity Dissimilarity 

FIPS  Dissimilarity (Blocks)  (Tracts)  

    Levels Rank Levels Rank Levels Rank 

 A. Most segregated MSA in US       

5280 Muncie, IN MSA 0.878505 1 0.7022 141 0.5282 150 

2960 Gary, IN PMSA 0.874766 2 0.8602 4 0.8093 2 

2160 Detroit, MI PMSA 0.870148 3 0.8655 3 0.8405 1 

8080 Steubenville--Weirton, OH--WV MSA 0.848863 4 0.7648 58 0.6256 60 

6960 Saginaw--Bay City--Midland, MI MSA 0.84719 5 0.8123 19 0.7334 12 

1320 Canton--Massillon, OH MSA 0.845705 6 0.738 89 0.5774 99 

2640 Flint, MI PMSA 0.841102 7 0.8268 11 0.7646 6 

1000 Birmingham, AL MSA 0.838985 8 0.8157 17 0.6989 20 

840 Beaumont--Port Arthur, TX MSA 0.827306 9 0.7513 74 0.6481 47 

5200 Monroe, LA MSA 0.826333 10 0.8082 22 0.69 27 

        

 B. Least segregated MSAs in US       

6560 Pueblo, CO MSA 0.41685 322 0.6532 217 0.4069 261 

7160 Salt Lake City--Ogden, UT MSA 0.415838 323 0.6598 209 0.4249 243 

8735 Ventura, CA PMSA 0.414883 324 0.5457 305 0.3695 286 

1125 Boulder--Longmont, CO PMSA 0.410511 325 0.6155 261 0.3239 311 

7480 
Santa Barbara--Santa Maria--Lompoc, CA 
MSA 0.409521 326 0.5629 295 0.3894 271 

5170 Modesto, CA MSA 0.394449 327 0.572 291 0.3212 313 

200 Albuquerque, NM MSA 0.379495 328 0.5505 303 0.312 319 

380 Anchorage, AK MSA 0.372978 329 0.4489 328 0.3336 308 

5945 Orange County, CA PMSA 0.36862 330 0.5072 318 0.3391 305 

7400 San Jose, CA PMSA 0.325668 331 0.4817 323 0.2939 325 

        

 C. Most populated MSAs in US       

4480 Los Angeles--Long Beach, CA PMSA 0.614858 177 0.6266 252 0.5765 102 

5600 New York, NY PMSA 0.690352 97 0.7013 142 0.6714 38 

1600 Chicago, IL PMSA 0.763236 35 0.8215 15 0.7789 4 

6160 Philadelphia, PA--NJ PMSA 0.727624 63 0.7565 69 0.6897 28 

8840 Washington, DC--MD--VA--WV PMSA 0.651122 144 0.6449 227 0.5958 80 

2160 Detroit, MI PMSA 0.870148 3 0.8655 3 0.8405 1 

3360 Houston, TX PMSA 0.705639 81 0.6578 210 0.5716 106 

520 Atlanta, GA MSA 0.675998 115 0.6949 157 0.6148 66 

1920 Dallas, TX PMSA 0.636549 156 0.628 250 0.5396 133 

1120 Boston, MA--NH PMSA 0.60094 191 0.7084 132 0.6364 54 

 

Notes: Spatial Dissimilarity is the average of the individual spatial dissimilarity. The traditional 

dissimilarity is computed using Census blocks and Census tracts data from the Summary File 1, 

Census 2000.  

 

 



Table 2: Spatial Dissimilarity vs Traditional Dissimilarity (Multigroup) 

 

MSA Metropolitan Area  Spatial   Dissimilarity Dissimilarity 

FIPS  Dissimilarity (Blocks)  (Tracts)  

    Levels Rank Levels Rank Levels Rank 

 A. Most segregated MSAs in US       

2620 Flagstaff, AZ--UT MSA 0.866741 1 0.7093 69 0.5808 38 

2160 Detroit, MI PMSA 0.828644 2 0.8198 2 0.7355 1 

8080 
Steubenville--Weirton, OH--WV 
MSA 0.821351 3 0.7397 38 0.5177 86 

1000 Birmingham, AL MSA 0.818724 4 0.8029 5 0.6661 8 

5200 Monroe, LA MSA 0.816387 5 0.8033 4 0.669 7 

5280 Muncie, IN MSA 0.815499 6 0.6843 105 0.4757 120 

1320 Canton--Massillon, OH MSA 0.807292 7 0.7204 55 0.5089 96 

2640 Flint, MI PMSA 0.796078 8 0.799 6 0.6747 6 

840 Beaumont--Port Arthur, TX MSA 0.79018 9 0.738 41 0.6101 24 

760 Baton Rouge, LA MSA 0.790143 10 0.762 21 0.6113 22 

        

 B. Least segregated MSAs in US       

1150 Bremerton, WA PMSA 0.399612 322 0.437 322 0.2669 303 

6560 Pueblo, CO MSA 0.399277 323 0.4754 306 0.2864 293 

4150 Lawrence, KS MSA 0.398295 324 0.4753 307 0.264 306 

1720 Colorado Springs, CO MSA 0.396948 325 0.4575 313 0.3069 280 

5170 Modesto, CA MSA 0.394621 326 0.4457 317 0.2684 301 

1880 Corpus Christi, TX MSA 0.394152 327 0.4337 323 0.2515 311 

7840 Spokane, WA MSA 0.386892 328 0.5592 248 0.2777 298 

380 Anchorage, AK MSA 0.354807 329 0.4051 328 0.2643 305 

2320 El Paso, TX MSA 0.279575 330 0.367 330 0.2017 327 

4080 Laredo, TX MSA 0.27716 331 0.3563 331 0.1072 331 

        

 C. Most populated MSAs in US       

4480 
Los Angeles--Long Beach, CA 
PMSA 0.4834 270 0.4973 289 0.4091 183 

5600 New York, NY PMSA 0.605364 138 0.6286 183 0.5603 56 

1600 Chicago, IL PMSA 0.656347 90 0.7057 76 0.6141 21 

6160 Philadelphia, PA--NJ PMSA 0.696579 54 0.7306 45 0.6252 16 

8840 
Washington, DC--MD--VA--WV 
PMSA 0.58943 149 0.5949 212 0.5028 100 

2160 Detroit, MI PMSA 0.828644 2 0.8198 2 0.7355 1 

3360 Houston, TX PMSA 0.569899 175 0.5689 237 0.4548 138 

520 Atlanta, GA MSA 0.637662 108 0.6702 126 0.5603 55 

1920 Dallas, TX PMSA 0.558697 188 0.5718 235 0.4478 144 

1120 Boston, MA--NH PMSA 0.533627 220 0.6435 166 0.5215 80 

 

Notes: Spatial Dissimilarity is the average of the individual spatial dissimilarity. The traditional 

dissimilarity is computed using Census blocks and Census tracts data from the Summary File 1, 

Census 2000.  

 



Table 3: Correlations with traditional indices

Panel A: Blacks

Spat. Dissim. SSI Dissim Isol Info

SSI 0.7044

Dissimilarity 0.6675 0.5740

Isolation 0.7371 0.9000 0.7810

Information 0.7290 0.7926 0.9210 0.9545

Gini 0.6749 0.5905 0.9897 0.7797 0.9180

Panel B: Multigroup

Dissimilarity 0.7484

Isolation 0.7241 0.8821

Information 0.7470 0.9530 0.9544

Gini 0.7430 0.9860 0.8442 0.9402

Notes: The Spatial Dissimilarity is the average individual spatial dissimilarity. The SSI is

the Spectral Segregation Index of Echenique and Fryer (2006). The Isolation, Information and

Gini indices of segregation are described in Massey and Denton (1988) and Reardon and Firebaugh

(2002). The spatial dissimilarity and the SSI are computed using block level data from the Summary

File 1, Census 2000. The remaining indices are computed using Census Tracts data from the Census

2000. Correlations with indices computed using blocks are similar and available from the author.



Table 4: Individual Distribution of Spatial Dissimilarity, Quartiles (African Americans) 

 

MSA 
FIPS Metropolitan Area Average 

1st 
Quartile Median 

3rd 
Quartile 

 A. Most Segregated MSAs in US     

5280 Muncie, IN MSA 0.878505 0.4210913 0.536438 0.536438 

2960 Gary, IN PMSA 0.874766 0.59432 0.624964 0.624964 

2160 Detroit, MI PMSA 0.870148 0.6527996 0.6527996 0.6527996 

8080 Steubenville--Weirton, OH--WV MSA 0.848863 0.5131925 0.5205587 0.5205587 

6960 Saginaw--Bay City--Midland, MI MSA 0.84719 0.4719803 0.5582634 0.5582634 

1320 Canton--Massillon, OH MSA 0.845705 0.4002332 0.5365979 0.5365979 

2640 Flint, MI PMSA 0.841102 0.531328 0.6290947 0.6315051 

1000 Birmingham, AL MSA 0.838985 0.6466866 0.7176122 1.0913744 

840 Beaumont--Port Arthur, TX MSA 0.827306 0.5746312 0.6678815 1.0368019 

5200 Monroe, LA MSA 0.826333 0.6165972 0.755943 1.2140182 

      

 B. Least Segregated MSAs in US     

6560 Pueblo, CO MSA 0.41685 0.198187 0.3978968 0.5100178 

7160 Salt Lake City--Ogden, UT MSA 0.415838 0.1909232 0.3650295 0.5057651 

8735 Ventura, CA PMSA 0.414883 0.2094268 0.3707898 0.5103415 

1125 Boulder--Longmont, CO PMSA 0.410511 0.1856612 0.363827 0.504531 

7480 
Santa Barbara--Santa Maria--Lompoc, CA 
MSA 0.409521 0.2085673 0.3972317 0.5123268 

5170 Modesto, CA MSA 0.394449 0.2065722 0.3786059 0.5140098 

200 Albuquerque, NM MSA 0.379495 0.1716114 0.3434244 0.5133553 

380 Anchorage, AK MSA 0.372978 0.2025856 0.358544 0.5210976 

5945 Orange County, CA PMSA 0.36862 0.1853323 0.3445561 0.4796011 

7400 San Jose, CA PMSA 0.325668 0.1519909 0.3096957 0.4531364 

      

 C. Most Populated MSAs in US     

4480 Los Angeles--Long Beach, CA PMSA 0.614858 0.343943 0.4747065 0.5480155

5600 New York, NY PMSA 0.690352 0.5258307 0.6423153 0.6737719

1600 Chicago, IL PMSA 0.763236 0.5528326 0.618727 0.6195102

6160 Philadelphia, PA--NJ PMSA 0.727624 0.498949 0.6210654 0.6286433

8840 Washington, DC--MD--VA--WV PMSA 0.651122 0.4241205 0.6056744 0.6833271

2160 Detroit, MI PMSA 0.870148 0.6527996 0.6527996 0.6527996

3360 Houston, TX PMSA 0.705639 0.4178659 0.55851 0.6096372

520 Atlanta, GA MSA 0.675998 0.4436585 0.6349907 0.7082935

1920 Dallas, TX PMSA 0.636549 0.3680504 0.5148539 0.5912919

1120 Boston, MA--NH PMSA 0.60094 0.3859964 0.504475 0.5383391

 

Notes: The average spatial dissimilarity corresponds to the index of segregation for the entire city. 

Notice that the individual-level segregation can be greater than one, while the average is 

constrained to be between zero and one for comparability across cities. 

 

 

 



 

 

Table 5: Individual Distribution of Spatial Dissimilarity, Quartiles (Multigroup) 

 

MSA 
FIPS Metropolitan Area Average 

1st 
Quartile Median 

3rd 
Quartile 

 A. Most Segregated MSAs in US     

2620 Flagstaff, AZ--UT MSA 0.8667412 0.53719981 0.67667898 1.44508612

2160 Detroit, MI PMSA 0.8286439 0.4994092 0.54727524 0.54727524

8080 Steubenville--Weirton, OH--WV MSA 0.8213511 0.09468782 0.10193237 0.10193237

1000 Birmingham, AL MSA 0.8187241 0.57186057 0.64343456 0.94592965

5200 Monroe, LA MSA 0.8163867 0.57393668 0.69740037 1.09410571

5280 Muncie, IN MSA 0.8154988 0.14197748 0.17546687 0.17546687

1320 Canton--Massillon, OH MSA 0.8072924 0.1274268 0.16439563 0.16460785

2640 Flint, MI PMSA 0.7960778 0.37310235 0.44017288 0.4636971

840 Beaumont--Port Arthur, TX MSA 0.7901801 0.53031412 0.61211039 0.95667631

760 Baton Rouge, LA MSA 0.7901433 0.54107325 0.67690541 1.0536933

      

 B. Least Segregated MSAs in US     

1150 Bremerton, WA PMSA 0.3996123 0.1176552 0.17211191 0.22281765

6560 Pueblo, CO MSA 0.3992773 0.14755533 0.2813778 0.43960199

4150 Lawrence, KS MSA 0.3982949 0.10488319 0.18351015 0.24649722

1720 Colorado Springs, CO MSA 0.3969479 0.15178639 0.22656594 0.31751936

5170 Modesto, CA MSA 0.3946211 0.19590742 0.31616467 0.47983551

1880 Corpus Christi, TX MSA 0.3941522 0.17305489 0.30298449 0.46049655

7720 Sioux City, IA--NE MSA 0.3868918 0.24153557 0.31525281 0.31525281

380 Anchorage, AK MSA 0.354807 0.15469473 0.26151132 0.36095664

2320 El Paso, TX MSA 0.2795754 0.10509243 0.18472356 0.316258

4080 Laredo, TX MSA 0.2771601 0.07141443 0.1421759 0.2571718

      

 C. Most Populated MSAs in US     

4480 
Los Angeles--Long Beach, CA 
PMSA 0.4834004 0.3974564 0.56927795 0.73234758

5600 New York, NY PMSA 0.6053643 0.60649702 0.74460922 0.88614442

1600 Chicago, IL PMSA 0.6563473 0.4863418 0.58390268 0.65356618

6160 Philadelphia, PA--NJ PMSA 0.6965794 0.41789015 0.50060683 0.53834268

8840 
Washington, DC--MD--VA--WV 
PMSA 0.5894296 0.4377141 0.59586204 0.7592566

2160 Detroit, MI PMSA 0.8286439 0.4994092 0.54727524 0.54727524

3360 Houston, TX PMSA 0.5698989 0.41500124 0.55513781 0.70744205

520 Atlanta, GA MSA 0.6376615 0.44326551 0.61122652 0.71895259

1920 Dallas, TX PMSA 0.5586969 0.36111587 0.50142262 0.62570005

1120 Boston, MA--NH PMSA 0.5336268 0.21691148 0.27838146 0.32705205

 

Notes: The average spatial dissimilarity corresponds to the index of segregation for the entire city. 

Notice that the individual-level segregation can be greater than one, while the average is 

constrained to be between zero and one for comparability across cities. 

 



Table 6: Individuals 20-24 years old, OLS results

Cutler and Glaeser (1997)
hs grad coll grad idle ln(earnings)

Dissimilarity .0199 .0683∗ −.0024 −.0738
(.032) (.0398) (.0192) (.1063)

Dissim * black −.326∗∗∗ −.0793∗∗ .3157∗∗∗ −.7099∗∗∗
(.044) (.0354) (.0445) (.1651)

N 97932 97932 97932 56390
R2 0.039 0.0931 .0510 .0885

Mele (2008)
hs grad coll grad idle ln(earnings)

Spat. Dissimilarity −.0880∗∗ −.0316 .0148 −.4838∗∗∗
(.0358) (.0465) (.0192) (.1098)

Spat. Dissim * black −.1984∗∗∗ −.0161 .2709∗∗∗ −.8068∗∗∗
(.0706) (.0378) (.0624) (.1679)

N 97932 97932 97932 56390
R2 .0395 .0928 .0503 .0913

Standard errors corrected for clustering at the MSA level. The sample contains

all 20-24 years old individuals born in US. I consider only the MSAs for which

the fiscal variables instruments are available. Controls included but not shown:

fraction of blacks in MSA, dummies for race (black, asian, hispanic and other

nonwhite), dummy for female, age dummies, log of population in MSA, log of

median income in MSA, manufacturing share of MSA. The last three variables are

also included interacted with the black dummy.



Table 7: Individuals 20-24 years old, IV results

Cutler and Glaeser (1997)
hs grad coll grad idle ln(earnings)

Dissimilarity .1330∗∗∗ .2144∗∗∗ −.0403 .0985
(.0445) (.0531) (.0255) (.1649)

Dissim * black −.4136∗∗∗ −.1991∗∗∗ .2093∗∗∗ −.8156∗∗∗
(.0836) (.0558) (.0888) (.2849)

N 97932 97932 97932 56390
R2 .0384 .0911 .0508 .0882

Mele (2008)
hs grad coll grad idle ln(earnings)

Spat. Dissimilarity .2193∗∗ .3535∗∗∗ −.0666 .1609
(.0932) (.1049) (.0439) (.2863)

Spat. Dissim * black −.8288∗∗∗ −.3269∗∗∗ .6378∗∗∗ −1.487∗∗∗
(.2764) (.1111) (.2099) (.5667)

N 97932 97932 97932 56390
R2 .0325 .0811 .0486 .0877

Standard errors corrected for clustering at the MSA level. The sample contains

all 20-24 years old individuals born in US. I consider only the MSAs for which

the fiscal variables instruments are available. Controls included but not shown:

fraction of blacks in MSA, dummies for race (black, asian, hispanic and other

nonwhite), dummy for female, age dummies, log of population in MSA, log of

median income in MSA, manufacturing share of MSA. The last three variables are

also included interacted with the black dummy.



Table 8: Individuals 25-30 years old, OLS results

Cutler and Glaeser (1997)
hs grad coll grad idle ln(earnings)

Dissimilarity .0165 −.0137 .0048 −.0926
(.0238) (.0671) (.0249) (.1151)

Dissim * black −.2513∗∗∗ −.0496 .2707∗∗∗ −.5563∗∗∗
(.0453) (.0512) (.0395) (.1416)

N 139634 139634 139634 105526
R2 .0374 .0412 .0510 .0988

Mele (2008)
hs grad coll grad idle ln(earnings)

Spat. Dissimilarity −.0681∗∗∗ −.1507∗∗ .0125 −.4736∗∗∗
(.0276) (.0699) (.0228) (.1202)

Spat. Dissim * black −.1823∗∗∗ .0248 .1915∗∗∗ −.5198∗∗∗
(.0541) (.0522) (.0527) (.1371)

N 139634 139634 139634 105526
R2 .0376 .0422 .0504 .1011

Standard errors corrected for clustering at the MSA level. The sample contains

all 25-30 years old individuals born in US. I consider only the MSAs for which

the fiscal variables instruments are available. Controls included but not shown:

fraction of blacks in MSA, dummies for race (black, asian, hispanic and other

nonwhite), dummy for female, age dummies, log of population in MSA, log of

median income in MSA, manufacturing share of MSA. The last three variables are

also included interacted with the black dummy.



Table 9: Individuals 25-30 years old, IV results

Cutler and Glaeser (1997)
hs grad coll grad idle ln(earnings)

Dissimilarity .0648∗∗ .1013 .0086 .1027
(.0317) (.0760) (.0278) (.1675)

Dissim * black −.2172∗∗∗ −.1320∗∗ .2832 −.5230
(.0757) (.0672) (.0624) (.2417)

N 139634 139634 139634 105526
R2 .0371 .0405 .0510 .0983

Mele (2008)
hs grad coll grad idle ln(earnings)

Spat. Dissimilarity .1061∗ .1642 .0147 .1697
(.0589) (.1259) (.0462) (.2857)

Spat. Dissim * black −.4435∗∗∗ −.2403∗∗ .5761∗∗∗ −.9032∗
(.1797) (.1193) (.1883) (.4992)

N 139634 139634 139634 105526
R2 .0353 .0379 .0490 .0973

Standard errors corrected for clustering at the MSA level. The sample contains

all 25-30 years old individuals born in US. I consider only the MSAs for which

the fiscal variables instruments are available. Controls included but not shown:

fraction of blacks in MSA, dummies for race (black, asian, hispanic and other

nonwhite), dummy for female, age dummies, log of population in MSA, log of

median income in MSA, manufacturing share of MSA. The last three variables are

also included interacted with the black dummy.



Figure 1: Different partitions imply different segregation levels

DA = 1, DB = 0, DC = 1, DD = .2291
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Note: Four stylized cities. Black dots represent the locations of blacks, white dots the lo-
cations of whites. The four cities have the same spatial distribution of racial groups. However,
when segregation is measured using the neighborhood-based approach, the different partitions in
neighborhoods deliver different segregation levels as measured by the dissimilarity index. City A
has a dissimilarity DA = 1, while City B has no segregation DB = 0, since each neighborhood
contains the same proportion of blacks and whites. Segregation is complete in City C, DC = 1,
and intermediate in City D, DD = .2291.



Figure 2: Spatial Distribution of Racial Groups in New York PMSA, 2000
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(a) African Americans (b) All Racial groups

Notes: Each point represents the centroid of a census block. A black dot represent a census
block in which the majority is African American. Red represents Whites/Caucasians blocks, Green
dots are Asians, Light Blue are Other racial groups. Distances are measured in Kilometers and the
axis are rescaled so that the southwest corner is the origin.

Source: Summary File 1, Census of Population and Housing 2000, Us Bureau of Census.



Figure 3: Estimated Conditional Probability of African American, New York PMSA

2000

Notes: Estimated conditional probability of African American location in New York PMSA in
2000. Distances are measured in Kilometers and the axis are rescaled so that the southwest corner
is the origin. The areas with higher probabilities correspond to the neighborhods of Harlem, a part
of the Bronx, Bedford Stuyvesant and Jamaica.

Source: Author’s calculations based on Summary File 1, Census of Population and Housing
2000, Us Bureau of Census.



Figure 4(a): Blacks Spatial Dissimilarity vs Traditional Dissimilarity (Blocks) 
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Note: Each point represents a Metropolitan Statistical Area (MSA). The marker of the points is the MSA FIPS code. The vertical axis 

measures the level of spatial dissimilarity for African Americans and the horizontal axis the level of traditional dissimilarity. The latter 

is computed using Blocks as subunits. 

 

 

 

 

 



Figure 4(b): Blacks Spatial Dissimilarity vs Traditional Dissimilarity (Tracts) 
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Note: Each point represents a Metropolitan Statistical Area (MSA). The marker of the points is the MSA FIPS code. The vertical axis 

measures the level of spatial dissimilarity for African Americans and the horizontal axis the level of traditional dissimilarity. The latter 

is computed using Blocks as subunits. 

 

 

 

 

 



Figure 5(a): Multigroup Spatial Dissimilarity vs Traditional Dissimilarity (Tracts) 
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Note: Each point represents a Metropolitan Statistical Area (MSA). The marker of the points is the MSA FIPS code. The 

vertical axis measures the level of spatial dissimilarity for all racial groups and the horizontal axis the level of traditional 

dissimilarity. The latter is computed using Blocks as subunits. 

 

 

 

 

 



Figure 5(b): Multigroup Spatial Dissimilarity vs Traditional Dissimilarity (Tracts) 
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Note: Each point represents a Metropolitan Statistical Area (MSA). The marker of the points is the MSA FIPS code. The vertical axis 

measures the level of spatial dissimilarity for all racial groups and the horizontal axis the level of traditional dissimilarity. The latter is 

computed using Blocks as subunits. 

 

 

 

 

 



Figure 6: Individual Black Segregation Distribution  

 

                 
                                           (a) Chicago PMSA                                                                        (b) New York PMSA 

 

                 
                                         (c) Los Angeles PMSA                                                                      (d) Houston MSA 

 

Notes: The distribution is a kernel density estimate of the empirical individual spatial dissimilarity density. The red vertical line is the 

average spatial dissimilarity, which is the level of spatial dissimilarity for the entire city. The green line is the median, the blue lines 

are respectively the 10
th

 and 90
th

 percentiles. It is clear that an analysis of the entire distribution is more informative than using only 

the index (which corresponds to the average). 



Figure A1: Artificial Cities
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Figure 7: CITY A
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Figure 7: CITY C
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Figure 7: CITY D
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Figure 7: CITY E
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Figure 7: CITY F

Notes: The squares represent six artificial cities. Black dots represent the black locations and
the red dots the nonblacks. Six different spatial distribution are given. City A, B and C have
maximum segregation according to the neighborhood-based approach, but this is not the case with
the spatial approach. CIty F is the complete integrated case under the spatial approach. City D
and E are intermediate cases among these extremes. These datasets are used for the estimations
presented in Appendix D.


