Oyama, Daisuke (2006): Agglomeration under Forward-Looking Expectations: Potentials and Global Stability.
Preview |
PDF
MPRA_paper_15239.pdf Download (400kB) | Preview |
Abstract
This paper considers a class of migration dynamics with forward-looking agents in a multi-country solvable variant of the core-periphery model of Krugman (Journal of Political Economy 99 (1991)). We find that, under a symmetric externality assumption, our static model admits a potential function, which allows us to identify a stationary state that is uniquely absorbing and globally accessible under the perfect foresight dynamics whenever the degree of friction in relocation decisions is sufficiently small. In particular, when trade barriers are low enough, full agglomeration in the country with the highest barrier is the unique stable state for small frictions. New aspects in trade and tax policy that arise due to forward-looking behavior are discussed.
Item Type: | MPRA Paper |
---|---|
Original Title: | Agglomeration under Forward-Looking Expectations: Potentials and Global Stability |
Language: | English |
Keywords: | economic geography; agglomeration; perfect foresight dynamics; history versus expectations; stability; potential game; equilibrium selection |
Subjects: | R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity F - International Economics > F1 - Trade > F12 - Models of Trade with Imperfect Competition and Scale Economies ; Fragmentation C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling |
Item ID: | 15239 |
Depositing User: | Daisuke Oyama |
Date Deposited: | 16 May 2009 13:42 |
Last Modified: | 26 Sep 2019 15:21 |
References: | Absil, P.-A. and K. Kurdyka (2006). ``On the Stable Equilibrium Points of Gradient Systems,'' Systems and Control Letters 55, 573-577. Antoci, A., A. Gay, M. Landi, and P. L. Sacco (2008). ``Global Analysis of an Expectations Augmented Evolutionary Dynamics,'' Journal of Economic Dynamics and Control 32, 3877-3894. Baldwin, R., R. Forslid, P. Martin, G. Ottaviano, and F. Robert-Nicoud (2003). Economic Geography and Public Policy, Princeton University Press, Princeton. Baldwin, R. E. (2001). ``Core-Periphery Model with Forward-Looking Expectations,'' Regional Science and Urban Economics 31, 21-49. Beckmann, M., C. B. McGuire, and C. B. Winsten (1956). Studies in the Economics of Transportation, Yale University Press, New Haven. Behrens, K., A. R. Lamorgese, G. I. P. Ottaviano, and T. Tabuchi (2007). ``Changes in Transport and Non-Transport Costs: Local vs Global Impacts in a Spatial Network,'' Regional Science and Urban Economics 37, 625-648. Behrens, K. and J.-F. Thisse (2007). ``Regional Economics: A New Economic Geography Perspective,'' Regional Science and Urban Economics 37, 457-465. Berliant, M. and F.-C. Kung (2009). ``Bifurcations in Regional Migration Dynamics,'' mimeo. Blanchard, O. J. (1985). ``Debt, Deficits, and Finite Horizons,'' Journal of Political Economy 93, 223-247. Blume, L. E. (1993). ``The Statistical Mechanics of Strategic Interaction,'' Games and Economic Behavior 5, 387-424. Borck, R. and M. Pflueger (2006). ``Agglomeration and Tax Competition,'' European Economic Review 50, 647-668. Calvo, G. A. (1983). ``Staggered Prices in a Utility-Maximizing Framework,'' Journal of Monetary Economics 12, 383-398. Diamond, P. and D. Fudenberg (1989). ``Rational Expectations Business Cycles in Search Equilibrium,'' Journal of Political Economy 97, 606-619. Dixit, A. K. and J. E. Stiglitz (1977). ``Monopolistic Competition and Optimal Product Diversity,'' American Economic Review 67, 297-308. Fisher, R. A. (1930). The Genetical Theory of Natural Selection, Clarendon Press, Oxford. Forslid, R. and G. I. P. Ottaviano (2003). ``An Analytically Solvable Core-Periphery Model,'' Journal of Economic Geography 3, 229-240. Fujita, M., P. Krugman, and A. J. Venables (1999). The Spatial Economy: Cities, Regions, and International Trade, MIT Press, Cambridge. Fujita, M. and J.-F. Thisse (2009). ``New Economic Geography: An Appraisal on the Occasion of Paul Krugman's 2008 Nobel Prize in Economic Sciences,'' Regional Science and Urban Economics 39, 109-119. Fukao, K. and R. Benabou (1993). ``History versus Expectations: A Comment,'' Quarterly Journal of Economics 108, 535-42. Gilboa, I. and A. Matsui (1991). ``Social Stability and Equilibrium,'' Econometrica 59, 859-867. Hofbauer, J. (1985). ``The Selection Mutation Equation,'' Journal of Mathematical Biology 23, 41-53. Hofbauer, J. (1995). ``Stability for the Best Response Dynamics,'' mimeo. Hofbauer, J. (2000). ``From Nash and Brown to Maynard Smith: Equilibria, Dynamics and ESS,'' Selection 1, 81-88. Hofbauer, J. and W. H. Sandholm (2009). ``Stable Games and Their Dynamics,'' forthcoming in Journal of Economic Theory. Hofbauer, J. and K. Sigmund (1998). Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge. Hofbauer, J. and G. Sorger (1999). ``Perfect Foresight and Equilibrium Selection in Symmetric Potential Games,'' Journal of Economic Theory 85, 1-23. Hofbauer, J. and G. Sorger (2002). ``A Differential Game Approach to Evolutionary Equilibrium Selection,'' International Game Theory Review 4, 17-31. Hopkins, E. (1999). ``Learning, Matching, and Aggregation,'' Games and Economic Behavior 26, 79-110. Jehiel, P., M. Meyer-ter-Vehn, and B. Moldovanu (2008). ``Ex-Post Implementation and Preference Aggregation via Potentials,'' Economic Theory 37, 469-490. Kaneda, M. (2003). ``Policy Designs in a Dynamic Model of Infant Industry Protection,'' Journal of Development Economics 72, 91-115. Kiyotaki, N. and R. Wright (1991). ``A Contribution to the Pure Theory of Money,'' Journal of Economic Theory 53, 215-235. Krugman, P. (1991a). ``Increasing Returns and Economic Geography,'' Journal of Political Economy 99, 483-499. Krugman, P. (1991b). ``History versus Expectations,'' Quarterly Journal of Economics 106, 651-67. Leite, V., S. B. S. D. Castro, and J. Correia-da-Silva (2009). ``The Core-Periphery Model with Asymmetric Inter-Regional and Intra-Regional Trade Costs,'' Portuguese Economic Journal 8, 37-44. Mai, C.-C., S.-K. Peng, and T. Tabuchi (2008). ``Economic Geography with Tariff Competition,'' Regional Science and Urban Economics 38, 478-486. Maeler, K.-G., A. Xepapadeas, and A. de Zeeuw (2003). ``The Economics of Shallow Lakes,'' Environmental and Resource Economics 26, 603-624. Martin, P. and C. A. Rogers (1995). ``Trade Effects of Regional Aid,'' in R. E. Baldwin, P. Haapararanta, and J. Kiander, eds., Expanding Membership of the European Union, Cambridge University Press, Cambridge. Matsui, A. (1992). ``Best Response Dynamics and Socially Stable Strategies,'' Journal of Economic Theory 57, 343-362. Matsui, A. and K. Matsuyama (1995). ``An Approach to Equilibrium Selection,'' Journal of Economic Theory 65, 415-434. Matsui, A. and D. Oyama (2006). ``Rationalizable Foresight Dynamics,'' Games and Economic Behavior 56, 299-322. Matsuyama, K. (1991). ``Increasing Returns, Industrialization, and Indeterminacy of Equilibrium,'' Quarterly Journal of Economics 106, 617-650. Matsuyama, K. (1992a). ``A Simple Model of Sectoral Adjustment,'' Review of Economic Studies 59, 375-388. Matsuyama, K. (1992b). ``The Market Size, Entrepreneurship, and the Big Push,'' Journal of the Japanese and International Economies 6, 347-364. Matsuyama, K. and T. Takahashi (1998). ``Self-Defeating Regional Concentration,'' Review of Economic Studies 65, 211-234. Melitz, M. J. (2003). ``The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity,'' Econometrica 71, 1695-1725. Miao, J. (2005). ``Optimal Capital Structure and Industry Dynamics,'' Journal of Finance 60, 2621-2659. Monderer, D. and L. Shapley (1996). ``Potential Games,'' Games and Economic Behavior 14, 124-143. Mossay, P. (2006). ``A Theory of Rational Spatial Agglomerations,'' mimeo. Mussa, M. (1978). ``Dynamic Adjustment in the Heckscher-Ohlin-Samuelson Model,'' Journal of Political Economy 86, 775-791. Nash, J. F. (1950). ``Equilibrium Points in n-Person Games,'' Proceedings of the National Academy of Sciences of the United States of America 36, 48-49. Negishi, T. (1960). ``Welfare Economics and Existence of an Equilibrium for a Competitive Economy,'' Metroeconomica 12, 92-97. Ottaviano, G. I. P. (2001). ``Monopolistic Competition, Trade, and Endogenous Spatial Fluctuations,'' Regional Science and Urban Economics 31, 51-77. Oyama, D. (2002). ``p-Dominance and Equilibrium Selection under Perfect Foresight Dynamics,'' Journal of Economic Theory 107, 288-310. Oyama, D. (2009). ``History versus Expectations in Economic Geography Reconsidered,'' Journal of Economic Dynamics and Control 33, 394-408. Oyama, D., S. Takahashi, and J. Hofbauer (2008). ``Monotone Methods for Equilibrium Selection under Perfect Foresight Dynamics,'' Theoretical Economics 3, 155-192. Oyama, D. and O. Tercieux (2009). ``Iterated Potential and Robustness of Equilibria,'' forthcoming in Journal of Economic Theory. Pflueger, M. (2004). ``A Simple, Analytically Solvable, Chamberlinian Agglomeration Model,'' Regional Science and Urban Economics 34, 565-573. Robert-Nicoud, F. (2005). ``The Structure of Simple `New Economic Geography' Models (or, On Identical Twins),'' Journal of Economic Geography 5, 201-234. Rosenthal, R. W. (1973). ``A Class of Games Possessing Pure-Strategy Nash Equilibria,'' International Journal of Game Theory 2, 65-67. Sandholm, W. H. (2001). ``Potential Games with Continuous Player Sets,'' Journal of Economic Theory 97, 81-108. Sandholm, W. H. (2002). ``Evolutionary Implementation and Congestion Pricing,'' Review of Economic Studies 69, 667-689. Sandholm, W. H. (2007). ``Pigouvian Pricing and Stochastic Evolutionary Implementation,'' Journal of Economic Theory 132, 47-69. Sandholm, W. H. (2009). ``Large Population Potential Games,'' forthcoming in Journal of Economic Theory. Scheinkman, J. A. (1976). ``On Optimal Steady States of n-Sector Growth Models When Utility Is Discounted,'' Journal of Economic Theory 12, 11-30. Schlag, K. H. (1998). ``Why Imitate, and If So, How?: A Boundedly Rational Approach to Multi-Armed Bandits,'' Journal of Economic Theory 78, 130-156. Schmeidler, D. (1973). ``Equilibrium Points of Nonatomic Games,'' Journal of Statistical Physics 7, 295-300. Slade, M. E. (1994). ``What Does an Oligopoly Maximize?,'' Journal of Industrial Economics 42, 45-61. Spulber, D. F. (2007). Global Competitive Strategy, Cambridge University Press, Cambridge. Swinkels, J. M. (1993). ``Adjustment Dynamics and Rational Play in Games,'' Games and Economic Behavior 5, 455-484. Tabuchi, T., J.-F. Thisse, and D.-Z. Zeng (2005). ``On the Number and Size of Cities,'' Journal of Economic Geography 5, 423-448. Taylor, P. D. and L. B. Jonker (1978). ``Evolutionary Stable Strategies and Game Dynamics,'' Mathematical Biosciences 40, 145-156. Ui, T. (2001). ``Robust Equilibria of Potential Games,'' Econometrica 69, 1373-1380. Ui, T. (2007). ``Non-Atomic Potential Games and the Value of Vector Measure Games,'' mimeo. Vega-Redondo, F. (1997). ``Shaping Long-Run Expectations in Problems of Coordination,'' European Journal of Political Economy 13, 783-806. Yaari, M. E. (1965). ``Uncertain Lifetime, Life Insurance, and the Theory of the Consumer,'' Review of Economic Studies 32, 137-150. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/15239 |