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An area of recurring interest in empirical studies of economic behavior based on time

series data is the notion of structural change. How, for example, does that analyst know

if the parameters embedded in the data generating process have changed over time and,

if they have changed, for which data point or points did this change most likely occur?

Obtaining suitable answers to these and related questions is often a nontrivial exercise and,

moreover, the implications of ignoring structural change altogether can potentially lead to

false inference and, by extension, misguided policy recommendations. Of course economists

have long recognized the potentially critical role of structural change in data analysis. For

example, the so–called Chow test, introduced in a seminal work by Chow (1960), is designed

to test for exactly this feature of the data in the context of a linear econometric model, albeit

in one with a single, known structural change. Refinements to the Chow test that allow for,

among other things, testing when the change point is unknown, have been advanced in recent

years by Andrews (1993), Andrews and Ploberger (1994), and Hansen (1996), among others.

In the agricultural economics literature there has been considerable focus over time on

structural change in the demand for food and, most notably, in the demand for meat. Exam-

ples pertaining especially to meat demand in the U.S. and elsewhere include Chavas (1983),

Dahlgran (1987), Eales and Unnevehr (1988) Moschini and Mielke (1989), Alston and Chal-
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fant (1991), and more recently, Davis (1997) and Bryant and Davis (2008). Work in a similar

spirit has been done in the context of the demand for fats and oils by Goodwin et al. (2003)

and in factor demand equations for U.S. food and kindred products manufacturing sector by

Goodwin and Brester (1995).

In terms of meat demand, while the methods vary and the causes attributed to the

underlying structural change may vary (e.g., increased dietary concerns associated with

consuming red meat, etc.) nearly all of the aforementioned studies find support for some

form of structural change in meat consumption. In many of these studies the structural

change is assumed to be a discrete, one–time event. In several instances the possibility of

a smooth structural change over time is allowed. See, for example, Moschini and Mielke

(1989). But to the best of our knowledge missing from the extant literature is a model

that permits the possibility that (1) structural change is smooth over time and (2) that

it is potentially non–monotonic. In this paper we explore exactly these possibilities in the

context of U.S. meat demand relationships. In so doing we follow closely the testing and

estimation strategy for univariate time–varying regression models put forward by Lin and

Teräsvirta (1994), which in turn builds upon related work on smooth transition regressions

by Terasvirta (1994).1 In the remainder of the paper we discuss the modelling approach and

the methods used for testing for potentially smooth structural change. We then present an

application to a system of inverse demand equations for meats in the United States.

The IAIDS Model and Structural Change

The fundamental modelling framework employed here is a system of inverse demand equa-

tions applied to meat consumption and price data. In an inverse demand system normalized

prices adjust to exogenous changes in quantities, that is, short–run supplies are assumed

to be perfectly inelastic. Inverse demand models are useful tools for examining consumer

behavior when the consumption goods in question are highly perishable or when they have
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a reasonably short shelf–life (Barten and Bettendorf, 1989). In recent years numerous stud-

ies have used inverse demand systems to study aggregate meat demand behavior, including

Eales and Unnevehr (1994), Holt and Goodwin (1996), and Holt (2002).

The basic demand system we focus on here is the Inverse Almost Ideal Demand System

(IAIDS) model, introduced originally by Eales and Unnevehr (1994). The IAIDS is developed

from a particular distance (utility) function, and is parallel in its specification to Deaton

and Muellbauer’s (1980) Almost Ideal Demand System. The central difference is that in the

IAIDS normalized prices are treated as endogenous while quantities are exogenous. In the

case of the IAIDS the distance function is of the form

ln D(q, u) = (1 − u) ln a(q) + u ln b(q) (1)

where q is a (nx1) vector of quantities, u denotes the utility index, a(q) is a translog quantity

index given by

ln a(q) =
∑

k

αk ln(qk) + 1

2

∑

k

∑

j

γ∗

kj ln qk ln qj, (2)

and

ln b(q) = ln a(q) + β0

∏

k

q−βk

k . (3)

In (2) and (3), k, j = 1, . . . , n.

Application of the Shephard–Hannoch Lemma through differentiation of the logarithmic

distance function with respect to (logarithmic) quantities gives expenditure share equations

for each good as a function of quantities and the utility index. The share equations can

be “uncompensated” to remove utility by recognizing that at the optimum lnD(q, u) = 0,

thereby implying that (1) can be inverted and solved for u as a function of q, the direct

utility function u(q). Then, u(q) may be used to substitute for u in each share equation.
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Doing so in the present case yields share equations of the form:

wi = αi +
∑

j

γij ln qj + βi ln(Q) (4)

where wi = piqi

y
, and where pi/y denotes the nominal price for the ith good divided by group

expenditure, y, and where i = 1, . . . , n. The quantity index ln Q is defined by

ln Q = α0 +
∑

k

αk ln(qk) + 1

2

∑

k

∑

j

γkj ln qk ln qj, (5)

and γij = 1

2
(γ∗

ij + γ∗

ji). As well, we follow usual practice and restrict α0 = 0 in all subsequent

analyses.

Linear homogeneity of the distance function, symmetry of the second–order derivatives,

and adding–up across the share equations implies the following set of equality restrictions:

n
∑

i=1

αi = 1,
n

∑

i=1

γij =
n

∑

j=1

γij = 0,
n

∑

i=1

βi = 0, γij = γji. (6)

As required for a locally flexible functional form, there are n(n− 1)/2 free parameters in the

Antonelli (Hessian) matrix for the IAIDS model. Formulae for computing own, cross–price,

and scale flexibilities from the IAIDS are provided by Eales and Unnevehr (1994).

To make the IAIDS empirically meaningful, it is necessary to add stochastic terms to the

share equations in (4). Doing so yields a share equation system of the form

wit = f (qt, θ) + eit = αi +
∑

j

γij ln qjt + βi ln(Qt) + eit, (7)

where eit’s are mean zero error terms that are assumed to be joint–normally distributed

and where a time subscript, t, t = 1, . . . , T , has been added in recognition of the fact that

time–series data are to be employed. As well, in (7) θ is a vector of unknown parameters

to be estimated, and includes the αi, γij, and βi parameters.2 If seasonal data are used the
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model in (7) may be modified to allow the αi parameters to shift by season, which in turn

is typically accomplished by incorporating seasonal dummy variables.

The modelling framework outlined thus far is suitable if there is no reason to suspect

that structural change has occurred, that is, if there is no reason to believe that one or more

of the elements in θ has changed over the sample period. As a practical matter this is often

not the case, especially if the sample covers a substantive time span. In short, changes in

habits, tastes and preferences, product quality, product packaging and processing, and so

forth are not directly observed but will often have a substantive impact on consumer choices.

As noted in the introduction, this is generally posited to be the case for meat demands in

the United States over the post–war period. The system in (7) can be modified to allow for

structural change. For example, the system could simply be expressed as

wit = f (qt, θ
∗) + eit, (8)

where θ∗ = θ1 + θ2D (t), and where D (t) is a variable that indicates structural change.

For example, if structural change is thought to be a discrete, one–time event occurring at

time t̃, then D (t) could be specified to equal one if t > t̃, and zero otherwise. In this case

(8) effectively becomes a multivariate switching regression model. Alternatively, if structural

change is thought to be continuous (but linear), then we might specify D (t) = t, an approach

advocated by, for example, Farley et al. (1975). Moreover, the approach is flexible in that

a some subset of the parameters in θ1 could be held constant while select others could be

allowed to vary (e.g., the constant terms). Both approaches have been utilized extensively

in the investigation of structural change in meat demand.

A slight variant of the model in (8) may be expressed as follows:

wit = f (qt, θ1) (1 − G (t∗; γ, c)) + f (qt, θ2) G (t∗; γ, c) + eit, (9)

where t∗ = t/T , G(.), the transition function, is a possibly smooth and continuous function of
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t∗ that is bounded on the unit interval, and γ and c are parameters which define the nature of

the transition function. The model in (9) is a parallel to the time–varying regression models

considered in a univariate context by Lin and Teräsvirta (1994). Indeed, the model in (9)

can be thought of as a slight variation of both the switching regression and continuous linear

change models implied by (8). Of course the choice of the transition function is central to

the analysis.

Several candidates exist for defining G (t∗; γ, c). A common specification for the transition

function in (9) is the first–order logistic function, given by

G (t∗; γ, c) = [1 + exp {−γ (t∗ − c) /σt∗}]
−1 , γ > 0, (10)

where γ is the speed–of–adjustment parameter that determines how quickly the model shifts

from one regime to another, c is the centrality parameter that determines at what point in

the sample the structural change is 50–percent complete, and σt∗ is the standard deviation of

the normalized trend variable. Dividing γ by σt∗ renders the speed–of–adjustment parameter

unit free. Interestingly, as γ → ∞ the first–order logistic function in (10) becomes a Heaviside

indicator function that assumes the value of zero if t∗ < c and is one otherwise. In other

words, in this case the model reduces to the switching regression model. Likewise, as γ → 0

the transition function becomes effectively linear in t∗. In this manner the model that

combines (10) with (9) encompasses all possibilities implied by (8).

Another approach is to specify G (t∗; γ, c) as an exponential function, that is, as

G (t∗; γ, c) = 1 + exp
{

−γ (t∗ − c)2 /σ2

t∗

}

, γ > 0. (11)

In this case the structural change implied by the transition function in (11) is non–monotonic

and is symmetric around c. In this case as t∗ → ±∞, G (t∗; γ, c) → 1, whereas G (t∗; γ, c) = 0

when t∗ = c. Finally, as γ → 0 or γ → ∞, the exponential function approaches zero and

one, respectively. Henceforth we refer to the demand system that utilizes the exponential
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model as the second–order model.

A final specification for G (t∗; γ, c) considered by Lin and Teräsvirta (1994) is the third–

order logistic function

G (t∗; γ, c1, c2, c3) =

[

1 + exp

{

−γ

3
∏

i=1

(t∗ − ci) /σt∗

}]

−1

, c1 ≤ c2 ≤ c3, γ > 0. (12)

In the case of (12) the structural change is not necessarily monotonic, and multiple regime

switches are possible. In empirical work a useful formulation of (12) is to impose the restric-

tion c = c1 = c2 = c3. In this case structural change is monotonic but plateaus around the

value of c are possible. We refer to the demand model that uses the transition in (12) as the

third–order model.

While the above specifications for transition functions in a demand system allow consid-

erable flexibility in modelling structural change, there is a need to be able to test for these

various alternatives against the null of a demand model with no structural change. But

in this instance the standard likelihood ratio test will not have the correct asymptotic size

because there are unidentified nuisance parameters, notably γ and c in the transition func-

tion, under the null hypothesis of “no structural change.” The result is that the distribution

of the likelihood ratio test statistic will be non–standard (Davies, 1977, 1987). A consid-

erable body of literature has arisen in recent years to address these non–standard testing

issues. Luukkonen et al. (1988), for example, propose replacing the transition function with

a suitable Taylor series approximation evaluated at the point γ = 0. Standard Lagrange

Multiplier (LM) tests may then be employed. This approach works well when the null model

is univariate and linear in parameters. Of course in this case the basic IAIDS model is not

univariate, nor is it linear in parameters.3

The approach we adopt here to testing is similar to that advocated by Skalin (1998) and

Seo (2006) in the context of smooth transition and multivariate threshold models, respec-

tively. That is, we construct the standard likelihood ratio (LR) test statistic for a test of the
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relevant structural change model vis–à–vis the basic IAIDS. The empirical distribution for

the LR test statistic is then constructed by using a reasonably large number, B, of paramet-

ric bootstraps of the basic IAIDS model. Both the basic and the structural change models

are estimated using the resultant pseudo data. The LR test statistic is then computed for

each bootstrap draw. In this manner it is possible to construct the empirical distribution for

the LR test statistic, and thereby to obtain an empirical p–value. Monte Carlo simulations

by both Skalin (1998) and Seo (2006) suggest that this approach to testing holds promise in

sample sizes typical of those encountered in many time series applications.

An Application to U.S. Meat Demand

Quarterly data on consumption and retail prices for beef, pork, chicken, and turkey were

collected from various USDA sources for the 1960–2004 period for a total of n = 180 sample

observations. Data prior to 1997 were obtained from various sources described in detail by

Holt (2002). Data for pork and beef from 1997 through 2004 were obtained from the online

version of the U.S. Department of Agriculture (2006b) Red Meat Yearbook. Likewise, data

for chicken and turkey were obtained from the online version of the U.S. Department of

Agriculture (2006a) Poultry Yearbook. Here we aggregate the chicken and turkey categories

to obtain a single “poultry” category. The retail price for poultry is derived by determining

the share–weighted averages for chicken and turkey prices, where the shares are with respect

to total expenditures on chicken and turkey.

The basic IAIDS model in (7) is estimated first by adding quarterly dummy variables

to the model, that is, by allowing the αi parameters to shift by season. As well, prelimi-

nary results indicated substantial evidence of first–order autocorrelation in the model’s error

terms. For this reason the parametric vector autocorrelation correction methods outlined in

Holt (1998) were used in all subsequent estimations.4 Summary measures of model fit and

performance for the basic IAIDS model are reported in Table 1. Among other things, the
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results reveal that even the basic IAIDS model fits the data reasonably well, as the system

R2 is near one. That said, the curvature conditions (i.e., having the Antonelli matrix be

negative semi–definite) are violated at 52 of the data points. All of these violations occur

for various sample points in the 1960–1983 period.

The next step is to estimate structural change models that rely on, respectively, the

three transition functions identified in (10), (11), and (12), and then to test to determine

if these models yield a significant improvement in fit. Preliminary results revealed that

the restricted version of (12) provided effectively the same fit to the data as the unrestricted

model, and therefore all results for the third–order model are for the case where the restriction

c1 = c2 = c3 has been imposed. Again, summary measures of fit along with several key

parameter estimates—specifically, the estimates for the γ and c parameters in the respective

transition functions—for each of the structural change models are presented in Table 1.

Do any of the structural change models represent a statistically significant improvement

in fit vis–à–vis the basic IAIDS model? Several measures are used to address this question.

First, the system Akaike’s information criterion (AIC) values are smaller for each of the

structural change models than for the basic IAIDS, indicating that the structural change

models are valid (Table 1). Second, the ratio of the determinant of the residual covariance

matrix for the structural change models relative to that for the basic IAIDS model ranges

between 70– and 73–percent, again indicating that allowing for structural change facilitates

a substantial improvement in fit. As well, results reported in Table 1 that there is a consid-

erable reduction in curvature violations when structural change of the sort considered here

is allowed for, with several specifications (, i.e., the first– and third–order models) being

associated with no violations. Finally, we perform a statistical test of the validity of each

structural change model relative to the basic IAIDS. To do so we employed a dynamic para-

metric bootstrap—wherein a multivariate normal distribution is used—of the basic IAIDS

model to generate B = 999 pseudo data sets, each consisting of n = 180 sample observations.

Each of these pseudo data sets is then used in turn to (1) re–estimate the basic IAIDS model,
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and (2) to estimate each of the three structural change IAIDS models being considered here.

For each of these models the LR test statistic is then constructed for each pseudo sample.

In this manner it is possible to construct the empirical distribution of the LR test statistic.

In all cases, and as reported in Table 1, we find that the basic IAIDS model without struc-

tural change is rejected at the 0.001 level in favor of the relevant structural change model.

These results then provide substantive evidence that structural change is a feature of meat

demands in the United States, a conclusion that is, moreover, supported by considerable

prior research.

Among the three structural change models, results recorded in Table 1 suggest that the

one that uses the exponential transition function fits the meat data best overall as measured

by any of the measures of fit, including the maximized log likelihood function value, the

system Akaike’s information criterion (AIC) value, and the system R2 value. Each of the

estimated structural change models has an identical number of free parameters (31). And

each is, of course, non–nested with respect to the other. Therefore, in this case if we simply

follow the advice of Pollak and Wales (1991), which, based on the likelihood dominance

criterion, or LDC, we choose the quadratic structural change model, or the IAIDS model

based on the exponential transition function in (11), as the preferred specification among

the three structural change models considered.5

It is useful to obtain insights into the nature of the implied structural change. The

underlying time paths of structural change generated from the estimated transition function

for each of the three models are reported in the top panel of Figure 1. While each model

suggests a somewhat different adjustment path—the first–order model, for example, implies

something not far off from linear structural change—it is of interest that in no case is

structural change a discrete phenomenon.6 The preferred model, that is, the second–order

model, implies that structural change in meat demand is symmetric around the third quarter

of 1972.

Additional insights into the nature of the structural change implied by the preferred model
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can be obtained by examining the implied own–price and scale flexibilities over time, and by

comparing these values with those obtained for the basic IAIDS model. Here we compute

mean paths for these flexibilities at every data point by using 1000 bootstraps of each model.

To aid in the interpretation we also compute empirical 90–percent confidence intervals for

the mean paths associated with the basic IAIDS. The results are reported in Figure 2, where

the panels in the left–hand column correspond to the own–price flexibilities for beef, pork,

and poultry, respectively, and those in the right–hand column are the corresponding scale

flexibilities. There are several notable features depicted in Figure 2. To begin, the structural

change implied by the second–order model results in mean paths for the beef own–price

flexibility that are mostly within the 90–percent confidence bands for the basic model. This

is not the case for pork and poultry, with the own-price flexibilities for pork implied by the

second–order model seldom being within the 90–percent confidence bands. Most striking,

however, are the patterns revealed for the scale flexibilities. The panels in the right–hand

column of Figure 2 show that scale flexibilities implied by the second–order IAIDS depart

significantly from those for the basic IAIDS over much of the sample period.

Concluding Remarks

In this paper we have introduced a framework for systematically exploring the nature of

structural change in systems of demand equations estimated with time series data. The

methodology builds on the time varying regression models explored by Lin and Teräsvirta

(1994), and considers the possibility that structural change is continuous and non–monotonic.

An application is considered in the context of inverse demand equations for beef, pork, and

poultry. The results show that the best fitting model is associated with structural change

that has been non–monotonic over time. The implications for estimated own–price and scale

flexibilities are found to be non–trivial.
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Notes

*Matthew Holt is Professor and Wickersham Chair of Excellence in Agricultural Research and Joseph

Balagtas is Assistant Professor, Department of Agricultural Economics, Purdue University. Invited Paper,

2009 AAEA Annual Meetings, July 26th–28th, Milwaukee, WI.

1Goodwin and Brester (1995) and more specifically, Goodwin et al. (2003), use a methodology that is

similar to what we propose here in the context of demand system estimation. Even so, in neither case did

the authors consider the possibility that structural change was non–monotonic over time.

2Because adding–up must hold at all data points, it follows that
∑

n

i=1
eit = 0 for all t, implying that the

corresponding nxn covariance matrix is rank deficient. As Barten (1969) shows, however, FIML estimates

may be obtained by arbitrarily deleting an equation and by using an iterative Seemingly Unrelated Regression

(SUR) estimation strategy.

3Of course the IAIDS model that utilizes the Stone quantity index in lieu of the tranlog quantity index

ln (Q), the so called linearized IAIDS, is in fact linear in parameters. A future research agenda might

therefore be to incorporate the Taylor approximation approach for testing for structural change advocated

by Luukkonen et al. (1988) and Lin and Teräsvirta (1994) into the linearized IAIDS.

4Preliminary estimates were also conducted by imposing unit roots on the autoregressive structure. The

results obtained in this case regarding structural change are comparable to those that we report here. We

continue to use Holt’s (1998) autocorrelation correction methods in all subsequent analysis, however, in that

formal tests for unit roots in the context of the (nonlinear) IAIDS model are not well defined. This remains

as an important area for future research.

5Additional bootstrap tests were performed to determine if structural change is a feature of, collectively,

the constant terms, the constant and dummy variable terms, and the constant and structural IAIDS pa-

rameters. In all cases the null model of no structural change was rejected at the 0.001 level. As well,

bootstrap tests were performed using the second–order IAIDS as the base model to determine if the auto-

correlation parameters remained stable over time. The empirical p–value in this case is 0.377, implying that

the autocorrelation process is reasonably stable over time.

6It is not possible for the second–order model to provide an approximation to discrete structural change.

In the first– and third–order models, however, estimated values for γ that are suitably large will result in a

model that effectively has discrete breaks.
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Table 1: Key Measures of Model Fit and Select Parameter Estimates for Basic and

Time–Varying Meat Demand Models.

Basic IAIDS First Order Second Order Third Order

No. of Parameters 16 31 31 31

Log Likelihood 1388.31 1416.61 1420.01 1417.90

System AIC -21.009 -21.157 -21.195 -21.172

System R2 0.9992 0.9994 0.9994 0.9994

|ΣTV | / |ΣL| – 0.729 0.702 0.718

LR Test Statistic 56.599 63.417 59.192

Bootstrapped P–value – <0.001 <0.001 <0.001

Curvature Violations 52 0 3 0

γ – 1.281 1.070 1.165
(0.733) (0.326) (0.480)

c – 0.376 0.285 0.677
(0.183) (0.027) (0.048)

Note: System AIC denotes the system Akaike information criterion. |ΣTV | / |ΣL| denotes the
ratio of the determinant of the error covariance matrix for the basic IAIDS model relative to
that for the respective time–varying IAIDS model. The row titled ‘Bootstrapped P–value’
denotes the empirical p–value for the LR test of the respective structural change model
relative to the base model obtained from 999 parametric bootstrap replications. Values in
parenthesis are asymptotic standard errors. There are 180 sample observations.
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Figure 1: Estimated Transition Functions for First–Order, Second–Order, and Third–Order Structural Change IAIDS Models.
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Figure 2: Time–Series Plots of 90-Percent Flexibility Confidence Bands for the Basic IAIDS
and Mean Paths for Flexibilities for the Second–Order Structural Change IAIDS. (a) Beef,
Own–Price Flexibility; (b) Beef, Scale Flexibility; (c) Pork, Own–Price Flexibility; (d) Pork,
Scale Flexibility; (e) Poultry, Own–Price Flexibility; and (f) Poultry, Scale Flexibility
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